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ABSTRACT. — We give a smallness condition ¢n|, and| f||, for the existence of a solution
for the model problem=A ,u = f(x)|u|” +mu with u =0 ond<2, where2 is a bounded open
set of RV, f(x) € L4(RQ), ¢ > 1,m € R andyu is a Radon measure with bounded variatiorsbn
such thafu|(R2) = 1.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

REsUME. — Nous donnons une condition suffisante uf, et || f|l, pour I'existence de
solution au probléme modéle=A ,u = f(x)|u|” + mu avecy = 0 surd2, ou 2 est un ouvert
borné deR”, f(x) € L1(R), g > 1,m € R et est une mesure de Radon a variation bornée sur
Q telle queju ()| = 1.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction and main results

The main goal of this paper is to prove, if the data are small enough, the existence o
a solution for the model problem

{—Apu = f)|ul” +mu inQ,

u=0 on g2, (1.1)

where N > 1, Q is a bounded open subset Bf', —A, is the so calledp-Laplace
operator,f(x) € L1(R2), g > 1, u € Mp(Q) (that is to sayu is a Radon measure with
bounded variation iif2) such thatu|(2) =1 andm € R.

In fact we study the more general problem

(1.2)

—div(a(x, Du)) =h(x,u) + mu in L,
u=~0 on 0%,

whereu — —div(a(x, Du)) is a monotone operator defined W&”’(Q) with values in

wLr(Q), p> 1, % + pi = 1. We suppose more precisely that,

a:QxRY - RY s a Caratheodory function, 1.3)
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that is to sayu(., £) is measurable of for every£ in R", anda(x, .) is continuous on
RY for almost every in Q, that,

a(x, )& > al§l”, (1.4)

for almost every in  and for eveng¢ in RV, wherea > 0 is a constant, that,

lax, £)] <d(b(x) + |E)" (1.5)

for almost everyx in  and every¢ in RV, whered > 0 is a constant and is a
nonnegative function id.” (£2), and that,

(a(x,&) —a(x,&))(E -¢&) >0, (1.6)
for almostx in Q, and for eveng, £’ in RV, £ £ £’. We also assume that,
h:Q2xR— R isa Caratheodory function, @7

that is to sayi(., t) is measurable o for everyt in R, andi(x, .) is continuous orR
for almost every in 2, and that,

|h(x, )| < fo)]”,
for some 1< y < o0 and somef € L9(R2), (1.8)
where 1< g < 400,

for almost every in  for everyr in R.
Observe that there is no sign assumptioron, ), only the growth orr is considered.
We now recall some well known results about measures.
For every measur@g € Mp(2) there exists a unique pair of measuKes, i) such
that u = po + s (see [5] and [10]) withug in My(2) (that is to say the set of all
measures inMz(2) which are absolutely continuous with respect to pheapacity)
and u, in Mg¢(2) (that is to say the set of all measuresMy (©2) which are singular
with the p-capacity). In other wordsgy, is concentrated on a subs&tof 2 with zero
p-capacity, angig does not charge the set of zesecapacity. Moreover it is equivalent
for a measure to be ity () and to belong td.1(Q) + W17 (), that is to say every
o can be written agp = f — divg with £ € LY(2) andg € (L”' (2))V. In short, every
u € Mg(2) can be decomposed as follows,

w=f—divg+ul —pu;

where f € LX), g € (L” ()", i, uy (the positive part and negative part of)
are two nonnegative measuresif (2) which are concentrated on two disjoint subsets
E* and E~ of zero p-capacity. Recall also (see [3,7,8]) thauifs a measurable func-
tion defined ort2, which is finite almost everywhere, and satisfigéu) Wol”’(Q) for
everyk > 0 (whereT, () is the truncate at levél), then there exists a measurable func-
tion v: Q2 — RY such thatD T, («) = vx(. <k almost everywhere ig2, for everyk > 0,
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which is unique up to almost everywhere equivalence. We define the grdaieof u
as this functior.

Let us recall the definition of a renormalized solution (see [7,8]).

DEFINITION 1.1. -We supposé€l.3)—(1.6) p > 1, u € Mp(2). We say thai: is a
renormalized solution of

(1.9)

{ —div(a(x, Du))=pun in <,
u=0 onog,

if,
e the functionu is measurable and finite everywhere dhdu) belongs toWé’p(Q)
for everyk > 0,
o the gradientDu in the previous sense satisfies,

N
DulPteL1(Q), Vg, 1<qg<——,
| Dul (), Vq 9<N5_1

e if w belongs towol”’(Q) N L% () and if there exists > 0 and w*™®, w=> €
WL (Q) N L*(R) with r > N such that,

w=w" a.e.onthe sefu > k},

w=w"" a.e.onthe sefu < —k},
then,

/a(x,Du)Dwdx:/wdydo—i—/w“’odu;F —/w_oodus_. (1.10)
Q

Q Q Q

In [8] the authors give equivalent definitions of renormalized solutions. When
My(£2), this definition is equivalent to the definition of an entropy solution (see [3] and
[5]).

Let us observe that whep > N, the renormalized solution is just a usual weak
solution and belongs to som@&*(Q2); therefore the notion of renormalized solution
is not really needed. This is also the case for example in the linear case whete =
A(x)¢ when the matrixA has smooth coefficients. However, when the coefficients are
not smooth, a new notion is necessary even in the linear case in order to obtain bot
existence and uniqueness results (see [16]). Observe in particular that the test functic
w which is used in (1.10) actually depends on the solutiditself, and that in some
senseu = +oo on the set where.F is concentrated, while = —oco on the set where
u; is concentrated since the action @f on the set whergu| < k does not appear
in (1.10). For more comments on the notion of renormalized solutions, see [8]. These
eguations have been widely studied. Especially in [1,2,11], the authors give a sufficien
and necessary condition for the existence of a solution of equations closed to (1.2) in th
casep = 2, but their method doesn’t extend po~ 2. See also [15] for the case of an
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eigenvalue problem. Let us also quote [4] in which the authors give counter examples t
the existence for the equation of the type (1.2). Quasilinear equations have been studie
with more regular data in [9,12,14] for instance. In these papers existence results ar
obtained assuming that the data are small enough relatively to a convenient norm.

The main result of this paper is the following,

THEOREM 1.1. — Assume(1.3)—(1.8) let m € R and n € Mp(2), such that
(@) =1, 1<y <+00,1< g < +oo withg #1if N=pandyq < % if
N > p. Then there exists a renormalized solutior{R)

1) if1<y <p—1(thusp > 2)

with no additionnal condition onf ||, , m;

(1) if y > p — 1then the condition is

y—p+1 C
_r_

I fllglm| 7= < (1.11)

S
D

1
[o AR

for some constant = C(N, p, y).

Remarks. —

o First observe that whep < N, there exists somg with 1 < g < 400 and some
y > 1suchthayq’ < &2 if and only if p > 2.
This is a restriction on the values gfandg, which is natural. Indeed, in order to
define a renormalized solution of (1.2), we neégd, «) to belong toL(R2). But
even ifh(x, u) =0, the renormalized solutiom of (1.2) belongs tad.” (£2) for any

r, 1<r < 2=9N andiis not in general it V7 (). Consequently if/ ¢’ > L0
L) ~ N—p . q = _

N—p
we shall not havé (x, u) € LY(S).
e If y = p — 1 condition (1.11) reads

11l < ClliF
with no condition onn. Actually, if u solves
—Apu = f) "+ mp,
then for anyc > 0, v = cu solves
—Apju= FOP Y+ P mp.

That is to say, if there is a solution fer and . given, then there is a solution for
every|mj.

e If w >0 andh > 0, then a solution of (1.2) is nonnegative. Indeed, we can use
w = —T;(u~) as test function in the equation satisfieddognd then (observe that
wn; =0and w =0)

—/a(x,Du)DTk(u_)dx:/h(x,u)(—Tk(u_)) dx+/—Tk(M_)dlLo<O,
Q Q

Q
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from (1.4), we deduce that,
o[ DT (), <0

for anyk > 0, and then:~ = 0. It means that Theorem 1.1 gives conditions for the
existence of a positive renormalized solution of

{—Apu:h(x,u)+u in ,
u=~0 on og2.

2. Estimates and preliminary lemmas

Recall the following estimates,

LEMMA 2.1. —We supposé€l.3)—(1.6) u € Mp(R2), such thatju|(Q2) =1, me R
and p > 1. Letu be a renormalized solution of

{ —div(a(x, Du)) =mu in ,
u=0 on o2

then the following estimate holds
lull, < ClQFFFCE R 71, (2.1)

for some positive constar@ = C(N, p,r) and for anyr € [1,+o0] if p > N, r €
[1,+00) if p=N,andr e [1, {=)if p < N.

This estimate is proven in [13] for instance, where explicit value(fas explicitely
given in a more general context. It can also be proven by symmetrization technique:
(see [17]). We have to specify that in [13], the right-hand side &'£2), but the proof
extends tqu € Mp(2) without difficulty.

COROLLARY 2.1. —Assumé1.3)—(1.8) 1 <y <400,1< g < +o0. Ifve L7 (Q),
m e R andu € My(Q2) such thatju|(2) =1, if ¢ # 1whenN = p and ify ¢’ < &2V

N—p
(thusp > N+1) whenN > p, and ifu is a renormalized solution of
—div(a(x, Du)) =h(x,v) +mu in £, 2.2)
u=0 on o, ’
then,
v
lull,y <A+ Blol,
where

1

A4 1142 1 A 1 _q4l —==
A=CIQ I W7, B=clQw T TR g0

for some positive constait = C(N, p, y).
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Proof. —We have

(|h(X, v) + mu|(§2)) I’El < (||h(x, V)1 + |m|) [)El

then from (1.8), and Holder inequality,

1

< (M3 1 fllg + lm]) P

(Ih(x, ) +mMI(Q))”

and then,

<1,

L
P—

(17Cx, v) +mul ()7 < I f @)l Ilvll”/ + m] 7T,

L
P—

=
(Ih(x,v) +mu|(2)) 7 2" 1l ||v||” T 4or 1|fﬂ|" !

and we get the corollary from (2.1) with=yq’.
We now study the functiony : R* — R defined by,

9(X)=A+BX7T - X,

whereA, B > 0.

o lf y>p—1, then, 90 = A >0 and limy_, ;o ¢(X) = +00, moreover, by

calculation of the derivative, we get thathas a minimum at the point,

p—1

1\ v—pr+L
xo=(77)"
By

p—1
1 (p-yr
p(Xo)=A+ — T (p—1-y),

‘J/ y—p+1 B y—p+1

with

theng has at least one root if and onlygf X,) < O that is to say if,

ABTS < (p—D7F1(y +1— p), (2.3)

y y=p+l
andg has two roots if,

-1 -1
AB7T < (p— D7y +1- p).

y y—p+1
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o If y=p—1,then,
e(X)=(B-1X+A,
theng has a root if
B<1l VAZ>=O0.
o If y < p—1,then,
¢(X)=A+BX71—X
and then,
Jm ¢(X)=—co and ¢(0) >0,

theny has a root for any, B > 0.
We henceforth denote (when it exists),

Y: the smallest root ap.

3. Proof of Theorem 1.1

First observe that,
e if y > p—1, condition (2.3) is equivalent to

%+L(_1+£) y—p+l
Qe "=t TV m| T f(o)llg < C

for some constant = C(N, p, y).
e if y = p —1, condition (2.4) is equivalent to

_i.r
QN f)lly <C

(2.4)

(2.5)

for some constan€ = C(N, p), and we recognize the condition which appear in

the second case of Theorem 1.1.
We set

hy(s) =T, (h(s)),
whereT, is the truncate at level.

LEMMA 3.1.— We supposg1.3)—(1.8) let u € Myz(Q2) N W17 (), such that
ln|(2) =1andm € R, we suppose that defined by(2.5) exists, that is to say if the
previous conditions are fulfilled. Then, for apy, € W=7 () N Mz(2) such that,

|, |(2) < m there exists a solution € W&”’(Q) of the equation:

/a(x, Du)Dw dr =/hn<x,u)wdx+ (ttm, )
Q Q
Yw e Wy? (),

(3.1)
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such that,
lullyg <Y,
wherey, ¢’ satisfy the same conditions as in Corollgh.

Proof. —We shall use Schauder Fixed Point Theorem.
Letv e W&”’(Q) then A, (x, v) + u, € W7 (Q) and there exists a unique €
W&”’(Q), such that,

/a(x, Du)Dwdx = /hn(x, vV)wdx + (u,, w)
Q

Q

(3.2)
Yw € Wy? ().

Moreover sinceh, (v)| < n, usingu as test function we easily get
| Dull, < Cy, (3.3)

whereC, is a constant which depends atbut not onv.
Letv e Wol”’(SZ), we henceforth sed, (v) = u the solution of (3.2).
LetE={ve W&”’(Q) NLY7(Q), D], < Cp, V], < Y}, then,
e E is aclosed convex subset wrol*’ (2).
o Observe that from definition df, if v € E then

Y v

lull, <A+ Blvll;”" <A+ BYri=Y.

Moreover we have already seen that
[ Dull, < Cy

then,
A, E— E.

e Suppose thatv,) is a sequence it such thatv, — v in W&”’(Q) strong and
let u, = A(v,). Since(v,) is bounded inW(Jl”’(Q) there exists a subsequence still
denoted(u,) such that,

u, — u L?(Q) strong, a.e. i2 and W&”’(Q) weak

Using (1, — u) as test function in (3.2) we get,

/a(x, Dus)D(u, — u) dx = /hn(vg)ws )y dx + (s e — ).
Q Q

We can easily see that the right-hand side tends to zerotasds to zero, then,
since,
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/(a(x, Du,) —a(x, Du))D(u, — u) dx

Q
= /a(x, Du,)D(u, —u)dx — /a(x, Du)D(u, —u) dx
Q Q
we have,

|im0/(a(x, Du,) —a(x, Du))D(u, —u)dx =0
Q

from a lemma of [6] it implies that,
lim ||D (e — w)ll, =0.

This implies that we can pass to the limit in the equation satisfied.bgnd we
getu = A(v). Consequently the whole sequen@e) converges ta: and finally it
proves thatA is continuous.

o With same arguments we can prove tlatE) is precompact. Indeed {f:,) is a
bounded sequence i(E) thenu, = A(v,) with (v.) or a subsequence is such
that,

v, —> va.e. inQandL”(R2) strong

and we deduce like previously that,
ue — u in Wo'? (Q) strong.

End of the proof of Theorem 1.1.
Let u € Mp(2) such thafju|(2) =1 and me R, thenmu can be decomposed as,

mu = f —divg + 1T — 1",
Let (i) a sequence of measuresiify (2) such that,

ﬂn:fn_dng"i_)‘;?_)‘r?

with,
f, € L”(Q) and( f,) converges tof weakly in L*(), (3.4)
12 is a sequence of nonnegative functiond.in(2) that 3.5)
converges tq. in the narrow topology of measures,
1S is a sequence of nonnegative functiond.in(2) that 3.6)

converges tq.; in the narrow topology of measures,
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|1 | (2) < m, (3.7)
then there exists a solutian, of the corresponding Eg. (3.1) which satisfies

”un”yq’ < Y.

Observe thatin (3.1) the right-hand side is bounde¥ j(<2), then itis proven in [8] that
we can extract a subsequence which converges in measure andate.ammeasurable
functionu which is finite almost everywhere. Moreover since the right-hand side in (3.1)
is bounded iV ($2), from Lemma 2.1 we have, if # 1, with a small§

llu, ||yq’+8 <C,

whereC is a constant which does not dependmiVe deduce tha([ugq’) converges to
u?) in L1(Q) strong (see [3]). Moreover, we have,

1/q'
£ @lial” = FONul” || 2y < 1 1lg (/(W ~ W)q') (3.8)

Q

but, (Ju,|” — |u|”)? tends to 0 a.e. if2 and,

(el — 1ael?) " < 27 Huay 77 4 20 Y7
The right-hand side converges Iit(2) strong. Then by Vitali Lemma and (3.8), we
deduce that,

f(x)|u,|” tends tof (x)|u|” in L1(RQ) strong (3.9)

We assert again thdt, (x, u,) converges a.e. i to i(x,u) and by (1.8) and (3.9),
we deduce that, (x, u,) converges tai(x, ) in L*(Q) strong. The same conclusion
holds whery = 1. Sof,, + h,(x, u,) converges ir.1(Q) weak, and with the additionnal
assumptions (3.5), (3.6) oxff and1® we can apply Theorem 3.2 of [8] and conclude
thatu is a renormalized solution of (3.1).
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