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ABSTRACT. - Consider a plasma described by the Vlasov-Poisson system
in a cube Q with the specular boundary condition. We prove that an
equilibrium p (v), which satisfies the Penrose linear instability condition
and which decays like 0 ( ~ v ~ -3 ) , is nonlinearly unstable in the C~ norm
with a weight function in v.

On considere un plasma decrit par le systeme Vlasov-Poisson
dans un cube avec la condition aux limites speculaire. Nous demontrons
qu’un équilibre  (v ) qui satisfait a la condition d’ instabilite lineaire de
Penrose et qui decroit comme 0 () v ~ -3 ), est instable au sens non lineaire
dans la norme de C~ avec un poids en v.

0. INTRODUCTION

We consider a plasma described by the Vlasov-Poisson system in a cube
Q = [-1r, 1r]3 with the specular boundary condition on the density and
the Neumann condition on the potential. We consider an equilibrium J-L (v)
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which satisfies the Penrose linear instability condition

Over thrity years ago Penrose [P] derived his celebrated criterion for

linearized instability, which takes the form of (1) for the case of the cube.
His criterion is a standard feature in most textbooks on plasmas (e.g. [K]).
However, in all the intervening years no one has found a rigorous proof
of true nonlinear instability.

Here we prove that M (v) is nonlinearly unstable in the Cl norm with a

weight function in v. This is reasonable formulation because it is known
that solutions exist globally in this norm for arbitrary initial data. The

existence was proved in the present situation by [BRl], following the work
of [PfL [H], [S] and [LP].

Furthermore, it has been known for some time that a monotone decreasing

equilibrium M (v) is nonlinearly stable. The stability was proved by [BR2],
following more formal work of [G], [HM] and [MP]. Still left unresolved

is the question of nonlinear stability in the case that M (v) is not monotone
but satisfies the linear stability criterion of Penrose.

The specular condition in a cube is equivalent to periodicity in each

spatial variable. In paragraph 1 we discuss the periodicity and the existence
of solutions. In paragraph 2 we explicitly exhibit an unstable eigenfunction
of the linearized problem. Then we use a general form of Weyl’s Theorem
to deduce the discreteness of the spectrum in the unstable half-plane. In

paragraph 3 we prove the main instability theorem in the space C1 with a

weight in v. In fact a slightly larger space, denoted Y, suffices. The idea

is to show that the eigenvalue with the largest real part dominates. The

main estimate is of the LP norm in x and v with the weight (v) a where

p > 3 and 3 - p/3  a  p - 3/p. The most serious error term involves
the derivative Vv ( f - ~c), which is estimated separately in Lemma 3.2.

1. VLASOV-POISSON SYSTEM IN A CUBE

We consider the Vlasov-Poisson system in a cube Q = [-_~r, 7r]3, where
the particles specularly reflect at the boundary of Q. Let 8Q be the set

of points x E 8Q which are not comers or edges. Let nx be any outward
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normal vector at the boundary point x E 8Q. The Vlasov-Poisson system
takes the form

Here f (t, x, v) is the density of the electrons, § is the potential, and po
is a constant background charge density of ions. We must assume that the

plasma is initially neutral:

of (1.1) and the boundary conditions enable us to reduce (1.1) to an easier

periodic Cauchy problem, which has been solved by J. Batt and G. Rein
in [BR1].

THEOREM 1.1. - Let 0  f o E C~ ( Q x R3 ) satisfy (1.2) and nx . Vx fo = 0
on 9Q. Fix p > 3 and assume

where ~v~ _ ( 1 + ~v I2) 1/2. Then there exists a unique solution ( f , ~) of
(1.1 ) such that and ~ E C2.

Proof - Given a C~ solution ( f , ~) in R+ x Q x R3, we extend it to
the whole space R+ x R3 x R3 by the following simple reflection method.
We let x = (xl, x2, x3), Xj == Yj + (j - 1, 2, 3), for y E Q and

k2, k3) E Z3 . We define
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for all y E Q and all 1~2 , k3 ) E Z3 . Then § and f are periodic functions
of period 47r. Notice that from the boundary conditions in (1.1), f and (fix
are continuous. Thanks to the Neumann and specular boundary conditions,
by a direct computation we get

in R+ x R3 x R3. By assumption, fo E C~ (R3 x R3). By [BRI], there
exists a unique solution g E C~ and ~ E C~ in R+ x R3 x R3 with

g (0, x, v) = f o. Now f (t, x, v) and § (t, x) satisfy the same system (1.1)
for the same initial data f o by (1.4). Therefore, f = g and (~ = ~ from the
uniqueness. Let ( f, ~) be the restriction to Q. Then by (1.3) we recover
the specular and Neumann boundary conditions by restricting x E 9Q’

Q.E.D.

2. LINEARIZED VLASOV-POISSON SYSTEM

Clearly f = {t( v) is a stationary solution for (1.1) if p (v) is a non-negative
function even in each coordinate vi, v2 and V3, and

Moreover, we assume the Penrose and finiteness conditions

where 3  p  oo. Condition (2.1) is the form that the Penrose Criterion
takes in the cube Q. Here ]] . ~~P is the LP norm of a function. Notice that
(2.1) can be written as

Therefore / p d03C52d03C53 cannot be a decreasing function of For

instance, it may be "double-humped" as when a beam of electrons is
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injected into the plasma. We are interested in the long-time behavior of
solutions of (1.1) near ~, (v). Thus we linearize (1.1) around ~ (v) as:

where g is a perturbation of p (v). In the spirit of Penrose, we establish
the following:

LEMMA 2.1. - If p (v) satisfies (2.1 ) and (2.2), there is a growing mode
for the linearized problem (2.4).

Proof - By the Penrose condition (2.3), there exists ~ > 0 such that

where we have used the observation that

For this value of A, we define

By a direct computation we get

Therefore r is an eigenvector of (2.4) with the eigenvalue A > 0 of the

operator - v ~ ~ 0 -1 d v .
Q.E.D.
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Now we are going to establish a weighted LP estimate for (2.4). We shall
quote a invariant of Weyl’s Theorem for a perturbed linear operator. The
following lemma is a special case of Shizuta [Sh].

LEMMA 2.2. - Let Y be a Banach space and A be a linear operator that

generates a strongly continuous semigroup on Y such M

for all t > 0. Let K be a compact operator from Y to Y. Then (A + K)
generates a strongly continuous semigroup e-t (A+K), and 03C3 (-A - K)
consists of a finite number of eigenvalues of finite multiplicity in > b~
for every b > 0. These eigenvalues can be labeled by

Furthermore, for every A > Re ~l, there is a constant CA such that

We define

for fixed parameters 3  p  oo and 3 - 3/p  a  p - 3/p.
LEMMA 2.3. - Let

Proof - We estimate

Notice that (v) -«p~ is integrable since ap’ > 3. Therefore
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The first two inequalities of the lemma come from the Sobolev imbedding
and from the standard elliptic estimates applied to the periodic extension.

Q.E.D.

THEOREM 2.4. - For the linearized problem (2.4), we have

where A > max is an eigenvalue of (2.4)}.

Proof - We again reduce this boundary value problem (2.4) to the

periodic Cauchy problem through the reflection (1.3). Let g and -;; be as

in (1.3). We define the Banach space

Let A (/) = 03C5 . V.. / and K (g) = V., V" where 039403C8 = y d03C5. Then
A generates a strongly continuous semigroup on Z through the formula

By Lemma 2.3

and K is easily seen to be a compact operator from Z to Z. By (2.5) with

Y = Z, 9 satisfies (2.7). Finally we recover our boundary problem (2.4)

by the restriction to Q x R3.
Q.E.D.

3. NONLINEAR INSTABILITY

Let p > 3 and

Let X be the space of Cl functions on Q x R3 for which  oo.
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MAIN THEOREM. - If ~c (v) is an even function in each coordinate that
satisfies (2.1) and (2.2), then u (v) is nonlinearly unstable in 

Explicitly, this means that there exist initial data fo (x, v) and times
tn > 0 such that 0, but (tn) - does not go to 0, as
n - oc. We shall prove the Main Theorem through several lemmas.

LEMMA 3.1. - Let R (x, v) be any eigenvector of the linearized problem
(2.4) with a nonzero eigenvalue for which G oo. Then G oc.

Proof. - By assumption  oo. We may consider R and ~ even
and periodic as in paragraph 1. We have

By Lemma 2.3, is bounded. Let S2 (L) = Q x (-L, L)3. Multiplying
(3.2) by (R) and integrating over S2 (L), we get

Letting N --~ oo and then L - oo, we get (v)P R E L °° (Q x R~).
Next, taking the spatial derivatives of (3.2), we get

This process can be justified by a finite difference argument. Multiplying
(3.3) by |p-1sign (Rxj) and integrating over S2 (L), we find

. where. no.boundary contribution appears of the periodicity, (i.e. the boundary
condition). By Lemma 2.3, ~2~ E LP (Q). By (2.2), (v)Q E LP (R3).
Therefore we deduce from (3.4) E LP (Q x R3). That is

~xR E Z. From the equation 039403C6xj =  Rxj dv and the periodicity, we

obtain as in Lemma 2.3
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Now multiplying (3.3) by (Rxj) and integrating over
S2 (L), we get

Letting ~V -~ oo and then L ~ oo, we get (v)P E L°° (Q x R3).
Similarly, taking the velocity derivatives of (3.2) yields:

Multiplying (3.6) by and integrating, we get

Again, there is no boundary contribution due to the periodicity. Letting
N - oo and then L ~ oo, we deduce 03C5>p R03C5j E L°° ( Q x R3).

Q.E.D.

Now let

where we fix 3  p  oo, 3 - 3/p  a  ~ - 3/p and s = p2/(p - 1) > p.
Since a  p - 3/p, we have

LEMMA 3.2. - If f is a C1 solution of the nonlinear problem (l.l) with
f (t) E X, then
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Proof - Let h = 8xj f. Differentiate the Vlasov equation with respect
to xj to get

Multiply by p (h) and integrate to get:

We estimate the two integrals as

by Lemma 2.3 since s > p, and as

We thus deduce (3.7).
Next, differentiate the Vlasov equation with respect to vj. Let g =

8vj ( f - ~c ~ . Multiply the differentiated equation by ( g )
and integrate to get,

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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We estimate these three integrals as

The last integral is finite by (2.2). Dividing by we deduce (3.8).
Q.E.D.

LEMMA 33. - Assume f (t, x, v) is a C1 solution of the nonlinear problem
(l.1 ) with f (t) E L°° ( ~0, T ); X ). Assume there exists /~ > 0 such that

in ~0, T). Then

where 0  t  T and B depends on sup on p and on ~3.
t

Proof. - By Lemma 3.2, we have

Q.E.D.
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Proof of the main theorem. - We follow the idea of Theorem 6.1 of
[GSS]. Suppose the theorem is false, so that p is nonlinearly stable. Thus
for any e > 0, there exists 6 > 0 such that f E C ([0, oo); X) and

provided (0) -  6. We choose

where R is an eigenvector in Lemma 3.1 with IIRllx = 1, such that its
eigenvalue 03BB = Ai has the largest real part. By the nonlinear Vlasov

equation (1.1),

where A + K is the linearized operator in Theorem 2.4. Let Re A  A 

Re A (1 + 1/p). Let

Then 0  T  oo. Thus for 0  t  T we have

By Lemma 2.3,

Thus we may apply Lemma 3.3 with /3 = Re A to obtain
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Thus for 0 ~ t  T we have

We choose t = ts so that

We claim that 0  ts  T. In fact, if T  oo, then from (3.14) and the
definition of T,

This contradicts (3.10) since c is arbitrarily small.
Q.E.D.
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