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ABSTRACT. - Some properties of "concentration-compactness type" are
proved to the aim of characterizing the behaviour of bounded sequences of
functions in a Sobolev Space with respect to Lorentz norms. Such properties
are shown to exist as far as the embedding is not optimal with respect to
the secundary index.

Des proprietes « du type concentration-compacité » sont

demontrees dans le but de caracteriser le comportement de suites bornees
de fonctions dans un Espace de Sobolev relativement aux normes de
Lorentz. Ces proprietes sont prouvees tant que le plongement n’est pas
optimal par rapport a l’exposant secondaire.

INTRODUCTION

In [2] some partial differential equations are studied which involve

singular coefficients. A variational approach to such problems requires the
use of the Sobolev’s Embedding in Lorentz Spaces and some compactness
properties like those introduced by P. L. Lions in [4]-[7] or those stated
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320 S. SOLIMINI

in [11]. The methods in [4]-[7] cover this case, which is in fact treated

in [7, II4], however the analysis of the compactness properties of Sobolev’s
Embedding in the context of Lorentz Spaces presents some interesting
features which we want to point out in this note. In fact we shall show
the two following facts:

a) some compactness properties are an easy consequence of Sobolev’s
Embedding in Lorentz Spaces, provided the embedding is not the optimal
one. In fact, a straightforward interpolation argument reduces the proof to
the case of weak LP spaces where a simple device can be used;

b) the same properties do not hold for the case of the optimal embedding,
as one can see from an easy counterexample and from the analysis of some
concrete problems in which such embedding is involved and which have
no solution.

So we are in an analogous situation to that of the classical Rellich

Theorem: compactness results are available as far as the embedding is not
optimal. The analogy cannot be appreciated if one only looks to the usual
LP structure.

Any further comment will be postponed after a preliminary explanation of
the notions about Lorentz Spaces and of the notation that the reader will be
supposed to know. This will be done in the first section in which the above
mentioned compactness properties will also be specified. We shall give them
in three equivalent statements: an alternative theorem (Theorem 1) which
states that a bounded sequence in the Sobolev Space must be infinitesimal
in the Lorentz Space or it can reach a nonzero weak limit modulo a

suitable change of scale of every term, a structure theorem (Theorem 2)
which shows how such a sequence can be approximated and a compact
embedding theorem (Theorem 3) which characterizes with properties related
to the changes of scale the bounded subsets of the Sobolev Space which are
embedded as precompact subsets in the Lorentz Space.
The second section will be devoted to the proof of the theorems.
In the third section we shall mention the particular cases in which the

conclusions can be furtherly specified and we shall show the counterexample
for the optimal case.

For new applications we refer the reader to [2], however we point out
once more that they could already be treated with the methods in [7]. The
aim of this note only consists in suggesting a different point of view and in

observing how the strict cases of the concentration-compactness inequalities
correspond in some applications to the fact that nonoptimal embeddings
are involved.
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321A NOTE ON COMPACTNESS-TYPE PROPERTIES

1. NOTATION AND STATEMENT OF THE RESULTS

We shall only recall what the reader has to know about Lorentz Spaces in
order to follow this note. We shall even omit to give the classical definition,
which requires some discussion and which can be found, for istance, in [9],
while we shall list in a purely operative way the essential properties of those
spaces involved with the refinement of Sobolev’s Embedding.
A Lorentz Space L(p, is a space of measurable functions affected

by two indexes p and q which are two positive real numbers, 1  p, q  oo,
like the indexes which determine the usual LP spaces. The index p is called

principal index and the index q is called secundary index.
A monotonicity property holds with respect to the secundary index, in

fact, if qi  q2, then we have L(p, qi) C L(p, q2). So the strongest case
of a Lorentz Space with principal index p is the space L(p,l), while the
weakest one is The most familiar one is the intermediate case

given by q = p, in fact the space L(p, p) is equivalent to the classical
LP space. The already mentioned weakest space L(p, oo) is on the other

hand equivalent to the weak LP space, or Marcinkiewicz Space, namely the
space MP consisting of the measurable functions u such that one can find
a constant c in such a way that

where IXI ] denotes the Lebesgue measure of the set X. The least value of
the constant c such that (1) holds will be called Marcinkiewicz norm of u.
The knowledge of these two particular cases allows an alternative

definition of the L(p, q) spaces by interpolation. If p  q, we shall denote by

L(p, q) the space of the functions u such that u = ui ?~ u2 1- P q , with ui E LP
and u2 E MP . If q :S p, we shall denote by L(p, q) the space of the functions

u such that for every v E M~’ with r such that -=-+-, uv E The
q p r

spaces will be equipped with the corresponding interpolation norms.
No monotonicity properties can of course hold with respect to the principal

index, as one sees from the particular case of the LP spaces. On the other
hand, the secundary index affects the space only in an "infinitesimal" way
with respect to the first one. In fact, if some function belongs to the

Marcinkiewicz spaces and MP+E:, for a positive value of c, then it
also belongs to L(p, 1), the strongest Lorentz space with principal index p.
An interpolation property also holds with respect to the secundary index, if a
sequence converges in L(p, ql ) and is bounded in L(p, q2 ) then it converges
in L(p, q), for every index q included between ql and q2.
Vol. 12, n° 3-1995.
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A property which we are going to use is the appropriate case of the
Holder Inequality which states that the duality product of two functions is
bounded by a constant times the product of the norms of the two functions
in two respective "conjugate" Lorentz Spaces L(pi, qi) and L ( p2 , q2 ),
where "conjugate" means that the two pairs of indexes satisfy the relations
2014 + 2014 _ - + - = l. All the above properties can be easily deduced
Pl P2 ql q2
from the definition.

From now on we shall assume that a positive real number p, 1  p, has
been given. We shall consider the Sobolev Space equipped with
the "homogeneous" norm which associates to a function the LP-norm of its
gradient. So the only Lq space in which is embedded is LP* 
as one can check by using the invariance of the two norms with respect to
the same type of the rescalings defined below.
However the embedding in Lpx is not the optimal one, if one looks to the

richer structure given by Lorentz Spaces. In fact one can show that Hl’p
is embedded in the space L(p*,p) which is stronger than L ( p* , p* ) = LP* .
This follows immediately from the convolution rule in Lorentz Spaces [9]
and an elementary estimate like the inequality (4) below. A very short
and simple alternative proof of this fact, which starts from the definition
of Lorentz Spaces and uses a symmetrization argument, can be found in
the first few lines of the appendix of [1]. The optimality of L(p* , p) is in

particular proved by the examples in the last section of this note.
We shall call rescaling (of the variable) of center ~o and modulus ~ the

affine function p which sends a point x of IRN in the point ~o + À(x - xo ) .
The center xo and the modulus A are of course uniquely determined by
the rescaling p unless ~ = 1, namely p is the identity map. In order to
unify the terminology and to have a stable class with respect to the function
product, we shall include among the rescalings also the translations, which
are the product of two rescalings with inverse moduli and different centers.
In such a case there is no center, the modulus is of course 1 and the function

is determined by the translation vector. This discussion is needed for the
following definitions. If is a sequence of rescalings we shall say
that it is diverging by concentration if the corresponding sequence of the
moduli diverges to +00. On the contrary, we shall say that it is diverging
by vanishing if the corresponding sequence of the moduli converges to zero
and that it is diverging by translation if the corresponding sequence of the
moduli is bounded and bounded away from zero and the corresponding
sequence of the centers or of the translation vectors is diverging. We shall
say that the sequence of rescalings is diverging if one of the above three
cases is verified. Two sequences of rescalings and will
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323A NOTE ON COMPACTNESS-TYPE PROPERTIES

said to be mutually diverging if the sequence ( ( p~ ) -1 o pn )nEN is diverging.
From now on we shall assume that the index p is given. If p is a rescaling

with modulus A and u is a function defined on IRN, we shall indicate the
function o p as the rescaled function u by p and we shall denote it

by the symbol p(u). We shall take a = N p = N in order to keep
invariant the and the L(p*, q)-norm, for every choice of q. We
shall also consider the "dual" rescaling, defined as above but with the choice

a = N + p = and we shall denote by p’ (u) the function u rescaled
P (?")’ I

by the dual rescaling p’ induced by a rescaling of the variable p. We note that
the dual rescaling p’ leaves invariant the -norm and the LP* ~ -norm.
We shall transfer to the rescalings of the functions the same terminology

which we have introduced for the rescalings of the variable. Note that, if p is
a rescaling and if u and v are two functions which are respectively in H1~P
and in or respectively in L (p* , q) and L ( ( p* )’, q’), then we have

and that a sequence of rescalings is diverging if and only if, for
every u in or, equivalently, for a fixed u in B ~ 0 ~, the sequence

weakly converges to zero in LP * . Moreover it is diverging by
concentration if such a convergence is strong in Lq, for every q  p* such
that u E Lq and it is diverging by vanishing if this happens for q > p*.
The above introduced rescalings give an obvious reason for which, for any

value of q, the embedding of in L ( p* , q) cannot be compact. In fact,
if u is any given nonzero element in and if is any diverging
sequence of rescalings, then ( pn has a constant norm in and in

L(p*, q) while, on the other hand, it weakly converges to zero.
The following statements prove that the cases of the above situation,

combined in all the possible ways, are the only possible obstruction to the
compactness in L (p* , q), for q > p, of the bounded subsets of 

THEOREM 1. - Let be a given bounded sequence of functions in
with the index p strictly smaller than N.

Then we are in one of the two following alternatives:

a) converges to zero in L(p*, for every index q strictly
greater than p.

b) There exists a sequence of rescalings such that the sequence
of rescaled functions has a nonzero weak limit point (in
LP* 

Vol. 12, nO 3-1995.
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THEOREM 2. - Let (un)n~N be a given bounded sequence of functions in
with the index p satisfing 1  p  N. Then, replacing 

with a suitable subsequence, we can find a sequence of functions 
belonging to and, in correspondence of any index n, we can find a
sequence of rescal ings in such a way that the sequence 
is summable in uniformly with respect to n, and that the sequence
(un - ~ converges to zero in L(p*, q) for every index q strictly

i~N

greater than p.
Moreover we have that, for any pair of indexes i and j, the two

corresponding sequences of rescalings and are mutually
diverging, that 

,

where M is the limit of and that the sequence

(un - converges to zero in if and only if (3)
i~N

is an equality.
Remark. - The above result can be extended to cover the case p = 1

provided the summability of the series is only asked in LP* and (3) is

replaced by the analogous estimate which only involves the LP* -norms. Of
course the last part of the theorem becomes useless in such a case.

Remark. - Theorem 2 leads to a result like Lemma 1.1 in [6], if one only
looks to the approximation in the sense of the measures.

We need to introduce some more terminology to the aim of avoiding
the necessity of using too many words for denoting the functions given by
the above theorems. A weak limit point of a sequence like ( pn in

case (b) of Theorem 1 will be called a restored scale limit of the sequence
Note that the restored scale limits of a sequence of functions

are determined modulo a change of scale. In this sense, the functions ~i
introduced in Theorem 2 are (when they are not zero) exactly given by the
nonzero restored scale limits of (un)neN, as follows from the fact that two
sequences of rescalings corresponding to two different values of the index
i are mutually diverging. Let U be a (bounded) subset of H 1 ~P ( I ~ N ) . We
shall say that U has a bounded scale if, for every diverging sequence of
rescalings and for every sequence of elements of U, the

sequence of rescaled functions weakly converges to zero in
v* * ( ~ ~ ) . Note that a finite set obviously has a bounded scale and therefore
every bounded subset of which is precompact with respect to
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325A NOTE ON COMPACTNESS-TYPE PROPERTIES

the L(p*, q)-norm, whatever q is, has a bounded scale too. One can restate
Theorem 1 in the following way.

THEOREM 3. - Let p  N be given, let U be a bounded subset of
and let q > p. Then U is p recompact in L ( p* , q ) if and only if

it has a bounded scale.

In all the above statements we could have considered the more general
case in which the function u has a gradient in a Lorentz Space L(pl, p2)
rather than in LP. The proofs in the next section cover this more general case
without any modification, as one sees from the remark after the proof of
Theorem 1 which also shows how that result also holds in the optimal space
L ( p i , p2 ) when p2 = +00. On the other hand, we can take in particular
q = p* and we get in such a way the convergence and the precompactness
in the LP* space.
The statements are false in the optimal case, namely if one allows q

to be equal to p, as we shall see in the last section. For the case of

general Lorentz spaces the analogous holds with the only exception of
Marcinkiewicz spaces, as we have just pointed out.

2. PROOF OF THE THEOREMS

The proofs will be based on the following elementary estimate

where ~ denotes the mean value of u on the ball of center

x and radius r and c is a positive constant. This can be easily proved by
computing the variation of the mean values of u on the various spheres.
One can see from (4) that the function 8ru which sends x in the first side
of (4) is bounded by the convolution product of the function and of

the function restricted to the ball centred at zero and of radius r. So _
the LP-norm of 8ru can be estimated by Young Formula with the product
of the LP-norm of and the Ll-norm of the other factor, which is given
by a constant multiplied by r.

Proof of Theorem 1. - We firstly remark once more that we only have to
care of the case q = oo. In fact, by the Sobolev’s Embedding in Lorentz
Spaces, we know that the sequence (un)nEN is bounded in L(p*,p)(RN),
Vol. 12, n° 3-1995.
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so we see by interpolation, since p  q, that (a) holds provided (Un)nEN
converges to zero in the Marcinkiewicz space L ( p* , oo ) . So we have to show
that, if (a) does not hold, and therefore the sequence does not converge to
zero in L(p*, oo), then (b) must be satisfied. We can pass to a subsequence
in order to assume that the weak LP* norm of all the functions Un is bounded
from below by a positive constant 2c.
The lower bound in the Marcinkiewicz norm means that for every index

n, we can find a nonnegligible measurable subset Yn of IRN such that

We can fix the modulus of pn in such a way that = 1.

From (5), taking into account that the rescalings pn preserve the weak
LP -norm, we have

On the other hand, we have seen from (4) that the LP-norms of the
functions are bounded by the product of a constant times
R, since the functions Pn(un) are bounded in So we can fix R

conveniently small in order to have for every value of n

From (6) and (7), we see that we can find a point zn in Xn such that
c, which trivially implies that

We finally fix the translation part of the rescalings pn in such a way to
have zn = 0 for every n, then (8) shows that the sequence 
has only nonzero weak limit points..
Remark. - Note that only an estimate on the weak LP-norm of

8 R is necessary for (7). So the convergence of the sequence in the

Marcinkiewicz space follows from a bound on the gradients with respect
to the Marcinkiewicz norm.
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We do not need to give a proof of Theorem 3 which is a clear restatement
of Theorem 1. In fact, if a set U has a bounded scale, if (Un)nEN is a

sequence of elements of U and if u is the weak limit of then the

sequence (un - U)nEN cannot satisfy condition (b) of Theorem 1, so (a)
must hold and (Un)nEN is therefore convergent.

Conversely, if we assume the statement of Theorem 3 and if we take
the sequence we are in one of the following two situations. The
sequence may have a nonzero weak limit point and then (b) holds, otherwise
it weakly converges to zero and then if the convergence is strong (a) holds
and if the convergence does not hold strongly then the set of the elements
of the sequence cannot have a bounded scale and this means that (b) must
be verified.

Analogously, we can very easily deduce Theorem 1 from Theorem 2,
while, on the other hand, some work is needed for the proof of Theorem 2.
The argument is a more complicated variant of the proof of the main result in
[ 11 ], which can be read as an example of a simple case where the estimates
developed below are not necessary.

Proof of Theorem 2. - Assume that (un)n~N does not converge to zero
in L (~* , q ) for every q greater than p, if not we take cPi = 0 for every
i and we have nothing to prove. Then we know by Theorem 1 that we

can select a subsequence (which we shall still denote by and a

sequence of rescalings (03C1n)n~N such that the sequence of rescaled functions
weakly converges to a nonzero limit and we denote such a

limit We shall choose ~ 1 to have a greater or equal to
one half of the supremum of the norms of the restored scale limits of the

sequence Of course we have

Then we take as p~ the inverse of pn for large values of n and we set
un = un - pn (~1 ). Then we reapply the same procedure to the new sequence

and we can find a new subsequence, which we shall again denote
by the same symbol as before, and a new sequence of rescalings 
such that has a weak limit ~2 , with a greater or

equal to one half of the supremum of the norms of the restored scale limits
of the sequence We shall denote by pn the inverse of this new pn,
for n large. One sees trivially that the two sequences of rescalings 
and must be mutually diverging (unless ~2 = 0, in which case we
can define the rescalings pn arbitrarily).

Vol. 12, n° 3-1995.
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When we replace by its subsequence we keep the first term ui.
We have the analogous of (9)

To the aim of proving the above estimate we first observe that, by the
mutual divergence of and in correspondence of any given
constant a > 1, we have for n large

We shall fix the values of pn for small values of n in such a way to have
(11) satisfied by every n in correspondence of a = 2. Then, for i = 1,2, we
fix an element in the dual space such == 

and = (1/;i = In the same way as

before, we have for n large

By combining the above estimates and by using (2), we find
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which gives

and therefore, by the arbitrariness of a, we obtain ( 10). We must now iterate
this process. We set un = un - p~(~2) and we take as ~3 a restored scale
limit of a suitable subsequence of which keeps the first two terms
of the previous one, whose norm is greater or equal than one half of the
supremum of all the norms of the restored scale limits of In the

same way we define the following limits ~Z and the following sequences
We can generalize, by repeating the same proofs, the estimates (11)

and (12) in such a way that, for every finite subset J of N, in correspondence
of any given constant a > 1, we have for n sufficently large

As we have said before, we can assume that the last two estimates hold
for every n for a = 2. We finally substitute the sequence with

a diagonal selection of successive subsequences which we have extracted
for every value of i. The fact that we have always kept the first terms

of a sequence when we have sobstituted it with a subsequence makes the
terms of the diagonal selection belong to all the successive subsequences
corresponding to the values of the index i. Again we have as before, for
any finite subset J of N,

and, consequentely, by the arbitrariness of a

Vol. 12, nO 3-1995.
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which gives (3). The uniform summability of is then an obvious

consequence of (13) and (3). In order to prove the convergence to zero
of ( un - in L ( p* , q ) for q strictly greater than p, we only

i~N
have to show that the sequence has no nonzero restored scale limit and
then apply Theorem 1. To this aim, let § denote a restored scale limit of
(un - L fix an integer h and, for every n, split un - 

i~N i~N
+o

in the sum of ~c~ and L pn ( ~i ) . Let ~‘ be the weak limit of a suitable
t=/t+i 

_

subsequence of suitably rescaled term by term, and 03C6" the weak

limit of the corresponding rescaled subsequence of [ 03C1in(03C6i))n~N ,

chosen in such a way to have § = §’ + 03C6". By construction we have
and by the weak semicontinuity of the norm and by

/ B~
(13) we have ~ .

I 

By (3) we see that the right sides of the two last inequalities both converge
to zero as h tends to infinity. This implies, by the arbitrariness of h, that we
must have § = 0 and then the desired convergence of ( un - 

tEN

For what concernes the H1,p(RN)-convergence we observe that by (13)
and (14) we obtain

So, when the holds, we see from (17) that we
must have the equality in (3), while, if such an equality holds, for every n
we have two vectors in namely un and ~ pn (~i ), which tend

i~N

both to have a norm equal to M P and a linear form, induced by the dual
vector ~ ( p~ )’ ( ~i ), whose norm tends to Moreover the linear form

i~N

computed in y~ tends to M, as one can easily check by using the
iEN
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uniform convergence of the two sums and the mutual divergence of two 
’

different sequences of rescalings, and computed in un tends to M again
as follows from (15).
By the uniform convexity of the LP norms this fact implies that the

difference ( un - "~ converges to zero in 

i~N

3. FURTHER REMARKS AND COUNTEREXAMPLES

Some particular cases in which the statements of the above theorems
become simpler will be considered in the beginning of this section. One of
this will be the locally compact case in which we know that the sequence

is also bounded in the when s is an integer greater than
p*. Then we can easily check that, if i is an index such that is

diverging by concentration and if cPi is different from zero, then 
blows up in the Ls-norm, even modulo bounded perturbations in the LP* -
norm, since a big part of the norm of is taken by integrating on a set
whose measure tends to zero with respect to n. Since the distance between
un and is clearly bounded in LP*, this fact leads to the blow up of

in L~, an obvious contradiction. So we see that in Theorem 2 we

only have to consider sequences of rescalings which are diverging only by
translation or by vanishing. Conversely, the sequence (pn)nEN considered
in Theorem 1 can only diverge by translation or by concentration and the
boundedness of the scale of the sets which are bounded in LS, besides being
bounded in H1~P, only needs to be checked with sequences of rescalings
diverging by translation or by concentration.

Let us consider now the behaviour of (un)n~N in Lr, when r is any number
strictly contained between p* and s. We claim that the approximation shown
in Theorem 2 also holds in In fact we just have to know that the
sequence can be taken bounded in LS and to apply a

i~N

simple interpolation argument. The above mentioned boundedness follows
by similar arguments to those in the proof of Theorem 2. In fact, we can
chose the rescalings in such a way to have the analogous of ( 16), namely

where Ms is the limit of LS-norm of un, by the same arguments used for
that proof, with obvious differences.

Vol. 12, n ° 3-1995.
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(One just has to take as the appropriate dual function of CPi with respect
to the LS structure, namely 03C8i = |03C6i|s-203C6i, and to prove, for any subset J
of N and for any integer n, the analogous of (13)-(14) (for a = 2) as the
first inequality in (19) and finally of (15), namely

which gives the last inequality in (19).)
Note that the analogous of (3) or of (16) for the Ls-norms cannot hold,

of course, for the functions cPi nonrescaled since those functions are only
determined modulo a rescaling which does not leave invariant the LS-norm.
Finally, from the uniform summability of the series in Lp 

* 

and

~ 

i

the uniform bound on all the partial sums given in (19), one can deduce
by interpolation the uniform summability also in Lr. If for some index i

the sequence of rescalings is diverging by vanishing, then the term
is infinitesimal in L’’ and can therefore be erased from the

approximating series By its uniform summability we can also
i

simultaneously erase all such terms and therefore we can assume, as far
as only the L’’ approximation is involved, that the sequences can

only diverge by translation.
The converse properties are of course true if one considers the

nonvanishing case given by a bound in Ls with s  p*. In such a case
the sequence cannot diverge by vanishing and the indexes for
which they are diverging by concentration can be forgotten if one wants to
approximate (un )nEN only in the L~’-norm, for some s  r  p*.
The divergence by translation can finally also be excluded in some

particular cases as when one looks to suitably symmetric functions or when
the support of the functions Un is contained in a set of finite measure, which
also is an obvious nonvanishing case. When the three forms of diverging
sequences of rescalings are simultaneously avoided one must have that at
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most one of the functions ~Z can be different from zero, indeed, if i and
j are two indexes such that CPi and CPj are both different from zero then at
least one of two corresponding sequences of rescaling must be diverging,
since the two sequences are mutually diverging. Moreover we can take all
the rescalings /9~ equal to the identity and so the sequence strongly
converges to CPi .

This situation happens, for instance, as we have already said, when we
consider a set of radially symmetric functions or a set of functions with a
support contained in a given set of finite measure and we look for a limit
in LT of a sequence (un)n~N which is bounded in the Sobolev Space H1,p
and in LS with r included in the open interval of extrema p* and q. The last
bound is of course implicit in the case of a domain of finite measure when
r  p*, the situation of Rellich Theorem.

Let us come now to examinate the case of the optimal embedding
corresponding to q = p. We shall indicate a simple example which shows
that the three theorems proved in this section do not hold in such a case. In
fact we shall define a bounded sequence of which has no nonzero

restored scale limits and which does not converge to zero in L ( p* , p) . To
this aim, fix a positive function § in and take, in order to simplify
the argument, the support of § contained in the annulus centred in zero and
with radii equal to 1 and 2. For every integer number n, we choose as un
the following function: for i = 1, 2, ..., n we take the function Vi given by
the rescaling of cp which keeps invariant the H1,p-norm with center zero and
modulus 2B then we define as un the sum of the n functions Vi normalized
by the product with the constant n - P. 1 Since the functions Vi have disjoint
supports, we easily see that for every n we and

= So the sequence converges to zero in Lp*
and therefore it cannot have nonzero restored scale limits. It must clearly
converge to zero also in L(p*, q) for every q > p, as follows by interpolation
since the sequence is bounded in L (p* , p) . We claim that (Un)nEN does not
converge to zero in L ( p* , p) and therefore Theorem 2 does not hold with
q = p. In fact, if this were the case, then u~ would converge to zero

in L(p* p, 1 = L N 1 j. This conclusion does not hold because
if we take the scalar product of up with the function 1 |x|p, which is in

L p* ’ , oo , we have
Vol. 12, n° 3-1995.



334 S. SOLIMINI

One can see in this example that the functions un tend to "distribute
cP on a wide range of scales" by breaking it in n different parts and by
rescaling each one of them in a different way. This is exactly what cannot
happen in the nonoptimal cases in which a sequence of functions bounded
in the Sobolev Space which does not converge to zero has to have some
part "concentrated on some precise scale". Such a scale can change for
different values of the index but it can always be localized and "normalized"
by a suitable rescaling.

This example can be extended to cover the case of a sequence of functions
with the gradients bounded in a Lorentz Space when p2 7~ 0.
In such a case one can repeate the same construction as above, by only
paing attention to fix a suitably consistent difference of scale between two
different functions rather than to consider two consecutive ones of those

functions only rescaled by a factor two. Then one can check, by looking
directly to the definition of Lorentz norm, that the normalization factor of
un is n- p2 , then the sequence turns out to be infinitesimal in q) for
q > p2 and not when q = p2..

_ 

We point out that this kind of example only depends on a simple property
of the optimal embedding. In fact, we have shown that, when p2 7~ 0, a
sequence can be found which is bounded in converges to

zero in oo ) and does not converge to zero in L ( pi , p2 ) . The invariance
of the norm of oo ) with respect to the rescalings implies that all the
restored scale limits of the sequence must be zero. Since the sequence is

not infinitesimal in L (pi , p2 ), Theorem 2 cannot be extended to cover the
case of the optimal secundary index.

To the aim of checking if we have in some concrete variational problems, in
which the L(p*, p)-norm is involved, a minimizing sequence which behaves
as the one in the above example, let us consider the well known problem
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We look for (positive) solutions to (P) in The well known

Pohozaev Identity [10] shows that regular solutions to (P) can only appear

for a = N + 2 and, in such a case, one looks for a ground state solution by
minimizing set of the functions u such that 1. One can

easily show that such a minimum is achieved by using a result like Theorem
2 and taking advantage of the fact that the constraint which determines the
set where the H1-norm has to be minimized is continuous in L2*. (The

proof in [7] that dichotomy cannot occur is enough to show that only one
of the functions cPi given by Theorem 2 in correspondence of a minimizing
sequence of the constrained variational problem is different from zero.)
The analogous of this problem in which one has to consider a constraint

which only depends on the L(2*, 2)-norm is the linear eigenvalue problem

Note that in [7] this problem is presented as a case in which the

concentration-compactness inequality does not hold. (See [3] and [2] for
the study of problems which can be regarded as the natural extension of

(P) to cases which involve the embedding of Ho in stronger Lorentz Spaces
than L2*.) We shall now show that (LP) has no positive solutions in 
if St = IRN or if S2 is an angular domain with vertex in zero.

The proof can be achieved in three steps. Firstly we observe that a
Pohozaev type identity (see [2]) shows that we must have a = 2. Then we
claim that if we have a pair (A, u) which solves (LP), then A must be equal
to the "first eigenvalue" Ai given by the infimum of the value of 

taken on the set of the functions u such that J 1. (Note that Ai

has not to be an eigenvalue of (LP) but only a point of the spectrum since

the operator which sends u in u |x|2 is not compact from H1 in H-1). This
fact is intuitively obvious, nevertheless we prefer to prove it rigorously.
If, by contradiction, we assume A > Ai, we can certainly find a,function v
such that .

and
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By multipling v by a coefficient slightly greater than one, we can always
assume that the inequality (20) is strict. So we can choose a function

v, bounded and with a compact support, obtained by truncation from the

function 1 which preserves (20), namely such that

Then we consider the first eigenvalue At (which exists since the operator
which sends u in vu is compact from H1 in H-1, see, for instance, [8])
of the linear eigenvalue problem

By a test with v and by using the variational characterization of the
eigenvalues, we deduce from (21) and (22) that ~°  A.

Let § be an eigenvector of (LPo) corresponding to At. By the strong
maximum principle we see that u and § are strictly positive in every point of
SZ. By using the fact that u and § are eigenvectors of (LP) and (LPo), we have

an obvious contradiction. So we must have A = Ai and Ai must therefore
be an eigenvalue of (LP). By a well known variational argument (see [8])
we know that its multiplicity must be equal to one while, on the other hand,
since (LP) is invariant with respect to the rescalings, we see that if we
rescale an eigenfunction we obtain another eigenfunction. The combination
of the two facts shows that the eigenfunctions corresponding to Ai must
be "selfrescaled" and therefore they can only be weakly summable. The
computations for the radial case show that this is actually the case when
Q = IRN; in fact one finds that the eigenfunctions with a gradient weakly
in L~ must be equal to a constant multiplied by the selfrescaled function

which only belongs to the weak HI-space. This analysis shows that
the minimization process tends to distribute the function equally on all the

possible scales, as happens in the counterexample in this section.

REFERENCES

[1] A. ALVINO, P. L. LIONS and G. TROMBETTI, On optimization problems with prescribed
rearrangements, Nonlinear Analysis, T.M.A., Vol. 13, 1989, pp. 185-220.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



37
A NOTE ON COMPACTNESS-TYPE PROPERTIES

[2] D. FORTUNATO, E. JANNELLI and S. SOLIMINI, in preparation.
[3] V. GLASER, A. MARTIN, H. GROSSE and W. THIRRING, A family of optimal conditions for the

absence of bound states in a potential, in "Studies in Mathematical Physics ", E. H. Lieb,
B. Simon and A. S. Wightman eds., Princeton University Press, 1976, pp. 169-194.

[4] P. L. LIONS, The Concentration-Compactness Principle in the Calculus of 
Variations. The

locally compact case-Part I, Ann. Inst. H. Poincare, Vol. 1, 1984, pp. 109-145.

[5] P. L. LIONS, The Concentration-Compactness Principle in the Calculus of 
Variations. The

locally compact case-Part II, Ann. Inst. H. Poincare, Vol. 1, 1984, pp. 
223-283.

[6] P. L. LIONS, The Concentration-Compactness Principle in the Calculus of Variations. 
The

limit case-Part I, Rev. Mat. Iberoamericana, Vol. 1, No. 1, 1985, pp. 145-201.

[7] P. L. LIONS, The Concentration-Compactness Principle in the Calculus of 
Variations. The

limit case-Part II, Rev. Mat. Iberoamericana, Vol. 1, No. 2, 1985, pp. 45-121.

[8] A. MANES and A. M. MICHELETTI, Un’ estensione della teoria variazionale 
classica degli

autovalori per operatori ellittici del secondo ordine, Boll. UMI, 1973, pp. 285-301.

[9] R. O’NEIL, Convolution operators and L(p, q) spaces, Duke Math. J., Vol. 30, 1963,

pp. 129-142.

[10] S. POHOZAEV, Eigenfunction of the equation 0394u + 03BBf(u) = 0, Soviet Math. Doklady,
Vol. 6, 1965, pp. 1408-1411.

[11] M. STRUWE, A global compactness result for elliptic boundary value problems involving

limiting nonlinearities, Math. Z., Vol. 187, 1984, pp. 511-517.

Vol. 12, n° 3-1995.


	A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space



