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ABSTRACT. — We study minimizers of Ginzburg-Landau functionals,
which depend on a parameter ¢. These functionals appear in
superconductivity and two dimensional abelian Higgs models. We study
the asymptotic limit, as ¢ — 0, of minimizers and show that the limiting
configuration has vortices, which have topological degree one.

RESUME. — Nous étudions les applications minimisantes de la
fonctionnelle de Ginzburg-Landau dépendant d’un parameétre ¢. Cette
fonctionnelle intervient dans les problemes de supraconductivité ainsi
que dans le modele abélien de Higgs en dimension deux. Plus
particulierement, nous étudions le comportement asymptotique de ces
applications minimisantes lorsque ¢ tend vers 0 et nous montrons que
la configuration limite a des tourbillons de degré 1.

INTRODUCTION

Let Q be a simply connected bounded domain in IR®. Let ¢ > 0 be
a parameter and ug : 9§ — S! be a smooth map. In a recent book,
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244 F. BETHUEL AND T. RIVIERE

F. Bethuel, H. Brezis and F. Hélein [2] (see also [1], [3], and [4]) have
studied the functional

/ Vol + gz [ (1)’ 1)

for u € H} (Q,R*). Let u. be a minimizer of F.(u) on H} (Q,R%).
They have studied the asymptotic limit ¢ — 0 of u. and proved that u.
converges to a limiting map w., which has exactly |d| singularities (vortices),
where d = deg(u, 9$2). Moreover, the distribution of the singularities was
characterized, and the map u, identified. They also proved that u. converges
to u, in C}_, away from the singularities.

Functionals of the type of F, arises in many problems in low temperature
physics, for instance superfluidity. Our purpose in this paper is to extend
the methods and results of [2] (see also H. Brezis, F. Merle and T.
Riviere [5] and [6]) to related functionals arising in superconductivity

and two-dimensional abelian Higgs models. More precisely, consider the
functional

G.(u, A) /]Vu—zAu]2 + L [ (- )’ /|dA|2

where u € H 1(Q,R2), and A (the vector potential), is a real valued
1-form, that is

A= Al diL‘l + A2 diL‘Q.

The main characteristic of G.(u,A) is its invariance under gauge
transformations. More precisely let ¢ be a function in H?*(f2, IR) and

consider "
Uy =e?u
{ Ay = A+ dg. ®)
We have
Ge(ug, Ap) = Ge(u, A). (4)

The functional G was introduced by Ginzburg and Landau in 1950, in
their study of phase transitions, for superconductors. The gauge invariance
of the functional allows to account for electromagnetic effects. In particular

h = xdA (5)

is the induced magnetic field. Moreover physically relevant quantities, are
those which are, as h, gauge invariant, for instance |u|, the density of
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VORTICES FOR A VARIATIONAL PROBLEM RELATED TO SUPERCONDUCTIVITY 245

supraconductor), J = (iu, d 4u) (the current), where dqu = du — ¢Au, and
the degree of u on the boundary if we assume for instance |[u| = 1 on
the boundary (see below).

In order to have a well posed minimization problem, we need to
supplement the functional with a boundary condition. Clearly a Dirichlet
type boundary condition (as for F.) is not consistent with the gauge
invariance. We adopt instead the following approach.

Let d > 0, be an integer, and g : Q2 — IR be a smooth given function.
We assume throughout the paper that € is simply connected. Consider
the space

(u, A) € HY(Q, R*) x H(Q, IR?), such that
lul=1 on O£ (6)
Jr=(u,7.(Vau)) =g
deg(u,0) = d.

V=

Here 7 denotes the unit tangent vector to JS2, such that (v, ) is direct,
v denoting the exterior normal to dS2, and V 4u = Vu — 1A u. We recall
that 9 is connected, since (2 is assumed simply connected. The boundary
condition J.7 = (iu, 7.V 4u) can be written as

du=(g+Ar)iu  on . (7

Since the rh.s. of (7) is clearly in L? (by the trace theorem, and the
assumption g € C1(99)), we see that if (7) is satisfied u € H'(9Q, S*),
for v € V. In particular

deg(u,08) = ;/6 U X urdr
Q

™

is well defined (one could also invoke instead a result in [7], which shows
that the degree is well defined in. H2 (852, S1)).

THEOREM 1. — We have

Inf Ge(u,A) (8)

(u,A)EV
is achieved. |
In view of the gauge invariance, once we have a minimizer we have
actually a whole family (u4, Ag) of minimizers. It is convenient to reduce
this degeneracy by imposing the condition
{ d*A=0 in Q
A.v=0 on Of.
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246 F. BETHUEL AND T. RIVIERE

We have
THEOREM 2. — There is a minimizer (u., A.) of (8) satisfying

d*A, =0 m Q
{ A.v=0 on OfL. ()

Carrying out an asymptotic analysis as in [2], we are able to prove the
following, which is our main result

THEOREM 3. — Let (u., A.) be minimizers of (8), satifying (9). There is a
subsequence €, — 0 and exactly d points a1, as,...,aq in 2 and (u., A.)
smooth except at the points a1, as, ...,aq such that

A, =0 i Q
{ Acv =0 on 9fl, (10)
d
Ue, — U. Stronglyin H} . (Q\U {ai}) and WHP(Q) forp < 2. (11)
i=1

Set h., = xdA._ and h, = *dA,. We have

d
he, — h. stronglyin H]_ (Q\U {ai}> and WhP(Q) forp < 2, (12)

i=1

and h, satified the equation

~Ahy+he =20 Y 6, in Q

=1 (13)
Oh. = - n 0
v 9 © '

|

Once the points a; are determined, we are able to recover all informations

from the equation (13) which is referred to in the physical litterature as the
London equation. Let £, be the solution of

At =h, on Q
{g* 0 on &% (19)
We have
A* = *d *
s (15)

Jo = (iU, d g, us) = —*dh.
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VORTICES FOR A VARIATIONAL PROBLEM RELATED TO SUPERCONDUCTIVITY 247

Finally u, is determined (up to a rotation) by

d
z—ar
Uy = H : e“ﬁ? (16)
where ¢ is an harmonic function satisfying

Ap=0 in Q
{ o= ¢o on 0O (17)

where ¢, satisfies on 92

a z— ag Z — Qg 43
QSO = ( H |z —ax|’ BT(H [z—akl)) 54—9 (18)

(g is uniquely determined up to a constant, this is also the case for ¢).

Finally the configuration {a;} is governed by a renormalized energy,
which is very similar to the one introduced in [2]. Consider a configuration
b= (by,...,bq) of d distinct points of 2 and the function

d d
Wb)=—m Y loglb; —b;j| = ZR(bi) + ZE*(bi)

1#] =
1 o %
+2/BQ<I>(9+6V) 2/ Ao (19)

where £, is the solution of the linear problem

d
AN, + AL =21 ) 6, in Q

£=0 on 00 = (20)
—Al=—g on 01,
ov

and the function R is given by

R(z) = ®(z) — Zlogkv— b, (21)
where ® is the solution of

d
Ad=2rY & in Q

o o #2)
a—l/ =g + g on BQ
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248 F. BETHUEL AND T. RIVIERE

We prove
THEOREM 4. — Let a; be as in theorem 3. The configuration (a;)
minimizes W. |

The arguments in the proofs of theorems 3 and 4 follow closely the
strategy of [2]. Let us however emphasize two important differences. First,
we have to use a local version of Pohozaev’s identity (by local we mean
on balls of radius €%, for & < 1), thereas this identity yielded directly an
important estimate in [2]. Second, most of our estimates can be derived
from the equation verified by h, the magnetic field.

This paper is organized as follows. The next section is devoted to the
proof of theorem 1 and 2, and to some general remarks. Section II is
devoted to some basic properties of (u., A¢), in particular the Ginzburg-
Landau equations, the maximum principle for |u.|, and an uniform bound
for V4u. Section III is devoted to local estimates. Section IV contains
a localization of the singularities (in the spirit of [2]). In Section V we
deduce global LP estimates for p < 2. Section VI is devoted to the proof
of the convergence. In section VII we derive the London equation verified
by k. and we characterize u.. Finally Section VIII is devoted to the proof
of theorem 4.

Remarks on Physics. — In the theory of superconductivity, conducting
electrons are described as a fluid existing in two phases, the superconducting
one and the normal one. In the superconducting state the material has
an infinite electric conductivity, and repeals magnetic fields (the London
effect). On a microscopic scale, the superconducting state corresponds
to a pairing of the electrons. The pairs of electrons are described on a
macroscopic scale by a complex-valued function u, often called condensate
wave function. Roughly speaking, one could think of |u(z)| as representing
the density of pairs of superconducting electrons. The Ginzburg-Landau
functional then governs the interaction between v and the magnetic field.
The parameter x = ¢ ' is called the Ginzburg-Landau parameter, and
depends on the material. Material with different values of x have very
different properties.

1
If x < 75 the material is called a type I superconductor. If one applies

an exterior magnetic field to the sample, then for a critical value of the
applied field, the sample passes from the superconducting state to the normal

state. For x > 75 the situation is quite different and the sample passes

gradually from the superconducting to the normal state. This corresponds
to the coexistence of the normal and superconducting state: the normal
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VORTICES FOR A VARIATIONAL PROBLEM RELATED TO SUPERCONDUCTIVITY 249

phase is confined in vortices or filaments which are quite similar to the
ones studied in this paper. for a detailed description see {7], [9], [12] and
[16]. We will turn to a mathematical description of the physical situation
in a forthcoming paper. '

For abelian Higgs models we refer to [11]. See also related problems
studied in [8], [13] and [14].

Remarks on notation. — d and x denote respectively the exterior derivative
and the linear operator on the IR-valued forms of IR? such that

*dx1 = dzo, *dxs = —dx1, %1 = dzi Adze and *xdxri Adxy = 1.

1

By d* we mean the operator x~'dx, where x~' is the inverse of *.

1 -

The scalar product onC is denoted by ( , ), i.e. (a,b) = i(ab + ab).
More generally, if f = frdz! and g = g;dz’ are two forms with
coefficients in €, (f A g) denotes the 2l-form with real coefficients
Z(f;,gj) dz’ A dz”.

x represents the wedge product between two vectors of IR?, it is considered
as a real number.

We often identify a 1-form and the associated vector by the scalar

product. We also often identify a vector of IR? and the corresponding

. . . . Ju
complex number. For instance, as a result of our identifications, u X —

3 or
stands for (iu, _u) .
or

1. THE VARIATIONAL PROBLEM

We begin this section by some definitions and remarks.

DEFINITION L1. — We say that (u, A) € H'(Q, IR?) x H (), IR®) is gauge
equivalent to (v, B) € HY(Q, IR*) x H'(Q, IR®), if there exists a function
¢ € H?(Q) such that

U:€i¢u
B=A+dé.
(]

As we have mentionned in the introduction, it is often very useful to
reduce the gauge invariance of the problem by imposing a condition on
A. We have the standard result:

Vol. 12, n® 3-1995.



250 F. BETHUEL AND T. RIVIERE

ProposiTion L1. - Let (u,A) € HY(Q) x HYQ). There is some
(i, A) € H'(Q) x HY(Q), gauge equivalent to (u, A) such that

{fﬁ:o in Q

" (1.1)
Av=20 on 0.
n
Remark. — (1.1) is often termed a Coulomb or Lorentz gauge.
Proof. — Consider the linear problem
%¢ =-d'A in Q
—é =—-Av on 0N, (12)
ov
We easily verify that
i=e?u
A=A+ d¢
satisfies (I.1). [ |

In the course of our proof, we will often need local versions of
proposition I.1. We have

ProposITiON 1.2. — Let G be some smooth subdomain of 2, and let (u, A)
be smooth. There is some smooth (u, A) gauge equivalent to (u, A) such that

{@A:o in G (1.3)
Av=20 on 0G.
|
Note that, in proposition 1.2, we impose only a condition for A in G and
on JG. The proof is the same as the proof of proposition 1.1 (performed in
G), except that we have to extend ¢ to 2 in a smooth way. |

Proof of theorem 1 and 2. - Let (u,, A,,) be a minimizing sequence for
(8). In view of proposition 1.1 we may assume that

{f&:o in Q

A,v=0 on Of. (1.4)

We deduce from (I.7) that there is some &, € HZ(2) such that

(A}, A2) = (—&n,,:ns, ), Where (z1,72) are cartesian coordinates on
IR?. Hence

AE, = *dA, in Q
£, =0 on 0.
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It follows, by standard elliptic estimates, that

L1+ [19anp= [ vep+ [ v

< nlypane </QidAn12
< CGel(un, 4,) < C.

Hence A, is uniformly bounded in H!(2). Since

/ [Vitn, — 14 tn|® € 2G(un, 4,) < C,
Q

we obtain

251

/]vunﬁ < c+2/A:‘un|2 < c+2/Ai(1—|un|2) +2/Ai
Q Q Q Q

sc(/Ai>2 < C.
Q

We deduce that u,, is also a bounded sequence in H'(Q, IR?). Passing to

a subsequence if necessary we have
Up, —u  in  HY(Q) weakly

A,— A in HYQ) weakly.
Passing to the limit in (I.7) we are led to
{ d*A=0 in Q
Av =0 on Of.

Moreover by lower semicontinuity

Ge(u, A) < liminf G(un, A,)
n— 400
< Inf Gv,B).
(v,B)EV

(L5)

(L6)

(L7)

(18)

It remains to prove that (u, A) € V, that is that the boundary conditions

are preserved.
We clearly have

A,.m— AT in HY%89Q).

Vol. 12, n® 3-1995.
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252 F. BETHUEL AND T. RIVIERE

On the other hand, we deduce from the condition J,,.7 = g that

du

5, = tun (9+ A,.7) on Of. (1.10)

Since by (1.9) u, — wu in HY?(8Q) weakly, we see that u, — u
strongly in LP(9Q2) for any 1 < p < +oc. Similarly we may infer that
g+ A,.T — g+ A.7 strongly in LP(99). It follows that

Ou,
B_UT — tu(g+ A.7) strongly in LP(0Q) for any 1 < p < +oo. (L11)

Passing to the limit (in the sense of distributions) in (I.15) we obtain

ou

—=iu(g+ A1) on 90. (1.12)
or

This leads to
J1 = (iu,7.Vu) = g. (1.13)

(where V  u = Vu ~ tAu).

Finally it remains to prove that

deg(u,08) = d. ‘ (I1.14)
We have
1 ou 1
= — — = A.
deg(u, 0Q) 5 /anu X 5 = 5 an(g+ T)
and

1 1
d = deg(u,,00) = o /39(9 +A,7) — oy an(g + A1),

by (I.14), and (I.19) follows. This completes the proof of theorem 1. Since
A satisfies (I.11), we also have proved theorem 2. |
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2. BASIC PROPERTIES OF (u., A.)

2.1. The Ginzburg-Landau equation

ProposiTION II.1. — Any minimizer (uc,A.) of Ge on V satisfies the
Ginzburg-Landau equations on ()

1
-V4 ue = = ue(1 — |uel?) (I11.1)
—xdh, = J, (IL.2)
where J. = (tue,da uc), and ds v, = du — 1A. u.. [ |

For a proof see for instance [11], [9]. Remark that equations (II.1) and
(I1.2) are independent of the gauge (in particular they hold even if we do
not assume (9)). We recall that V? is the operator defined by

2
8 8
2 _ s A —2A.
v “;(axj_"q]) <axj zAJ).

Recall also that, in view on our variational problem, equations (II.1) and
(I1.2) are completed with the boundary conditions

Jr=g on N2 (1I1.3)
luel =1 on Of. (1I1.4)

Moreover we have chosen (u., A) so that (I.1) is satisfied.

ProposITION I1.2. — Any minimizer (u., A.) to (8) in V satisfies

luel <1 wn ). (I1.5)

Moreover if A, satisfies (1.1), then (u., A.) are smooth. |
Proof. — See [11], [7] for the proof of regularity of (u., A.). Inequality
(IL.5) is a consequence of the maximum principle, since we have

SOl = =l (1 fucf?) + [V, (IL6)
| ]

A very useful consequence of propositions II.1 and II.2 is the following.

ProposiTioN I1.3. — We have
Ohe
o

-9 on 0. (1I1.7)
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Proof. — Since h. is smooth up to 92, (IL.2) holds on 9 and yields
(IL7). |

The next equality plays the same role as Theorem 1.3 in [2] and is a
Pohozaev type equality.

PropoSITION I1.4. — Let G be a subdomain of ). We have

1 22 12 2 2
/Ge_2 (1= lu®) —hi= /aG(x.V) [(T.VACUE) — (1.V a4, ue) ]

+ [ jen(Fa-wer-)

—/ (.7) (1. V a4, ue, V.V 4, Ue). (11.8)
oG

|
Proof. — Use the stress - energy tensor as defined in [11] and integrate
by parts on G. |
2.2. An upper bound for the energy of minimizers
As in [2] (theorem IIL.1), we may derive the following upper bound.
ProposiTION IL.5. — We have, for e < 1
1
Ge(ue, Ae) £ mdlog - + C, (I1.9)
€
where C depends only on §Q, g and d. |

Remark. — The proposition below, as written, could have been a direct
consequence of Theorem III.1 of [2], but here we establish a specific
dependence of C on §2, g and d: for a given degree d we prove that C is

1
independent of the scale of {2, by changing 2 into 2 = XQ’ and replacing

g by ga(z) = Ag(Az) for A < 1. This scale invariance, that we will use
during the proof of proposition IL.6, represents one of the major difference
between the gauge invariant functional, (G, and the non gauge invariant
one, F. One of its consequence is illustrated for instance by the fact that
we may consider the functional G on all of JR%. Even if we prescribe some
(non-zero) degree at infinity the functional may remain bounded (see [11]).
This is not the case for the functional F' (see [5]).
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Proof. — Tt suffices to construct an explicit test function (ve,Be) € V
such that

1
Ge(ve, B.) < mdlog- + C.
€

To that aim, we proceed as in [2] and fix d distinct points aj,...,aq in
Q, and R > 0 so small that

B(aiaR) C Q7
and

B(a,-,R) N B(a]’,R) = @ if ¢ ;é _]
Set

d
Q=0\(JB(a;,R),

and let wo be a smooth map from € to S verifying for all j

, zZ—a;
wo = g 3

~ Tl on 0B(a;, R).

Since wy is a smooth map from € to S! we have

gOwo  Owo _ 9 (w0 [ Ow _y

81‘1 81‘2 o 8$1 0 81‘2 81‘2 wo 81‘1 -
Bwo . ng
BY = - = -
i wg X 811,‘1 (Z’u)o, 81‘1)

Bwo . ng
B) = — = -— .
9 wg X 811,‘2 <Z’wo, 81‘2 )

We set

We verify easily that

(V —'iBO)wo =0

“

in

(11.10)
and
dB°=0 in Q. (IL.11)
Let B! be the solution of
AB' =0 in Q
{Bl.'r =g, Blv=0 on OQ. (IL.12)
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We deduce from elliptic estimates that

/|B1|2+]VB1]2 <c
Q

(I1.13)
On Q we set
B.=B°+B' and v, = Wo;
we verify that
lvel=1 in
(V—iB)v.=—iB'o, in Q
and that
dB.=dB* in Q.
Hence we compute
3 [V =iByul + B + Ly
2 Jg 2¢?
= %/Q]B1]2+|dB1|2 < C. (I1.14)
In view of (IL.13).
It remains to define (v, B,) on LdJ B(a;, R). Let ¢ be a smooth function
from IR to IR such that =

t)=1 ift>1
1
CH)y=0 ift<g=.
2
We set, on B(a;, R)

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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A simple computation yields

1

—/ (V = iB)ve|® + |dB.|?
2 JB(ai,R)

+ _1_(1 _ IUE|2)2 < 7rl09(%> +C, (I1.15)

2¢2

where C is a constant depending only on R. Clearly we have (v, B,) €
H'(Q) x H*(Q) and combining (I1.14) and (I.15) we obtain

1
G(ve, Be) < mdlog - + C. (I1.16)

On the other hand we verify that

deg(ve, ) = deg(wy,0Q) = d

|ve] = |wol =1 on 0N
and
Jor=Blr =g on 0.
Hence (v, B.) € V, and (IL.9) follows from (I1.16). . [ |

2.3. An estimate for |V 4 u.|
The equivalent of lemma A2 of [1] is the following.

ProrosiTiON I1.6. — We have

[Va.ue| < Cle, (11.17)

and hence
[Vhe| < [Va,ue| < Cle, (11.18)
where C' is some constant depending only on g, 2 and d. ||

Proof. — We deduce from proposition IL.5 that

1
/ lhef> < Clog-. (11.19)
Q €
It will be convenient to make the following change of scale. Set
1
7= % and Q=-Q, (11.20)
€
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258 F. BETHUEL AND T. RIVIERE

U(T) = ue(ez) = u (x) Le wu(z)=1u(z/e) (I1.21)
and
A(Z) = e A(eT). (I1.22)
Hence
VIU(T) = €V u(eT) = eV 4 u (z), (I1.23)
and
h(T) = xdA(Z) = € he(eT) = €* h.(x). (I1.24)

It follows that (%, A) is a minimizer of the functional
G B) = [ IV ~iB)of + LB + Lo - ppry
a2 2¢? 4

on the space

_ (v, B) € H(Q) x HY(Q) such that
V= [v] =1 on 6Q
Jr=3g deg(v,0Q) = d
where G(Z) = eg(e7).
The Ginzburg-Landau equations for (T, A) are therefore

-Viz=m(1-[a? 0

Lo, o~ (I1.25)
6_2 d*dA = (zu,dxu).
since d*A = 0, (IL25) implies
I - _ =
—EAA+WFA:ew@m in Q. (11.26)

Let Z; € Q, and consider the ball B(Ty,2). We are going to show that
V4| < C  in B(Z,1). (11.27)

To that aim we distinguish two cases.

Case 1. - dist(Zo,0Q) > 2. It follows that B(Z,2)NoN = 0. In view of
proposition 1.2 we may choose (%, A) gauge equivalent to (@, A) such that

¢*A=0 in B(Z,2)
Av=0 on 8B(z,?2).
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VORTICES FOR A VARIATIONAL PROBLEM RELATED TO SUPERCONDUCTIVITY 259
Hence there is some £ € H?(B(To,2)) such that
A= (=&, 6,), (11.28)
where £ satisfies

{A}E:E in B(Zo,2)
£=0 on J9B(Zy,2).

By standard elliptic estimates, we obtain
IVEllr2B@o2) + IVZEl| 2 (8@ < CllRll 2@ < Celloge]/?,
where we have used (I1.19) and (I1.24). It follows that
”AH%P(B(EO,Z)) < C e loge. (I1.29)

In the gauge A, (I1.25) becomes

—Ad =41 -la)?) - A% — 2iA.di. (I1.30)
Where A.dii = A; i, + Ay iiy,. We write

=1 + U on B(Ty,2),

where g satisfies

and 1 satisfies

—Adiy =4 (1 - |[a]?) — A4 — 2iA.da in B(Zo,2) (IL31)
111 =0 on 83(50,2) )
From elliptic estimates, we obtain
[Vig| < C on B(Zy,3/2). - (1I1.32)

We have for any p < +oc, by (I11.29)

NA% 4| e < A% |ze = 1A]22r < A% < C € |loge], (11.33)
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260 F. BETHUEL AND T. RIVIERE

and for p < 2,

HA’V'&”LP |/1.VA11HLP + llz‘iZﬂ,HLp

|
IV zallzz [|Alse + ||4%]|1s, (IL.34)

NN

1 -
where E+§ = L. Hence, since ||V zil| ;2 < Clloge| and ||A[|Lee <
|| A]| 1, we deduce, by (IL29) that

I|A.Vil|» < Celloge*’?, (I1.35)

and from (IL.31), (IL.33), and (I1.35) that

1] |lw2e(B@,,2)) < Cp e |loge]>/? Vp < 2.
Hence, by Sobolev imbedding
V1| Lr(B(0,2)) < Cpelloge]’? Y 1< p< +oo. (I1.36)
Combining (II.36) and (I1.32) we are led to
IVl Lo (B@,,3/2)) € Cp V1<p<+oo. (IL.37)

Working now on the ball B(Zy,3/2) instead of the ball B(Z,,2), we see
that equation (IL.31) leads to

la1llw2.»(B(0,3/2)) < Cp V1<p<+oo.
This yields in particular, by embedding
Vi | < C on B(Zp,3/2),
which shows, combining with (I1.32) that
V| C on B(Zp,3/2). (11.38)
Using next equation (I1.26) on B(To,3/2) we deduce that
Al L= (B @01y < C. , (11.39)

Combining (I1.38) and (I1.39) we deduce (I1.27) in case 1.
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Case2.-Tp € 0f). We follow essentially the same arguments. we choose
(@, A) gauge equivalent to (u, A) such that

d"A=0 in QnB(Z,?2)
Av =20 on 8(QN B(Zo,2)).

As above, we write
U = ug + U1,
where g verifies

A’[Lg =0 on ﬁ_ﬂ B(Eg, 2)
do=1% on 8(QNB(T,?2).

We have A = (—5;2,5;1) where £ satifies

4§~=E on QN B(Z,2)
{5 =0 on (N B(Zy,2)). (L.40)
We have
. o€
AT = s (I1.41)
and _
ou . O . — _
5 = (5 + g) U on 00N B(zg,?2). (I1.42)

From (I1.40) and (I1.42) we deduce, by classical linear estimates, that

ou <

or H1/2(88INB(F0,3/2))
Hence since g is harmonic we deduce that

l1%o]] 22 (B@o,3/2)n0) < C. (I1.43)
As for (I1.29) we have

”AI|H1(B(EO,3/2)OQ) < C. (I1.44)

Similarly arguing as in (IL.31)-(I.38), we derive
”ﬁnyl(B(go,g/z)mﬁ) < C. (1145)
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In particular, we obtain
HVAﬂHHl(B(zo,a/z)mﬁ) < C (11.46)
On the other hand, we have by (I1.2)
— xdh = €*(iu,d ;).
Hence, we deduce from (I1.44), (I1.45) and (I1.46)
IVEIL?(B(E,an)mﬁ) <é IV a2 (5@,3/200) < Ce.

Hence, since |h| 2@ S Celog(1/e), we obtain by Sobolev embedding,
for any p > 2

— 1
Ih]Lp(B(Rg,/g)mQ) < 062 log( ) — 0.

€
Iterating the argument we deduce that
Hﬁonwzvp(B(Eo,s/AL)mﬁ) <G,
and hence
Vil < C.

We complete the proof of (I1.27) as in case 1. |

3. LOCAL ESTIMATES

As we may see from proposition II.6, € is the characteristic length of
variations of (u., Ac). The aim of this section is to derive estimates on
domains of a larger scale, of order €~ for o < 1. These estimates will be
an important step for deriving global estimates on 2 (see section V).

Let 0 < a < 1 be fixed. If not otherwise necessary, we drop the indice
¢ for u,, he, Ac and simply denote u, h, A.

ProrosiTioN IIL.1. — Let 0 < o < 1 and let xy € §). We have
/ |h|? < C € |loge|, (IIL.1)
B(zp,e*)NQ
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and

2/ (1- )2 < €, (IIL.2)
€7 JB(z0,e)NQ

where C depends only on g, d, a and Q. |
Proof. Step 1. Proof of (I11.1). — We have, by (I11.2),

|VR| < [V aul, (I11.3)
and hence by proposition II.5.
/ |VAh|*> < Cllogel.
Q
On the other hand, we have also
/ |R|? < Clloge|.
Q

Hence, by Sobolev embedding, we deduce that for p > 2

1

( / |h|?)" < G, |loge|*. (IIL.4)
Q
It follows that
( / th) < ( / lhip)”[meas (Blro, )i
B(zg,e )N Q
< Cloge|? e"(l_%), (IIL.5)

which yields (IIL.1) with p = 4.
Step 2. Proof of (111.2). — Recall that, by Proposition I1.5, we have

Ge(u, A) < Cllogel,

which yields

1 1
—/ IVaul® + [dA]? + 55 (1 — [ul?)® < Clloge.
2 B(zg,e/2)NQ 2¢

By Fubini’s theorem, we may hence write

a/2

/ I.(u, A) dr < C |loge| (I11.6)

o
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where

— E 2 2 1 212
L, 4) = 2 /aB(m,r)mnlvAul +1dAF + 262(1 Jul)*.

We claim that there is some p € (%, €%/2) and a constant C,, depending
on «, g and d such that

I(u, A) < %‘-. (ITL.7)

We argue as in [2] and assume by contradiction that (III.6) does not hold
for any p € (¢%,€*/2) and any C,. Integrating we obtain

a/2 af2

/ I.(u,A)dr > / &dr

1
> 2 a C, |loge|.

This contradicts (I11.6) for C, choosen sufficiently large. We distinguish
next two cases.

Case 1. — dB(zqg,p) N2 = 0. We apply proposition I1.4 on the ball
B(zg, p). This yields by (IIL7)

1
/ Al =B < CpL ) < ©
B

Z0,p) €

Combined with (III1.1), this yields (III.2) in the case considered.
Case 2. — 3B(zg,p) N Q2 # 8. We write
0[B(zq, p) N Q] = (0B(zg,p) NQ)UT,

where
', = 002N B(zg, p)-

Let =, be a point in €2, take x; as the origin and apply proposition I11.4 on
QN B(zg, p). This yield the estimate

/ L= Py ~ P < C(o+ o1 = mo]) I, (u, A)
B(

2
zo,p)N2 €

P

1 2
- §Ap(a:—a:1).1/h
+/r (z — 21).7(7.V qu,v.V 4u). (I1.8)

P
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(We have used the fact that |u| = 1 on ') C 0€2.) We have
/ (x—21).7(T.V 44, .V gu) < / [(z1—20).7| [|T.V au|* — 1.V 41 %]

Assume that € is sufficiently small, let 7z be the nearest point projection of
zp on O and choose z; such that dist(z1,7z¢) = 4p and zg € [7To, T1].
Then we have

(z—z1)v 20 Ve el,

and 1
§(x—$1).7< (x —z1).v vz eI,.

Then (II1.8) yields

[ Sa-wpy e <o L) + [ Tl
B(zo,p)nQ € T,

Cp |I,(u, A) +/ g9
FP

and this implies (II1.2). n

< G,

4. LOCATING THE SINGULARITIES

The purpose of this section is to extend lemma IV.1 of [2] to our situation.
More precisely we are going to give a first description of the vortices and
their location. We will prove

THEOREM IV.1. — There exist constants N € IN, Ay > 0 depending only
on g, d, Q (and not on ¢), and points x{, ..., 5, ..., Ty, in §2 such that

N. <N (IV.1)
and
1 Ne
ue(2)l > 5 for zE€Q\ (le(:cf,)\o e)>. (IV.2)
|

In this section also, if not otherwise necessary, we drop the indice e
for u., h., A and z¢ and simply denote u, h, A and xz;. We assume
throughout that € < 1.
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Our analysis here, follows closely the ideas of [2]. The main difference
in our situation is that we only have the local estimate (II1.2) (compare
with Theorem IIL3 of [2]).

The next result, as in [2], plays a crucial role:

ProposITION IV.1. — There exists positive constants g, (o depending only
on d, g and X such that if (u., Ac) is a minimizer of G, on 'V satisfying

1
/ L0 ) < o (Iv.3)
B(zo,21)nQ €
with £g € Q and
[
- > /\0 ’ l < 17 (IV4>
€
then 1
lue(z)] = 3 on QN B(x,l). (IV.5)
[ |

Proof. — The argument is exactly the same as the proof of the theorem II1.4
of [2]. Indeed, observe that

V] < [V 4ul. (1v.6)
[If |u| # 0, we may write locally u = |u|e’®, and we compute
Vau = (V]| +ilu| (Vo — A)) e
and (IV.6) follows. Otherwise if |u| = 0
Vau = Vu,
and (IV.6) follows similarly]. By proposition 1.6 we have therefore
[V]ul] < C/e

and use the argument of [2]. [
Next we will (using proposition IIL.1) first give a local version of
theorem IV.1.

PropPOSITION IV.2. — Let 0 < a < 1, and zo € § be given. There
exists a constant N, depending only on «, g, and d, points x5, .. »Tf, In
B(xg,€*) N Q such that

l. < N, (IV.7)
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and

lue(2)| =

N =

le
for € Blxg,e*)N (Q\ (U B(z$, Ao q)). (IV .8)

=1

Proof. — We follow the proof of lemma IV.4 of [2]. Consider a family of

discs (B(z:, Ao €)),» Where X is the constant in proposition IV.1 such that

z; € QN B(zg, %)

/\06 /\06 . .
Blzi,—— |NBlzj,— | = v
($ 4)“ (”TJ 4) ’ it (IV.9)
QN B{zg,e*) C UB(.’L‘i,/\g €).
i€l
We say that B{x;, Ag€) is a bad disc if
1 2\2
S =) > po. (1v.10)
B(z:,2X0 )N €

Hence if = does not belong to a bad disc, we deduce, from proposition IV.1
that
lu(z)| > 1/2.

There is an absolute constant C such that
Z/ (1-|uf?)?< C (1= w2 (IV.11)
icl VY B(zi,220 €)NQ B(zo,e>)NQ
Therefore the number of bad discs is bounded by
C

= (1 - Juc|?)?
B(x0,6>)NQ

and the conclusion follows from proposition III.1. ]

The last ingredient in the proof of theorem IV.1 is to show that the
contribution of a bad disc to the total energy is of the order of |loge|. Hence
in view of proposition IL.5 there cannot be many bad discs.

PROPOSITION IV.3. — Let 0 < a < 1 and xo € S be given. Assume that
1
lue(zo)] < 3" (IV.12)
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There exists a constant C,, depending only on o, g, and d such that
/ [Va.uel? > C, |logel. (Iv.13)
B(zg,e*)NQ

|
Proof. — In order to prove proposition IV.3 we need the following lemma.

LEMMA IV.1. - Let D > 0, 0 < 3 < 1, v > 1 be given constants, such
that ¥ < 1. Let p < €. Assume that p” > \ge¢, that

I,(ue, Ae) < %, (IV.14)
luel > % on 0B(zg,p) NN, (IV.15)
and
deg(IZZI,B[B(:I:O,p) ﬂQ}) =0. (IV.16)
Then we have
fue| 2 % on B(zg,p")NQ, (Iv.17)

provided € < ¢, for some constant €, depending on D, 3, vy, g, d and .1

We postpone the proof of lemma IV.1 and complete the proof of
proposition IV.3.

Proof of proposition IV.3 completed. — Set
5= oi-a
2(N, + 1)

for k = 1,...,2(N, + 1), consider the intervals

I, = (601/2—195(, 601/2—(k+1)5a)
and set
_ al/?_ k&, o2 (k+1) 6,
Cr = [B(zo, € )\ B(Zo, € N

We apply proposition IV.2 to the domain B(zo,e*)NQ. Let zy, ..., z;, ..., 2y,
be as in proposition IV.2. We claim that, if € < ¢¢ (depending on a, g, d
{2) then there is some kg in {1,...,2(N, + 1)} such that

s

Cey N (U B(z:, Mo e>) = 0. (IV.18)
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The proof of (IV.18) relies on a simple counting argument. Indeed, since
I. < N, the union of intervals

U (|lzi — o] — Ao €, |z: — zo| + Ao €)

i=1...1¢

cannot intersect all the I;. It follows in particular from (IV.18) that

1
lu(z)| = 3 Vz € Cg,. (IV.19)
Therefore, for any p € I,
iy = deg(2 01B(z0,) 19

is well defined and does not depend on p. We complete the proof in two
steps.

Step 1. — We have
d, # 0. (IV.20)

Indeed assume by contradiction that dy, = 0. Adapting the argument of
the proof of proposition 1II.1, we would find some pg in Iy, such that

C
IPO (’U,,A) < b
Po

where C depends only on «, g, d, and Q. Applying lemma IV.1 to
1

B(xg,po) N Q2 we are led to |u(zo)| = 72 contradiction.

Step 2. — Proof of (IV.13). Choose (i, A), gauge equivalent to (u, A)
satifying
d*A=0 in B(zg,e*)NQ
Av=0 on 8B(zg,e)NN (IV.21)
AT=0 on B(zg,€e*) N N.

We may find A by introducing the solution & of
éé=h in B(zg,e*)NQ
§=0 on 9OB(zg,e*)NQ

o€ N
(—9;—0 on B(zg,e*)NoQ,

(IV.22)
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so that A = (—£,,,&,, ). Note that the domain B(zo,€*) N may have

corners. However by a result of Grisvard [10], we may nevertheless assert
that

IVEl L2 +11V2El| 2 (Bee)ng) < C Pl L2(B(w0,e)n0)»

and hence, we deduce that

/ |A]? +|VAP < / 2 < C. (IV.23)
B(xzg,e*)NQ B(xg,e*)NQ

We have
1 1 U
Vo € I d :-/ —(ax—) > 1. (IV.24
° o] 27 | Jo[B(z0.p)ney ul? or ( )
On B(zo,€*) N, we have A.7 = 0. Hence
9
v =4igi on B(z9,€*) N 09Q,
or
and
/ (12 X a_u) = / g { < Ce”. (IV.25)
B(zo,p)N00Q or B(zg,p)NON

Combining (IV.24) and (IV.25) we are led to

I
— | ax =
8B(z0,0)NN |ul? or

By Cauchy-Schwarz inequality, we deduce that

22r(1—Ce) 2 7.

C
Vp € I, / Va2 > =, (IV.26)
3B(z,p)NN2 P
and hence integrating on I, we are led to
/ [Vii]? > C |logel.
Cig
Combining this with (IV.23) we deduce that
| Vit = [Vl > Caltogel,
ko Cry
and this yields the conclusion. |
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We now turn to the proof of lemma IV.1.

Proof of lemma IV.1. — It is convenient to introduce the following
notation. For any subset K of (2, set

1 1
Glu, A, K) = _/ Vauf? + AP + —(1— [uf?)?.
2 Jk 2¢
We claim that
G(u, A, Q2N B(zg, p)) < C(p[L(u,4)] +o(1)), (IvV.27)
where C is a constant depending only on g, d, 2, and 3 and o(1) — 0
uniformly as ¢ — 0.

Proof of (IV.27). — The idea is to construct a comparison function, and
we adopt the construction of [1]. To that aim we are going to change the
gauge, and consider (#, A) gauge equivalent to (u, A) such that

dvi:o1 on U
AT = —-/ h on I (Iv.28)
Tl Ju

Here we have used the notation
U = B(zy,")NQ

and

I'= 90U = 8[B(zo,€’) N Q.

This gauge A can be found by introducing the solution §~ to

Af=h on U

o 1

5;—m/vh on T (IV.29)
o

U

so that A = (—51.2,5;1) in U, A is extended to ©Q as in the proof of
proposition 1.2.
We easily verify that

[ vee <o [,
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and hence by proposition III.1

/ |A|? < C€Plloge] — 0. (IV.30)
U

Since / AT = / h — 0 as € — 0, we deduce, from assumption (IV.14)
U

T
that
J

We have by (IV.28)

/Flfifl2 < l?ll(/U w)z < ﬁl:l/ﬂlh[z mes|U|

< Cé° / |h]2 < C € |loge|.
Q

~ (2
ou <2/[vAu[2 + / |A.r[2. (IV.31)
87' r T

Hence

o C
21 <2+ o(1),

el <3

where C' is a constant depending on D. Since the degree of 4 restricted
to I' is zero, we may write on I’

o = |ul e'?
where ¢ is a smooth map from T to IR.
We are now able to introduce a comparison function (v, B). We first set
B=A in
and .
v=mne? in U
v="1 in Q\U.
Here % represents the solution of
Ay =0 in U
v = ¢ on I'=0U,

and 7 the solution of

-eAn+n=1 in U
n = |ul on I'=209U.
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Arguing as in [1], (Theorem 2) we may assert by (IV.31) that

/U Vo2 < CloT,(u,A)] + o(1),

/UIV’?|2 < Ce?[pIy(u, 4)] +o(1),

U

and hence
%/U[vv[? + ﬁf /U(l— W) < CloI,(u, A)] +o(1) < C. (IV.32)

Combining this with (IV.30) and proposition III.1 we deduce, from the
definition of (v, B) that

G(u,A,U) < Gv,B,U) < C

This complete the proof of (IV.27).
We deduce from (IV.27) that

p
/ I(u,A)dr < C
p

~

and hence, arguing as in the proof of proposition II.2, we deduce that there
is some ro € [p?,p] such that

C

ITo(u»A) < TR
To [logro|2

where C' does not depend on e. Arguing as in the proof of (IV.27) we
might now assert that

G(u, A, B(xg,79) N Q) < C([ro I, (u, A)] + 0(1))

C
S 77 +0o(1) S 7—— +o(1).
llogro|2 {log €|z
In particular
1 22 C
- (I-|u]®)* < r+o(l) — 0, ase—0, (IV.33)
€ QNB(zg,p7) ll0g€|7
and the conclusion of Lemma IV.1 follows from proposition IV.1. ]
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Proof of theorem IV.1. — Let (;);c; be a finite family of points in ©, as
in the proof of proposition IV.1, satisfying

T; €Q

Ao € Ao € .,
B(m"’T>ﬂB<$J”T) =0 Vi#j (IV.34)
QC UB(.’EZ',)\O 6).

i€l
We say that B(z;, Ao€) is a bad disc (in this proof) if there is some
Yi € B(z;,Ao€) such that

uws)| < % (IV.35)

We denote by J the set of indices for bad discs. In order to prove
theorem IV.1, it suffices to show that

#J < C, (IV.36)

where C' is some constant depending only on g, d, and . To that aim, let
0 < a <1 be fixed, and consider the balls B(y;, ), for i € J (where Yi
is one of the points verifying (IV.35) in the bad ball B(x;, Age)). Clearly,
by (IV.35) and proposition IV.3, we have

/ IVaul® > C, |logel. (IV.37)
B(y;:,e*)NQ

Set
W =] B(zi,2¢0) Q.
ied
We claim that

/lvAuP cy / IV auf

i€ B(z;,2e*)NQ
C(#J) |log €] (IV.38)

where C is a constant depending only on «, g, d and Q.

Proof of (IV.38). — Tt suffices to bound (independently of ¢) the number
of balls B(z;,2¢) to which any point y in W may belong. Let y € W
and consider the subset K, of indices of J such that

Ky:{ZEJ) yEB(yi)26a)}'
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It follows that, for ¢ in K, we have (provided e is sufficiently small)
z; € B(y,2¢€%).

On the other hand, we deduce, from proposition 1V.2, that the number of
such z; is bounded by a constant depending just on ¢, g, d and (2, hence

#K, <C,

and this yields (IV.38). Combining (IV.38) with proposition II.5 we deduce
(IV.36) and complete the proof of the theorem. |

5. GLOBAL ESTIMATES

At this point we had only a local estimate for the magnetic field. Thanks
to theorem IV.1, we will be able to derive an equation for h. which leads
directly to global estimates. We are going to prove in this section.

THEOREM V.1. — Given 1 < p < 2 and q > 1 there are constants C,, (resp.
C,) depending only on d, g, Q2 and p (resp. q) such that

VhP < C,  Vp<2 (V.1)
Q
/|he|‘1 <C,  Vg< +oo, (V.2)
Q
/ Vaulf <C,  Vp<2 (V.3)
Q
[ ]

5.1. The equation for A

Recall that we have found (Theorem IV.1) N points z3, ..., x5, in €
such that

N. <N

and
lu(z)| > on 2\ |J B( Ae).

1=1...N,

BN =

Of course the limits as ¢ — 0 of the points z{ are the good candidates
for being the vortices of u,. In theorem IV.1 we have not excluded the
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possibility that some of the discs B(z§, A €) may intersect. To avoid this
unpleasant situation we will argue as in [2] (lemma X.3) and replace the
discs B(z, Ao €) by slightly larger discs B(z$,\Ae) for i € J¢ a subset
of {1,...,1.} and where A > ), is another constant depending on g, Q
and such that

B(zi,Ae) N B(z{, e) =0  Vi# j, (V.4)

lu(z)] > if U B(z:, Xe). (V.5)

ieJe
In this section also we drop the indice ¢ when no confusion is possible.
We set

w; = B(zi, Ae) for 1€J

and
Pi = 8B(£L'i,/\6) for 4 g J.

We consider the subset J; of J defined by

Jl = {'L EJ, B(:r,,Ae)ﬂ@Q = @}

and
J2 = J\Jl
Set 3
= Q\UB(l‘i,/\G),
ieJ
Q =0\ UB(:U,-,2/\6),
ieJ
O = Q\ [ Bz, M),
1€y
and
Po - 891

PROPOSITION V.1. — We have on Q

*d< w4 u5> = —h.. (V.6)

|
(Recall that d4 v = du — iAwu, where A is considered as a form.)
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Proof. — Since |u| > 1/2 on Q and since (V.6) is a local property it
suffices to verify it locally. We may write

u = |ule'® locally on  Q,
and hence
(tu, dau) = |u|*(dp — A).

Thus
d(iﬁl—z,dw> = —dA = — «h.

PrOPOSITION V.2. — Set p, = |u.|. The magnetic field h. satisfies

—dw(ﬁg Vh5> Y he=0 in Q. (V.7)

€

Proof. — Recall the Ginzburg-Landau equation

—%dh = (iu, dau).

Hence in  we may write

1 LU
*d(*p—2dh) =- *d(zW, dAu) = h.

|
Equation (V.7) is supplemented with the boundary condition
h
g; =—9g on 0. (v.8)

This leads us to consider elliptic equations of divergence form with
Neumann boundary condition. As in [2] we will use the method of
Stampacchia [15] to derive L? bounds for |Vh| with p < 2. This is
the purpose of the next section.

5.2. Auxiliary linear problems

In this section we consider a domain Q C IR?, and a positive function
a:Q — IR, and a constant 1 > v > 0 such that

vy <a<~yL (V.9)
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Let f = (f1, f2) be a vector field in L4(Q), for some ¢ > 2. We consider
the solution £ € H'(2) of the linear problem

/aVEVd)-}- £ = /fV¢> , Yo € HY(Q). (V.10)
Q Q

Clearly £ is unique and can be found by minimization.
Testing with ¢ = 1, we obtain

/E =0, (V.11)
Q
and testing with ¢ = &, we derive
Lwee+e <o [ (v.12)
Q Q

where C' depends on o. Our main estimate is the following,

PRrOPOSITION V.3. — For any q > 2 we have

€l (o) < Cy fllzeo (V.13)

where C, is a constant depending only on o, 2, and q. | |

Proof. — The proof is due to G. Stampacchia [15] (in the case of Dirichlet
boundary conditions). We closely follow his arguments (as in [2]).

To avoid problems with regularity we assume first that f and a are
smooth and derive (V.13) in that case. The general case will then follow
by density. Since f and a are smooth, £ will be also.

For 6 > 0 consider the set
F(6) = {zx e Q, dist(z,00) < 6}
and
A(6) = OF(6) \ 09.

Letw : F(§) — 0N be the nearest point projection onto 92. There is some
bo such that for § < &, 7 is a smooth fibration. Consider the reflexion map

T: F(&) — IR*\Q
x — T(x),

where T'(z) is such that dist(T(x),0Q) = dist(z,0Q) and = — T(x) is
parallel to z — w(z). Clearly T is smooth and

[IVT|lLe(rs)) < C, Y6 < bo.
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Next we consider the level sets of £&. For & > 0 set
k) ={ze€Q, &>k},

k) = |Q(k),

and
V(k) = 9Q(k).

We now divide the proof in several steps.
Step 1. — There is some constant D; depending only on (2, «, and
ko € (D1 |f|L2, 2D1|f|r2 ) such that V(kg) is smooth and
1
HY(V (ko)) < 1 %o (V.14)

Where H! denotes the 1-dimensional Hausdorff measure on IR>.

Proof. — By the coarea formula, for any D; > 0

2Dy |fly2
[ wwmas < [ og

D1|f|L2
< c(/ lvsP) < Clflze.
Q

We deduce that there is some kg € (D1 |f|r2, 2D |f|r2 ) such that V (k)
is smooth (by Sard’s theorem, since £ is smooth) and

H (V (ko)) < C/Dy.

Step 2. — There is a constant é depending only on € such that for
k > ko, the following inequality holds

YoIl€ = B) e <IIVE = &) o) (V.15)

Proof. — We consider the connected components of V(kg). And the
maximal curves V?(ky),...,V?(ky). We divide these components in two
sets

Ki={i€ {1,..,p} Vi(k)noQ = 0}

K2 = {1,,])} \Kl

Let W; be the domains bounded by the curves V. Clearly, for k > ko,
we have

Qk) C Qko) C UE_, W,
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For 7 € K; we easily verify that

(§E—k)" =0 on OW; fori € Ki k> ko.
Hence by Sobolev embedding we deduce that

fori € K and k > ko,
abo [I(€ = k) Mrzowyy < V(€ = B)F | oway,
where 6, is an absolute constant.

Next we consider K,. We deduce from step 1 that there is some §; in
(60/2,80) such that

(V.16)

Vi(ko) N A(6;) = 0. (V.17)
It follows that, for 7 € Ko,

W, C F(61) C F(bp). (V.18)
Therefore for ¢ € K;, we may consider the set

W, = W; U T(W;),

and the function f defined on W; by

&(z) = &(x) it ze W,
£z) = £THz)) if zeW.
We verify that £ is lipschitz and that (£ — k)* = 0 on OW;. Therefore

fori € Ky k > ko,

= > V.19
@80 16 = k) llpagmy < IVE = Kl sgne (V19)
On the other hand, we have
NCE = B)Hllpaqwny = 1€ = k) llzeow,) (V.20
and 5
IV = B)F iy < CHVE = ) llLiwa- (V.21)
Combining (V.19), (V.20), (V.21) we obtain
fori € Ko k > ko
’ V.22
Caboll(€ - B)*llegwy < 196G = B gy, 22

Finally combining (V.16) and (V.22) we obtain (V.15).
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Step 3. — We complete the proof of proposition V.3 as in Stampacchia
[15]. Applying (V.10) with the test function ¢ = (£ — k)™ we obtain

v [190e =+ g6 - 0 < [ 19(e - By
which yields, by Holder inequality, (note that £.(£ — k)T > 0)

YIV(E = &) llzzay < Ifllz2ian < #(B)27% ||fllzeo)-

Hence 1 L
IV(€ = k)l < ;u(k)l_E I1f1lzece)

By the result of step 2, we obtain for & > kg

1 v
1€ = k)T llie) < Eu(k) 1 fllze (V.23)
where v = § 1 We have
2 g

+oo
10 = )l = = [ (¢ = B)dut) = B,
and we are led to the differential inequality

M)f

2k = -u) < - (2

where

1
=5l

integrating, we obtain

H(k)=0 for k>ﬂéyi1 Y=t 4 k.

On the other hand, by (V.23), we have

H(ko) = [I(€ = ko)™ {21y < BIQ

Hence
Hk) =0 for k=28

v—1
V—llﬂl + ko,
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Which shows that

1 v 1_1 11
I e < 5 o7 10 E i lle + 201 11l < C 1 il
This proves proposition V.3, since a similar estimate holds for {~. n

5.3. Proof of theorem V.1
We divide the proof in several steps.

Step 1. — Proof of (V.1). Let 1 be a smooth function defined on 2 such that

n=1 on Q=0\|JB(:2xe), (V.24)
i€J
n=0 on |JB(,Ae)nQ, (V.25)
ieJ
C
Vol < <, (V.26)
where C is a constant depending on §2. Let a be the function defined on 2 by
1 -
a=— on Q=0 B(xz;, Ae
p? \g ( ) (V.27)
a=1 on B(z;,Ae)N.
1 1
Thus we have 1 € a < 4. Let g be such that — + E = 1 and f be
p
any function in L?(€2) such that
f=0 on QN B(z,2Ae). (V.28)

Consider the solution £ to (V.10). In (V.10) we use the test function
¢ = mnh. This yields

[avevam + ean = [ 19@m = [ ron (va9)
Q Q Q
where we have used (V.24) and (V.28). We have

/aV&V(nh) = /anV&Vh+/ahV§Vn, (V.30)
Q Q Q

and

/anV&Vh =/i2nV£Vh
o Q”l . (V.31)
= [ = — | S €VnVh.
| v vh- [ Zevn
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Recall that

[Vh| < g (V.32)
€
Hence
[hel<ex ([, 4
—£Vn < — -
o P’ it B(z;,2 X¢) €? L=
< Clléllz~(o)- (V.33)
By proposition V.2, we may write
1 1 6h
= V(&) Vh + nh:/ — 5 (&
/9/12 (&n) ¢ 39/123’/( )
1
Hence )
[ € i+ el < Clllme. (v
Q
Finally, it remains to estimate
/ahvgvn=2/ ahVEVD.
Q icd B(z;,2X€)
Set h; = h(z;). We have by (V.32) (proposition I1.6),
|h = hi] £ C on B(z;,2Xe).
Hence, using (V.12)
/ a(h—h;)VE Vni <C IVE V)
B(x;,2 X€) B(z;,2 X¢)
<C ( / lV£|2)
B(x;,2X¢€)
< Cllfllee)- (V.35)

On the other hand
/ ahiVEVnz/aV§V(ni~l)hi,
B(x;,2 Xe) Q
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where 7); is the map

7% =7 on B(x;,2X\e)
7 =1 on Q\ B(z;,2Xe).
By the equation (V.10), satisfied by £ we have

/avswm 1)k = —/(m 1)kt
Q Q

:—/ (m = 1)hi€
B(z;,2\e)

< liele- [ L c)

< Clléfle= (V.36)

Therefore

/avswm 1)k
Q

where we have used the proposition IIL.1 (the local estimates). Finally,
combining (V.29), (V.30), (V.31), (V.33), (V.34), (V.35), and (V.36), we

obtain
t / £9R| < CQlellze + 1fllee),

and hence by proposition V.3

[ £n] < €l

Therefore, since f was arbitrary, satisfying (V.28), we deduce by duality
that

IVhlp@ <G W <2 (v.37)

(Recall that {2 = Q\ |_J B(x;, 2)e)). On the other hand, since |Vh| < C/e
ieJ
we have

> / [VR2 < C. (V.38)
ied B(xz;,2\e)
Combining (V.37), and (V.38) we prove (V.1).
Step 2. — Proof of (V.2). We have

/h / AT 27rd—/ g
Q % 1)

Hence (V.2) follows from (V.1), (V.39) and Sobolev imbedding.

< C. (V.39)
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Step 3. — Proof of (V.3).
We have

—% dh = (iu, dau)

and

1 1
(u,dau) = §dlu|2 = Edpz.
Therefore, we have, for p # 0,

IVaul? < S (VR + [Vo]?).

‘DN| —

It follows that
Vaul < C(|VA| + |Vp|) in Q (V.40)

and, in order to prove (V.3), it suffices to establish that
/ [VolP < C, Vp < 2, (V.41)
Q

where C, depends only on p and €.

Proof of (V.41)
Set

1
=M 1- ——
7= Max{o1 - )

and consider the set

1
K= Q,p2l—-—F7— ¢
{x €, p>1 1- 1/log2e}

Clearly Vp = Vp on K and V5 = 0 on Q2 \ K. Moreover since

1
= K(l—p)2 < Clloge],

we deduce
meas(Q\ K) < Cé? |logel®.
Recall equation (IL.6)

2
_Apz = Eé- p2 ( 1 —_ p2) — 2 IVAU|2 iIIQ, (V42)

Vol. 12, n® 3-1995.



286 F. BETHUEL AND T. RIVIERE
and multiply it by (1 — 5), this yields
[ 201veP < [20-pIVarl <201l [ Vil
K 9)
<2[[1-7lz= |loge]

Since 0 < 1 —p < 1/|logel?, we obtain

C
Vol? < 0.
/K' PP S Tiogee —

On the other hand, by Hoélder’s inequality we have

p/2
p 2 meas 1-p/2
Iz <(/Q\K1vm) @\ K)
< C (Jloge|P’* (€ |logel’)1 — p/2.

Combining the two previous inequalities we get (V.41). |

6. CONVERGENCE OF (u. ,A.,)
We may extract a subsequence €, — 0 (n — 400 ) such that
#J. = const = Ny, (VL1)

o, - L, eQ  Vield (VL2)

We cannot exclude, at this point, the possibility that some of the points
z¢; converge to the same limit. We denote by a1, ...,an, the collection
of distinct limits I; with Ny < Ni.

For sake of simplicity we will use sometimes the notation h, = h,,
A, = A, , un = ue,. Recall that the gauge (u,, A,) is choosen so that

d*A, =0 in Q
{An.l/ =0 on ON,.r (VL3)
and that A, = ("fnz2 75nx1) where £,, is a solution of
AL, = hy in Q
{gn =0 on 0Q. (V14)
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We deduce from theorem V.1 and the L? bound on Vh , extracting a further
subsequence if necessary, that there is some h. € Wir(Q, R) such that

h, — h. weakly in W"?(Q,IR) Vp < 2. (VL.5)

It follows that there is some A, in W22(Q, R?) and &, in W3P(Q, IR)
such that

A, — A. weakly in W?P(Q,R*) Vp < 2, (V1.6)
£n — & weakly in WP(Q,R) Vp < 2. (VL7)

Finally, we have by (V.3)
/QIVAnunP’ < G Vp < 2, (VL8)

which yields, in view of the following estimate, (which follows from (V.2)),

Q Q

that
/ |[Vun|P < G, Vp < 2. (VI.10)
Q

Hence passing to a further subsequence if necessary, we may assume that
there is some map u, € W?(Q, IR?) such that

u, — u, weakly in W'P(Q, R?) Vp < 2. (VI.11)

Clearly since

/(1 — |un|?)? < Cé |loge,| — 0, (VL12)
Q
we obtain
ludl = 1 almost everywhere. (VI.13)
No
PropoSITION VIL.1. — Let K be a compact subset of Q \ U {a;} we have
=1

/ IVho|? + [Vun]? < Cx
K
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where C' is some constant, and moreover

hn — ha strongly in H'(K), (VI.14)
Up — Us strongly in H'(K), (VL.15)
1
and —2/ (1= [unf?)? — 0. (VL16)
€& JK
[ ]

Proof. — The proof is similar to the proof of theorem X.2 of [2]. Let 5
N,

be a smooth function compactly supported in  \ U{ai} such thatp = 1
i=1

on K. Recall that on Qen, h,, verifies (see proposition V.2)

n

1 .
—div(—g th> + h, =0 in . (VI.17)
P
For n large enough, the support of 7 is contained in Q... Hence we may
multiply (VL.17) by 7 h,,. Integrating we obtain
2 2 Oh,
IVh,* + A, < C (V0 IVhn| hal + ——1.|hn]
K K an | OV
<C / (Vo [ha] + / ol
o a0

Since h,, is bounded in W1P(Q2) (Vp < 2) we have

/ththnl < C.
Q
Likewise, by the trace theorem,

/ [ha]? < C Vg < +00.
a0

Hence
/ Vhal? + ]2 < C.
K

Moreover, since h, — h, we deduce that
/ [Vh.|*> + h2 < C. (VI.18)
K

Annales de UInstitut Henri Poincaré - Analyse non linéaire



VORTICES FOR A VARIATIONAL PROBLEM RELATED TO SUPERCONDUCTIVITY 289
Next we multiply (VL.17) by 7 (h,, — h.). We obtain

Ui 1

n Q n
1
+ / L VhaVh..  (VL19)
Q Pn
Since h,, — h, weakly in H!(K) we deduce by Sobolev imbedding that

[|hn — PullLoy — O Vg < +oo.

1
[ iz — [ avn.p
Q Pn Q

Since p < 1, this implies, by lower semi-continuity that

Hence

Vh, — Vh, strongly in L?(K)

and establishes (V.14).
We turn now to (VL.15) and (VL.16). We consider the equation for p,,
(see (IL.6)),
1
—Apn + 070 VR [P = S pa(1 = p5) i Q.. (VI20)

T e
en

Multiplying (VI.20) by 7 (1 — p,,) and integrating we obtain
1
[ 190+ Zon(1 = pu)? (4 )

1- n
</ 77£”p3—p)|th|2

+/Q{V77Vpn (1= pn)l- (VI.21)

Since p, — 1 and is bounded in W'? we deduce from (V.14) and
dominated convergence that the right hand side on (VI.21) goes to zero.
Hence 1
[ o+ Za-gy — o, (VI22)
K n
this proves (VI.16). Moreover we have

lvAnunlz = (iunavAnun)2 + lvpnlz

1
3
1 2 2
2 [Vhal® + [Vl
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Hence we deduce that
Va,un — Va, u, strongly in L*(K), (VI.23)

and (VI.15) follows from the strong convergence of A, to A, in L™ and
(V1.23).

ProposITION VI.2. — We have

L fa-mpyr<e (VI.24)
€n Q

where C depends only on g, d and ). |

Proof. — By proposition VIL1 below (which of course does not rely on
(V1.24)), for all i, a; is not in . Let x> 0,be small, such that

B(a;,p) N B(aj,p) =0 i#j and B(a;,p)No=0.

In view of proposition VI.1 we may find, by Fubini’s theorem, some
bn € (,2p) such that, for n large enough

1
Loy &0 lP + [Vl 4 I <€) (V129
8B(a:,pn) “n

where C(p) depends only on g, g, d, and Q. Applying proposition 11.4 to
(un,Ayn) on the set B(a;,p) N Q we deduce

/ - PP < O+ / hal? < C. (V1.26)
B(ai,pun)NQ €n B(a;,pn)NN

Hence (V1.24) follows from (VI1.16) and (V1.26). |

7. PROPERTIES OF (u.,A,)

ProrosiTioN VILL1. — We have

No = d (VIL1)
w o Vi=1,.d (VIL2)

d; = deg(uy,a;) = 1 Vi=1,..d. (VIL3)
[
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Proof. — The argument is readily the same as in [2]. We briefly sketch
it. As in [2], consider a domain €’ such that Q CC . We are going to
extend first u, to £’. Note that

Ju,
U X i =g+ A,.T
or
and hence, by (VL6)

2
Oun,

— C.
or <

Jo

It follows that there is some map which extends u, to £’ (which will still
be denoted by u,), such that u,, € H*(2'\ Q,S') and

/ V)2 < C. (VIL4)
QA\Q

Similarly, we extend u. to . We first establish (VIL.3).
Let § > 0, and consider the balls B(a;,6) and the domain 5 =

Ny
'\ U B(a;, 6). by theorem L.8 of [2] we have
=1

/Q [Vu. > = 2 i]dilzlog(l/& - C

where C depends only on the points a;, and g. Hence, from the strong
convergence (VI.15), we deduce

Ng
/ Vun|* > 27 |dil* log(1/8) — C, (VIL5)
Qs i=1

for n sufficiently large depending on 6. On the other hand, it follows from
a result of [5], that

/ [Vun|* > 27|d;|log(6/en) — C. (VIL6)
B{a;,5)

Combining (VIL4), (VILS) and (VIL6), we are led to

/Q|Vun]2 = 2w ZU (1di|> log(1/68) + |diflog(é/en)) — C  (VILT)

i=1
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for any 6 > 0, and n sufficiently large (depending on p). We also have,
by (VL.7)

/ IVunl2 = / Vu, —iAnun|* + Ry, (VIL.8)
Q Q

where R,, < C. Combining (VIL.7), (VIL.8) and proposition I1.5 we obtain

(VIL3). Property (VIL.2) can be derived similarly adapting the arguments
of [2], theorem VI.2.

ProposiTION VIL2. — The magnetic field h. verifies the equation

d
—Ah, + h, = 27 ba, in
; (VIL.9)
Oh.
5 =9 on O

d
Proof. — Let K be some compact subset of 2\ U{ai}. We easily
i=1
verify that
—Ahy + h. =0 on K.

Indeed we may pass to the limit in equation V.6, thanks to the L? bound
for Vh,. Let 6 > 0, we have

/ 1 0Oh,
8B(aq,5) pn? Ov

1
=— / — (1Un, 7.V 4, )
8B(a;,6) Pn

1
- / —5 (1Un, 7.Vu,) +/ An.T
8B (a;,6) Pn 8B(a:,8)

= — 27rd1 + / h =—2r dz - 0(6) (VIIlO)
B(ai,é)

where v is the exterior normal of 3B(a;, 6). By standard arguments, passing
to the limit in (V.6) on the whole of , this implies (VIL.9). ]

d
ProposITION VIL3. — The map u. is a harmonic map on '\ U{ak}.

. . k=1
i.e. verifies

~Au, = w |Vl on @\ | {a} (VIL11)

k=1...d
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Moreover we have

zZ — A i
Uye = e (VI1.12)
kg.d |z — ax|
where ¢, verifies (17) and (18) (in the introduction). [ |

Proof. — Applying the operator d* to the equation (IL.2), we obtain
d* [un X da,u,] =0 in D'(Q). (VIL.13)
Passing to the limit in (VII.13), we are led to
d* [ue X da,us] =0 in D(Q). (VIL.14)
Since d*A. = 0, and |u.| = 1, we deduce that
d* [us X du,] =0 in D'(Q). (VIL.15)

Hence, we obtain (VII.11). Moreover, (VIL.12) follows from (VIL.11), the
L? bounds of u, and the analysis of [2], section 1.3. Finally combining the
propositons of sections VI and VII we have proved theorem 3. |

8. RENORMALIZED ENERGIES

The aim of this section is to prove Theorem 4, ie. to determine the
configuration (a;). For that purpose, we introduce an auxiliary problem and
follow the strategy of [2], section VIIL

Consider d points by, ...,bg in , and § > 0. Clearly for ¢ sufficiently
small (say § < &y, depending on the configuration (b;))

B(b;,6) C Q Vie{l,..,d}

B(b;,8) N B(b;,6) =0  for i #3j.
d
Set Q2s = 2\ U B(a;,6) and consider now the space W defined by
=1

(u, A) € HY(Qs, S1) x H(S, IR?*), such that
Ws = (fu,7.(Vau)) =g on 02 (VIIL1)
deg(u,0B(b;,6)) =1
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and the functional Ejs defined on Ws by

Es(u, A) = %/Q [V aul? + %/deA]Z.

Set
ps = Inf Es(u, A). (VIIL.2)

(u,A)EWs

Proposirion VIIL1. ~ We have: ps is achieved and for § < &

1
ps < ﬂdlogg + C (VIIL3)
where C depends only on the configuration (b;) and 6. |

Proof. — The proof is similar to the proof of proposition II.5, therefore
we omit it, |

ProposiTioN VIIL.2. — We have, for § < &y, and for a minimizer (vs, Bs)
of (VIIL2)

/ |dBs|* < C, (VIIL4)
Q
and ]
/ |VB6’U§I2 2 Wleg— - C, (VIII5)
Qs 6
where C depends only on (b;) on §. |

Proof. — Let (vs, Bs) be a minimizer of (VIIL2) such that

{d*B =0 in Q
Br =0 on Of.

(In this proof we omit the subscript 6 for sake of simplicity). Hence we have
B = xd¢
where £ solves

Af = h = xdB in Q
E=0 on Of.

We have
L 19ml = [ 9 1 ver + 20e.0 (VIILS)
Qg Qs
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where we have used the notation [£, v] = d§ A (v, dv). We notice that

dé A (v, dv)
Qs
d

= — [ &d(iv,dv) + Z /aB(b. 6)5(1’1},%)

Qs i=1

d
-3 / £ (iv,v,), (VIIL7)
= JoB(b:,6)

where 7 is the unit tangential vector to dB(b;, §) such that (v, 7) is direct,

v is the exterior normal to dB(b;,8). Here we have used the fact that

d(iv,dv) = (idv Adv) = 0. Since deg(v,0B(b;,6)) = 1, we may write
v = ei(&-H/z) on Ui \ B(bi, 6),

where U, is some fixed neighborhood of b;, and where 1 is some (singled)
valued function on U; \ B(b;, 6). We verify that, for z € U; \ B(b;, 6)

1
|Vy]* < 2 (]vm? + m) (VIILS)
Integrating by parts, we obtain

[ i) = 2nE+ [ ew-w) vy
9B(bs,5)

BB(b;,6)
where £ ! ¢ and 1 1 . B
i = e an i = Tme o . By
. |8_B(bi75)| 8B(b;,5) 10B(bi,6)| Jon, .5)
Sobolev imbedding and elliptic estimates, we have for any o < 1,
[€lcoe < Cyu |AE|L2. (VIIL.10)
On the other hand
¢
/ 67 :/ f@j.l/:/ (f—f(bl))eju
B(b;,6) 9T 3B(b:,8) 3B(b:,8)
and by (VIIL.10)
1 / o€
— | < 21 Co8°7 T |AE] e VIIL11
| B(b:, 0)] B(b:,8) Oz; ALl ( )
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By the trace Theorem, we obtain

Vo 75 ~ B0,
3B(b;,5) 8% bwé } B(b;,5) 8551

e [
Q

< Cé / |A¢[2. (VIIL12)
Q
Combining (VIII.11) and (VIIL.12), we are led to
/ Ve < O+ 6*7h / |AE)%. (VIIL13)
dB(b;,6) Q
We have also (by the trace Theorem and Sobolev imbedding)
| w-wr<cs | v
OB (b:,5) U
< 05( |Vol? + 27rlog(1/6)). (VIIL.14)
Qs

combining (VIIL9), (VIIL.13) and (VIIL.14), we conclude

[ ew-w
8B(b;,5)
< C8%|A€lraq@) (|Volraia,) + (log(1/6)/?)  (VIIL15)

Turning to the first term on the r.h.s. of (VIIL6), we have by a result of
[2], theorem 1.8.

IVo|?> > 2rdlogl/s — C. (VIIL16)
Qp

Combining (VIIL6), (VIIL7), (VIIL9), (VIIL.16), and proposition VIIL.I,
we obtain

IA€|2 + |VEP + 4r Zg R(8)

=1

<C (VIIL17)

where

4 - p—
=2 Z [(ﬁi = &) + /aB(b 5 & (v - wi)} (VIIL18)
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Combining (VIIL.15) and (VIIL.10) we verify that
B(8)] < C || Al z2(@)(8% [Volr2(as) + 8°7%) (VIIL19)

Since Vv = Vv + iv B we obtain

wop <2 [ ol + 3P|

|Vso* + ‘vgﬂ < Clog(1/6) (VIIL.20)

Qs

<2
Qs

(by proposition VIIL.1). Going back to (VIIL.19) we deduce that
R(§) — 0 as 6 —0. (VIIL.21)

Since, by standard estimates

d

D &b)

i=1

< C|AE 2o (VIIL.22)

(VIIL.21), (VIIL.22) and (VIIL.117) yield

|A|L2 () < C.
(VIIL.4) and (VIIL.5) follow. |
ProrosiTioN VIIL3. — Let &, be the solution of (20). We have £ — £ in
W22(Q)as § — 0. [ |

Proof. — We have on s, by minimality of (vs, Bs)

—BA%& + A& =0 in Q
TN =—¢g on 90 (VIIL.23)
ov
On the other hand
19} .
/ A& = —/ (tvs, 7.V pus) = — 21 4+ o(1). (VIIL.24)
OB(a;,8) ov 8B(a;,6)

From proposition VIIL.2 we know that

|As|20) + |VEs|re) < |A&s|r2@) < C
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and hence (passing to a subsequence if necessary) we may assert that
s — & in W23Q) weakly.

Passing to the lilnit in (VIIL.23) and using (VIIL.24), we see that £ verifies
(20) and hence £ = £, (and the full sequence converges by uniqueness of
the limit). By minimality of (vs, Bs) we have

Eg(’Uls, Bg) < E&(’U&, A*) (VIIIZS)

/96 |V, vs]® + /9de512 < /96 |V 4, v8)% + /QldA*IQ'

Arguing as for (VIIL.6) we obtain

that is

[ Bl £ 196 + 265,00
Qs
g/ AP + V&P + 2[E, 0.l
Q
Since & — &, weakly in W%2(Q)), we obtain

/QldB§I2 < /QldA*l2 + o(1),

that is

/QlAésl2 < /Qldé*l2 + o(1).

That implies the strong convergence of Afs to A€, in L? and Proposition
VIIL3 follows. |

ProposiTioN VIIL4. — Let

%/ VuP, uwe H'(Qs,S"), deglu,dB(b,,6)) =1
Qs

s = Min du . o€, "0
5 =ilg+ 5 Ju on
We have
'% |Vus|> — gl — 0 as 6 — 0. (VIIL.26)
Qs
|
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Proof. — Since

(91}5 . 855
_8_7' = z<g+ al/)vé on 09,

we see easily (by proposition VIIL.3 and standard elliptic estimates) that

: /Q IVl 2 s + o) (VIIL27)
Recall
R(6) — 0O as 6 — 0.
We deduce
Eufon, Be) = [ 190l + 5 [ (A&F + ve.f)
d
+2m Yy &u(bi) + o(1), (VIIL.28)
=1

Hence, in view of (VIIL.28), we have uncoupled v and B, and roughly
speaking, in order to minimize Es(v, B), it suffices to minimize 7z, and
this yields

1

5/96 Vusl? < s + ofL).

Proposition VIIL.4 follows. |

ProrosiTioN VIILS. — Let 1 < p < 2 the map vs remains bodunded in
WP and vs converges to v, strongly in W?, and in CF <Q\ U {ak}),
where v, is defined on 0 by =

z — Q i
Uy = H e
k=1..d |z — ax]

and where ¢, is harmonic and verifies

Oy _ | z— ag 3 Z— ag 9
or (Z H [z——ak]’c%'(]z—akl)) T T

k=1...d
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Proof. — Since vs takes its values into S! we have
d*(ivs, *dvs) =0 in Q.

Let ® be the solution of

d

AD =27 Y 8,

=1

od O&s

w9t e
We have

(F((iﬂg,*d%s) + dq)) =0,

and

(VIIL.29)

/ ((i’l}g,*dvg)—}—d@),y = —/ (’L"U57 %) +/ 8_(1) —
8B(b;,8) 8B(b;,6) or 8B(b,,8) ov

Hence, there is some Hs € H'(fs, IR), such that
(ivé,*dvé) = —dd + d*Hé.

It follows (see [2])

/Qé |Vus|?> = /Qé VO] + /Q,, IVHs[2 + o(1).

From [2], section I, we have

/95 [Vo|* — &

and from proposition VIII.4 we deduce that

— 0 as 6 — 0,

/95 \VH; 2 — 0.

Hence,
[l (105, *dvs) + d® ||z205) — 0 as

(VIIL30)

and proposition VIIL.5 follows from the analysis of [2], section I
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PropOSITION VIILG6. — We have for any configuration (b;)
pus(b;) = W(b;) + wdlog(1/6) + o(1) as §—0  (VIIL31)

where W is defined by (19), (20), (21) and (22). ]

Proof. — We deduce from propositions VIIL3, VIIL4, and VIIL5 that,
by (VIIIL.28)

wlb) = 3 [ 10+ [ 1868+ V6P

+21 Y Lu(bs) + o(1). (VIIL32)

Moreover equation (20), established in proposition VIIL3, easily implies

1 d 1 O¢.
_ A*2 *2:_ (b; * . ) '
2/9] &l? + V& 7ri§:1§(b)+ 2/BQA§ 5, (VIL33)

(VIIL26) and the analysis of [2], section I (see Theorem 1.7), imply

L 1Dl = ndlog(1/8) + w(b,d,g) + O(6),  (VIIL34)

2 Qs

where
d

w(b,d,g) = —WZloglbi —b;| - TFZR(bZ')
P i=1

1 0d

2 Joq OV

® is a function verifying (VIIL29) and R denotes

R(z) = ®(z) — Zloglz—bil.

Combining (VIIL.32), (VIIL33) and (VIIL.34) we obtain the desired result.
Proof of theorem 4. — Set

1 2 1 22 1 9
1(6,6) — MZTL{E/B((S)IVUI + @(1— I’UI ) , VE H (B((S),B )}
v=2¢€? on 9B(6)
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Let (b;) be a configuration of d points. As in {2] we may construct a
comparison function v. s in H'(f2) such that

Ve s = Vs on Qg
and

1 1
3] 19l b -l < 1) + C)
B(b;,6) 4e

where
IC(8)] — 0 as 8 — 0.

It follows that

Ge(ve, Al) Ge(ves, Al)

Es(vs, A)) + d (e, é) + C(6)

,u,gs(bi) + d[(é,ﬁ) + 0(6)
)

W(b;) + wdlog(1/6) + dI(e,8) + C(8), (VIIL35)

INCINININ

where we have used proposition VIIL6, and where C(6) - 0as 6§ — 0.
On the other hand, arguing as in the proof of lemma VIIL.2 of [2], we have

Ge(ue, Ae) > dI(e,8) + W(a;) + mdlog(1/6) + C'(8), (VIIL36)

where C'(6) — 0 as § — 0. Combining (VIIL35) and (VIIL36) we obtain,
letting 6§ — 0,

W(a:) < W(b) v (b:),

and this proves theorem 4. |
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