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ABSTRACT. — The problem under investigation is the heat equation in the upper half-plane,
to which the diffusion in the longitudinal direction has been suppressed, and augmented witl
a nonlinear oblique derivative condition. This paper proves global existence and qualitative
properties to the Cauchy problem for this model, furthering the study [18] of the self-similar
solutions. The qualitative behaviour of the solutions exhibits a strong analogy with the porous
medium equation: propagation with compact support and finite speed, free boundary relation an

time-asymptotic convergence to self-similar solutions.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Le probleme étudié concerne I'équation de la chaleur dans le demi-plan supérieur
sans diffusion longitudinale, avec une condition a la limite non linéaire. On démontre I'existence
globale d’'une solution au probléme de Cauchy, ainsi que diverses propriétés qualitatives. E
particulier, les solutions présentent une forte analogie avec celles de I'équation des milieu:
poreux, comme : la propagation a vitesse finie, la relation de frontiére libre et la convergenc
en temps grand vers des solutions auto-similaires.

© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
1. Introduction
2
LetR? be the upper half-plane
R2 = {(z,x) eRx R, }

and set
'={r>0, zeR, x =0} (1.1)
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We are interested in the problem

U; — Uy = 0, (t,z,x) eR X]Rz,
’ o (1.2)
Mx = MMZ? (ta Z?-x) E F?
with the condition attoo
u(t,—oo,x) =1, u(t,+o00,x)=0. 1.3)

This equation occurs in the modelling of a plasma opening switch. Consider a plasm:
injected in the half—plané@%r through an anode placed on the akis= 0}. It can be
described as a fluid in the setting of electron magnetohydrodynamics: bet the
magnetic field, propagating in the plasma. If certain conditions are fulfilled the field
is a solution of the system (1.2) after a rescaling. The key here is the boundary conditio
on the anode. This electrode is a perfect conductor so the electric field is perpendicule
to it, which gives, with Ohm’s law, the nonlinear conditiop = uu, on {x = 0}. For the
modelling, see [12,16].

The goal of this paper is to study existence and qualitative properties, furthering [17]
— the problem with full diffusion — and [18] — self-similar solutions for (1.2), (1.3). It
was already noticed in [12,18] that the self-similar problem had some resemblance wit}
the porous medium equation

M3
u, = (—) (t>0, z>0) (1.4)
3 iz
posed orf". In particular, the support of the self-similar solution, restricted to the portion
of the boundary{z > 0, x = 0} is compact.
We would like to extend this analogy to the full Cauchy problem. To back this
impression, let us do the following heuristics: settih@, z) = u(¢, z, 0) we write

¢l = I/lxx(t9 <, O)
"= (uuz)x(t’ <, O)

3

The second line of this series of equalities is utterly wrong, but we will prove there is
some truth in these heuristics. The porous medium equation, posed on the half line, wit
fixed condition at the boundary, has among others — the following features:

o Finite speed propagation and compactly supported solutions,

e existence and global stability of self-similar solutions [3,4],

e linear behaviour of the functiop = u? near the free boundary and free boundary

relation [2].

Although Problem (1.2) is essentially a 1D problem — this statement will be reinforced
in the next section, when we derive an integral equation:ferthe methods developed
in [2] — to get the existence and the smoothness of the free boundary — do not seem 1

3
= (Ut (1,2,0) + ¢p7 = P (P¢.). + ¢ = (¢_> '
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apply here. They indeed heavily rely on the well-known Aronson—Bénilan estimate [1]:

Ap > ¢
p =z t'

The spirit of this study will therefore be more in the spirit of the multi-D papers [8,9].
Indeed, the multi-D porous medium equation

M3
= A(E)

besides having compactly supported solutions and finite speed of propagation, enjoy
free boundary smoothness properties. The main tools are rescalings through a doub
homogeneity property of the pressure, Harnack inequalities and an iteration argumen
They also rely on the Aronson—Bénilan estimate, but we will see that this difficulty may
be bypassed in the present context.

All'in all, the main theorem of this paper is

THEOREM 1.1. — Assume the initial datumag to satisfy

e We havarg=1on{(z,x) e R_ x R,},

o there existg > 0 such thatug(z, x) > 0iff z < ¢,

e ug IS smooth on its positivity set — except perhaps, at the{line 0}, where it may
be discontinuous,

o 0.ug, dxup < 0; d,,up>00n]0, go[ x Ry,

o there exists a smooth functigf(z, x), locally bounded away frofin [0, ¢o] x R, ,
such that

uo(z, x) = f(z,x)v/¢o — 2. (1.5)
Then Problenm(1.2), (1.3)has a unique global classical solution. Moreover there is a
C1@ function¢ (¢) such that
e forall (z,z,x) e Ry x R, u(t,z,x) > 0if and only ifz < ¢ (1),
o the functionu is smooth on its positivity set — except, perhaps, on the{line 0}.
Moreover the ‘pressure’ function
p=u? (1.6)
is smooth up to the boundary of its positivity set.

The proof of this result will take most of the paper. A by-product of this theorem is a
strong comparison principle that will allow us to prove the next

THEOREM 1.2. — Assume the initial datum to satisfy the assumptions of Thebrem
There existgg € R such that

tli)rpoou(t,z\/;,x«/;) = ¢(z + 20, X). 1.7)

Finally, we will complete the analogy with the porous medium equation by deriving a
free boundary relation.
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THEOREM 1.3 (Free boundary relation). Assume the initial datum to satisfy the
assumptions of Theoreinl. The following relation is valid for all > O:

1
m@amngﬁ@amm. (1.8)

As a consequence the speed of the interface is given by

. 1
zmz—am@amm. (1.9)

The plan of this paper is as follows. Because it seem hard to construct solutions to (1.2
(1.3) in a direct fashion, we approximate the problem by just replacing the condition
u = 0 at+oo by u = ¢. If we believe there is some element of truth in the porous medium
heuristics, then we should be facing a strictly parabolic nonlinear diffusion problem — or
at least, something quite equivalent — and we will indeed see that this is what happen:
A cornerstone of the section will be a comparison principle for the classical solutions,
that will remain valid for pointwise limits of classical solutions. The outcome of the
section will be a global viscosity solution to (1.2), (1.3).

We will pause in Section 3 to examine some special solutions, namely: travelling
waves and self-similar solutions. The latter were studied at length in [18], but we will
take this occasion to prove that they are viscosity solutions — a rather necessary proper
if we wish to compare them to other viscosity solutions.

The study of the free boundary really starts in Section 4. We will basically prove
in this section the results corresponding to [8]: the free boundary is Lipschitz and
nondegenerate. The spirit of the proofs will more or less be the same as in [8], bu
we will have to devote an extra effort to prove a class of Harnack inequalities suited to
our problem.

Section 5 will adapt the iteration technique of [9] to the present context and yield
Theorem 1.1. Finally, Theorems 1.2 and 1.3 will be proved in Section 6.

2. Smooth approximations

As shown by the heuristics of the introduction, the nonlinear oblique derivative
boundary condition acts as a nonlinear effective diffusion at the boundary. Instead o
askingu to go to 0 asz — 400, we therefore investigate the solutions ;, of the
problem

u, —uy, =0, (t,z,x)eRerRi,
(2.1)
uy =uu, (>0, zeR, x=0)

with the conditions attco

u(t,—oo,x)=I1_, u(t,+o0,x)=1,; O<l <l (2.2)

For commodity, the subscript ;, will be deleted, except in the last paragraph of this
section.
The ‘pressure’p = u? satisfies the equation
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p2
—~X (t,z,x) eRy x R,
4p (2.3)

px = 4/pp. (>0, zeR, x=0).

Pt — Pxx =

The organisation of the section is the following: first, we derive the homogeneity and
comparison principles for the positive solutions of (2.1); then we prove a global existence
result to the Cauchy problem for (2.1), (2.2). We end the section by defining the solutions
to Problem (1.2).

Notations. In the whole paper, we will define the following boxes:

Bh_(lo,Zo)={—h <l—lo<0, —h <Z—Zo</’l},
B;(lo,20)={0<l—lo</’l, —h <z7—2z0<h}, (24)
By (10, z0) = By, (to0, z0) U By, (to. 20).

2.1. Homogeneity, comparison principle

We begin with homogeneity considerations, and notice that Eq. (2.1) has the sam
two-parameter family of homogeneities as the porous medium equation. Namely:

PROPOSITION 2.1. — Letu be a solution of2.1). Then, for all nonzeré andc, the
fljnction%u(#, %, 3) is also a solution t¢2.1). Similarly, if p is a solution 0f2.3), then
220 (2, £, 7) is also a solution t¢2.3).

The proof is obvious.

The basis of the whole theory is that two smooth solutions of (2.1), (2.2) which
compare at the time= 0 will also compare at all later time. We note here that, because

we expect an interface to the solution of the initial problem (1.2), we cannot talk yet
about smooth solutions, even for the pressuréhat we only expect to be Lipschitz.

PROPOSITION 2.2. — Let 30 < upo be two positive smooth Cauchy data {@r1),
such thatd,ug; < 0. Assume they generate two global classical solutiongand us.
Then we havé,u; <0, andu; < us.

Proof. —Assume first,u; < 0 and sety = u; — u, — §; the boundary condition fow
is
vy = (w1 4 u2)v), 4 8(us + uz)..

We may, for instance, multiply the equation foby v* and integrate ofiR? . Because
we have(u; + u»), < 0 we obtain

1
5% /(v*)zdzdx + /((v*)x)zdzdx
R2 RZ

+00
1
+ 2 / (u1 +uz),(t, 2,00 (whH2(t,z,00dz < 0. (2.5)
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Becauseu; and u, are smooth, the boundary term is controlled by the two volume
integrals of(v™)% and((v*),)?, and we conclude with Gronwall’s lemma. Then we send
510 0.

To prove thatd,u; < 0, we set this time = d.u; and we note that™ =0 atr = 0.
The boundary condition is this time

2,
Uy =U;jV; + 07,

multiplying by v*, integrating by parts and using the smoothneasyi¢ldsv™ =0. O

We point out that the assumptidrio < 0 is most certainly unnecessary. It simplifies,
however, the proof of this proposition, which is important enough to deserve a self-
contained proof. On the other hand, Proposition 2.2 is not quite sufficient to handle all
the comparisons that we are going to make in the sequel of the paper. Therefore w
generalize it to the

PrRoOPOSITION 2.3. — Letu; and u, be respectively a weak sub-solution and a weak
super-solution fo2.1), with initial dataug;, such that
e d,u; < 0in the distributional sense,
o there exist two constant®;);c(1,2; such thaty; is smooth or{r > 0,z < a;, x > 0}
and{r >0,z >a;,x >0},
® Up1 < Up2.
Then we hava, < u;.

Proof. —One should first note that, under the assumptions of the proposition, the
function z — u»(z, z, 0) is continuous for alk > 0. If it were not so, the bounded term
u, would have to be less than — in the distribution sense:~ which carries a Dirac
measure; this is a contradiction. Then we may argue just as in Propositionr2.2.

The reason why we need this proposition is that we shall have to handle self-similal
solutions, which behave exactly in the fashion described by Proposition 2.3. Anothel
extension of Proposition 2.2 concerns the problem in the quarter plane

Uy _uxx - O, (t,Z,x)GR.,_ XR+ XRJ’_, (26)
u, = uu,, ((t,z2)eR, xR, x=0,
with the Dirichlet condition
u,0,0) =a@), 2.7

wherex(¢) is a givenC* function.

PROPOSITION 2.4. — Letu; andu, be respectively a weak sub-solution and a weak
super-solution foK2.6), with initial dataug;, such that

e J,u; < 0in the distributional sense,

e there exist two nonnegative constarits);c(1.2y such thaty; is smooth onfr >

0,0<z<a, x>0tand{r >0, z>a;, x >0},

o u1(¢,0,0) <a(r) <ux(t,0,0),

® uUp1 < Up

Then we havea < u,.
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This will also be needed in the course of the paper.
A first consequence of Proposition 2.2 is

PROPOSITION 2.5. — The Cauchy problem fof2.1), (2.2)has at most one smooth
solution, provided that the initial datum isdecreasing.

Another consequence is

PROPOSITION 2.6. — Assume that the Cauchy daturg satisfies the assumptions
of Proposition2.2, and moreover satisfigsug < 0, afxuo > 0. Assume it generates a
classical solution:; then we have,u <0, 3%2.u > 0.

P VXX

The next consequence of the proposition is a hyperbolic inequation verified by the
classical solutions of (2.1).

PROPOSITION 2.7. — Assumeug to satisfyd,ug < 0, d,u0 < 0, and to generate a
classical solution: to (2.1), (2.2). Then

V(t,z,x) e Ry x Ri, 2tu, + xu, +zu, <0. (2.8)

Proof. —For all¢ > 0 we have

Z X
> uo(z, x). 2.9
uo(l 1 8) uo(z, x) (2.9)

In Proposition 2.5 we take= b = 1 + ¢; Proposition 2.5 implies that the only solution
of (2.1) with datumuo(%, 735) is ”(m’ T2 172)- From Proposition 2.2 and (2.8)
we have

( t z X ) > u(t )
u ) ) Zu(t,z,x).
A+8)2 1+e" 1+¢ ¢

Then we expand the above inequality with respeet, tivide bye and send to 0. O

COROLLARY 2.1. — Assume the assumptions of Propositib@to be satisfied. Then
u, controlsu, on{t >0, z >0, x > 0}.

To see this, we first set= 0, which implies the result at the boundary. The corollary is
true in the whole domain because bathandu, satisfy the 1D heat equation.

Allin all, we see that a lower estimate far will imply a bound foru in Lipschitz
norm. Moreover, this will imply that the level setswofivill have finite, controlled speeds.

2.2. The Cauchy problem for (2.1), (2.2)
The main result of this section is the following.
THEOREM 2.1. — Choosex € 10, %[. Letug be aC?* datum satisfying2.2), and
deutg, 1o <0, 3% up=>0. (2.10)

Then(2.1), (2.2)has a unique global classical solution satisfying inequalitie$2.10)
Moreoveru is C* if ugis C*.
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Of course, the important matter is what happens at the bourdasy0}, sinceu satisfies
the 1D heat equation inside the domain. [g$ denote the Abel time-integrator of order
1/2. For any functionf (¢) locally bounded orR? it is defined as — see [11]:

1 fe
Il/zf_ﬁo md‘[

Let 31> denote the time half-derivative

(2.11)

daf— L9 [ ¢ 1 0
1z fdt «/t—s ﬁo Jt—s

the last equality being valid only f(O) = 0. We have [11]

ds (2.12)

L2y f (1) = /f(S) ds,
0

201 f (1) = f(),  dupplipf (1) = f(0). (2.13)
Let us setp(r, z) = u(t, z, 0), the functiong satisfies the integral equation

b1, 2) = (¢ %up) (z,0) — Inja(pp.). (2.14)

For integral operators of Abel type and their properties, see, for instance, [11,19].
Global existence results related to Theorem 2.1 are proved in recent works of Clémen
Gripenberg and Londen [10,13]. They consider equations of &ypel, (f (1),) + uo,
where I, is the Abel integrator of ordew € 10, 1[; the function f is smooth and
satisfiesf’ > § > 0. They use sectorial operator and analytic semigroup techniques,
which do not seem to localize easily. Because we do need local smoothness results
the rest of the paper, we think that it is useful to present a complete independent existenc
theory.

The proof of Theorem 2.1 comprises two steps: first, existence of a maximal solution;
second, uniform estimates proving the existence of the solution for all times. The first
step is relatively standard. The second step goes as follows: formulation (2.14) may b
iterated to yield

P(t,2)= (¢ “Mo)(z 0)—11/2(¢(¢3z((6[3‘3‘*%)(2,0)—11/2(¢¢z))z))- (2.15)

Given Eq. (2.13), this formulation resembles much to a nonlinear parabolic equation o
the form

¢, = (¢°¢.), + lower order terms

which brings us back to the porous medium equation — but, this time, with a solution that
is bounded away from 0. The standard way to prove regularity for such an eqution is
(i) to prove a gradient estimate, so that the terfi.. appears as a term of the form
a(t, 2)¢,, with a Holder;
(i) apply Schauder estimates combined to a suitable frozen coefficients technique
[15].
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LEMMA 2.1.— There is atmax > 0 such that Problem(2.1), (2.2) has a unique
classical solution of0, fmaxl.

For this, we linearize Eq. (2.14) around the initial vatieand write an approximate
diffusion equation for. What makes Lemma 2.1 hold is the

LEMMA 2.2.—Considerf(z,z) € c* 1+%(R+ x R) such thatf (0, z) = Ofor all z
and two functionsi(z), b(z) € C>*(R) such thatz > ag > 0. There is a unique function
¢ (t, z) solution of

¢ = Ii2(a(x)9. + b(2)9) + f(1,2). (2.16)
Moreover there is a constaui(ao, ||al2.,) such that
||¢||2+Ol l+— C”f”z_;,_a 1+§ (217)

For the proof of this lemma, the following preliminary is needed.

LEMMA 2.3.— Considerf(z,z) € C2+“’1+%(R+ x R) such thatf (0, z) = 0. Then
we have

1932, + 192 g < ClF g 1 (2.18)

Proof. —The nontrivial part concerns of course the Holder norna.of f,. We break
the differencedy, f, (¢, z) — d1/2.f2(¢', Z’) into the sum of three integrals:

Il_/fzt(s Z) fzt(saz/)d

JE—s 5
Izz/fzt(s (@t —5)"V2— (' —5)7?) ds, (2.19)
fas, Z)
13_/ Vi —s

Only I; will be evaluated, the two others being treated similarly. We integrate by parts
and obtain

h:/ﬁmw—ﬂam 6.+ £0.2)

T (2.20)

Then the integral is broken into two regions:

t—(z—2')? t
I = / + / =111+ I
0 1—(z=2')?
To treatl;,, we use the fact that, for alb, ¢, z) e R, x R, x R, we have

4o

|fZ(ta Z) _fZ(s9 Z)| < ||f||2+a71+%|t _S|T
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and a similar property forf.(¢, z') — f.(s, z’)|. All in all, we control I;; by |z — Z'|*. As
for 1,1, we use

Als.2.2) = f5.2) =[5, D) = fuls. D@ = D] <1 g aple = 1M

and we have
1—(z—7)2 , . .
[ fo(t,2) = foz (s, DI — 2| + A(s, 2, 2) + A(t, 2, 2))

I1 <

(1 —5)%2 &

0
1=(=)? a2,/ / l+a
(t—95)%7 —z|+ |7/ — 7]
<Cl|f||2+a’1+%

(r — 5)32 ds

and we end up with a control df; by |z — Z/|*. O

Proof of Lemma 2.2. Fhe idea is to write a linear diffusion equation #h=and to use
the classical Schauder estimates. Assungirig exist, we see that it has to satisfy

¢ =ny(a(@)¢. +b(2)¢) + f
= I1y2(a(2) (I2(a()¢. + b(2)9) + f), +b()112(a(2)p; +b(2)¢ + f)) + f
hence the parabolic equation

¢ = a(ap,), +a(bg), +abg, + b*¢p +adijaf, + bdiof + fi. (2.21)

From Lemma 2.391,2f and dy2f, are controlled inC*%/2 by the C#+*t@/2.norm
of f. The coefficients:, a, andb being more tharC?, the classical Schauder estimates

apply. O
Proof of Lemma 2.1. # such a solutionp exists, the functiorp obtained by setting

fo(t,z) =e'""(z, 0),
f1t, 2) = fo+ I12(f00; fo),
p=fito
verifies the equation

@ = Iy2(f10, f1+ f19: + 0. [19 + 0@.). (2.22)
A fixed point argument is built up as follows: for a givdh> 0, and a given element
V(t,z) € C7r*1+2/2([0, T] x R), we defineZ ¢ as the solutiorp of
@ =11/2(9, f1(0, 2)¢ + f1(0, 2)¢.)
+ I1y2(0; (f1 — f10, )¢ + (f1 — f1(0, ) ¥ + ¥ ).

If T > 0 is small enough, th€2t*+*/2 norm of the linear terms terms it may be
estimated byl ||V [|2+q,1+«/2- LEMMa 2.2 then ensures thatis a contraction on a
suitably small ball oiC?t*+/2([0, T1 x R). O
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To prove that we havg,.x = +00, we needa priori estimates. They are broken into
two steps: first, a Lipschitz bound; then the fig#t-*1+%/2 pound.

LEMMA 2.4. — Assume the assumptions of Theotzmto hold. There is a constant
C(l_,1;) such that any classical solution of Problg@i1), (2.2)with initial datumug
satisfies|u; oo 4 llttxlloo + 2 lloc < C//1.

Proof. —From Corollary 2.1, it is sufficient to give a lower bound for. Clearly, we
havel_ <u <I,. Thenwe seb(z, z, x) = u, (¢, z, x) and write

Ve (1,2,0) =uy (t,2,0) = u,(t, z,0)
< —Cu,(t,z,0) from Proposition 2.7

<—l£v(t,z,0).

Then we still denote by, the even extension of, to R, x R x R_. It satisfies

Uy — Uy 2 _Z_U8x=0,

which classically implies

. C
v(t,z,0) = e — — ] 5v.

The first term of the right-hand side is estimated from below-8y., r /2, and we infer
from the generalized Gronwall lemma [14, Ch. 7] thét z, 0) > —C(I_, 1, )t~?. Then
we use the boundary condition = v/u to conclude that

CA- 1) 1

u,(t,z,0) > — 7

g

Lemma 2.4 may be localized, and its local version is stated without proof in the
following proposition.

PROPOSITION 2.8. — Assume: > 0 to satisfy Problent2.1)in B (tg, zo) X R,. Also
assumer,, u,, u, <0. Then|u,(0,0,0)| + |u.(0,0,0)| + |«,(0, 0, 0)| is controlled by a
constant only depending anaxg, ,.z,.0) % and mMing, «, z,.0) 4.

The C?+1+«/2 estimates are now provided in their local versions. In contrast with
the Lipschitz estimates, there does not seem to be an easy way to derive them globall
In order to do this, we scale the equation so that the boundary condition wea€s
(14 o(1))u, and apply Lemma 2.2. This absorbs thé&)a(.

PROPOSITION 2.9. — Under the assumptions of Propositi@8, and for all» > 0,
there exists a constaiit depending om, maXg, (,, ;o) 4, MiNg, (o) # and

Sg([)ﬂuo(,, x) ||C°‘“([Zo—r7zo+r]) (2.23)

Xz

such that
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lull c2+errerz g, (10,29) < C- (2.24)

Remark?2.1. — There is in this problemota full regularizing effect as there would be
in a diffusion equation; there is instead a memory effect preventing a parabolic equatior

type bootstrap. The term preventing the bootstraznég’fzfuo, which remains even after
localization, and for which there is no smoothing effectir-or instance, assume that
uo(z, x) has a discontinuity lingz = 0}. The maximum regularity that we may recover
with such a term is Lipschitz regularity tn However, the derivative discontinuity will
remain located at the linfg = 0}. This is why thez-derivative of the self-similar solution
is discontinuous at the poitit =0, x = 0), see [18].

To prove the proposition, we will need a lemma quite similar in spirit to Lemma 2.3.

LEMMA 2.5.— ChooseT > 0. Leta(z,z) be a Lipschitz function in and z and
b(t, z) belong toL? ([0, T] x R), with p > 2. Let the function/ (z, z) be defined as

1// = 11/2(6111/2]?). (225)

(i) The functiony, belongs toL? ([0, T] x R); moreover we have
11l Lo, r1xr) < Cllalliip bl e o, 71xR) - (2.26)
(i) Assumeb to be inC**/?2(R, x R). Theny, belongs toC**/?(R, x R) and we

have
Wit 2) — ¥, (1, 2)| S C(L+ llaliuip) 1Blloo |z — 2/ [+ |1 — 1]
/ o/2
+ C(L+ lalloo) bllaesa(1z — 212 + 1t — )% (2.27)
Proof. —First, we claim that

a(s,.)—alt,.)
W: = ab Zf/ )3/2 Il/zb(s,.)ds
(2.28)
5 ﬁwl
To prove formula (2.28), one only has to decompgsender the form
,
_a/bds+ /“(s \;_“( D 11 2b(s, ) ds (2.29)

and differentiate with respect g assuming that is C! — because the intermediate
computations involve,. Then one concludes by a density argument.

Inequality (2.26) is now obvious. To prove inequality (2.27), we assume without loss
of generality that < ¢’ and we break the differencg, (¢, z) — ¥1(¢/, ') into the sum
%(11 + I, + I3), where

/

t
a(s,z) —a(t',7)
h= / (1 — 5)32 I1/2b(s, 2') ds,

t



L.A. CAFFARELLI, J.-M. ROQUEJOFFRE / Ann. I. H. Poincaré — AN 19 (2002) 41-80 53

[(a(s.2)—a(t'.z)  a(s.z)—a(t.z) /
12:/< ' —5)32 (1 —9)¥2 )Il/zb(s,z)ds,

t

(a )_ (t, ) ,
I3:/%(11/2b(s»1) — I12b(s, 2)) ds.

To boundI;, we use the fact that is Lipschitz andb bounded, and we easily obtain

a control of/y by |6l llallLipa/t” — 1.
To bound/,, we break it under the form

t—|z—7| t

I, = / + / =D+ Iz
0 t—|z—7'|
We have
t—|z—7/| |a(s Z/) —a(s Z)| |a(l‘/ Z/) —a(t Z)l
|11 = Cllblloo< / ( (' — 5)32 (1 — 5)32 +

0

1 1
+la(t,z) —a(s, 2)| ((t — 532 (¢ — s)3/2>> ds)

t
1 t—s
<cnbnoonanup<~/ﬂ—r+2¢|z/—z|+/( — =) )dS>
— 1 _ §)3/2
/ t—s (t'—ys)

<21l lallip (VI =1+ VI =2I).

According to the above calculation, the only term that we still have to estimdie i

[ Ia(s,z’)—a(s,z)-i-a(t,z)—a(t’,z/)lds
22 .— ([/ —S)3/2 ’

t—|z—=7/|

taking into account that we still bounfd,»b by ||b]|~. We write

la(s,z') —a(t',2)|

t
ds + / |a(s,z)—a(t,z)|ds

L2 < (t' — )32 (t' — )32
1—|z—7/| t—|z—7'|
t t
< la] / ds n / r—s q
allLi A)
= P Jt—s t—s
t—|z—7'| t—|z—7'|

<2lalup (Vie =T+ Vi =7).

All in all, we have, for some constant > O:
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|2l < Clibllsclallup (V7= 1+ VI =21 (2.30)

The termlI3 is much easier to bound; one may see only by inspection that
|13] < CllallLiplbllo.as2lz — 21

Gathering all the information, we prove the lemman

Remark2.2. — Lemma 2.5 would still be true if, instead of assumingo be
Lipschitz, we had assumed it to bkeH6lder inz andz, with u € ]%, 1].

Proof of Proposition 2.9. First, we sef8 := u(#, zo, 0) and
hu(z,n, &) = u(to+h*(t — 1), 20+ hn, h&) — B, (2.31)

where h < 1 is a small parameter such thgt— 3k > 0. Then, lety(r,n) be a
nonnegative mollifier vanishing outside the bBj(1, 0) and equal to 1 in &1, 0) and
let us setw(t, n) = (yu)(t, n). The equation satisfied hyreads

VU — Vg = ViU, (t,n,&)eR x R?,

133 Y + + (232)

ve = (B+hu)(v,—yyu) (>0, nelR, §=0).
Setting

w(t,n) = /(e(r—o)aéé Vru)gzoda
]
we write
v=112((B + hu)(v, — yyu)) + w. (2.33)

Our task is now to write a diffusion equation foywith small nonlinear parts. To do so,
we iterate Eq. (2.33), and we end up with an expression of the form

e = B2y, + 8. (J1+ J2+ Ja),

where

J1 = Inj2((B + hu) [12(B + hu)v,,) — /32/”7777 ds,
21

(2.34)
Jo = Io((B + hu)L12(B + hu)yvy) — I2((B + hu) I12(ypu)y),

J3 =w++ 11/2((/3 + hu)w,,).

To prove our proposition, we have to control #1&%/2 norm of 3, (J1 + J»).
According to Lemma 2.5(i), we may bound ti&¢ norm of 0, (J, + J2) by C,(1+
hllvy,llLeq-1.11x®))- Indeed, let us first have a look &t; we set/; = Ji1 + Jip, with
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Ji1 = hlya(uly (B + hu)vy,) +h2 1o (uly2(uv,,)),
j (2.35)
J]_z = hﬂ/uvnn do.

-1

We then estimaté, J1; by application of Lemma 2.5(i), by remembering that:

— then-Lipschitz norm ofu is preserved under rescaling,

— thert-Lipschitz norm ofu becomes multiplied by.
Then we notice thad, J1» = hfuv,n. The remaining terms iy involve lower order
terms inu and v. The term J, involves lower order terms in, that are under
control. Finally, |9, J3||.» is controlled by sup; < <4 [lu, (s, -, .)||LDC(R3), which is itself
controlled by

sup ||MU(S"’0)|’L°°(R)+ sup Hanesagwo||L°°(Ri)
-1<s<1 -1<s<1

by the maximum principle. Hence this quantity is under control, provided the quantity
given by Eqg. (2.23) is also controlled.
Then we apply the parabolie? estimates, that tell us

[(We. vy, vy prerxr) S Cp(L+hllvgyllLrg-1.2xm)-

Forh small enough, we have the desired control. Now, undoing the scaling, we cover the
ball B, (9, zo) with a finite number of balls of radius and apply the just found estimate

in each of them.

A first consequence of the above considerations is that, begacese be chosen large
enough, we have a control an in C*%/?2 norm. Let us now redo the scaling (2.31) and
scan back the ternts J; anda, J,, given by (2.34).

Application of Lemma 2.5(ii) withe :=u, b = (B + hu)v,, yields the estimate

”81 Jll”oz,ot/Z < C(l +h ”vnn ”a,a/Z) .

Because now the function. is bounded inC*%2, the remaining terms are also
bounded inC**/2, Lemma 2.5(ii) applies once again.
Then we apply the parabolic Schauder estimates, that tell us

[ ey vy V) [l g2 < C(LA+ Rllogg lr-1,115m)) -
This ends the proof of the proposition

Proof of Theorem 2.1. ©n the one hand, we have a local existence theorem with a
maximum life timermay for the solutionu. On the other hand, Proposition 2.9 tells us
that theC?t*+¢/2 norm ofu is estimated up t@nay. This Meangmay = +oo.

The fact thats is C* if ug is C* can now be inferred from a standard botstrap proce-
dure. O
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2.3. Construction of a solution to the original problem

Coming back to the notations of the beginning of this section, weu€dlhe unique
solution of the Cauchy problem for (2.1), with =1+ ¢ and/, = ¢. Thus we build a
nonincreasing sequence of smooth functions, which therefore converges pointwise ar
in L (R?) to some function:(z, z, x). Let us list the obvious properties of

e we have 0K u < 1,

e the functionu is nondecreasing inand nonincreasing inandx;

e the functionu is C* in x for x > 0 — not up to the boundary — and convexin

These facts have several consequences. The first one is the
PROPOSITION 2.10. — The functioru is a weak solution tg1.2).
Proof. —Let ¢(¢, z, x) be a smooth compactly supported test function; foreal O

we have
u£2
/ (=@ — U’ —/(7% - u’sgox) dsdz = /uggo. (2.36)

Ry xRZ r RZ

Because of items 1 and 2, the family’), is bounded irBV(Ri); let us denote by the
trace at the boundary = {r > 0, x =0, z € R}. Because is continuous fronBV(Ri)
to L(I'), we may pass to the limit — 0 in Eq. (2.36).

The limits (1.3) attoo hold because it is possible to trapbetween two similarity
solutions that are known to exist — see next section.

Proposition 2.10 is rather anecdotical: first, because we will prove:tisad classical
solution on its positivity set, with a free boundary relation. Second, because such :
formulation does not allow us to prove a comparison principle, which is the cornerstone
of the theory. This is why we are not going to dwell any longer on the notion of weak
solution.

Viscosity solutions to the porous media equation have already been defined ir
Caffarelli and Vazquez [7] and have been proved to have comparison properties. W
could, if we wished so, give intrinsic definitions to our equation, but we will not do so.
The definition of viscosity solution that we will adopt is the following:

DEFINITION 2.1.-Letug be a smooth initial datum satisfying:

[ azuo < 0, axuo < 0, amuo > 0.

e ug(—o00,x) = 1, uniformly inx, and there existgg > 0 such thatug(z, 0) = O for

Z 2 Z0-

A viscosity solution t@1.2) with initial datumug is the pointwise limit, as — 0, of
the family(u®), of classical solutions df.1), with initial datax®(0) such thatu® (0) has
limit e asz — 400, 1+ O(¢) asz — —oo, and such thatu®(0)), converges uniformly
tougase — 0.

First, we notice that the limit does not depend on the approximatiary.ofndeed,
u®(0)), and (u¢(0)), be two approximating sequencesugf for all § > 0 we may find
a sequencee,), such that* (0) < z**(0) + §; hence ifu andu are the corresponding
limits we haveu < u + 8. The definition therefore implies immediately the following
result, which is the conclusion of this section.
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THEOREM 2.2. — The Cauchy problem(1.2) has a unique viscosity solution.
Moreover, two viscosity solutions of Problgi2) that compare initially will compare
at all later times.

3. Special solutions

3.1. Sdf-similar solutions

A self-similar solution of Problem (2.1) is a solution of the fomatt, z, x) =
¢ (7. Z7). Such a solutio (z, x) satisfies

1
—Prx — E(Z(ﬁz +x¢x) =0 (Ri)a

(3.1)
¢x = ¢¢z (X = O)
The problem is supplemented by the condition
¢(—00,x) =M >0, ¢ (400,x) =0. (3.2)

We have the

THEOREM 3.1. — Problem(3.1), (3.2)has a unique viscosity solutiaty,. Moreover
there existg,; > 0 such thatp,, verifies

oy=M oOnR* xR, (3.3)

¢y =0 onjzg, +oo[ x R, (3.4)

¢y is discontinuous along the axis=0, x > 0, (3.5)
¢ € C(10, zy[ x Ry), (3.6)

ou (., 0) is continuous and Lipschitz ga-oo, z (. (3.7)

Proof. —The existence of a solutiop,, to (3.1), (3.2) with properties (3.4)—(3.7)
is asserted by Theorem 1.1 of [18]. To see that it is a viscosity solution, let us
constructe-approximationsp® of ¢,,; we drop the subscripf;. We notice thatp® is
still discontinuous across theline, but we may restrict ourselves to the construction of
¢€ on Ri; the condition at point0, 0) is ¢° = 1+ ¢. We extendp® by 1+ ¢ for negative
z. The condition at+oo becomesp (+o0, x) = ¢, uniformly in x. A super—solutiorﬁg
is given by the solution/1, . of the linear problem of the next paragraph. A subsolution
is given by¢® = ¢ + ¢, and we havep® > ¢°. Hence there is a solutiog’, which is
smooth from Theorem 1.1 of [18]. B

Finally, we notice that alt-approximations of Problem (3.1), (3.2) are nonincreasing
in z; hence all viscosity solutions of this problem have this property. Hence a viscosity
solution of (3.1), (3.2) falls in the category of entropy soutions of (3.1), (3.2) as defined
in [18]; therefore Theorem 1.2 of [18] implies uniqueness and, as a consequence, th
uniform convergence af° to¢. O
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Let us call ¢y (¢) the interface of the self-similar solutin(%, %). From the
homogeneity considerations of Section 2.1, we have

b (2) = Mo (% 1>, cw=Mzi, () = Mzl (3.8)

The last information that we need about the self-similar solutions is their behaviours
nearz = zy.

ProrPoOSITION 3.1. — There existk > 0 such thaip,(z, 0) ~ k/z1 — z asz — z1.
Proof. —Setp(z) = ¢1(z, 0). We start from the Cauchy formula

o(F5) = e 7 ) [ () () o

from which we obtain, after sending— +oco and setting; = -

Vi
p(n) = —%Zw(%)w/(%)%. (3.9)

Taking into account thap(n) = 0 if n > z;, we choose) < z;; then set) = z; — ¢ and
o) :=¢(z1 —1). Eq. (3.9) becomes

20 9($)¢'(s)
pt) = N O/\/(t_s)(ZZl—t—S)(Zl_s) -

(3.10)
Let us now recall that we are working with smal- 0; hence we may set, for all small
t>0,0<s <r:

1 1
V=22 —1—9)(@1—35)  2(z1— )32

+(t —s)h(s, 1),

whereh is C* in a neighbourhood of0, 0). Let us sefl1(¢) = ¢(¢); we have

iy 1 1
@) = 81/21_[ + 11/2(1_”’1) — —/H(s)hs(s, 1)/t — sds.
ﬁ 0

2=t V201 -1)¥%2

The idea is thall almost solves the equatidi = Constanvl/zdﬁ, to which explicit
solutions are easily computed. Comparison with these solutions will give the right
behaviour offT atr = 0, hence the proposition.

Set

LT = iz((zl — 0)%?15(Th)) — (fz(zl —1)%? / (nhsw - s)>;
0
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then, in the vicinity oft = 0, IT solves the equation

(I + I1pL)T1 = 11/2(\/2(11 - t)n). (3.11)
For everys > 0, there exists a solutiofi®(¢) to the integral equation
O=(1— 8)11/2(\/2z1n) (3.12)
given by
2(1—¢)?
HE ) = ﬂt.

Let us define, > 0 such that we have, for all< ¢,:

V21— DI = LIT(#) = (1 — )/22101(7). (3.13)

This is indeed possible, sin€&(¢) is an increasing function and because of the inequality
LT1(t) < Ct maxpg,<; [1(s). Now, as in [5], we liftIT andI1® on the intervalO, z.]. We
haveIl(r) = Q(t,0) and II°(r) = Q°(z, 0), the functionsQ(t, z) and Q*(¢, z) being
initially 0 and satisfying the singular heat equation

00 —0.0 =2(V2@—N0 - L0)b0 (1>0, zeR),

8,0° —0..0° = 21— £)\/2210%.0 (t >0, z€R).

We now claim that, for every. > 0 small enough, we have@(r + u,z) > Q°(t, 2).
Indeed, settingR(z, z) = Q(t + u, z) — Q°(¢, z) we have, due to (3.13):

(3.14)

R —3,.R > 2 (1= e)vauk ..o (t>0, zeR),
JOT+1,0) +,/0°(,0 (3.15)
R(0,2) > 0.

Because we have;(z,0) > 0 for z < z; we haveQ(t + u, 0) > Q(u, 0) > 0. Hence

the denominator in the right-hand side of the equation is nonsingular, and the maximun
principle applies to yield () > 0. Sendingu to 0 yieldsIT(¢) > I1°(z) on [0, ¢.] and we

may obtain, by the same method:

21+ 8)2Z1t
—

() < () :=

This ends the proof of the propositiond
3.2. Sdf-similar solutions of thelinear problem

Letb > 0 be a given real number. We are interested here in the self-similar solutions
of the auxiliary linear problem

Mt_uxx:Oa (t,Z,.x)eRJ,_XRZ,
(3.16)
u, =u,, (t,z,x)erl,
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with the condition attoo
u(t,—o0,x) =1, u(t,+o00,x)=0. (3.17)

These solutions (¢, z, x) = wb(ﬁ, %) satisfy

1
—0xxVp — E(Zaz +x3)¥, =0 (Ri)v

¥y = by, (x=0)

(3.18)

with the condition att:oo
¢(—00,x) =M >0, ¢ (400,x)=0. (3.19)

The property we are interested in, and that will be useful when we prove Harnack
inequalities, is the positivity of the functiof. It will indeed act as a barrier function.

PROPOSITION 3.2. — Problem (3.18), (3.19)has a unique solutiony,, satisfying
Y, >0, 9,9, <0inRZ.

Proof. —We drop the subscrigt The existence of a unique solution to (3.18), (3.19),
satisfyingd, v < 0, is standard. For instance, we may thinkjaz, x) asu;_x (1, z, x),
whereu;_g is the solution of (3.16), (3.17), with initial datuey(z,x) =1 — H(z),

H is the Heaviside function. Strictly speaking, we have not defined yet solutions
with discontinuous initial data, but we may easily interpret them as the limit of
e-regularizations of & H. The so obtained functiotf is z andx-nonincreasing.

The functiony/ (., 0) has a nontrivial positivity set iR, ; otherwise we would have
v =1— H, and integration of (3.18), (3.19) ové&?2 would reveal a contradiction.
Assume the existence @f such thaty (zo, 0) = 0; we may thinkzo to be the smallest
z satisfying ¥ (0, z) = 0. Arguing as in Proposition 3.1, we find that the function
o) =1v(z0—1),t > 0, solves the equation

(I + LyaL)p = I1ya(v/2(z0— D9). (3.20)
The notations are the same as in Proposition 3.22, up to the fae thas been replaced

by Z0-
This time, the equation is linear ip. Using the inequalityCe(¢) < Cte(t) and the
generalized Gronwall lemma, we infe(z) = 0 for ¢ > 0. This is a contradiction. O

3.3. Travelling waves

Travelling wave solutions to the problem have the fartn z, x) = 1(z — V¢, x). What
really matters to us is their behavioursxat O; let us therefore investigate under which
conditions we have solutions of the foiiifx, 0) = k+/z—. Let us write down the Cauchy
formula (2.16) for O< z < V¢; we obtain

o
u(l‘,Z,O):11/2(uuz)(tvz’0):zﬁ m 2\/—\/7
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This imposes = 2+/7V, and we end up with a family of travelling wavis(z, x) with
ly(z,0) =~4n V7. (3.21)

Recall that'y (z, x) satisfies the problem
—Lx—VI, =0, (z,x)eR2,

(3.22)
I, =1, zeR.

ProrPoOsITION 3.3. — The functiorly is the unique viscosity solution (8.22)

Proof. —We first have to show thdtcan be approximated from above by a sequence
of classical solutionsgi®), of (3.22) such that® (+oc, z) = €. To see this we first remark
that we may limit ourselves to the boundary problem in a quarter glang e R, xR, ,
with the conditions

1°0,00=1, I[°(+00,x)=c¢, (3.23)

the last condition being uniform with respectiolndeed, assume that (3.22), (3.23) to
be solved; then we extend the constructed solution — that we now-ehj} noticing that
an integral equation fox(z) :=1(z, 0) is given by

1
A=e0(0,.)] o+ ﬁamxz, (3.24)

the integrator being understood with respect to the negatiagiable. Eq. (3.24) may
be inverted as

A= 2V11/2()\. - e‘za”l(O, .)|x=0), (3.25)

an equation that may be solved globallyxifiby remembering that has to be>e.
Hence everything boils down to the problem in the quarter plane. Consider the
solutionm of

—my—Vm, =0, (z,x)€ Ri,
m, =m,, z€R, (3.26)
m(0,0) = 1, m(+o00, x) =0.

Given a wave solutiody such thatly(.,0) = 1, we havel® := 1y + ¢ < I“:=m+e.
This is proved by multiplication of the equation #6r—° by H(1° —1°) and integration
by parts over the quarter plane. This yields

“+o00

/(E ~7%)(0, x)dx < 0.

0

Hence a maximum point may only occur in the interior of the quarter plane or at the
boundary away from 0. Both are impossible: indeed, we have

(V3. —0e) (I° =17) =0,
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an equation that is backward parabolicziandx; hence the strong maximum principle
and Hopf lemma apply.
Then, we see thdt (resp.*) is a sub- (resp. super-) solution to our problem. Hence
there is a solutior;, tending tos uniformly in x asz — 400, which is betweern® and
I Hencelj, > ¢; hence it can be proved to be smooth, see Section 3 of [18].
Unigueness can be proved as above, by remembering that:
(i) aviscosity solution is a weak solution, nonincreasing;in
(ii) due to its definition, a viscosity solution is smooth on its positivity set.
This implies the convergence @f). tol. O

4. Thefreeboundary and p are Lipschitz and nondegener ate

We now have the basic tools that will be needed throughout the paper, namely
existence and unigueness of a solution having a comparison principle, and specic
solutions that we will be able to compare to that solution.

We initiate in this section the study of the free boundary, and all the considerations
will concern the pressurg = u2. Indeed, it can obviously be seen with Section 3 that
is most unlikely to be Lipschitz, whereas we found two examples — travelling waves and
self-similar solutions — where the pressure is Lipschitz, and has linear growth at the free
boundary. The goal of the section is to prove that this fact is general.

Using Proposition 2.3, we may put our solutisrbetween two self-similar solutions
— say, az-translate ofp,_. and az-translate ofp,. . — and infer that, for alt > 0, the
functionz — u(z, z, 0) is compactly supported iR*. Therefore there is a functian(r)
such thatu(z, z, x) > 0 for z < ¢(t) — we haveu(t,z,0) > 0 for z < £(¢), then this
property extends ta # 0 by the strong maximum principle — ands, z, x) = 0 for
z>¢(1).

The plan of the section is the following: first, we prove that the interface is Lipschitz,
and thatp is globally Lipschitz. Then we will pause in order to prove a class of Harnack
inequalities, and conclude the section by the nondegeneragy Tiis section roughly
corresponds to Ref. [8] in the study of the porous medium equation, and the results ar
gualitatively the same.

4.1. ¢ and p areLipschitz

Ouir first task is to prove that, for al§ > 0, u is continuous atzo, ¢ (tp), 0). We state
it under the

PROPOSITION 4.1. — Choose anyp > 0. Thenu(to, ¢ (o) *, 0) = u(to, £ (tg)~, 0) = 0.

Proof. —Assume this is not true and s&f := u(zy, £ (t9)~) > 0. Then, for allz > 1y
we haveu(t, ¢ (tp), 0) > M. From Proposition 2.4 we have

Wt 2. %) > o (ZJ%), wx__to)

Hence, for allh > 0, we have
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¢(to+ h) — ¢(to) = Ly (1) = Mz1v/h. (4.1)

On the other hand, setting= 0 in the hyperbolic inequation (2.8) of Proposition 2.7,
we haveu(tg + h, z, 0) < u(ty, z — Ch, 0) which implies

{(to+h) < ¢(10) + Ch, (4.2)
contradicting (4.1) for smah > 0. O

For all « € [0, 1[, and for allz > 0, let %(z) the minimalz such thatu(z, z, 0) = «.
Because: is nonincreasing in and nondecreasing i we haveu(t, z, 0) > « for all
z <% (t). Let us call the set(z, ¢%(¢)} thea-level line ofu(z, z, 0).

PROPOSITION 4.2. — The function¢ is Lipschitz with constanC, as are all level
lines ofu.

Proof. —Same argument as above: for gl 0 andz > 0 we haveu (g + i, z, 0) <
u(to, z — Ch, 0); hence¢®(to + h) < ¢(tg) + Ch. We conclude by noticing that® is
nondecreasing. O

And finally we have the
PrROPOSITION 4.3. — The functionp is Lipschitz in all its variables.

Proof. —Choosex € [0, %] and let(rg > 0, zg) be such thal(zg, zg, 0) = «. We wish
to prove thatu, (¢, zo, 0) is above a constant under control. For this, we first claim the
existence of(zp) > 0, controlled from below, such that the set

1 1
Z(to) := {z eR: 2 <u(to, z,0) < ;a}

is an interval of length at leastzy). Let us assume this is not so, and let us consider any
smoothe-approximation ofi:, calledu®. Then the seZ* corresponding t& for u® is an
interval of lengthr¢ going to 0 as — 0. Then, still form Proposition 2.4, we have

Z—20
“(t,2,0) 2 p140 | ——=,0].
0.2.0 > s ( 7=2.0)

The% level line 0f¢1+7a(%, 0) is a graph{(z, ”T“zl/zﬁ)}, with z;,2 > 0. Now, we

argue just as above: for smalt> 0 we haveu(ry + h, ZoHTazl/zx/E+ O@r*®),0) > %; on
the other hand, due to Proposition 2.7, we hafgy + &, zo + Ch, 0) < %1. Sendings to
0 yields a contradiction.

From Proposition 2.7 once again, we infer the existenag af{0, #[, such thaty — 1
is controlled from below, and such thatrg, zg, 0) > % Arguing as above, we obtain that
the setZ(1p) is also an interval of length at leastry), this last quantity being also under
control. Therefore we may apply Proposition 2.8, and infer #hiagtunder control.

To prove our proposition, we only have to prove the same property for all vAloés
between 0 and. Let us choose suchfand pickh > 0 be such that := hp € [0, 3.
Then we remark that, due to the homogeneity considerations of Section 2.1, the functio
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p, defined by

1
Pi(T,1,8) = -p(to+ hT, 20+ hn, Vhe)

is such that its square root satisfies the original problem (1.2). Moreover, its Lipschitz
constant is the same as thatypfWe now only have to repeat the above argument.

4.2. Harnack inequalitiesfor —p, and p,

In parabolic equations, Harnack inequalities are often established directly, for they
are one possible step towards Hélder estimates. Another way to obtain them — whic
we choose in this paragraph — is to establish the Holder estimates first, then a stron
maximum principle.

The situation is the following. Let us pidko, zo) € R x R and a smalk > 0. We
consider the rescaled functign

1
p(t,z,x) = Ep(to+ht,zo+hz,«/ﬁx). (4.3)

We assume, for commaodity, thai(0, 0, 0) = 1. The above paragraph enables us to find
r > 0, controlled from below, such that

1
pt,z,0) > > for —3r <1, z <3 (4.4)

Let us setu := /p. We may arrange that (4.4) is also valid for any smostap-
proximation ofu, with ¢ > 0 small enough. Let us finally set:= u, or u,. Thenv
solves

UV — Uy = 0, (t,z,x) e Ry x R?,
’ o (4.5)
v, = (mw), >0, zeR, x=0).

PROPOSITION 4.4 (Compactness). €hoosex € 10, %[. There exist > 0, inde-
pendent of:, such that

||Mz||cw/2([—r,r]2xR+) + llu, ||cw/2([—r,r]2xR+) <C. (4.6)

Eqg. (4.6) is also valid for any smootle-approximation ofu, with a constantC
independent ok ande.

Proof. —Let (1°).-o be a smootlz-approximation of:; inequality (4.6) will be proved
for u®. This will imply its validity for u.
We drop the superscript Let us set
+00

i(t,z,x) = /u(t,z/,x)dz/. 4.7)

Z

Then i satisfies the same problem asn Ri, but the boundary condition at=0
becomes

1
iy = —uil;. (4.8)
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We now notice thafi, (0, ., .) belongs toC%*(R?%). Let y(z,z) be a cut-off function,
equal to 1in—r, r]?> x R, and to 0 outsidg—2r, 2r]> x R... Setw = yii; we have

wl_wxx = ylﬁv (I,Z,X)ER_FXRE_,
(4.9)

1
wy = —su(w, —yu) (>0 zeR, x=0).

Now, we may apply word by word the arguments of the proof of Proposition 2.9,
because:
e Lemma 2.5 applies, due to the fact that the Lipschitz constamti®tontrolled on
[—3r, 3r]?> x R,
o the term that may cause a bootstrap failure due to the possible lack of smoothnes
of ug, see Remark 2.1, namely:

t

12 ~
/e([_s)d“ . ds
0

is now controlled byii(z, z, 0) ande'%xiio, which has nowC2+1+%/2 estimates in
t andz.
The bound fow now directly results from Proposition 2.90

PROPOSITION 4.5 (Strong maximum principle fow). — Assume thatv is not
identically O in the boxB,(0,0) x R,. Thenv > 0in B,(0,0) x R,.

Proof. —The boundary condition for reads
Uy S UV, (4.10)

We will prove that the sefv > 0} is closed inB,(0,0) x R,. From the usual strong
maximum principle for the heat equation, it is enough to prove that the s{iose) €
B,(0,0): v(t,z,0) > 0} is closed inB, (0, 0). Let (1,, z,),>2 be a sequence converging
to (o, zo) such thaw(z,, z,, 0) > 0.

Casel. We haver, > tg and there i € 10, r — |zo|[ andz; € ¢ — r, fo[ such that, for
all z €[zo— p,z0+ pl andr € 111, 1o[, we havew(z, z, 0) = 0. Then we have, from the
strong maximum principle for the heat equation:

V(va) € [ZO - P, Z0+ Io] X R-‘r: U(t19 <, O) = 0

For n large enough, we havg, € 1zo — p, z0 + p[. We may assume, without loss of
generality, that,, < zo. Let us choose such a largethenv(z, z, x) > w(t, z, x), where

W; — Wyy :0» (I,Z,X)G]ll,ln[X]Zn,Zo+l‘[XR+,
1
Wy = —ZW, (tlgtgtn, Zn<Z<ZO+r, x:O)a
2 (4.11)
w(t,2,,0) = ¢, (1), w(t,z0+p,0 =0,

w(ty, z,x) = 0,
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where ¢, (¢) is any smooth nondecreasing function m,z,] such thate,(#,) =
v(t,, z,, 0). To see thatw and v indeed compare, we only have to comparewith
the derivative of a smooth-approximation of the original function; then we notice
that we havew, < 0 — if we had assumed, > zg, we would have had to choose the
boundary conditiorw, = w, andw, would have been nonnegative. Eq. (4.11) implies,
among other things, that we hawe= I w,, for all t € [#1,#,] andz € 1z,, z0 + pl.
Hence we have

w, —w,; =0 on{reln,t,l, z€lz., 20+ pl}

with the above-mentioned boundary conditions. The strong maximum principle for the
heat equation implies > 0 onlz, ¢,[; hencev(zg, zo, 0) > 0.

Case?2. The sequencét,, z,) may be assumed to satisfy < 1. Then, for large
enoughn > 2 there is§, > 0 andp, > 0 such that(z,, z, 0) > §, for z, — 20, <z <
Zn + 2p,. Let us consider the functiom,,, satisfying

(0, — dr)w, =0 (1,2, x) € Ity, +00[ X 120 — P, 2n + pul X Ry,
wy, = 0w, (t 21ty 2n— Pn <2< 2n+ oo, x=0),
Wy, (t, 20 — pn, 0) = 0 (t > 1),
w,(t, 20+ pn, 0) = 0 (t > 1),

wn(tn,zao) = 6y (Zn—pn,z<z+pn).

Setw, (¢, z) := w,(t, z, 0). Thenw, is symmetric about, and we have — examine the
functionw — §,,:

(9 — azz)a)n =0 (t,z,x) €lty, +00[ X 12, — Pn, Zn + pul,
lI)n(t, Zn — Pn, 0) = 09
i)n(t»ZO'i'pn»O) = 09

W, (t1,2,0) = 6.

We define a subsolutiow (z, z, x) to Egs. (4.5), (4.10) by setting

lI)l‘l(ta Z—Ezn9x) fongZ}’H
w(t,z,x) = (4.12)

W, (t,z,x)  forzz=z,.

From the definition ofo we havew(t,z,x) >0fort >1¢,,z, — 20, <z <z, + p,. If
20 € 120 — 204, 20 + pu[, We are done. If not, we have proved the existence,cf 3,
such that

Vi €ty to+r]l, v(t,z,,0) =g, (4.13)
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Without loss of generality, we may once again assume: zo. Let ¥1/2(z, x) be the
linear self-similar solution of Section 2.3 with= % From Proposition 3.2 we may find
7, andx, > 0, both going to 0 a8 — +o0, such that

e Forallr €1, 1o+ 1,], Wwe have

' —Zn
‘//1/2<7, O) < )"ny

A/ o + T, — Iy
e we have
20 — Zn
,0) > A,
¢1/2 (V tO - tn )
This implies

I — Zn X
ta ) 2 n ) _)"n 5
U( ZX) ¢ (wl/z(\/t_tn \/t_tn> >
as a consequence we hau@y, zo0,0) > 0. O
Combining the two propositions leads us to the main result of this paragraph.

THEOREM 4.1 (Harnack inequalities). ket 0 < r < 1 and a smalle > 0 be given.
There exists”, > 0, independent of, see the definition af from Eq.(4.3) above, such
that

sup  v(t,z,00<C, inf v(t, z, 0). (4.14)

(1,00eB; (~e,0) (12)€B(2.0)
Proof. —~Assume the existence of a sequence of initial dat, for the Cauchy
problem (1.2), such that the corresponding funciigsatisfies

sup  w,(t,z,0 =1, lim inf v,(,z,0=0.

(l,Z)EB#(—E,O) n—+00 ([,Z)EB;F(E,O)

By compactness, Proposition 4.4, the sequenigg, converges irC“’“/z(B;;E(O, 0))
to a functionv, whose supremum iB;*(—¢,0) is 1, and whose infimum is 0. This
contradicts the strong maximum principled

4.3. Nondegeneracy

The statement is
THEOREM 4.2.— Let0 < § < T be chosen. There existgs) > 0 such that, for all
t [0, T]andz € [0, ¢(®)[, we have
—p: 2 v (0), pr = v(0),

c(t) = y(8).

To prove it, we first show, as in [8], that the speed of the interface is controlled from
below; then we conclude by comparison with a self-similar solution.

(4.15)
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LEMMA 4.1. — ChooseT > 0. There exist a positive constaBt, depending oIt
such that

(2t + B)u, + (z— Go)u; +u >0 (4.16)
on[0, T] x T, in the distributional sense.

Proof. —In Proposition 2.1 we take = ﬁ andb = (1 + ¢)2. Let us consider a large
B > 0, to be chosen later. The function

ug(e,t,z,x) = (L+e)u((L+e)? + Be, (1+¢&)(z — ¢o), (1 +¢)x)

is a solution of (1.2), and the function

0
v(t,z,x) = %(”B(S» D —u) O(t,z,x)

&=

(4.17)
= (2t + Bu, +xu, +(z—Co)u, +u

satisfies the(z, x) heat equation inside the domain, with the linearized boundary
condition

1
vV, = éaz(uv).

We are going to prove that, iB is large enough, them(0,.) > 0 on the domain
D=1{z<¢, 0<x<2/2T}and on the strigS = {r > 0, z < o, x = 2+/2T}. This
will imply v(z,z,0) > 0 — same argument as in Section 2.1. The assumptiong on
gaurantee the existence Mf(7) such that

—xd,u0 < ”—20 + M3, uo. (4.18)

Hence the nontrivial task is to prove that= 0 on S. Since we havéz — ¢o)u, > 0 for
z < &o, We only have to care about controlling, by a portion ofu and a large multiple
of u,, atx =1, forallt < T andz < ¢. Let us write

t
u=edyy— /e(’_s)a”psz:o ds ;= uq + uy. (4.19)

0
1. Let us first examiner;. If z < 0, there is nothing to prove. If § z < &, then we
write

+oo
ul([" Z, 2\/ 2T) = % / e_(zﬁ_y)2/4tf(z’ y) dy

This region is cut into two pieces: first, there exi&tg) > 0 such that, for alk € [0, 6]
and allx € [0, 24/2T] we have:

1
—XaxMO(Z, x) < Z”O(Za x),
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simply becauseag is close to 1 and, uq close to 0. Orjé, ¢g] x [0, 24/ 2T], becausef;,
is nonnegative and nonzero, there exigtT) > 0, u(T) > 0 such that, for alt < T':

+00 +oo

_ —)2 _ 2
/ e @4 f (2 yydy = ua(T), / e @V £ (2 vy dy > puo(T).
—00 —00

Hence we have, for all, z) € [0, T'] x [0, ¢ol:
iz, 1) < 22T )a”ul(z ) (4.20)
wua(T)

2. We have, becausg, < O:

e—ZT/(t—s)

ENCIOEORE

dexta(t,2,2v/2T ) = — ((;‘_Ts) —1)pz(s,z,2dﬁ)ds

2T /(t—s)

4f/(t )3/2pz(s,z,2«/ﬁ)ds

On the other hand, we have

2T /(t—s)
V2T dun(t. 2, 22T 8T/2 (s.2,2v/2T ) ds

3 2pZ [
V(=) (4.21)
16T
< —8xxuz(t, Z, 2~/ ZT)

3
Gathering (4.18), (4.20) and (4.21), we take

8T (T
B>max( “2()M).

ENTG)
We obtain the desired result.o

Lemma 4.1 has an immediate corollary, just as in the porous medium equation: a:
soon as the free boundary starts moving, it will keep moving for all later time. Here is
the precise statement.

COROLLARY 4.1 ([8], Corollary 3.2). —Chooses > 0 and assume the existence of
ts > 0 for which ¢(z5) = ¢o + 8. There existsts > 0 such that, for allr > 5, we have

() > ps-

Proof. —Choosery > §; we have¢(rg) > §. From Lemma 4.1 we have, for alle
[6, to + 1]:

ur+ A((z — Lo)u, +u) >0, (4.22)
with A =1/(2to + B + 2). Therefore we have, for alt, z) € [1o, to + 1]:
u(t,z,0) > e_A(’_IO)u(to, Z(t,z2),0), (4.23)
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where
Z(t,7) = o+ (z — Lo)e AU, (4.24)
Forz = ¢ (1), the first instant, such that we hav& (¢, z) = ¢ (1) — ASh is given by

1 )
t, —tg= ——Log(l— 7}1) < —ELog(l—Ah) <h.
A ¢(to) — ¢o A

As a consequence we hay&g + h) — ¢ (to) > Aéh, henceﬁ (tg) = AS.

Proof of Theorem 4.2. in order to prove that the speed of the interface is controlled
from below, we have to show that the interface starts moving immediately. Once this is
done, the nondegeneracy result will follow from comparison with low speed self-similar
solutions.

To prove that the free boundary starts moving at once, let us pick any mall;
because decays linearly in a vicinity ofy there existg > 0 such thap (0, o—§,0) >
¢é. Hence we have

z—C— 5 x
ta T, X 2 2 (75 _) 5
this implies
£(t) =G0 — 8+ Vadur;

hence we have, from (3.8):(¢) > ¢, as soon as > ﬁ/ﬂzl, and we conclude with
the arbitrariness af.
Let us now prove that, for all > 0 we have

tels,T] h—

inf lim iorlf (%p(r, c(t) —h, 0)) > 0. (4.25)

If this were not true, there would exist a sequefgg,, going to some, > 0, a sequence
(h,), going to 0, such that

n—-+00

1
lim h—p(tn, ¢(ty) — hy, 0) =0.

Set

1
P €)= 2 p (tn + hT, E0) + han, V)

p. Satisfies the same problem asSete, = p, (0, —1, 0); because of Proposition 2.7
there existg, > 0, bounded away from O with respectitpsuch that

Hence we have, for all < t,:

pn(‘[v U»0)<¢m< ﬁ s ﬁ
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Inequations (4.27) and (3.8) impl§(z,) < /2¢,7,z1; on the other hand, because
is bounded away from 0 we have the existenceuof 0 such that; > . Hence
¢ (z,) > ut,; a contradiction.

The nondegeneracy ¢f follows from (4.25). We first note that, for every> 0 and
h > 0, there existg > 0, bounded away from 0 independently/ofndr,, such that, if
we have

h
plio, 5 (10),0) =h,  plio ¢ (%), 0) =3

then¢?(to) — ¢ (to) = qh. If this were not so, we would contradict, after setting the
origin at ¢ (fg) and rescaling, the fact that is Lipschitz. Hence there is a point in the
segment{¢ (1), ¢2(to)] such thatp, > ¢/2 at that point. Rescaling and applying the
Harnack inequalities, we obtain a control from below fop, in the segment. Because
of the arbitrariness af, this control is valid everywhere.

Finally, a lower bound orp;, in the vicinity of the free boundary is obtained from
inequality (4.16). Away from the free boundary, this is once again due to the Harnack
inequalities. O

5. Thefreeboundary is C**

This section is devoted to the application of the iterative technique of [9] in the context
of Problem (1.2), whose idea is briefly recalled now. Becagysend— p, are controlled
from below in a vicinity of the free boundary, there is a common cone of directions of
the (s, z, x)-space along which the functignis increasing — in the same neighbourhood
of the free boundary. The basic iteration consists in enlarging this cone by proving that
if p is nondecreasing along a directionthen p, is in fact controlled from below. This
relies on the Harnack inequalities of Section 4, as well as on a separation argument c
the free boundaries of two solutions of (1.2).

Then we rescale and iterate the argument; as we move closer to the free bounda
the common cone of monotonicity tends to be a whole half-space: this implies the
differentiablity of the free boundary. Further, the cone enlargement being controlled a
each step, the argument yields in fact the Hélder continuity a$ well asp, and p,.

What will be explained in this section is the construction of sub-solutions — that
slightly differ from [9] — then the basic iteration. The rest of the argument is exactly
as in [9], Section 4.

In the whole section, the problem will be examined on a time intdeyal, 7] where
tmin > 0 is a little larger than the minimal time required by the free boundary to start
moving. Hence all the constants in the next section will depeng,gnbut we will not
mention this dependence.

5.1. Sub-solutions

Assume the free boundary @fin the (¢, z)-plane to be located at the poi@t= 0, z =
0). Let us denote by(z, z, x, ) a travelling wave with speet.

LEMMA 5.1. — Assume that the interfaces bfand « coincide at timer = 0 and
Vo<¢(@)for—1<r<1.
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Pick two positive numbersande. There existy > 0, go > 0 such that, if§ < §p and
¢ < &g, then the function
uj=u+ew—38)" (5.1)
is a sub-solution tg1.2)for —1 <t < 0.

Proof. —-From the convexity ofX — X*, we have(d, — 9,,)uj < 0. As for the
boundary condition, there is nothing to proveui& §/. On the other hand, i > 41,
we have

Ovui —ujou; = —e(1+e)uu, —ed(1+d)ll;

(5.2)
+e8(L+¢e)(ul, +lu,).
We distinguish two cases.
Casel. 1+ e)u >1.
Then we user|u,| > 8l|u,| andll, > (1+ e)ull,|. This implies
deul — ubo.ub > —e28%l, > 0. (5.3)

Case2. (1+e)u <.
First, we usel|u,| < 8(1+ e)ulu,|; second, we use Lemma 4.1 to infer the existence
of C > 0 such thaC|u,| > |I,|. Hence we hava|l.| < Cu|u.|, and we end up with
deus — usd.ul > —e8%l, —e(1—8(L+ C)) (L + &)uu, (5.4)
which implies the lemma as soon as we chabses, := .
LEMMA 5.2. — There exists. > 0 such that, for alle € ]0, 1), the functionuj given
by

O

us5(t,z,x) = (L+e)u(t + erz, z, x) (5.5
is a sub-solution tq1.2).
Proof. —Obviously, the heat equation insidéi is satisfied. As for the boundary
condition we have
duy —ur0uy = (L+e)u, — (14 &) (uu, — exuu,)

= —e(1+ &)uu, — er(1+ &)uu,.

But we know that-u, > Cu.; hencedu — ud.u5>0fora< &, O

5.2. Theiteration
Let (o, zo) = (¢ (20), zo) be a free boundary point. In order to initiate the sequence
of iterations leading to th€'-* estimate for at (o, zo), we first notice that Theorem 4.2

has led us to the following situation. By translating and rescaling we may assume
(t0, z0) = (0, 0). For all p € [0, 1] let us consider the rectangle

Ro(p) = {1 (=D <1 <t7H(D), —1-p<z<1).
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We denote
e by L a common upper bound fgr, and—p, in Ry,
e and byy a common lower bound fgs, and—p, in Ro.
Hence we have
y L

Vi e [¢TH=D),¢7HD)], 7 < £(t) < e (5.6)

Estimates (4.15) hold, in the bd;, /, (0, 0) and, in particular, ilRo(1). Let us examine
the consequences of Lemmas 5.1 and 5.2.

PrROPOSITION 5.1. — Let# be a solution 0of1.2)in Ro(1) x R, such that, for some
p€]0, 1[:
n>u inRo(p) x Ry, w(t,—1—p,0 > A+ 28)u(t,-1—p,0. (5.7)
() There existo > 0 such thatif (5.7) holds for a giverp € ]0, po], then we have
V(t,z) € [(‘1(—%),§‘1(%)] X [—%, %], u(t,z,00> (1+e)u(t,z,0. (5.8)

(i) Letp > 0be chosen as above. There holds

V(.2 € [t7H=1). ¢ D + ¢ (=1)] x [-3.1].
i(t—¢H=3).z+3a)>A+ou(t—¢ (- +er(z+3). 24 3.x).(5.9)
Proof. —1. Choosezg € [—3, 3] ando = ¢ ~*(z0). Set
Vo= ! ;
°T 3¢ (-1
it is controlled from above and below. Let us consider the travelling igvieanslated
in such a way that its interface sits exactlyzat —% attimer = —1; then, atr =1, its
interface is located at= zo. From Lemma 5.1 the functiom] = u + e(u — 8ly,) " is a
subsolution to (1.2) as soon &s- 0 is small enough. Let us consider such a
2. Let us prove the existence gf; > 0 such that: for allp < ps, 8ly, > u on
{t=¢"Y=1), —1— p <z, x>0}). We have:
e 0=u(t"Y(-1),z,x)<d8ly,on[—1— p, +o0] x Ry,
e for z e [-1— p, —1] we have, from the Lipschitz property for.

(5.10)

p(c7%(=1),2,0) <L —2) < Lp.

Hence, for alk; € [-1 — p, —1] we have

5lVo (E_l(_l)» -1- O, O) = 5\/47'[ V0(1+ P+ Voé__l(—l))

25 87TVO

from (5.10)

Hence the result as soon as< 87 Vy/(3L2).
Thereforedly, <u on[—1— p, +oo[ x Ry att = —1 as soon ap > 0 is less than some
ps > 0 whose value is given above. Let such he chosen.



74 L.A. CAFFARELLI, J.-M. ROQUEJOFFRE / Ann. I. H. Poincaré — AN 19 (2002) 41-80
3. Let us prove (i). Let us first notice that we have obviously:

fort > ¢ 71(—1). Therefore fronl and2 we haveu|(t, z, x) <u(t,z,x) forall (t,z,x) €
Ro x R, ; hence at = 1y we have

Vz<zo, ulto,z,0) > ulto, z,0) + e(u(to, z,0) — ly,(to, 2, 0))+-

Moreover atr = 1y the interfaces ofs and!/y, coincide. By nondegeneracy, we have
261y, (to, 2, 0) < u(to, z, 0) as soon a8 is small enough, and this fixgsonce and for all.
We have therefore

(u(to, z,0) — 8ly, (0, 2,0)) " = u(t0, 2, 0) — 8y, (10, 2, 0) F,

and Property (i) holds.
4. Property (ii) is now almost immediate. Indeed, Lemma 5.2 asserts that

51,2, x) = A+ eu(t — £ H=1), 2+ 3,x)

is a subsolution to (1.2). Moreover
e because:, > 0, we have

#5(¢7H(3), %) > L+ o)u(0,24 3,x) =0

for all (z,x) € [—3, 1;
e by assumption, we have, at= —3:

i5(t,2,00 > A+ eu(t—¢ H(-3),z+1,0
forall r > ;—1(_%),
This implies Property (ii). O

We may now perform the iterating process. Some notations first: fofzapyin the
positivity domain ofp we will set, as in [9]:

Vpl(t,z,0) == (8, p(t, z,0),0.p(t, z, 0)). (5.11)

For two vectors); andv, of R?, we denote by:(v1, 1) the angle betweemn, andv,. For
anyvy € R? andé € [0, 71, we denote by\ (v, 0) the cone

A, 0)={veR% |a(v,v)| <6}. (5.12)

We finally denote byRy the rectangleRqy(p), wherep is any number chosen so that
Proposition 5.1 works, and by, the rectangle

1 1\ 1 1
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(tw, 20) = (§_1<—4—ln), —1:1:'0).

Assume that, at theth iteration, we have found a unit vectoy andg, € ]0, 5[ such
that

Set

Vv € Ay, 0,), Y(1,2) €R,,  up(1,2) 20.

Let us rescale and consider the function

pn(t,z,x)=4”p(ﬁ,%,%>, (5.14)
the rescaled interface
G(t) =4"¢ (%) (5.15)
and the rescaled time and space
z0:4";—1<—4—1n), 0=—1—0p. (5.16)

The rescaled functiop,, is defined in the rectanglgy.
We first note that

(i) |a(va, V pu(to, 20, 0)| = 6,,
(i) Vv €10, 6,1, 8,pn(fo, z0,0) = Vp,(to, 20, 0).v (5.17)
> y cosa(v, V p,l(to, 2o, 0)).

Moreover, we know by assumption thiatp > 0 in Ry. Hence the Harnack inequalities,
Theorem 4.2, apply and yield the existenceyof 0 such that

Vv € AWy, 0,), V(t,2) € [¢, (=D, ¢, D] x [-14p, —1— 5],
3y pa(t,z,0) > g cosa(v, vV pa(to, Zo, 0)).
Hence fore > 0 small, we have - for some possibly different- O:

Vv e A(v,, 6,), ¥t e [¢, 1 (=1), ¢ (D),

el . A (5.18)
u((t, -1 ,0)+28v’0)2(1+2qCOSa(U,vpn(tO»ZOvo)))g‘

u,—1—p,0)
Let us apply Proposition 5.1(ii) with
& := g cosa(v, V p,(t0, 20, 0)) (5.19)
and
at,z,x):=u((t,z) +2v; x). (5.20)

We obtain, in particular
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V(t,z) € Ry, u(t,z,0) > (1+8&)u(t+£&rz,z,0). (5.21)

Multiplying by u, expanding with respect toand lettinge to O yields
Vo€ AW, 6,), Vi€ 61 (=3), 6 (5)]s Yz e [- 2, G (0],
DD e AL
d,p(t,z,0) =gy cosa(v, Vp,(fo, 20, 0)).

Now, to enlarge the cona(v,, 6,) we could just rely on the geometrical lemma of [6];
the situation being here much simpler, we give a complete proof of this fact.
By construction we have

|a(vn, %pn (fo, 20, O))| < en;

assume this angle to be 0: the opposite case is treated in the same fashion. Let us
see how far away from the cone(v,, 6,) we are allowed to pick without violating

the inequalityd, p(z, z, 0) > 0. To simplify the notations, identifiR? with the complex
plane. Set

v, = vnée".
We have, for allz, z) € R:
3,p(t,7z,0) = |Vp(t, z,0)| cosa(Vp(t, z, 0), v)
= |Vp(t,z,0)| cosla(Vp(t, z,0), D) +a(®,, v))
= cosa(¥,, V), — |Vp(t, z,0)|sina(Vp(t, z,0), 3,) sina(¥,, v)
> qcosh, — |Vp(t,z,0)[sina(¥,, v)
for a possibly differenty, that can anyway be chosen independent.of herefore we

haved, p(z, z, 0) > 0 if and only if

tga(v, v,) <

qtg 6,

Accordingly, let us set

6,41 =6 +1Arct ( L )
n+1 — Un 2 g qtg@n s

vné(6n+l_0n)/2.

(5.23)
Vnt1l =

We haved, p(t,z,0) > 0in Ry for all v € A(v,41, 6,+1). Moreover, we may see that the
sequenceo6,), converges geometrically t§. Also, scaling back, we have proved the
following property:

Vv € AWy, Ops1), V(2. 2) € Ryy1, 0,p(1,2,0) 20. (5.24)

By nondegeneracy, the initiation of the iteration process is trivial.
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5.3. The C1* estimate

Let us summarize the preceding section. There is a sequence of £0nes,), with
6, € [0, 5], such that

) vl = 1,

(il) @V, Vas2) = Oni1 — O, (5.25)
T

(i) 0,41 < 6, +q<2 9,1) withO<qg < 1.
This is the final ingredient to the
Proof of Theorem 1.1. Properties (ii) and (iii) of Eq. (5.25) imply
|9n+1 - enl + |Vn+l - an < an; (526)

hence there is a unit vectog,, a Lipschitz functionZ,,(¢), and a Lipschitz function
Pso(t, z, x) such that the sequencés,),, (¢,), and(p,), converge t.,, {oo and py
respectivey. The functiop,, is smooth in its positivity sefz > ¢(¢)}. Moreover we have

Vv e {Vo.v 20}, V(t,2) € Rg, 0,Poo(t,2,0) > 0. (5.27)

Hence ¢, (¢) is a linear function. This implies the differentiability af at r = O;
moreover, our analysis being valid at each free boundary point, we end up with the
differentiability of ¢ at allz > 0.

Let now (z, ¢(t)) be another free boundary point, close(80). Let n the unique
integer such that

(r,c(m)) e R, and (1,¢(1)) ¢ Rut1-
If ¢ is close enough to 0, thenis large and, due to the fact thiats bounded and bounded
away from 0, we have
L
Yo <<=

4n L 4y
For all s > 0, let v(s) be the normal vector to the interfade = ¢}; we note that,
automatically,

[a(vnv®)| < 5 =
Consequently there holds

(V@) = v(O)| < [v(t) = va| + v, —v(0)| <2Cq"

Logg

<Clt|*, witha=— .
ol * Log4

This implies
£ — L)) <Clef”
for a possibly different constait; hence the theorem.o
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6. Qualitative properties

We have now proved that the constructed solutids a classical one. First, we will
show how the strong maximum principle property proved in Sections 4 and 5 will allow
us to derive a large time behaviour result. Then, to finish the analogy, we prove the fres
boundary relation.

6.1. Largetimebehaviour

Let us summarize Propositions 4.5 and 5.1 in the following

PROPOSITION 6.1. — Letu; < u, two solutions 0f1.2), (1.3)such that

sup(u2(0, z, 0) — u1(0, z, 0)) > 0.

z2>0
Then we have

inf _ (ua(t,2,0) — us(t, 2,0)) > 0. (6.28)

1<1<4, 21

The proof is omitted.

Proof of Theorem 1.2. ket S(r) denote the semigroup generated by the Cauchy
problem for (1.2), (1.3) and, fafp € R, let r,, be the translation operator

Tou(t, z, x) = u(t, z + zo, X).

Setu(t) := S(#)ug and
un(t,z,x) =u(4't,2'z,2'x), 0<t<4. (6.29)

Let us define the discrete semigroup
Tuo(z, x) = S(Auo(2z, 2x).

The theorem will be proved as soon as we have shown the convergence of the sequen
(u,), := T"ug towards a translate ap. Let w(ug) denote thew-limit set of ug in
C (R, x R,) with respect tdZ". We first observe that, because there is a Lipschitz bound
for p, the sequencéu,), is relatively compact irC ([0, 4] x R, x R,); hencew (i) is
nonvoid.

By homogeneity, the function, is a solution of (1.2), (1.3) and there are two bounds
of the form

T Sty S Ty

independently ofi. Forvyr € w(ug) consider
h(y)=inf{Z: V2 <z, ;0 <Y}

and
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ho= min h(y). (6.30)
Y €w(up)
Such anhg is attained by some elememity of w(ug). Assume that we do not have
¥ = 1,¢; then by Proposition 6.1 we haw&7 ) < ho, contradicting (6.30). O

6.2. Thefreeboundary relation

We come back to the sequence,), defined by (5.14) and to its limiting function
Poo- Notice that this functiorp, is defined on(z, z, x) e R x R x R,..

Proof of Theorem 1.3. From Eq. (5.27) we infer the fact that, for evefy z) the
vectorV p.(t, z, 0) is proportional to the vector,,. Therefore let us set,, = (vy, v7);
there exists &' real functionw(z, z) such that

(81‘p00(t9 Z, O)’ azpoo(ta <, 0)) = a(t’ Z)(UL VZ)'

We have therefore
V1, = Vo,

implying thata (¢, z) has the formg(r — Z—;z). Hencep,, is a travelling wave, and hence
has a unique form due to Proposition 3.3. In particular, it satisfies the free boundary
relation. O
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