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ABSTRACT. - We study minimizers of Ginzburg-Landau functionals,
which depend on a parameter E. These functionals appear in

superconductivity and two dimensional abelian Higgs models. We study
the asymptotic limit, as E --~ 0, of minimizers and show that the limiting
configuration has vortices, which have topological degree one.

Nous etudions les applications minimisantes de la
fonctionnelle de Ginzburg-Landau dependant d’un parametre E. Cette
fonctionnelle intervient dans les problemes de supraconductivite ainsi

que dans le modele abelien de Higgs en dimension deux. Plus

particulierement, nous etudions le comportement asymptotique de ces

applications minimisantes lorsque E tend vers 0 et nous montrons que
la configuration limite a des tourbillons de degre 1.

INTRODUCTION

Let 0 be a simply connected bounded domain in Let E > 0 be
a parameter and uo : S 1 be a smooth map. In a recent book,
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F. Bethuel, H. Brezis and F. Helein [2] (see also [1], [3], and [4]) have
studied the functional

for u E Let uE be a minimizer of on 

They have studied the asymptotic limit E -~ 0 of uE and proved that uE
converges to a limiting map u*, which has exactly singularities (vortices),
where d = deg(u, aSZ). Moreover, the distribution of the singularities was
characterized, and the map u* identified. They also proved that uE converges
to u* in away from the singularities.

Functionals of the type of FE arises in many problems in low temperature
physics, for instance superfluidity. Our purpose in this paper is to extend
the methods and results of [2] (see also H. Brezis, F. Merle and T.

Riviere [5] and [6]) to related functionals arising in superconductivity
and two-dimensional abelian Higgs models. More precisely, consider the
functional

where u E H1 and A (the vector potential), is a real valued

1-form, that is

The main characteristic of G E ( u, A) is its invariance under gauge
transformations. More precisely let § be a function in and

consider 
. 

, 

We have

The functional G was introduced by Ginzburg and Landau in 1950, in
their study of phase transitions, for superconductors. The gauge invariance
of the functional allows to account for electromagnetic effects. In particular

is the induced magnetic field. Moreover physically relevant quantities, are
those which are, as h, gauge invariant, for instance , the density of
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supraconductor), J = (iu, dAu) (the current), where dAu = du - iA ~, and
the degree of u on the boundary if we assume for instance u ( = 1 on
the boundary (see below).

In order to have a well posed minimization problem, we need to

supplement the functional with a boundary condition. Clearly a Dirichlet

type boundary condition (as for FE) is not consistent with the gauge
invariance. We adopt instead the following approach.

Let d > 0, be an integer, and g : IR be a smooth given function.
We assume throughout the paper that Q is simply connected. Consider
the space

Here T denotes the unit tangent vector to such that (v, T) is direct,
v denoting the exterior normal to and VAU = Vu - iA u. We recall
that aSZ is connected, since H is assumed simply connected. The boundary
condition J.r = can be written as

Since the r.h.s. of (7) is clearly in LZ (by the trace theorem, and the

assumption g E we see that if (7) is satisfied u E 
for u E V. In particular

is well defined (one could also invoke instead a result in [7], which shows
that the degree is well defined in, H 2 (aSZ, S1 ) ).
THEOREM 1. - We have

In view of the gauge invariance, once we have a minimizer we have

actually a whole family (~c~, of minimizers. It is convenient to reduce

this degeneracy by imposing the condition

Vol. 12, nO 3-1995.
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We have

THEOREM 2. - There is a minimizer of (8) satisfying

Carrying out an asymptotic analysis as in [2], we are able to prove the
following, which is our main result

THEOREM 3. - Let AE ) be minimizers of (8), satifying (9). There is a
subsequence En -~ 0 and exactly d points a 1, a2, ..., ad in SZ and ( u,~ , A,~ )
smooth except at the points al, a2, ..., ad such that

Set h~~ = and h* = *dA*. We have

h~n - h* strongly in (aj) and for p  2, (12)

and h* satified the equation

Once the points ai are determined, we are able to recover all informations
from the equation (13) which is referred to in the physical litterature as the
London equation. Let ç* be the solution of

We have
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Finally u* is determined (up to a rotation) by

where § is an harmonic function satisfying

where ~o satisfies on 8S2

(~o is uniquely determined up to a constant, this is also the case for ~).
Finally the configuration is governed by a renormalized energy,

which is very similar to the one introduced in [2]. Consider a configuration
b = (bl, ..., bd) of d distinct points of Q and the function

where £* is the solution of the linear problem

and the function R is given by

where q, is the solution of

Vol. 12, n° 3-1995.
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We prove

THEOREM 4. - Let ai be as in theorem 3. The configuration (ai)
minimizes W..

The arguments in the proofs of theorems 3 and 4 follow closely the
strategy of [2]. Let us however emphasize two important differences. First,
we have to use a local version of Pohozaev’s identity (by local we mean
on balls of radius Ea, for a  1), thereas this identity yielded directly an
important estimate in [2]. Second, most of our estimates can be derived
from the equation verified by h, the magnetic field.

This paper is organized as follows. The next section is devoted to the
proof of theorem 1 and 2, and to some general remarks. Section II is

devoted to some basic properties of (uE, AE), in particular the Ginzburg-
Landau equations, the maximum principle for and an uniform bound

for VAU. Section III is devoted to local estimates. Section IV contains

a localization of the singularities (in the spirit of [2]). In Section V we
deduce global LP estimates for p  2. Section VI is devoted to the proof
of the convergence. In section VII we derive the London equation verified
by h* and we characterize u* . Finally Section VIII is devoted to the proof
of theorem 4.

Remarks on Physics. - In the theory of superconductivity, conducting
electrons are described as a fluid existing in two phases, the superconducting
one and the normal one. In the superconducting state the material has

an infinite electric conductivity, and repeals magnetic fields (the London
effect). On a microscopic scale, the superconducting state corresponds
to a pairing of the electrons. The pairs of electrons are described on a
macroscopic scale by a complex-valued function u, often called condensate
wave function. Roughly speaking, one could think of ~u(x) ~ as representing
the density of pairs of superconducting electrons. The Ginzburg-Landau
functional then governs the interaction between u and the magnetic field.
The parameter x = E-1 is called the Ginzburg-Landau parameter, and
depends on the material. Material with different values of 03BA have very
different properties.

If ~  -y=, the material is called a type I superconductor. If one applies
an exterior magnetic field to the sample, then for a critical value of the
applied field, the sample passes from the superconducting state to the normal

state. For ’" ~ 2014~=, the situation is quite different and the sample passes
gradually from the superconducting to the normal state. This corresponds
to the coexistence of the normal and superconducting state: the normal
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phase is confined in vortices or filaments which are quite similar to the
ones studied in this paper, for a detailed description see [7], [9], [12] and

[16]. We will turn to a mathematical description of the physical situation
in a forthcoming paper.

For abelian Higgs models we refer to [11]. See also related problems
studied in [8], [13] and [14].

Remarks on notation. - d and * denote respectively the exterior derivative
and the linear operator on the IR-valued forms of IR2 such that

By d* we mean the operator *-ld*, where *-1 is the inverse of *.

The scalar product on  is denoted by ( , ), i.e. (a, b) = 2 (a b + a b).
More generally, if f = fI dxI and g = gJ dxJ are two forms with

coefficients in d’, ( f A g) denotes the 21-form with real coefficients

d~’.

x represents the wedge product between two vectors of 1R2, it is considered
as a real number.

We often identify a 1-form and the associated vector by the scalar

product. We also often identify a vector of IR2 and the corresponding

complex number. For instance, as a result of our identifications, u x ~u ~
stands for C iu, 

1. THE VARIATIONAL PROBLEM

We begin this section by some definitions and remarks.

DEFINITION 1.1. - We say that (u, A) E Hl(O, IR2) x IR2) is gauge
equivalent to (v, B) E H1(S2, IR2) x if there exists a function
cp E such that

As we have mentionned in the introduction, it is often very useful to

reduce the gauge invariance of the problem by imposing a condition on
A. We have the standard result:

Vol. 12, n° 3-1995.
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PROPOSITION I.l. - Let (u, A) E x There is some

(v,, A) E x gauge equivalent to (v" A) such that

Remark. - (1.1) is often termed a Coulomb or Lorentz gauge.

Proof. - Consider the linear problem

We easily verify that

satisfies (I.1).
In the course of our proof, we will often need local versions of

proposition I.1. We have

PROPOSITION 1.2. - Let G be some smooth subdomain of o, and let (u, A)
be smooth. There is some smooth (f, A) gauge equivalent to (u, A) such that

Note that, in proposition 1.2, we impose only a condition for ui in G and
on ~G. The proof is the same as the proof of proposition 1.1 (performed in
G), except that we have to extend § to H in a smooth way..

Proof of theorem 1 and 2. - Let ( un , An) be a minimizing sequence for
(8). In view of proposition 1.1 we may assume that

We deduce from (1.7) that there is some E H2 (!1) such that
where (xl, x2) are cartesian coordinates on

IR2. Hence
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It follows, by standard elliptic estimates, that

Hence An is uniformly bounded in Since

we obtain

We deduce that u,L is also a bounded sequence in Passing to
a subsequence if necessary we have

Passing to the limit in (1.7) we are led to

Moreover by lower semicontinuity

It remains to prove that (u, A) E V, that is that the boundary conditions
are preserved.
We clearly have

Vol. 12, nO 3-1995.
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On the other hand, we deduce from the condition Jn .T = g that

Since by (1.9) un - u in weakly, we see that un - u

strongly in for any 1  p  -f-oo. Similarly we may infer that
g + + A.T strongly in It follows that

Passing to the limit (in the sense of distributions) in (1.15) we obtain

This leads to

Finally it remains to prove that

We have

and

by (1.14), and (1.19) follows. This completes the proof of theorem 1. Since
A satisfies (1.11), we also have proved theorem 2..
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2. BASIC PROPERTIES OF 

2.1. The Ginzburg-Landau equation

PROPOSITION ILl. - Any minimizer (uE, AE) of GE on V satisfies the
Ginzburg-Landau equations on SZ

For a proof see for instance [ 11 ], [9]. Remark that equations (11.1) and
(11.2) are independent of the gauge (in particular they hold even if we do
not assume (9)). We recall that ~A is the operator defined by

Recall also that, in view on our variational problem, equations (11.1) and
(11.2) are completed with the boundary conditions

Moreover we have chosen AE) so that (I.1) is satisfied.

PROPOSITION II.2. - Any minimizer to (8) in V satisfies

Moreover if AE satisfies (l.1 ), then (uE , AE) are smooth.
Proof. - See [ 11 ], [7] for the proof of regularity of Inequality

(11.5) is a consequence of the maximum principle, since we have

A very useful consequence of propositions 11.1 and II.2 is the following.

PROPOSITION 11.3. - We have

Vol. 12, n ° 3-1995.
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Proof - Since hE is smooth up to 9Q, (11.2) holds on c~ and yields
(11.7). N
The next equality plays the same role as Theorem III.3 in [2] and is a

Pohozaev type equality.

PROPOSITION 11.4. - Let G subdomain of H. We have

Proof. - Use the stress - energy tensor as defined in [11] ] and integrate
by parts on G..

2.2. An upper bound for the energy of minimizers

As in [2] (theorem 111.1), we may derive the following upper bound.

PROPOSITION 11.5. - We have, for E  1

1

where C depends only on SZ, g and d..

Remark. - The proposition below, as written, could have been a direct
consequence of Theorem 111.1 of [2], but here we establish a specific
dependence of C on and d: for a given degree d we prove that C is

independent of the scale of Q, by changing H into = and replacing
g by for ~  1. This scale invariance, that we will use

during the proof of proposition II.6, represents one of the major difference
between the gauge invariant functional, G, and the non gauge invariant
one, F. One of its consequence is illustrated for instance by the fact that
we may consider the functional G on all of IR2. Even if we prescribe some
(non-zero) degree at infinity the functional may remain bounded (see [11]).
This is not the case for the functional F (see [5]).
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Proof. - It suffices to construct an explicit test function (vE, BE) E V
such that

To that aim, we proceed as in [2] and fix d distinct points al, ..., ad in

H, and R > 0 so small that

and

Set

and let wo be a smooth map from n to S1 verifying for all j

Since wo is a smooth map from Õ to S1 we have

We set

We verify easily that

and

Vol. 12, n° 3-1995.
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We deduce from elliptic estimates that

On Q we set

we verify that

and that

Hence we compute

In view of (11.13).
d

It remains to define (VE’ BE ) on U B(ai, R). Let ( be a smooth function
i=1

from IR to 1R+ such that

We set, on B(a2, R)

and
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A simple computation yields

where C is a constant depending only on R. Clearly we have 
x and combining (11.14) and (11.15) we obtain

On the other hand we verify that

and

Hence BE) E V, and (IL9) follows from (IL16).

2.3. An estimate for |~A~ u~|]
The equivalent of lemma A2 of [1] is the following.

PROPOSITION 11.6. - We have

and hence

where C is some constant depending only on g, 03A9 and d.

Proof. - We deduce from proposition II.5 that

It will be convenient to make the following change of scale. Set

Vol. 12, n° 3-1995.
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and

Hence

and

It follows that (u, A) is a minimizer of the functional

on the space

where = E 

The Ginzburg-Landau equations for A) are therefore

since d* A = 0, (I.25) implies

Let Xo E S2, and consider the ball B(xo, 2). We are going to show that

To that aim we distinguish two cases.

’Case 1. - dist(xo, ~03A9) > 2. It follows that 2) ~~03A9 = 0. In view of
proposition 1.2 we may choose gauge equivalent to (u, A) such that
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Hence there is some ~ E HZ(B(:~o, 2)) such that

where ~ satisfies

By standard elliptic estimates, we obtain

where we have used (11.19) and (I.24). It follows that

In the gauge A, (I.25) becomes

Where A. du = Al u~ 1 + A2 We write

where fo satisfies

and fi satisfies

From elliptic estimates, we obtain

We have for any p  +00, by (I.29)

Vol. 12, n ° 3-1995.
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and for p  2,

where’: +!!. = l. Hence, since and 

we deduce, by (II.29) that

and from (II.31), (II.33), and (11.35) that

Hence, by Sobolev imbedding

Combining (I.36) and (II.32) we are led to

Working now on the ball B(xo,3/2) instead of the ball B(xo, 2), we see
that equation (11.31) leads to

This yields in particular, by embedding

which shows, combining with (I.32) that

Using next equation (II.26) on B(~o, 3/2) we deduce that

Combining (11.38) and (11.39) we deduce (I.27) in case 1.
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Case 2. - Xo E an. We follow essentially the same arguments. we choose
(A, ~4) gauge equivalent to (u, A) such that

As above, we write

where i~o verifies

We have A = (-~x2 , where ~ satifies

We have

and

From (I.40) and (I.42) we deduce, by classical linear estimates, that

Hence since fo is harmonic we deduce that

As for (I.29) we have

Similarly arguing as in (IL 31 )-(IL 3 8), we derive

Vol. 12, n ° 3-1995.
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In particular, we obtain

On the other hand, we have by (II.2)

Hence, we deduce from (II.44), (II.45) and (II.46)

Hence, since CE l og ( 1 /E), we obtain by Sobolev embedding,
for any p > 2

Iterating the argument we deduce that

and hence

We complete the proof of (II.27) as in case 1 ..

3. LOCAL ESTIMATES

As we may see from proposition II.6, E is the characteristic length of
variations of The aim of this section is to derive estimates on
domains of a larger scale, of order Ea for a  l.. These estimates will be
an important step for deriving global estimates on H (see section V).

Let 0  a  1 be fixed. If not otherwise necessary, we drop the indice
E for hE, AE and simply denote u, h, A.

PROPOSITION 111.1. - Let 0  Q  1 and let xo E n. We have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



263VORTICES FOR A VARIATIONAL PROBLEM RELATED TO SUPERCONDUCTIVITY

and

where C depends only on g, d, a and Q.

Proof Step l. Proof of (Ill.1 ). - We have, by (IL2),

and hence by proposition 11.5.

On the other hand, we have also

Hence, by Sobolev embedding, we deduce that for p > 2

It follows that

which yields (111.1) with p = 4.

Step 2. Recall that, by Proposition 11.5, we have

which yields

By Fubini’s theorem, we may hence write

Vol. 12, n° 3-1995.
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where

We claim that there is some p E Ea~2) and a constant Ce, depending
on a, g and d such that

We argue as in [2] and assume by contradiction that (III.6) does not hold
for any p E E~~2 ) and any Integrating we obtain

This contradicts (III.6) for Ca choosen sufficiently large. We distinguish
next two cases.

Case 1. - p) n S2 = 0. We apply proposition II.4 on the ball
B(xo, p). This yields by (III.7)

Combined with (111.1), this yields (III.2) in the case considered.

Case 2. - p) n 52 ~ 0. We write

where

Let x 1 be a point in H, take x 1 as the origin and apply proposition 11.4 on
S2 n B(xo, p). This yield the estimate
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(We have used the fact that ~u~ = 1 on Fp c aS2.) We have

Assume that E is sufficiently small, let xro be the nearest point projection of

ro on aSZ and choose x1 such that dist(x1, 03C0x0) = 4p and x0 E 
Then we have

and

Then (111.8) yields

and this implies (III.2)..

4. LOCATING THE SINGULARITIES

The purpose of this section is to extend lemma IV.l of [2] to our situation.
More precisely we are going to give a first description of the vortices and
their location. We will prove

THEOREM IV.l. - There exist constants N E IN, ~o > 0 depending only
on g, d, H (and not on E), and points x i , ..., x2 , ..., xNE in SZ such that

and

In this section also, if not otherwise necessary, we drop the indice E

for hE, AE and x2 and simply denote u, h, A and Xi. We assume

throughout that E  1.

Vol. 12, n° 3-1995.
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Our analysis here, follows closely the ideas of [2]. The main difference
in our situation is that we only have the local estimate (III.2) (compare
with Theorem III.3 of [2]).
The next result, as in [2], plays a crucial role:

PROPOSITION IV.l. - There exists positive constants 03BB0, 0 depending only
on d, g and S2 such that if AE ) is a minimizer of GE on V satisfying

with xo E S~ and

then

Proof. - The argument is exactly the same as the proof of the theorem 111.4
of [2]. Indeed, observe that

[If 0, we may write locally u = and we compute

and (IV.6) follows. Otherwise if ~u~ = 0

and (IV.6) follows similarly]. By proposition II.6 we have therefore

and use the argument of [2] ..
Next we will (using proposition III.1 ) first give a local version of

theorem IV.1.

PROPOSITION IV.2. - Let 0  a  l, and xo E SZ be given. There
exists a constant ~~ depending only on r~i g, and d, points x ~ , .... , ~~ f in

~~ ~ ~ ~ such ~ha~
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and

Proof - We follow the proof of lemma IV.4 of [2]. Consider a family of
discs Ao E))iEr, where Ao is the constant in proposition IV.1 such that

We say that ~o E) is a bad disc if

Hence if x does not belong to a bad disc, we deduce, from proposition IV. 1
that

There is an absolute constant C such that

Therefore the number of bad discs is bounded by

and the conclusion follows from proposition 111.1..
The last ingredient in the proof of theorem IV.1 is to show that the

contribution of a bad disc to the total energy is of the order of l ogE ~ . Hence
in view of proposition 11.5 there cannot be many bad discs.

PROPOSITION IV.3. - Let 0  a  1 and Xo E 0 be given. Assume that

Vol. 12, n° 3-1995.
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There exists a constant C~ depending only on a, g, and d such that

Proof - In order to prove proposition IV.3 we need the following lemma.
LEMMA IV.1. - Let D > 0, 0  ~3  1, ~y > 1 be given constants, such

that 03B303B2  l. Let p  ~03B2. Assume that 03C103B3 > 03BB0 E, that

and

Then we have

provided E  Eo, for some constant Eo depending on D, ~y, g, d and SZ. .
We postpone the proof of lemma IV.1 and complete the proof of

proposition IV.3.

Proof of proposition IV.3 completed. - Set

for k = 1, ..., 2 (Na + 1), consider the intervals

and set

We apply proposition IV.2 to the domain B(xo, Let xl, ..., xi, ..., xlE
be as in proposition IV.2. We claim that, if E  Eo (depending on a, g, d,
H) then there is some ko in ~ l, ..., 2 (Na -~- 1 ) ~ such that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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The proof of (IV.18) relies on a simple counting argument. Indeed, since
Na, the union of intervals

cannot intersect all the I k. It follows in particular from (IV.18) that

Therefore, for any p E Iko

is well defined and does not depend on p. We complete the proof in two
steps.

Step 1. - We have

Indeed assume by contradiction that dko = 0. Adapting the argument of
the proof of proposition 111.1, we would find some po in I~o such that

where C depends only on a, g, d, and S2. Applying lemma IV.l to

po) n S2 we are led to |u(x0)|  1 2, a contradiction.
Step 2. - Proof of (IV.13). Choose (u, A), gauge equivalent to (u, A)

satifying

We may find ui by introducing the solution £ of

Vol. 12, n ° 3-1995.
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so that ui = ( - ~~2 , ~x 1 ) . Note that the domain B(xo, Ea) n 0 may have
corners. However by a result of Grisvard [10], we may nevertheless assert
that

and hence, we deduce that

We have

and

Combining (IV.24) and (IV.25) we are led to

By Cauchy-Schwarz inequality, we deduce that

and hence integrating on I ko we are led to

Combining this with (IV.23) we deduce that

and this yields the conclusion..
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We now turn to the proof of lemma IV.l.

Proof of lemma IV.I. - It is convenient to introduce the following
notation. For any subset K of H, set

We claim that

where C is a constant depending only on g, d, SZ, and j3 and 0(1) --~ 0

uniformly as E - 0.

Proof of (IV.27). - The idea is to construct a comparison function, and
we adopt the construction of [1]. To that aim we are going to change the
gauge, and consider (f, ~4) gauge equivalent to (u, A) such that

Here we have used the notation

and

This gauge ui can be found by introducing the solution ~ to

so that A = U, A is extended to 03A9 as in the proof of
proposition 1.2.

We easily verify that

Vol. 12, nO 3-1995.
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and hence by proposition 111.1

Since ~ = ~ ~ ~~ 0 as 6 -~ 0, we deduce, from assumption (IV. 14)
that 

We have by (IV.28)

Hence

where C is a constant depending on D. Since the degree of u restricted
to r is zero, we may write on r

where $ is a smooth map from r to II~.

We are now able to introduce a comparison function (v, B). We first set

and

Here 1/J represents the solution of

and 1J the solution of

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Arguing as in [I], (Theorem 2) we may assert by (IV.31) that

and hence

Combining this with (IV.30) and proposition 111.1 we deduce, from the
definition of (v, B) that

This complete the proof of (IV.27).
We deduce from (IV.27) that

and hence, arguing as in the proof of proposition 111.2, we deduce that there
is some ro E ~p~’, p~ such that

where C does not depend on E. Arguing as in the proof of (IV.27) we
might now assert that

In particular

and the conclusion of Lemma IV. 1 follows from proposition IV.l.
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Proof of theorem IV.l. - Let (xi)i~I be a finite family of points in SZ, as
in the proof of proposition IV. 1, satisfying

We say that B(xi, ~o E) is a bad disc (in this proof) if there is some
~2 E such that

We denote by J the set of indices for bad discs. In order to prove
theorem IV.l, it suffices to show that

where C is some constant depending only on g, d, and H. To that aim, let
0  a  1 be fixed, and consider the balls for i E J (where gi
is one of the points verifying (IV.35) in the bad ball B(Xi, ÀOE)). Clearly,
by (IV.35) and proposition IV.3, we have

Set

We claim that

where C is a constant depending only on a, g, d and H.
Proof of (IV.38). - It suffices to bound (independently of E) the number

of balls B(xi, 2Ea) to which any point y in W may belong. Let y ~ W
and consider the subset Ky of indices of J such that
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It follows that, for i in Ky we have (provided E is sufficiently small)

On the other hand, we deduce, from proposition IV.2, that the number of
such x2 is bounded by a constant depending just on a, g, d and Q, hence

and this yields (IV.38). Combining (IV.38) with proposition 11.5 we deduce
(IV.36) and complete the proof of the theorem..

5. GLOBAL ESTIMATES

At this point we had only a local estimate for the magnetic field. Thanks
to theorem IV .1, we will be able to derive an equation for hE which leads
directly to global estimates. We are going to prove in this section.

THEOREM V.I. - Given 1  p  2 and q > 1 there are constants Cp (resp.
Cq) depending only on d, g, SZ and p (resp. q) such that

5.1. The equation for h

Recall that we have found (Theorem IV.l) NE points xi, ..., in SZ

such that

and

Of course the limits as E -~ 0 of the points xi are the good candidates
for being the vortices of u*. In theorem IV.l we have not excluded the
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possibility that some of the discs B (xi, Ao E) may intersect. To avoid this
unpleasant situation we will argue as in [2] (lemma X.3) and replace the
discs B (xi, ~o E) by slightly larger discs E) for z E JE a subset
of ~ l, ..., lE ~ and where A > Ao is another constant depending on g, 0
and such that

In this section also we drop the indice E when no confusion is possible.
We set

and

We consider the subset Ji of J defined by

and

Set

and

PROPOSITION V.I. - We have on 

(Recall that dA u = du - iA u, where A is considered as a form.)
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Proof. - Since 1/2 on S2 and since (V.6) is a local property it
suffices to verify it locally. We may write

and hence

Thus

PROPOSITION V.2. - Set pE = The magnetic field hE satisfies

Proof. - Recall the Ginzburg-Landau equation

Hence in  we may write

Equation (V.7) is supplemented with the boundary condition

This leads us to consider elliptic equations of divergence form with
Neumann boundary condition. As in [2] we will use the method of

Stampacchia [15] to derive LP bounds for with p  2. This is
the purpose of the next section.

5.2. Auxiliary linear problems
In this section we consider a domain Q c IR2, and a positive function

a : SZ --~ IR, and a constant 1 > ~y > 0 such that
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Let f = (fl, f2) be a vector field in for some q > 2. We consider
the solution £ E of the linear problem

Clearly £ is unique and can be found by minimization.
Testing with (~ ~ 1, we obtain

and testing with § = £, we derive

where C depends on a. Our main estimate is the following.
PROPOSITION V.3. - For any q > 2 we have

where Cq is a constant depending only on a, SZ, and q..

Proof. - The proof is due to G. Stampacchia [15] (in the case of Dirichlet
boundary conditions). We closely follow his arguments (as in [2]).
To avoid problems with regularity we assume first that f and a are

smooth and derive (V.13) in that case. The general case will then follow
by density. Since f and a are smooth, £ will be also.

For 8 > 0 consider the set

and

Let ~r : F($) - aSZ be the nearest point projection onto aS2. There is some
80 such that for 8  80, 7r is a smooth fibration. Consider the reflexion map

where T(x) is such that = and x - T(x) is
parallel to x - 7r (x). Clearly T is smooth and
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Next we consider the level sets of ç. For k > 0 set

and

We now divide the proof in several steps.

Step 1. - There is some constant Di depending only on H, ~y, and

ko E (Dl 2Di f ~L2 ) such that V(ko) is smooth and

Where xl denotes the 1-dimensional Hausdorff measure on IR2.

Proof. - By the coarea formula, for any Di > 0

We deduce that there is some ko E (Di 2Di such that V(ko)
is smooth (by Sard’s theorem, since ~ is smooth) and

Step 2. - There is a constant 6 depending only on H such that for
k > ko, the following inequality holds

Proof. - We consider the connected components of V(ko). And the
maximal curves We divide these components in two
sets

Let Wi be the domains bounded by the curves Yi . Clearly, for k > ko,
we have
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For i E Ki we easily verify that

Hence by Sobolev embedding we deduce that

where 80 is an absolute constant.

Next we consider K2. We deduce from step 1 that there is some 81 in
(60~2, 6~) such that

It follows that, for i E I~2,

Therefore for i E K2, we may consider the set

and the function £ defined on Wi by

We verify that ~ is lipschitz and that ( ~ - k)+ = 0 on Therefore

On the other hand, we have

and

Combining (V.19), (V.20), (V.21) we obtain

Finally combining (V.16) and (V.22) we obtain (V.15).
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Step 3. - We complete the proof of proposition V.3 as in Stampacchia
[15]. Applying (V.10) with the test function § = ( ~ - k )+ we obtain

which yields, by Holder inequality, (note that ~.( ~ - l~)+ ~ 0)

Hence

By the result of step 2, we obtain for k > ko

3 1
where x/ ==-2014-. We have

2 ~

and we are led to the differential inequality

where

integrating, we obtain

On the other hand, by (V.23), we have

Hence
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Which shows that

This proves proposition V.3, since a similar estimate holds 

5.3. Proof of theorem V.I

We divide the proof in several steps.

Step 7. - Proof of (V.1). Let ~ be a smooth function defined on 52 such that

where C is a constant depending on SZ. Let a be the function defined on H by

Thus we have 1 ~ a ~ 4. Let q be such that - + 1 - 1 and f be
p q

any function in Lq(S2) such that

Consider the solution ~ to (V.10). In (V.10) we use the test function

(~ == This yields

where we have used (V.24) and (V.28). We have

and
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Recall that

Hence

By proposition V.2, we may write

Hence

Finally, it remains to estimate

Set hi = h(xi). We have by (V.32) (proposition II.6),

Hence, using (V .12)

On the other hand
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where ~i is the map

By the equation (V.10), satisfied by £ we have

Therefore

where we have used the proposition 111.1 (the local estimates). Finally,
combining (V.29), (V.30), (V.31), (V.33), (V.34), (V.35), and (V.36), we
obtain 

~ r ~

and hence by proposition V.3

Therefore, since f was arbitrary, satisfying (V.28), we deduce by duality
that

, ,- . , , _ .... , , .. ,, . --,

(Recall that  = 03A9B U B(Xi, 203BB~)). On the other hand, since C/6
~EJ

we have

Combining (V.37), and (V.38) we prove (V.1).

Step 2. - Proof of (V.2). We have

Hence (V.2) follows from (V.1), (V.39) and Sobolev imbedding.
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Step 3. - Proof of (V.3).
We have

and

Therefore, we have, for 0,

It follows that

and, in order to prove (V.3), it suffices to establish that

where Cp depends only on p and SZ .

Proof of ( V. 41 )
Set

and consider the set

Clearly Vp = Vp on K and Vp = 0 on S2 ~ K. Moreover since

we deduce

Recall equation (11.6)
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and multiply it by (1 - p), this yields

Since 0  1 - p ~ we obtain

On the other hand, by Holder’ s inequality we have

Combining the two previous inequalities we get (V.41).

6. CONVERGENCE OF AEn )

We may extract a subsequence En --~ 4 ( n -~ ~-oo ) such that

We cannot exclude, at this point, the possibility that some of the points
xEn i converge to the same limit. We denote by a1, ..., aNo the collection
of distinct limits Ii with No  N 1.

For sake of simplicity we will use sometimes the notation hn = 
An = uEn. Recall that the gauge (un, An) is choosen so that

and that An = ~-~~,x2 , where ~~, is a solution of
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We deduce from theorem V.I and the LP bound extracting a further

subsequence if necessary, that there is some h* E IR) such that

It follows that there is some A* in IR2) and ~* in IR)
such that

Finally, we have by (V.3)

which yields, in view of the following estimate, (which follows from (V.2)),

that

Hence passing to a further subsequence if necessary, we may assume that
there is some map u* E such that

Clearly since

we obtain

No

PROPOSITION VI.l. - Let K be a compact subset of S2 ~ U { ai} we have
i=1
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where C is some constant, and moreover

Proof - The proof is similar to the proof of theorem X.2 of [2]. Let ~
_ 

No

be a smooth function compactly supported in SZ B such that r~ - 1

i=1

on K. Recall that on h~ verifies (see proposition V.2)

For n large enough, the support of r~ is contained in f2En. Hence we may
multiply (VI.17) by Integrating we obtain

Since hn is bounded in  2) we have

Likewise, by the trace theorem,

Hence

Moreover, since hn - h* we deduce that
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Next we multiply (VI.17) by h*). We obtain

Since hn - h* weakly in we deduce by Sobolev imbedding that

Hence

Since p x 1, this implies, by lower semi-continuity that

and establishes (V.14).
We turn now to (VI. 15) and (VI.16). We consider the equation for p~

(see (II.6)),

Multiplying (VI.20) by r~ (1 - pn) and integrating we obtain

Since pn -~ 1 and is bounded in we deduce from (V.14) and
dominated convergence that the right hand side on (VI.21) goes to zero.
Hence

this proves (VI. 16). Moreover we have
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Hence we deduce that

and (VI. 15) follows from the strong convergence of An to A* in and
(VI.23).

PROPOSITION VI.2. - We have

where C depends only on g, d and SZ. /

Proof. - By proposition VII. 1 below (which of course does not rely on
(VL24)), for all i, ai is not in a~. Let ~c > O,be small, such that

In view of proposition VI.l we may find, by Fubini’s theorem, some
ftn E (ft, 2ft) such that, for n large enough

where C(fl) depends only on fl, g, d, and H. Applying proposition II.4 to
on the set n 0 we deduce

Hence (VI.24) follows from (VI. 16) and (VI.26).

7. PROPERTIES OF (u*, A*)

PROPOSITION VII. 1. - We have
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Proof - The argument is readily the same as in [2]. We briefly sketch
it. As in [2], consider a domain 0’ such that Q We are going to
extend first un to 0’. Note that

and hence, by (VI.6)

It follows that there is some map which extends un to 0’ (which will still
be denoted by un ), such that un E H 1 ( S2’ B 0, and

Similarly, we extend u* to SZ’. We first establish (VII.3).
Let b > 0, and consider the balls B(ai, b) and the domain 03A903B4 =

No

SZ’ ~ U B ( ai , b ) . by theorem 1.8 of [2] we have
i=1

where C depends only on the points ai, and g. Hence, from the strong
convergence (VI.15), we deduce

for n sufficiently large depending on 8. On the other hand, it follows from
a result of [5], that

Combining (VII.4), (VII.5) and (VII.6), we are led to
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for any 8 > 0, and n sufficiently large (depending on p). We also have,
by (VI.7)

where Rn  C. Combining (VII.7), (VII.8) and proposition IL5 we obtain
(VII.3). Property (VII.2) can be derived similarly adapting the arguments
of [2], theorem VI.2.

PROPOSITION VII.2. - The magnetic field h* verifies the equation

d

Proof. - Let K be some compact subset of 0 B ~{ai}. We easily
verify that 

I=i

Indeed we may pass to the limit in equation V.6, thanks to the LP bound
for ~hn. Let 6 > 0, we have

where v is the exterior normal of b). By standard arguments, passing
to the limit in (V.6) on the whole of S~, this implies (VII.9)..

d

PROPOSITION VII.3. - The map u* is a harmonic map on 
k=1

i.e. verifies
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Moreover we have

where ~~ verifies (17) and (18) (in the introduction).

Proof - Applying the operator d* to the equation (II.2), we obtain

Passing to the limit in (VII.13), we are led to

Since d* A* = 0, and ] = 1, we deduce that

Hence, we obtain (VII.ll). Moreover, (VII.12) follows from (VII.ll), the
LP bounds of u* and the analysis of [2], section 1.3. Finally combining the

propositons of sections VI and VII we have proved theorem 3..

8. RENORMALIZED ENERGIES

The aim of this section is to prove Theorem 4, i.e. to determine the

configuration (ai ) . For that purpose, we introduce an auxiliary problem and
follow the strategy of [2], section VIII.

Consider d points bl, ..., bd in SZ, and b > 0. Clearly for b sufficiently
small (say 8  80, depending on the configuration ( bi ) )

d

Set SZs = S~ B U B(ai, 8) and consider now the space Ws defined by
i=1
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and the functional E8 defined on Wb by

Set

PROPOSITION VIlLI. - We have: ~cb is achieved and for b ~ bo

v

where C depends only on the configuration (bi) and bo . /
Proof. - The proof is similar to the proof of proposition II.S, therefore

we omit it..
PROPOSITION VIII.2. - We have, for b  bo, and for a minimizer (vb , Bs )

of (VIII.2)

and

where C depends only on ( bi ) on bo .
Proof. - Let (V8, B8) be a minimizer of (VIII.2) such that

(In this proof we omit the subscript 6 for sake of simplicity). Hence we have

where £ solves

We have
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where we have used the notation [ £ , v ~ ] = d~ A (iv, dv). We notice that

where T is the unit tangential vector to 8 B (bi, 8) such that (v, T) is direct,
v is the exterior normal to ~B (bi , b) . Here we have used the fact that
d(iv, dv) = (idv A dv) = 0. Since deg(v, b)) = 1, we may write

where Ui is some fixed neighborhood of b2, and where ~ is some (singled)
valued function on Ui B B (bi, 8). We verify that, for x E Ui B B (bi, 8)

Integrating by parts, we obtain

where 03BEi = 1 |~B(bi, 03B4)| ~B(bi,03B4) 03BE and 03C8i = 1 ~B(bi, 03B4)| .,., / 
Sobolev imbedding and elliptic estimates, we have for any a  1,

On the other hand

and by (VIII.10)
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By the trace Theorem, we obtain

Combining (VIII.ll) and (VIII.12), we are led to

We have also (by the trace Theorem and Sobolev imbedding)

combining (VIII.9), (VIII.13) and (VIII.14), we conclude

Turning to the first term on the r.h.s. of (VIII.6), we have by a result of
[2], theorem 1.8.

Combining (VIII.6), (VIII.7), (VIII.9), (VIII.16), and proposition VIII.1,
we obtain

where
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Combining (VIII.15) and (VIII.I0) we verify that

Since Vv = VBV + iv B we obtain

(by proposition VIlLI). Going back to (VIII. 19) we deduce that

Since, by standard estimates

(VIII.21), (VIII.22) and (VIII.117) yield

(VIII.4) and (VIII.5) follow..

PROPOSITION VIII.3. - Let ~* be the solution of (20). We have ~s -~ ~* in

W2’2 (~) as b -~ 0. .

Proof. - We have on S2b, by minimality of (v8,B8)

On the other hand

From proposition VIII.2 we know that
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and hence (passing to a subsequence if necessary) we may assert that

Passing to the limit in (VIII.23) and using (VIII.24), we see that ç verifies
(20) and hence £ = ç* (and the full sequence converges by uniqueness of
the limit). By minimality of we have

that is

Arguing as for (VIII.6) we obtain

Since 03BE03B4 ~ 03BE* weakly in W 2’ 2 ( SZ ), we obtain

that is

That implies the strong convergence of to 0~* in L2 and Proposition
VIII.3 follows..

PROPOSITION VIII.4. - Let

We have
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Proof. - Since

we see easily (by proposition VIII.3 and standard elliptic estimates) that

Recall

We deduce

Hence, in view of (VIII.28), we have uncoupled v and B, and roughly
speaking, in order to minimize Eb (v, B), it suffices to minimize and

this yields

Proposition VIII.4 follows..

PROPOSITION VIII.5. - Let I  p  2 the map vs remains bounded in
and vs converges to v* strongly in and in Q ) U (ak ) ,

where v* is defined on Q by

and where ~* is harmonic and verifies
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Proof - Since vs takes its values into S1 we have

Let 03A6 be the solution of

We have

and

Hence, there is some Hb E IR), such that

It follows (see [2])

From [2], section I, we have

and from proposition VIII.4 we deduce that

Hence,

and proposition VIII.5 follows from the analysis of [2], section I.
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PROPOSITION VIII.6. - We have for any configuration (bi)

where W is defined by (19), (20), (21 ) and (22 )..

Proof. - We deduce from propositions VIII.3, VIII.4, and VIII.5 that,

by (VIII.28)

Moreover equation (20), established in proposition VIII.3, easily implies

(VIII.26) and the analysis of [2], section I (see Theorem 1.7), imply

where

~ is a function verifying (VIII.29) and R denotes

Combining (VIII.32), (VIII.33) and (VIII.34) we obtain the desired result.

Proof of theorem 4. - Set
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Let (b,,) be a configuration of d points. As in [2] we may construct a
comparison function in H1(S2) such that

and

where

It follows that

where we have used proposition VIII.6, and where C(b) --~ 0 as 8 - 0.
On the other hand, arguing as in the proof of lemma VIII.2 of [2], we have

where C’ (8) --~ 0 as 8 -+ 0. Combining (VIII.35) and (VIII.36) we obtain,
letting b --~ 0,

and this proves theorem 4.
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