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ABSTRACT. – The problem under investigation is the heat equation in the upper half-plane,
to which the diffusion in the longitudinal direction has been suppressed, and augmented with
a nonlinear oblique derivative condition. This paper proves global existence and qualitative
properties to the Cauchy problem for this model, furthering the study [18] of the self-similar
solutions. The qualitative behaviour of the solutions exhibits a strong analogy with the porous
medium equation: propagation with compact support and finite speed, free boundary relation and
time-asymptotic convergence to self-similar solutions.

RÉSUMÉ. – Le problème étudié concerne l’équation de la chaleur dans le demi-plan supérieur,
sans diffusion longitudinale, avec une condition à la limite non linéaire. On démontre l’existence
globale d’une solution au problème de Cauchy, ainsi que diverses propriétés qualitatives. En
particulier, les solutions présentent une forte analogie avec celles de l’équation des milieux
poreux, comme : la propagation à vitesse finie, la relation de frontière libre et la convergence
en temps grand vers des solutions auto-similaires.

1. Introduction

Let R
2+ be the upper half-plane

R
2
+ = {

(z, x) ∈ R × R+
}

and set

� = {t > 0, z ∈ R, x = 0}. (1.1)
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We are interested in the problem

ut − uxx = 0, (t, z, x) ∈ R+ × R
2
+,

ux = uuz, (t, z, x) ∈ �,

(1.2)

with the condition at±∞
u(t,−∞, x) = 1, u(t,+∞, x) = 0. (1.3)

This equation occurs in the modelling of a plasma opening switch. Consider a plasma
injected in the half-planeR2+ through an anode placed on the axis{x = 0}. It can be
described as a fluid in the setting of electron magnetohydrodynamics. Letu be the
magnetic field, propagating in the plasma. If certain conditions are fulfilled the field
is a solution of the system (1.2) after a rescaling. The key here is the boundary condition
on the anode. This electrode is a perfect conductor so the electric field is perpendicular
to it, which gives, with Ohm’s law, the nonlinear conditionux = uuz on {x = 0}. For the
modelling, see [12,16].

The goal of this paper is to study existence and qualitative properties, furthering [17]
– the problem with full diffusion – and [18] – self-similar solutions for (1.2), (1.3). It
was already noticed in [12,18] that the self-similar problem had some resemblance with
the porous medium equation

ut =
(
u3

3

)
zz

(t > 0, z > 0) (1.4)

posed on�. In particular, the support of the self-similar solution, restricted to the portion
of the boundary{z > 0, x = 0} is compact.

We would like to extend this analogy to the full Cauchy problem. To back this
impression, let us do the following heuristics: settingφ(t, z) = u(t, z,0) we write

φt = uxx(t, z,0)

′′ =′′ (uuz)x(t, z,0)

= (uuzx(t, z,0)+ φφ2
z = φ(φφz)z + φφ2

z =
(
φ3

3

)
zz

.

The second line of this series of equalities is utterly wrong, but we will prove there is
some truth in these heuristics. The porous medium equation, posed on the half line, with
fixed condition at the boundary, has among others – the following features:

• Finite speed propagation and compactly supported solutions,
• existence and global stability of self-similar solutions [3,4],
• linear behaviour of the functionp = u2 near the free boundary and free boundary

relation [2].
Although Problem (1.2) is essentially a 1D problem – this statement will be reinforced
in the next section, when we derive an integral equation foru – the methods developed
in [2] – to get the existence and the smoothness of the free boundary – do not seem to



L.A. CAFFARELLI, J.-M. ROQUEJOFFRE / Ann. I. H. Poincaré – AN 19 (2002) 41–80 43

apply here. They indeed heavily rely on the well-known Aronson–Bénilan estimate [1]:


p � −C

t
.

The spirit of this study will therefore be more in the spirit of the multi-D papers [8,9].
Indeed, the multi-D porous medium equation

ut = 


(
u3

3

)

besides having compactly supported solutions and finite speed of propagation, enjoys
free boundary smoothness properties. The main tools are rescalings through a double
homogeneity property of the pressure, Harnack inequalities and an iteration argument.
They also rely on the Aronson–Bénilan estimate, but we will see that this difficulty may
be bypassed in the present context.

All in all, the main theorem of this paper is

THEOREM 1.1. – Assume the initial datumu0 to satisfy
• We haveu0 ≡ 1 on {(z, x) ∈ R− × R+},
• there existsζ0 > 0 such thatu0(z, x) > 0 iff z < ζ0,
• u0 is smooth on its positivity set – except perhaps, at the line{x = 0}, where it may

be discontinuous,
• ∂zu0, ∂xu0 � 0; ∂xxu0 > 0 on ]0, ζ0[ × R+,
• there exists a smooth functionf (z, x), locally bounded away from0 in [0, ζ0]×R+,

such that

u0(z, x) = f (z, x)
√
ζ0 − z. (1.5)

Then Problem(1.2), (1.3)has a unique global classical solution. Moreover there is a
C1,α functionζ(t) such that

• for all (t, z, x) ∈ R+ × R
2+, u(t, z, x) > 0 if and only ifz < ζ(t),

• the functionu is smooth on its positivity set – except, perhaps, on the line{x = 0}.
Moreover the ‘pressure’ function

p = u2 (1.6)

is smooth up to the boundary of its positivity set.

The proof of this result will take most of the paper. A by-product of this theorem is a
strong comparison principle that will allow us to prove the next

THEOREM 1.2. – Assume the initial datum to satisfy the assumptions of Theorem1.1.
There existsz0 ∈ R such that

lim
t→+∞u

(
t, z

√
t , x

√
t
)= φ(z + z0, x). (1.7)

Finally, we will complete the analogy with the porous medium equation by deriving a
free boundary relation.
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THEOREM 1.3 (Free boundary relation). –Assume the initial datum to satisfy the
assumptions of Theorem1.1. The following relation is valid for allt > 0:

pt

(
t, ζ(t),0

)= 1

4π
p2
z

(
t, ζ(t),0

)
. (1.8)

As a consequence the speed of the interface is given by

ζ̇ (t) = − 1

4π
pz

(
t, ζ(t),0

)
. (1.9)

The plan of this paper is as follows. Because it seem hard to construct solutions to (1.2),
(1.3) in a direct fashion, we approximate the problem by just replacing the condition
u = 0 at+∞ byu = ε. If we believe there is some element of truth in the porous medium
heuristics, then we should be facing a strictly parabolic nonlinear diffusion problem – or
at least, something quite equivalent – and we will indeed see that this is what happens.
A cornerstone of the section will be a comparison principle for the classical solutions,
that will remain valid for pointwise limits of classical solutions. The outcome of the
section will be a global viscosity solution to (1.2), (1.3).

We will pause in Section 3 to examine some special solutions, namely: travelling
waves and self-similar solutions. The latter were studied at length in [18], but we will
take this occasion to prove that they are viscosity solutions – a rather necessary property
if we wish to compare them to other viscosity solutions.

The study of the free boundary really starts in Section 4. We will basically prove
in this section the results corresponding to [8]: the free boundary is Lipschitz and
nondegenerate. The spirit of the proofs will more or less be the same as in [8], but
we will have to devote an extra effort to prove a class of Harnack inequalities suited to
our problem.

Section 5 will adapt the iteration technique of [9] to the present context and yield
Theorem 1.1. Finally, Theorems 1.2 and 1.3 will be proved in Section 6.

2. Smooth approximations

As shown by the heuristics of the introduction, the nonlinear oblique derivative
boundary condition acts as a nonlinear effective diffusion at the boundary. Instead of
askingu to go to 0 asz → +∞, we therefore investigate the solutionsul−,l+ of the
problem 


ut − uxx = 0, (t, z, x) ∈ R+ × R

2
+,

ux = uuz (t > 0, z ∈ R, x = 0)
(2.1)

with the conditions at±∞
u(t,−∞, x) = l−, u(t,+∞, x) = l+; 0< l+ � l−. (2.2)

For commodity, the subscriptl−,l+ will be deleted, except in the last paragraph of this
section.

The ‘pressure’p = u2 satisfies the equation
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


pt − pxx = −p2
x

4p
, (t, z, x) ∈ R+ × R

2
+,

px = √
ppz (t > 0, z ∈ R, x = 0).

(2.3)

The organisation of the section is the following: first, we derive the homogeneity and
comparison principles for the positive solutions of (2.1); then we prove a global existence
result to the Cauchy problem for (2.1), (2.2). We end the section by defining the solutions
to Problem (1.2).

Notations. In the whole paper, we will define the following boxes:

B−
h (t0, z0)= {−h < t − t0 < 0, −h < z − z0 < h},

B+
h (t0, z0)= {0< t − t0 < h, −h < z − z0 < h}, (2.4)

Bh(t0, z0)=B+
h (t0, z0)∪ B−

h (t0, z0),

2.1. Homogeneity, comparison principle

We begin with homogeneity considerations, and notice that Eq. (2.1) has the same
two-parameter family of homogeneities as the porous medium equation. Namely:

PROPOSITION 2.1. – Let u be a solution of(2.1). Then, for all nonzerob and c, the
function c

b
u( t

b2 ,
z
c
, x
b
) is also a solution to(2.1). Similarly, ifp is a solution of(2.3), then

c2

b2p(
t

b2 ,
z
c
, x
b
) is also a solution to(2.3).

The proof is obvious.
The basis of the whole theory is that two smooth solutions of (2.1), (2.2) which

compare at the timet = 0 will also compare at all later time. We note here that, because
we expect an interface to the solution of the initial problem (1.2), we cannot talk yet
about smooth solutions, even for the pressurep, that we only expect to be Lipschitz.

PROPOSITION 2.2. – Let u10 � u20 be two positive smooth Cauchy data for(2.1),
such that∂zu0i � 0. Assume they generate two global classical solutionsu1 and u2.
Then we have∂zui � 0, andu1 � u2.

Proof. –Assume first∂zui � 0 and setv = u1 − u2 − δ; the boundary condition forv
is

vx = ((u1 + u2)v
)
z
+ δ(u1 + u2)z.

We may, for instance, multiply the equation forv by v+ and integrate onR2+. Because
we have(u1 + u2)z � 0 we obtain

1

2

d

dt

∫
R

2+

(v+)2 dzdx +
∫

R
2+

(
(v+)x

)2
dzdx

+ 1

4

+∞∫
−∞

(u1 + u2)z(t, z,0)(v+)2(t, z,0)dz � 0. (2.5)
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Becauseu1 and u2 are smooth, the boundary term is controlled by the two volume
integrals of(v+)2 and((v+)x)2, and we conclude with Gronwall’s lemma. Then we send
δ to 0.

To prove that∂zui � 0, we set this timev = ∂zui and we note thatv+ = 0 at t = 0.
The boundary condition is this time

vx = uivz + v2;
multiplying byv+, integrating by parts and using the smoothness ofv yieldsv+ ≡ 0. ✷

We point out that the assumption∂zu0 � 0 is most certainly unnecessary. It simplifies,
however, the proof of this proposition, which is important enough to deserve a self-
contained proof. On the other hand, Proposition 2.2 is not quite sufficient to handle all
the comparisons that we are going to make in the sequel of the paper. Therefore we
generalize it to the

PROPOSITION 2.3. – Let u1 andu2 be respectively a weak sub-solution and a weak
super-solution for(2.1), with initial datau0i , such that

• ∂zui � 0 in the distributional sense,
• there exist two constants(ai)i∈{1,2} such thatui is smooth on{t � 0, z � ai, x � 0}

and{t � 0, z � ai, x � 0},
• u01 � u02.
Then we haveu1 � u2.

Proof. –One should first note that, under the assumptions of the proposition, the
function z �→ u2(t, z,0) is continuous for allt > 0. If it were not so, the bounded term
ux would have to be less than – in the distribution sense –uuz, which carries a Dirac
measure; this is a contradiction. Then we may argue just as in Proposition 2.2.✷

The reason why we need this proposition is that we shall have to handle self-similar
solutions, which behave exactly in the fashion described by Proposition 2.3. Another
extension of Proposition 2.2 concerns the problem in the quarter plane

ut − uxx = 0, (t, z, x) ∈ R+ × R+ × R+,

ux = uuz, (t, z) ∈ R+ × R+, x = 0,
(2.6)

with the Dirichlet condition

u(t,0,0) = α(t), (2.7)

whereα(t) is a givenC1 function.

PROPOSITION 2.4. – Let u1 andu2 be respectively a weak sub-solution and a weak
super-solution for(2.6), with initial datau0i , such that

• ∂zui � 0 in the distributional sense,
• there exist two nonnegative constants(ai)i∈{1,2} such thatui is smooth on{t �

0, 0 � z � ai, x � 0} and{t � 0, z � ai, x � 0},
• u1(t,0,0) � α(t) � u2(t,0,0),
• u01 � u02.
Then we haveu1 � u2.
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This will also be needed in the course of the paper.
A first consequence of Proposition 2.2 is

PROPOSITION 2.5. – The Cauchy problem for(2.1), (2.2)has at most one smooth
solution, provided that the initial datum isz-decreasing.

Another consequence is

PROPOSITION 2.6. – Assume that the Cauchy datumu0 satisfies the assumptions
of Proposition2.2, and moreover satisfies∂xu0 � 0, ∂2

xxu0 � 0. Assume it generates a
classical solutionu; then we have∂xu � 0, ∂2

xxu � 0.

The next consequence of the proposition is a hyperbolic inequation verified by the
classical solutions of (2.1).

PROPOSITION 2.7. – Assumeu0 to satisfy∂xu0 � 0, ∂zu0 � 0, and to generate a
classical solutionu to (2.1), (2.2). Then

∀(t, z, x) ∈ R+ × R
2
+, 2tut + xux + zuz � 0. (2.8)

Proof. –For all ε > 0 we have

u0

(
z

1+ ε
,

x

1+ ε

)
� u0(z, x). (2.9)

In Proposition 2.5 we takec = b = 1+ ε; Proposition 2.5 implies that the only solution
of (2.1) with datumu0(

z
1+ε

, x
1+ε

) is u( t

(1+ε)2
, z

1+ε
, x

1+ε
). From Proposition 2.2 and (2.8)

we have

u

(
t

(1+ ε)2
,

z

1+ ε
,

x

1+ ε

)
� u(t, z, x).

Then we expand the above inequality with respect toε, divide byε and sendε to 0. ✷
COROLLARY 2.1. – Assume the assumptions of Proposition2.6 to be satisfied. Then

uz controlsut on {t > 0, z > 0, x � 0}.
To see this, we first setx = 0, which implies the result at the boundary. The corollary is
true in the whole domain because bothut anduz satisfy the 1D heat equation.

All in all, we see that a lower estimate foruz will imply a bound foru in Lipschitz
norm. Moreover, this will imply that the level sets ofu will have finite, controlled speeds.

2.2. The Cauchy problem for (2.1), (2.2)

The main result of this section is the following.

THEOREM 2.1. – Chooseα ∈ ]0, 1
2[. Letu0 be aC2,α datum satisfying(2.2), and

∂xu0, ∂zu0 � 0, ∂2
xxu0 � 0. (2.10)

Then(2.1), (2.2)has a unique global classical solutionu, satisfying inequalities(2.10).
Moreover,u is C∞ if u0 is C∞.
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Of course, the important matter is what happens at the boundary{x = 0}, sinceu satisfies
the 1D heat equation inside the domain. LetI1/2 denote the Abel time-integrator of order
1/2. For any functionf (t) locally bounded onR∗+ it is defined as – see [11]:

I1/2f = 1√
π

t∫
0

f (τ)√
t − τ

dτ. (2.11)

Let ∂1/2 denote the time half-derivative

∂1/2f (t) = 1√
π

d

dt

t∫
0

f (s)√
t − s

ds = 1√
π

t∫
0

ḟ (s)√
t − s

ds (2.12)

the last equality being valid only iff (0) = 0. We have [11]

I1/2I1/2f (t) =
t∫

0

f (s)ds,

∂1/2∂1/2f (t) = ḟ (t), ∂1/2I1/2f (t) = f (t). (2.13)

Let us setφ(t, z) = u(t, z,0), the functionφ satisfies the integral equation

φ(t, z) = (
et∂

2
xxu0

)
(z,0)− I1/2(φφz). (2.14)

For integral operators of Abel type and their properties, see, for instance, [11,19].
Global existence results related to Theorem 2.1 are proved in recent works of Clément,
Gripenberg and Londen [10,13]. They consider equations of typeu = Iα(f (u)z) + u0,
where Iα is the Abel integrator of orderα ∈ ]0,1[; the function f is smooth and
satisfiesf ′ � δ > 0. They use sectorial operator and analytic semigroup techniques,
which do not seem to localize easily. Because we do need local smoothness results in
the rest of the paper, we think that it is useful to present a complete independent existence
theory.

The proof of Theorem 2.1 comprises two steps: first, existence of a maximal solution;
second, uniform estimates proving the existence of the solution for all times. The first
step is relatively standard. The second step goes as follows: formulation (2.14) may be
iterated to yield

φ(t, z) = (
et∂

2
xxu0

)
(z,0)− I1/2

(
φ
(
φ∂z
((
et∂

2
xxu0

)
(z,0)− I1/2(φφz)

)
z

))
. (2.15)

Given Eq. (2.13), this formulation resembles much to a nonlinear parabolic equation of
the form

φt = (
φ2φz

)
z
+ lower order terms

which brings us back to the porous medium equation – but, this time, with a solution that
is bounded away from 0. The standard way to prove regularity for such an eqution is

(i) to prove a gradient estimate, so that the termφ2φzz appears as a term of the form
a(t, z)φzz with a Hölder;

(ii) apply Schauder estimates combined to a suitable frozen coefficients technique
[15].
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LEMMA 2.1. – There is atmax > 0 such that Problem(2.1), (2.2) has a unique
classical solution of[0, tmax[.
For this, we linearize Eq. (2.14) around the initial valueφ0 and write an approximate
diffusion equation forφ. What makes Lemma 2.1 hold is the

LEMMA 2.2. – Considerf (t, z) ∈ C
2+α,1+α

2 (R+ × R) such thatf (0, z)= 0 for all z
and two functionsa(z), b(z) ∈ C2,α(R) such thata � a0 > 0. There is a unique function
φ(t, z) solution of

φ = I1/2
(
a(z)φz + b(z)φ

)+ f (t, z). (2.16)

Moreover there is a constantC(a0,‖a‖2,α) such that

‖φ‖2+α,1+α
2

� C‖f ‖2+α,1+α
2
. (2.17)

For the proof of this lemma, the following preliminary is needed.

LEMMA 2.3. – Considerf (t, z) ∈ C
2+α,1+α

2 (R+ × R) such thatf (0, z) = 0. Then
we have

‖∂1/2fz‖α,
α
2

+ ‖∂1/2f ‖
α,

α
2

� C‖f ‖2+α,1+α
2
. (2.18)

Proof. –The nontrivial part concerns of course the Hölder norm of∂1/2fz. We break
the difference∂1/2fz(t, z)− ∂1/2fz(t

′, z′) into the sum of three integrals:

I1 =
t∫

0

fzt(s, z)− fzt(s, z
′)√

t − s
ds,

I2 =
t∫

0

fzt(s, z
′)
(
(t − s)−1/2 − (t ′ − s)−1/2)ds, (2.19)

I3 =
t ′∫
t

fzt(s, z
′)√

t ′ − s
ds.

Only I1 will be evaluated, the two others being treated similarly. We integrate by parts
and obtain

I1 =
t∫

0

fz(s, z)− fz(t, z)− fz(s, z
′)+ fz(t, z

′)
(t − s)3/2

ds. (2.20)

Then the integral is broken into two regions:

I1 =
t−(z−z′)2∫

0

+
t∫

t−(z−z′)2

:= I11 + I12.

To treatI12, we use the fact that, for all(s, t, z) ∈ R+ × R+ × R, we have

∣∣fz(t, z)− fz(s, z)
∣∣� ‖f ‖2+α,1+α

2
|t − s|1+α

2
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and a similar property for|fz(t, z
′)− fz(s, z

′)|. All in all, we controlI12 by |z− z′|α. As
for I11, we use


(s, z, z′) := ∣∣fz(s, z
′)− fz(s, z)− fzz(s, z)(z− z′)

∣∣� ‖f ‖2+α,1+α
2
|z − z′|1+α

and we have

I11 �
t−(z−z′)2∫

0

|fzz(t, z)− fzz(s, z)||z′ − z| +
(s, z, z′)+
(t, z, z′)
(t − s)3/2

ds

�C‖f ‖2+α,1+α
2

t−(z−z′)2∫
0

(t − s)α/2|z′ − z| + |z′ − z|1+α

(t − s)3/2
ds

and we end up with a control ofI11 by |z − z′|α . ✷
Proof of Lemma 2.2. –The idea is to write a linear diffusion equation forφ and to use

the classical Schauder estimates. Assumingφ to exist, we see that it has to satisfy

φ = I1/2
(
a(z)φz + b(z)φ

)+ f

= I1/2
(
a(z)

(
I1/2

(
a(z)φz + b(z)φ

)+ f
)
z
+ b(z)I1/2

(
a(z)φz + b(z)φ + f

))+ f

hence the parabolic equation

φt = a(aφz)z + a(bφ)z + abφz + b2φ + a∂1/2fz + b∂1/2f + ft . (2.21)

From Lemma 2.3,∂1/2f and ∂1/2fz are controlled inCα,α/2 by theC2+α,1+α/2-norm
of f . The coefficientsa, az andb being more thanCα , the classical Schauder estimates
apply. ✷

Proof of Lemma 2.1. –If such a solutionφ exists, the functionϕ obtained by setting

f0(t, z)= et∂xxu0(z,0),

f1(t, z)= f0 + I1/2(f0∂zf0),

φ = f1 + ϕ

verifies the equation

ϕ = I1/2(f1∂zf1 + f1ϕz + ∂zf1ϕ + ϕϕz). (2.22)

A fixed point argument is built up as follows: for a givenT > 0, and a given element
ψ(t, z) ∈ C2+α,1+α/2([0, T ] × R), we defineT ψ as the solutionϕ of

ϕ = I1/2
(
∂zf1(0, z)ϕ + f1(0, z)ϕz

)
+ I1/2

(
∂z
(
f1 − f1(0, z)

)
ψ + (f1 − f1(0, z)

)
ψz +ψψz

)
.

If T > 0 is small enough, theC2+α,1+α/2 norm of the linear terms terms inψ may be
estimated byT α‖ψ‖2+α,1+α/2. Lemma 2.2 then ensures thatT is a contraction on a
suitably small ball ofC2+α,1+α/2([0, T ] × R). ✷
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To prove that we havetmax = +∞, we needa priori estimates. They are broken into
two steps: first, a Lipschitz bound; then the finalC2+α,1+α/2 bound.

LEMMA 2.4. – Assume the assumptions of Theorem2.1 to hold. There is a constant
C(l−, l+) such that any classical solution of Problem(2.1), (2.2)with initial datumu0

satisfies‖ut‖∞ + ‖ux‖∞ + ‖uz‖∞ � C/
√
t .

Proof. –From Corollary 2.1, it is sufficient to give a lower bound foruz. Clearly, we
havel− � u � l+. Then we setv(t, z, x) = ux(t, z, x) and write

vx(t, z,0)= uxx(t, z,0)= ut (t, z,0)

� −Cuz(t, z,0) from Proposition 2.7

� −C

l−
v(t, z,0).

Then we still denote byux the even extension ofux to R+ × R × R−. It satisfies

vt − vxx � −C

l−
vδx=0,

which classically implies

v(t, z,0)� et∂xxv0 − C

l−
I1/2v.

The first term of the right-hand side is estimated from below by−Cl+t−1/2, and we infer
from the generalized Gronwall lemma [14, Ch. 7] thatv(t, z,0)� −C(l−, l+)t−1/2. Then
we use the boundary conditionuz = v/u to conclude that

uz(t, z,0)� −C(l−, l+)
l−

t−1/2. �

Lemma 2.4 may be localized, and its local version is stated without proof in the
following proposition.

PROPOSITION 2.8. – Assumeu > 0 to satisfy Problem(2.1) in B1(t0, z0)× R+. Also
assumeut , uz, ux � 0. Then|ux(0,0,0)| + |uz(0,0,0)| + |ut(0,0,0)| is controlled by a
constant only depending onmaxB1(t0,z0,0) u andminB1(t0,z0,0) u.

TheC2+α,1+α/2 estimates are now provided in their local versions. In contrast with
the Lipschitz estimates, there does not seem to be an easy way to derive them globally.
In order to do this, we scale the equation so that the boundary condition readsux =
(1+ o(1))uz and apply Lemma 2.2. This absorbs the o(1)uz.

PROPOSITION 2.9. – Under the assumptions of Proposition2.8, and for allr > 0,
there exists a constantC depending onr , maxBr (t0,z0) u, minBr (t0,z0) u and

sup
x�0

∥∥u0(., x)
∥∥
C0,α([z0−r,z0+r]) (2.23)

such that
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‖u‖C2+α,1+α/2(Br (t0,z0)
� C. (2.24)

Remark2.1. – There is in this problemnota full regularizing effect as there would be
in a diffusion equation; there is instead a memory effect preventing a parabolic equation

type bootstrap. The term preventing the bootstrap is∂ηe
t∂2

ξξ u0, which remains even after
localization, and for which there is no smoothing effect inz. For instance, assume that
u0(z, x) has a discontinuity line{z = 0}. The maximum regularity that we may recover
with such a term is Lipschitz regularity inz. However, the derivative discontinuity will
remain located at the line{z = 0}. This is why thez-derivative of the self-similar solution
is discontinuous at the point(z = 0, x = 0), see [18].

To prove the proposition, we will need a lemma quite similar in spirit to Lemma 2.3.

LEMMA 2.5. – ChooseT > 0. Let a(t, z) be a Lipschitz function int and z and
b(t, z) belong toLp([0, T ] × R), with p > 2. Let the functionψ(t, z) be defined as

ψ = I1/2(aI1/2b). (2.25)

(i) The functionψt belongs toLp([0, T ] × R); moreover we have

‖ψt‖Lp([0,T ]×R) � C‖a‖Lip‖b‖Lp([0,T ]×R). (2.26)

(ii) Assumeb to be inCα,α/2(R+ × R). Thenψt belongs toCα,α/2(R+ × R) and we
have∣∣ψt(t, z)−ψt(t

′, z′)
∣∣�C

(
1+ ‖a‖Lip

)‖b‖∞
√|z − z′| + |t − t ′|

+C
(
1+ ‖a‖∞

)‖b‖α,α/2
(|z − z′|2 + |t − t ′|)α/2

. (2.27)

Proof. –First, we claim that

ψt = ab − 1

2
√
π

t∫
0

a(s, .)− a(t, .)

(t − s)3/2
I1/2b(s, .)ds

:= ab − 1

2
√
π
ψ1.

(2.28)

To prove formula (2.28), one only has to decomposeψ under the form

ψ = a

t∫
0

bds + 1√
π

t∫
0

a(s, .)− a(t, .)√
t − s

I1/2b(s, .)ds (2.29)

and differentiate with respect tot , assuming thata is C1 – because the intermediate
computations involveat . Then one concludes by a density argument.

Inequality (2.26) is now obvious. To prove inequality (2.27), we assume without loss
of generality thatt � t ′ and we break the differenceψ1(t, z) − ψ1(t

′, z′) into the sum
1√
π
(I1 + I2 + I3), where

I1 =
t ′∫
t

a(s, z′)− a(t ′, z′)
(t ′ − s)3/2

I1/2b(s, z
′)ds,
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I2 =
t∫

0

(
a(s, z′)− a(t ′, z′)

(t ′ − s)3/2
− a(s, z)− a(t, z)

(t ′ − s)3/2

)
I1/2b(s, z

′)ds,

I3 =
t∫

0

a(s, z)− a(t, z)

(t − s)3/2

(
I1/2b(s, z

′)− I1/2b(s, z)
)
ds.

To boundI1, we use the fact thata is Lipschitz andb bounded, and we easily obtain
a control ofI1 by ‖b‖∞‖a‖Lip

√
t ′ − t .

To boundI2, we break it under the form

I2 =
t−|z−z′|∫

0

+
t∫

t−|z−z′|
:= I21 + I22.

We have

|I21| =C‖b‖∞

( t−|z−z′|∫
0

( |a(s, z′)− a(s, z)|
(t ′ − s)3/2

+ |a(t ′, z′)− a(t, z)|
(t ′ − s)3/2

+ · · ·

+ ∣∣a(t, z)− a(s, z)
∣∣( 1

(t − s)3/2
− 1

(t ′ − s)3/2

))
ds

)

�C‖b‖∞‖a‖Lip

(√
t ′ − t + 2

√|z′ − z| +
t∫

0

(
1√
t − s

− t − s

(t ′ − s)3/2

)
ds

)

� 2C‖b‖∞‖a‖Lip

(√
t ′ − t +√|z′ − z|

)
.

According to the above calculation, the only term that we still have to estimate inI22 is

Ĩ22 :=
t∫

t−|z−z′|

|a(s, z′)− a(s, z)+ a(t, z)− a(t ′, z′)|
(t ′ − s)3/2

ds,

taking into account that we still boundI1/2b by ‖b‖∞. We write

Ĩ22 �
t∫

t−|z−z′|

|a(s, z′)− a(t ′, z′)|
(t ′ − s)3/2

ds +
t∫

t−|z−z′|

|a(s, z)− a(t, z′)|
(t ′ − s)3/2

ds

� ‖a‖Lip

( t∫
t−|z−z′|

ds√
t ′ − s

+
t∫

t−|z−z′|

t − s√
t ′ − s

ds

)

� 2‖a‖Lip

(√|z − z′| + √
t ′ − t

)
.

All in all, we have, for some constantC > 0:
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|I2| � C‖b‖∞‖a‖Lip

(√
t ′ − t +√|z′ − z|

)
. (2.30)

The termI3 is much easier to bound; one may see only by inspection that

|I3| � C‖a‖Lip‖b‖α,α/2|z − z′|α.

Gathering all the information, we prove the lemma.✷
Remark2.2. – Lemma 2.5 would still be true if, instead of assuminga to be

Lipschitz, we had assumed it to beµ-Hölder in t andz, with µ ∈ ]1
2,1].

Proof of Proposition 2.9. –First, we setβ := u(t0, z0,0) and

hu(τ, η, ξ) := u
(
t0 + h2(τ − 1), z0 + hη,hξ

)− β, (2.31)

where h < 1 is a small parameter such thatt0 − 3h > 0. Then, letγ (τ, η) be a
nonnegative mollifier vanishing outside the ballB2(1,0) and equal to 1 in B1(1,0) and
let us setv(τ, η) = (γ u)(τ, η). The equation satisfied byv reads


vτ − vξξ = γτu, (τ, η, ξ) ∈ R+ × R

2
+,

vξ = (β + hu)(vη − γηu) (τ > 0, η ∈ R, ξ = 0).
(2.32)

Setting

w(τ, η) =
τ∫

−1

(
e(τ−σ)∂ξξ γτu

)
ξ=0 dσ

we write

v = I1/2
(
(β + hu)(vη − γηu)

)+w. (2.33)

Our task is now to write a diffusion equation forv, with small nonlinear parts. To do so,
we iterate Eq. (2.33), and we end up with an expression of the form

vτ = β2vηη + ∂τ (J1 + J2 + J3),

where

J1 = I1/2
(
(β + hu)I1/2(β + hu)vηη

)− β2

τ∫
−1

vηη ds,

J2 = I1/2
(
(β + hu)I1/2(β + hu)ηvη

)− I1/2
(
(β + hu)I1/2(γηu)η

)
,

J3 = w + I1/2
(
(β + hu)wη

)
.

(2.34)

To prove our proposition, we have to control theCα,α/2 norm of∂τ (J1 + J2).
According to Lemma 2.5(i), we may bound theLp norm of ∂τ (J1 + J2) by Cp(1 +

h‖vηη‖Lp([−1,1]×R)). Indeed, let us first have a look atJ1; we setJ1 = J11 + J12, with
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J11 = hI1/2
(
uI1/2(β + hu)vηη

)+ h2I1/2
(
uI1/2(uvηη)

)
,

J12 = hβ

τ∫
−1

uvηη dσ.
(2.35)

We then estimate∂τJ11 by application of Lemma 2.5(i), by remembering that:
– theη-Lipschitz norm ofu is preserved under rescaling,
– theτ -Lipschitz norm ofu becomes multiplied byh.

Then we notice that∂τJ12 = hβuvηη. The remaining terms inJ1 involve lower order
terms in u and v. The term J2 involves lower order terms inv, that are under
control. Finally,‖∂τJ3‖Lp is controlled by sup−1�s�1 ‖uη(s, . , .)‖L∞(R2+), which is itself
controlled by

sup
−1�s�1

∥∥uη(s, . ,0)
∥∥
L∞(R)

+ sup
−1�s�1

∥∥∂ηes∂ξξ u0
∥∥
L∞(R2+)

by the maximum principle. Hence this quantity is under control, provided the quantity
given by Eq. (2.23) is also controlled.

Then we apply the parabolicLp estimates, that tell us

∥∥(vτ , vη, vηη)∥∥Lp([−1,1]×R)
� Cp

(
1+ h‖vηη‖Lp([−1,1]×R)

)
.

Forh small enough, we have the desired control. Now, undoing the scaling, we cover the
ball Br(t0, z0) with a finite number of balls of radiush and apply the just found estimate
in each of them.

A first consequence of the above considerations is that, becausep can be chosen large
enough, we have a control onuz in Cα,α/2 norm. Let us now redo the scaling (2.31) and
scan back the terms∂τJ1 and∂τJ2, given by (2.34).

Application of Lemma 2.5(ii) witha := u, b = (β + hu)vηη yields the estimate

‖∂τJ11‖α,α/2 � C
(
1+ h‖vηη‖α,α/2

)
.

Because now the functionuz is bounded inCα,α/2, the remaining terms are also
bounded inCα,α/2. Lemma 2.5(ii) applies once again.

Then we apply the parabolic Schauder estimates, that tell us

∥∥(vτ , vη, vηη)∥∥α,α/2 � C
(
1+ h‖vηη‖Lp([−1,1]×R)

)
.

This ends the proof of the proposition.✷
Proof of Theorem 2.1. –On the one hand, we have a local existence theorem with a

maximum life timetmax for the solutionu. On the other hand, Proposition 2.9 tells us
that theC2+α,1+α/2 norm ofu is estimated up totmax. This meanstmax = +∞.

The fact thatu is C∞ if u0 is C∞ can now be inferred from a standard botstrap proce-
dure. ✷
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2.3. Construction of a solution to the original problem

Coming back to the notations of the beginning of this section, we calluε the unique
solution of the Cauchy problem for (2.1), withl− = 1 + ε andl+ = ε. Thus we build a
nonincreasing sequence of smooth functions, which therefore converges pointwise and
in L1

loc(R
2+) to some functionu(t, z, x). Let us list the obvious properties ofu:

• we have 0� u � 1,
• the functionu is nondecreasing int and nonincreasing inz andx;
• the functionu is C∞ in x for x > 0 – not up to the boundary – and convex inx.

These facts have several consequences. The first one is the

PROPOSITION 2.10. – The functionu is a weak solution to(1.2).

Proof. –Let ϕ(t, z, x) be a smooth compactly supported test function; for allε > 0
we have ∫

R+×R
2+

(−ϕt − ϕxx)u
ε −

∫
�

(
uε2

2
ϕz − uεϕx

)
ds dz =

∫
R

2+

uε
0ϕ. (2.36)

Because of items 1 and 2, the family(uε)ε is bounded inBV(R2+); let us denote byγ the
trace at the boundary� = {t > 0, x = 0, z ∈ R}. Becauseγ is continuous fromBV(R2+)
to L1(�), we may pass to the limitε → 0 in Eq. (2.36).

The limits (1.3) at±∞ hold because it is possible to trapu between two similarity
solutions that are known to exist – see next section.✷

Proposition 2.10 is rather anecdotical: first, because we will prove thatu is a classical
solution on its positivity set, with a free boundary relation. Second, because such a
formulation does not allow us to prove a comparison principle, which is the cornerstone
of the theory. This is why we are not going to dwell any longer on the notion of weak
solution.

Viscosity solutions to the porous media equation have already been defined in
Caffarelli and Vazquez [7] and have been proved to have comparison properties. We
could, if we wished so, give intrinsic definitions to our equation, but we will not do so.
The definition of viscosity solution that we will adopt is the following:

DEFINITION 2.1. –Letu0 be a smooth initial datum satisfying:
• ∂zu0 � 0, ∂xu0 � 0, ∂xxu0 � 0.
• u0(−∞, x) = 1, uniformly inx, and there existsz0 > 0 such thatu0(z,0) = 0 for

z � z0.
A viscosity solution to(1.2) with initial datumu0 is the pointwise limit, asε → 0, of

the family(uε)ε of classical solutions of(2.1), with initial datauε(0) such thatuε(0) has
limit ε asz → +∞, 1+ O(ε) asz → −∞, and such that(uε(0))ε converges uniformly
to u0 asε → 0.

First, we notice that the limit does not depend on the approximation ofu0. Indeed,
(uε(0))ε and(ũε(0))ε be two approximating sequences ofu0; for all δ > 0 we may find
a sequence(εn)n such thatuεn(0) � ũεn(0) + δ; hence ifu andũ are the corresponding
limits we haveu � ũ + δ. The definition therefore implies immediately the following
result, which is the conclusion of this section.
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THEOREM 2.2. – The Cauchy problem(1.2) has a unique viscosity solution.
Moreover, two viscosity solutions of Problem(1.2) that compare initially will compare
at all later times.

3. Special solutions

3.1. Self-similar solutions

A self-similar solution of Problem (2.1) is a solution of the formu(t, z, x) =
φ( z√

t
, x√

t
). Such a solutionφ(z, x) satisfies

−φxx − 1

2
(zφz + xφx) = 0

(
R

2
+
)
,

φx = φφz (x = 0).
(3.1)

The problem is supplemented by the condition

φ(−∞, x) = M > 0, φ(+∞, x) = 0. (3.2)

We have the

THEOREM 3.1. – Problem(3.1), (3.2)has a unique viscosity solutionφM . Moreover
there existszM > 0 such thatφM verifies

φM ≡ M onR
∗
− × R+, (3.3)

φM ≡ 0 on [z0,+∞[ × R+, (3.4)

φM is discontinuous along the axisz = 0, x > 0, (3.5)

φM ∈ C∞(]0, zM [ × R+
)
, (3.6)

φM(. ,0) is continuous and Lipschitz on]−∞, zM[. (3.7)

Proof. –The existence of a solutionφM to (3.1), (3.2) with properties (3.4)–(3.7)
is asserted by Theorem 1.1 of [18]. To see that it is a viscosity solution, let us
constructε-approximationsφε of φM ; we drop the subscriptM . We notice thatφε is
still discontinuous across thex-line, but we may restrict ourselves to the construction of
φε onR

2+; the condition at point(0,0) is φε = 1+ ε. We extendφε by 1+ ε for negative
z. The condition at+∞ becomesφ(+∞, x) = ε, uniformly in x. A super-solutionφ

ε

is given by the solutionψ1+ε of the linear problem of the next paragraph. A subsolution
is given byφε = φ + ε, and we haveφ

ε � φε. Hence there is a solutionφε, which is
smooth from Theorem 1.1 of [18].

Finally, we notice that allε-approximations of Problem (3.1), (3.2) are nonincreasing
in z; hence all viscosity solutions of this problem have this property. Hence a viscosity
solution of (3.1), (3.2) falls in the category of entropy soutions of (3.1), (3.2) as defined
in [18]; therefore Theorem 1.2 of [18] implies uniqueness and, as a consequence, the
uniform convergence ofφε to φ. ✷



58 L.A. CAFFARELLI, J.-M. ROQUEJOFFRE / Ann. I. H. Poincaré – AN 19 (2002) 41–80

Let us call ζM(t) the interface of the self-similar solutionφM( z√
t
, x√

t
). From the

homogeneity considerations of Section 2.1, we have

φM(z)= Mφ1

(
z

M
,1
)
, zM = Mz1, ζM(t) = Mz1

√
t . (3.8)

The last information that we need about the self-similar solutions is their behaviours
nearz = zM .

PROPOSITION 3.1. – There existsk > 0 such thatφ1(z,0) ∼ k
√
z1 − z asz → z1.

Proof. –Setϕ(z)= φ1(z,0). We start from the Cauchy formula

ϕ

(
z√
t

)
= et∂

2
xx

(
lim
t→0

ϕ

(
z√
t
,
x√
t

))∣∣∣∣
x=0

−
t∫

0

ϕ

(
z√
s

)
ϕ′
(

z√
s

)
ds√
t − s

from which we obtain, after sendingt → +∞ and settingη = z√
t
:

ϕ(η)= − 1√
π

1∫
0

ϕ

(
η√
σ

)
ϕ′
(

zη√
σ

)
dσ√
1− σ

. (3.9)

Taking into account thatϕ(η) = 0 if η � z1, we chooseη < z1; then setη = z1 − t and
ϕ(t) := ϕ(z1 − t). Eq. (3.9) becomes

ϕ(t) = 2(z1 − t)√
π

t∫
0

ϕ(s)ϕ′(s)√
(t − s)(2z1 − t − s)(z1 − s)

ds. (3.10)

Let us now recall that we are working with smallt > 0; hence we may set, for all small
t > 0, 0� s < t :

1√
(t − s)(2z1 − t − s)(z1 − s)

= 1√
2(z1 − t)3/2

+ (t − s)h(s, t),

whereh is C∞ in a neighbourhood of(0,0). Let us set4(t)= ϕ2(t); we have

√
4(t)

z1 − t
= 1√

2(z1 − t)3/2
∂1/24+ I1/2(4h)− 1√

π

t∫
0

4(s)hs(s, t)
√
t − s ds.

The idea is that4 almost solves the equation4 = ConstantI1/2

√
4, to which explicit

solutions are easily computed. Comparison with these solutions will give the right
behaviour of4 at t = 0, hence the proposition.

Set

L4 = 1√
2

(
(z1 − t)3/2I1/2(4h)

)−
(√

2(z1 − t)3/2

t∫
0

(
4hs

√
t − s

))
;
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then, in the vicinity oft = 0,4 solves the equation

(I + I1/2L)4 = I1/2

(√
2(z1 − t)4

)
. (3.11)

For everyε > 0, there exists a solution4ε(t) to the integral equation

4 = (1− ε)I1/2

(√
2z14

)
(3.12)

given by

4ε(t) = 2(1− ε)2z1

π
t.

Let us definetε > 0 such that we have, for allt � tε:√
2(z1 − t)4 −L4(t) � (1− ε)

√
2z14(t). (3.13)

This is indeed possible, since4(t) is an increasing function and because of the inequality
L4(t)� Ct max0�s�t 4(s). Now, as in [5], we lift4 and4ε on the interval[0, tε]. We
have4(t) = Q(t,0) and 4ε(t) = Qε(t,0), the functionsQ(t, z) andQε(t, z) being
initially 0 and satisfying the singular heat equation

∂tQ− ∂zzQ = 2
(√

2(z1 − t)Q−LQ
)
δz=0 (t > 0, z ∈ R),

∂tQ
ε − ∂zzQ

ε = 2(1− ε)
√

2z1Q
εδz=0 (t > 0, z ∈ R).

(3.14)

We now claim that, for everyµ > 0 small enough, we haveQ(t + µ,z) � Qε(t, z).
Indeed, settingR(t, z)= Q(t +µ,z)−Qε(t, z) we have, due to (3.13):

∂tR − ∂zzR � 2
(1− ε)

√
2z1R√

Q(t +µ,0) +
√
Qε(t,0)

δz=0 (t > 0, z ∈ R),

R(0, z) � 0.

(3.15)

Because we haveφ1(z,0) > 0 for z < z1 we haveQ(t + µ,0) � Q(µ,0) > 0. Hence
the denominator in the right-hand side of the equation is nonsingular, and the maximum
principle applies to yieldr(t) � 0. Sendingµ to 0 yields4(t) � 4ε(t) on [0, tε] and we
may obtain, by the same method:

4(t) � 4
ε
(t) := 2(1+ ε)2z1

π
t.

This ends the proof of the proposition.✷
3.2. Self-similar solutions of the linear problem

Let b > 0 be a given real number. We are interested here in the self-similar solutions
of the auxiliary linear problem

ut − uxx = 0, (t, z, x) ∈ R+ × R
2
+,

ux = uz, (t, z, x) ∈ �,
(3.16)
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with the condition at±∞
u(t,−∞, x) = 1, u(t,+∞, x) = 0. (3.17)

These solutionsu(t, z, x) =ψb(
z√
t
, z√

t
) satisfy

−∂xxψb − 1

2
(z∂z + x∂x)ψb = 0

(
R

2
+
)
,

∂xψb = b∂zψb (x = 0)
(3.18)

with the condition at±∞
φ(−∞, x) = M > 0, φ(+∞, x) = 0. (3.19)

The property we are interested in, and that will be useful when we prove Harnack
inequalities, is the positivity of the functionψ . It will indeed act as a barrier function.

PROPOSITION 3.2. – Problem (3.18), (3.19)has a unique solutionψb, satisfying
ψb > 0, ∂zψb < 0 in R

2+.

Proof. –We drop the subscriptb. The existence of a unique solution to (3.18), (3.19),
satisfying∂zψ � 0, is standard. For instance, we may think ofψ(z, x) asu1−H(1, z, x),
whereu1−H is the solution of (3.16), (3.17), with initial datumu0(z, x) = 1 − H(z),
H is the Heaviside function. Strictly speaking, we have not defined yet solutions
with discontinuous initial data, but we may easily interpret them as the limit of
ε-regularizations of 1−H . The so obtained functionψ is z andx-nonincreasing.

The functionψ(. ,0) has a nontrivial positivity set inR+; otherwise we would have
ψ = 1 − H , and integration of (3.18), (3.19) overR2+ would reveal a contradiction.
Assume the existence ofz0 such thatψ(z0,0) = 0; we may thinkz0 to be the smallest
z satisfying ψ(0, z) = 0. Arguing as in Proposition 3.1, we find that the function
ϕ(t)= ψ(z0 − t), t > 0, solves the equation

(I + I1/2L)ϕ = I1/2

(√
2(z0 − t)ϕ

)
. (3.20)

The notations are the same as in Proposition 3.22, up to the fact thatz1 has been replaced
by z0.

This time, the equation is linear inϕ. Using the inequalityLϕ(t) � Ctϕ(t) and the
generalized Gronwall lemma, we inferϕ(t) = 0 for t > 0. This is a contradiction. ✷
3.3. Travelling waves

Travelling wave solutions to the problem have the formu(t, z, x) = l(z−V t, x). What
really matters to us is their behaviours atx = 0; let us therefore investigate under which
conditions we have solutions of the forml(z,0)= k

√
z−. Let us write down the Cauchy

formula (2.16) for 0< z < V t ; we obtain

u(t, z,0)= I1/2(uuz)(t, z,0) = k2

2
√
π

t∫
z/V

ds√
t − s

= k2

2
√
π

√(
t − z

V

)+
.
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This imposesk = 2
√
πV , and we end up with a family of travelling waveslV (z, x) with

lV (z,0)= √
4πV z−. (3.21)

Recall thatlV (z, x) satisfies the problem

−lxx − V lz = 0, (z, x) ∈ R
2
+,

lx = llz, z ∈ R.
(3.22)

PROPOSITION 3.3. – The functionlV is the unique viscosity solution of(3.22).

Proof. –We first have to show thatl can be approximated from above by a sequence
of classical solutions(lε)ε of (3.22) such thatlε(+∞, z)= ε. To see this we first remark
that we may limit ourselves to the boundary problem in a quarter plane(z, x) ∈ R+×R+,
with the conditions

lε(0,0) = 1, lε(+∞, x) = ε, (3.23)

the last condition being uniform with respect tox. Indeed, assume that (3.22), (3.23) to
be solved; then we extend the constructed solution – that we now calll – by noticing that
an integral equation forλ(z) := l(z,0) is given by

λ = e−z∂xx l(0, .)
∣∣
x=0 + 1

2V
∂1/2λ

2, (3.24)

the integrator being understood with respect to the negativez variable. Eq. (3.24) may
be inverted as

λ2 = 2V I1/2
(
λ − e−z∂xx l(0, .)

∣∣
x=0

)
, (3.25)

an equation that may be solved globally inλ2 by remembering thatλ has to be�ε.
Hence everything boils down to the problem in the quarter plane. Consider the

solutionm of

−mxx − Vmz = 0, (z, x) ∈ R
2
+,

mx = mz, z ∈ R,

m(0,0) = 1, m(+∞, x) = 0.

(3.26)

Given a wave solutionlV such thatlV (. ,0) = 1, we havelε := lV + ε � l
ε := m + ε.

This is proved by multiplication of the equation forlε − l
ε

byH( lε − l
ε
) and integration

by parts over the quarter plane. This yields

+∞∫
0

(
lε − l

ε)
(0, x)dx � 0.

Hence a maximum point may only occur in the interior of the quarter plane or at the
boundary away from 0. Both are impossible: indeed, we have

(V ∂z − ∂xx)
(
lε − l

ε)= 0,
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an equation that is backward parabolic inz andx; hence the strong maximum principle
and Hopf lemma apply.

Then, we see thatlε (resp.l
ε
) is a sub- (resp. super-) solution to our problem. Hence

there is a solutionlεV tending toε uniformly in x asz → +∞, which is betweenl ε and
l
ε
. HencelεV � ε; hence it can be proved to be smooth, see Section 3 of [18].
Uniqueness can be proved as above, by remembering that:
(i) a viscosity solution is a weak solution, nonincreasing inz;
(ii) due to its definition, a viscosity solution is smooth on its positivity set.

This implies the convergence of(lε)ε to l. ✷
4. The free boundary and p are Lipschitz and nondegenerate

We now have the basic tools that will be needed throughout the paper, namely:
existence and uniqueness of a solution having a comparison principle, and special
solutions that we will be able to compare to that solution.

We initiate in this section the study of the free boundary, and all the considerations
will concern the pressurep = u2. Indeed, it can obviously be seen with Section 3 thatu

is most unlikely to be Lipschitz, whereas we found two examples – travelling waves and
self-similar solutions – where the pressure is Lipschitz, and has linear growth at the free
boundary. The goal of the section is to prove that this fact is general.

Using Proposition 2.3, we may put our solutionu between two self-similar solutions
– say, az-translate ofφ1−ε and az-translate ofφ1+ε – and infer that, for allt � 0, the
functionz �→ u(t, z,0) is compactly supported inR+. Therefore there is a functionζ(t)
such thatu(t, z, x) > 0 for z < ζ(t) – we haveu(t, z,0) > 0 for z < ζ(t), then this
property extends tox �= 0 by the strong maximum principle – andu(t, z, x) = 0 for
z > ζ(t).

The plan of the section is the following: first, we prove that the interface is Lipschitz,
and thatp is globally Lipschitz. Then we will pause in order to prove a class of Harnack
inequalities, and conclude the section by the nondegeneracy ofp. This section roughly
corresponds to Ref. [8] in the study of the porous medium equation, and the results are
qualitatively the same.

4.1. ζ and p are Lipschitz

Our first task is to prove that, for allt0 > 0, u is continuous at(t0, ζ(t0),0). We state
it under the

PROPOSITION 4.1. – Choose anyt0 > 0. Thenu(t0, ζ(t0)+,0) = u(t0, ζ(t0)
−,0) = 0.

Proof. –Assume this is not true and setM := u(t0, ζ(t0)
−) > 0. Then, for allt � t0

we haveu(t, ζ(t0),0) � M . From Proposition 2.4 we have

u(t, z, x) � φM

(
z − ζ(t0)√

t − t0
,

x√
t − t0

)
.

Hence, for allh > 0, we have
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ζ(t0 + h)− ζ(t0)� ζM(t) = Mz1

√
h. (4.1)

On the other hand, settingx = 0 in the hyperbolic inequation (2.8) of Proposition 2.7,
we haveu(t0 + h, z,0)� u(t0, z −Ch,0) which implies

ζ(t0 + h) � ζ(t0)+Ch, (4.2)

contradicting (4.1) for smallh > 0. ✷
For all α ∈ [0,1[, and for allt � 0, let ζ α(t) the minimalz such thatu(t, z,0) = α.

Becauseu is nonincreasing inz and nondecreasing int , we haveu(t, z,0) > α for all
z < ζα(t). Let us call the set{(t, ζ α(t)} theα-level line ofu(t, z,0).

PROPOSITION 4.2. – The functionζ is Lipschitz with constantC, as are all level
lines ofu.

Proof. –Same argument as above: for allt0 > 0 andh > 0 we haveu(t0 + h, z,0) �
u(t0, z − Ch,0); henceζ α(t0 + h) � ζ(t0) + Ch. We conclude by noticing thatζ α is
nondecreasing. ✷

And finally we have the

PROPOSITION 4.3. – The functionp is Lipschitz in all its variables.

Proof. –Chooseα ∈ [0, 1
2] and let(t0 > 0, z0) be such thatu(t0, z0,0) = α. We wish

to prove thatuz(t0, z0,0) is above a constant under control. For this, we first claim the
existence ofr(t0) > 0, controlled from below, such that the set

Z(t0) :=
{
z ∈ R:

1

4
� u(t0, z,0)� 1+ α

2

}

is an interval of length at leastr(t0). Let us assume this is not so, and let us consider any
smoothε-approximation ofu, calleduε. Then the setZε corresponding toZ for uε is an
interval of lengthrε going to 0 asε → 0. Then, still form Proposition 2.4, we have

uε(t, z,0) � φ1+α
2

(
z − z0√
t − t0

,0
)
.

The 1
2 level line of φ1+α

2
( z√

t
,0) is a graph{(t, 1+α

2 z1/2
√
t)}, with z1/2 > 0. Now, we

argue just as above: for smallh > 0 we haveu(t0 + h, z0
1+α

2 z1/2

√
h+ O(rε),0) � 1

2; on
the other hand, due to Proposition 2.7, we haveuε(t0 + h, z0 +Ch,0) � 1

4. Sendingε to
0 yields a contradiction.

From Proposition 2.7 once again, we infer the existence ofτ0 ∈ [0, t0[, such thatt0−τ0

is controlled from below, and such thatu(τ0, z0,0) � 1
3. Arguing as above, we obtain that

the setZ(τ0) is also an interval of length at leastr(τ0), this last quantity being also under
control. Therefore we may apply Proposition 2.8, and infer thatu is under control.

To prove our proposition, we only have to prove the same property for all valuesβ of u
between 0 and12. Let us choose such aβ and pickh > 0 be such thatα := hβ ∈ [0, 1

2[.
Then we remark that, due to the homogeneity considerations of Section 2.1, the function
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ph defined by

ph(τ, η, ξ) := 1

h
p
(
t0 + hτ, z0 + hη,

√
hξ
)

is such that its square root satisfies the original problem (1.2). Moreover, its Lipschitz
constant is the same as that ofp. We now only have to repeat the above argument.✷
4.2. Harnack inequalities for −pz and pt

In parabolic equations, Harnack inequalities are often established directly, for they
are one possible step towards Hölder estimates. Another way to obtain them – which
we choose in this paragraph – is to establish the Hölder estimates first, then a strong
maximum principle.

The situation is the following. Let us pick(t0, z0) ∈ R
∗+ × R

∗+ and a smallh > 0. We
consider the rescaled functionp:

p(t, z, x) := 1

h
p
(
t0 + ht, z0 + hz,

√
hx
)
. (4.3)

We assume, for commodity, thatp(0,0,0) = 1. The above paragraph enables us to find
r > 0, controlled from below, such that

p(t, z,0)� 1

2
for − 3r � t, z � 3r. (4.4)

Let us setu := √
p. We may arrange that (4.4) is also valid for any smoothε-ap-

proximation ofu, with ε > 0 small enough. Let us finally setv := ut or uz. Thenv

solves 


vt − vxx = 0, (t, z, x) ∈ R+ × R
2
+,

vx = (uw)z (t > 0, z ∈ R, x = 0).
(4.5)

PROPOSITION 4.4 (Compactness). –Chooseα ∈ ]0, 1
2[. There existsC > 0, inde-

pendent ofh, such that

‖uz‖Cα,α/2([−r,r]2×R+) + ‖ut‖Cα,α/2([−r,r]2×R+) � C. (4.6)

Eq. (4.6) is also valid for any smoothε-approximation ofu, with a constantC
independent ofh andε.

Proof. –Let (uε)ε>0 be a smoothε-approximation ofu; inequality (4.6) will be proved
for uε. This will imply its validity for u.

We drop the superscriptε. Let us set

ũ(t, z, x) =
+∞∫
z

u(t, z′, x)dz′. (4.7)

Then ũ satisfies the same problem asu in R
2+, but the boundary condition atx = 0

becomes

ũx = −1

2
uũz. (4.8)
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We now notice that̃uz(0, . , .) belongs toC2,α(R2+). Let γ (t, z) be a cut-off function,
equal to 1 in[−r, r]2 × R+ and to 0 outside[−2r,2r]2 × R+. Setw = γ ũ; we have


wt −wxx = γt ũ, (t, z, x) ∈ R+ × R

2
+,

wx = −1

2
u(wz − γzu) (t > 0, z ∈ R, x = 0).

(4.9)

Now, we may apply word by word the arguments of the proof of Proposition 2.9,
because:

• Lemma 2.5 applies, due to the fact that the Lipschitz constant ofu is controlled on
[−3r,3r]2 × R+,

• the term that may cause a bootstrap failure due to the possible lack of smoothness
of u0, see Remark 2.1, namely:

t∫
0

e(t−s)∂2
xxγt ũds

is now controlled byũ(t, z,0) andet∂
2
xx ũ0, which has nowC2+α,1+α/2 estimates in

t andz.
The bound foru now directly results from Proposition 2.9.✷

PROPOSITION 4.5 (Strong maximum principle forv). – Assume thatv is not
identically0 in the boxBr(0,0)× R+. Thenv > 0 in Br(0,0)× R+.

Proof. –The boundary condition forv reads

vx � uvz. (4.10)

We will prove that the set{v > 0} is closed inBr(0,0) × R+. From the usual strong
maximum principle for the heat equation, it is enough to prove that the subset{(t, z) ∈
Br(0,0): v(t, z,0) > 0} is closed inBr(0,0). Let (tn, zn)n�2 be a sequence converging
to (t0, z0) such thatv(tn, zn,0) > 0.

Case1. We havetn > t0 and there isρ ∈ ]0, r − |z0|[ andt1 ∈ ]t0 − r, t0[ such that, for
all z ∈ [z0 − ρ, z0 + ρ] andτ ∈ ]t1, t0[, we have:v(t, z,0) = 0. Then we have, from the
strong maximum principle for the heat equation:

∀(z, x) ∈ [z0 − ρ, z0 + ρ] × R+: v(t1, z,0)= 0.

For n large enough, we havezn ∈ ]z0 − ρ, z0 + ρ[. We may assume, without loss of
generality, thatzn < z0. Let us choose such a largen; thenv(t, z, x) � w(t, z, x), where

wt −wxx = 0, (t, z, x) ∈ ]t1, tn[ × ]zn, z0 + r[ × R+,

wx = −1

2
wz (t1 � t � tn, zn � z � z0 + r, x = 0),

w(t, zn,0) = ϕn(t), w(t, z0 + ρ,0)= 0,

w(t1, z, x) = 0,

(4.11)
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where ϕn(t) is any smooth nondecreasing function on[t1, tn] such thatϕn(tn) =
v(tn, zn,0). To see thatw and v indeed compare, we only have to comparew with
the derivative of a smoothε-approximation of the original functionu; then we notice
that we havewz � 0 – if we had assumedzn > z0, we would have had to choose the
boundary conditionwx = wz andwz would have been nonnegative. Eq. (4.11) implies,
among other things, that we havew = I1/2wz, for all t ∈ [t1, tn] and z ∈ ]zn, z0 + ρ[.
Hence we have

wt −wzz = 0 on
{
t ∈ [t1, tn], z ∈ ]zn, z0 + ρ[}

with the above-mentioned boundary conditions. The strong maximum principle for the
heat equation impliesw > 0 on ]t1, tn[; hencev(t0, z0,0) > 0.

Case2. The sequence(tn, zn) may be assumed to satisfytn < t0. Then, for large
enoughn � 2 there isδn > 0 andρn > 0 such thatv(tn, z,0) > δn for zn − 2ρn � z �
zn + 2ρn. Let us consider the functionwn, satisfying

(∂t − ∂xx)wn = 0 (t, z, x) ∈ ]tn,+∞[ × ]zn − ρn, zn + ρn[ × R+,

∂xwn = ∂zwn (t � tn, zn − ρn � z � zn + ρn, x = 0),

wn(t, zn − ρn,0) = 0 (t > tn),

wn(t, z0 + ρn,0) = 0 (t > tn),

wn(tn, z,0) = δn (zn − ρn, z < z + ρn).

Setw̃n(t, z) := wn(t, z,0). Thenwn is symmetric aboutzn and we have – examine the
functionw − δn:

(∂t − ∂zz)w̃n = 0 (t, z, x) ∈ ]tn,+∞[ × ]zn − ρn, zn + ρn[,
w̃n(t, zn − ρn,0) = 0,

w̃n(t, z0 + ρn,0) = 0,

w̃n(t1, z,0) = δn.

We define a subsolutionw(t, z, x) to Eqs. (4.5), (4.10) by setting

w(t, z, x) =



w̃n(t,
z+zn

2 , x) for z � zn,

w̃n(t, z, x) for z � zn.

(4.12)

From the definition ofw̃ we havew(t, z, x) > 0 for t � tn, zn − 2ρn � z � zn + ρn. If
z0 ∈ ]zn − 2ρn, zn + ρn[, we are done. If not, we have proved the existence ofεn � δn
such that

∀t ∈ [tn, t0 + r], v(t, zn,0) � εn. (4.13)
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Without loss of generality, we may once again assumezn < z0. Let ψ1/2(z, x) be the
linear self-similar solution of Section 2.3 withb = 1

2. From Proposition 3.2 we may find
τn andλn > 0, both going to 0 asn → +∞, such that

• For all t ∈ [tn, t0 + τn], we have

ψ1/2

(
r − zn√

t0 + τn − tn
,0
)

� λn,

• we have

ψ1/2

(
z0 − zn√
t0 − tn

,0
)
> λn.

This implies

v(t, z, x) � εn

(
ψ1/2

(
z − zn√
t − tn

,
x√
t − tn

)
− λn

)
;

as a consequence we havev(t0, z0,0) > 0. ✷
Combining the two propositions leads us to the main result of this paragraph.

THEOREM 4.1 (Harnack inequalities). –Let 0 < r < 1 and a smallε > 0 be given.
There existsCε > 0, independent ofh, see the definition ofv from Eq.(4.3)above, such
that

sup
(t,z)∈B+

r (−ε,0)

v(t, z,0) � Cε inf
(t,z)∈B+

r (ε,0)
v(t, z,0). (4.14)

Proof. –Assume the existence of a sequence of initial data(un
0)n for the Cauchy

problem (1.2), such that the corresponding functionvn satisfies

sup
(t,z)∈B+

r (−ε,0)

vn(t, z,0)= 1, lim
n→+∞ inf

(t,z)∈B+
r (ε,0)

vn(t, z,0)= 0.

By compactness, Proposition 4.4, the sequence(vn)n converges inCα,α/2(B+
r+ε(0,0))

to a functionv, whose supremum inB+
r (−ε,0) is 1, and whose infimum is 0. This

contradicts the strong maximum principle.✷
.

4.3. Nondegeneracy

The statement is

THEOREM 4.2. – Let 0< δ < T be chosen. There existsγ (δ) > 0 such that, for all
t ∈ [0, T ] andz ∈ [0, ζ(t)[, we have

−pz � γ (δ), pt � γ (δ),

ζ̇ (t) � γ (δ).

(4.15)

To prove it, we first show, as in [8], that the speed of the interface is controlled from
below; then we conclude by comparison with a self-similar solution.
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LEMMA 4.1. – ChooseT > 0. There exist a positive constantB, depending onT ,
such that

(2t +B)ut + (z − ζ0)uz + u � 0 (4.16)

on [0, T ] × �, in the distributional sense.

Proof. –In Proposition 2.1 we takec = 1
1+ε

andb = (1+ ε)2. Let us consider a large
B > 0, to be chosen later. The function

uB(ε, t, z, x) := (1+ ε)u
(
(1+ ε)2t +Bε, (1+ ε)(z − ζ0), (1+ ε)x

)
is a solution of (1.2), and the function

v(t, z, x) := ∂

∂ε

(
uB(ε, .)− u

)∣∣∣∣
ε=0

(t, z, x)

= (2t +B)ut + xux + (z − ζ0)uz + u

(4.17)

satisfies the(t, x) heat equation inside the domain, with the linearized boundary
condition

vx = 1

2
∂z(uv).

We are going to prove that, ifB is large enough, thenv(0, .) � 0 on the domain
D = {z � ζ0, 0 � x � 2

√
2T } and on the stripS = {t > 0, z � ζ0, x = 2

√
2T }. This

will imply v(t, z,0) � 0 – same argument as in Section 2.1. The assumptions onu0

gaurantee the existence ofM(T ) such that

−x∂xu0 � u0

2
+M∂xxu0. (4.18)

Hence the nontrivial task is to prove thatv � 0 on S. Since we have(z − ζ0)uz � 0 for
z � ζ0, we only have to care about controllingxux by a portion ofu and a large multiple
of uxx atx = 1, for all t � T andz � ζ0. Let us write

u = et∂xxu0 −
t∫

0

e(t−s)∂xxpzδx=0 ds := u1 + u2. (4.19)

1. Let us first examineu1. If z � 0, there is nothing to prove. If 0� z < ζ0, then we
write

u1
(
t, z,2

√
2T
)=

√
ζ0 − z√
4πt

+∞∫
−∞

e−(2
√

2T−y)2/4tf (z, y)dy.

This region is cut into two pieces: first, there existsδ(T ) > 0 such that, for allz ∈ [0, δ]
and allx ∈ [0,2

√
2T ] we have:

−x∂xu0(z, x) � 1

4
u0(z, x),
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simply becauseu0 is close to 1 and∂xu0 close to 0. On[δ, ζ0]× [0,2
√

2T ], becausefxx

is nonnegative and nonzero, there existµ1(T ) > 0, µ2(T ) > 0 such that, for allt � T :

+∞∫
−∞

e−(2
√

2T−y)2/4tfxx(z, y)dy � µ1(T ),

+∞∫
−∞

e−(2
√

2T−y)2/4tfx(z, y)dy � µ2(T ).

Hence we have, for all(t, z) ∈ [0, T ] × [0, ζ0]:

−x∂xu1(t, z,1)� µ2(T )

µ1(T )
∂xxu1(t, z,1). (4.20)

2. We have, becausepz � 0:

∂xxu2
(
t, z,2

√
2T
)= −

t∫
0

e−2T/(t−s)

4
√
π(t − s)3/2

(
4T

(t − s)
− 1

)
pz

(
s, z,2

√
2T
)
ds

� − 3

4
√
π

t∫
0

e−2T/(t−s)

(t − s)3/2
pz

(
s, z,2

√
2T
)

ds.

On the other hand, we have

−2
√

2T ∂xu2
(
t, z,2

√
2T
) = −8T

t∫
0

e−2T/(t−s)

2
√
π(t − s)3/2

pz

(
s, z,2

√
2T
)

ds

� 16T

3
∂xxu2

(
t, z,2

√
2T
)
.

(4.21)

Gathering (4.18), (4.20) and (4.21), we take

B � max
(

8T

3
,
µ2(T )

µ1(T )
,M

)
.

We obtain the desired result.✷
Lemma 4.1 has an immediate corollary, just as in the porous medium equation: as

soon as the free boundary starts moving, it will keep moving for all later time. Here is
the precise statement.

COROLLARY 4.1 ([8], Corollary 3.2). –Chooseδ > 0 and assume the existence of
tδ > 0 for which ζ(tδ) = ζ0 + δ. There existsµδ > 0 such that, for allt � tδ, we have
ζ̇ (t) � µδ .

Proof. –Chooset0 � δ; we haveζ(t0) � δ. From Lemma 4.1 we have, for allt ∈
[δ, t0 + 1]:

ut +A
(
(z − ζ0)uz + u

)
� 0, (4.22)

with A = 1/(2t0 +B + 2). Therefore we have, for all(t, z) ∈ [t0, t0 + 1]:
u(t, z,0) � e−A(t−t0)u

(
t0,Z(t, z),0

)
, (4.23)
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where

Z(t, z)= ζ0 + (z − ζ0)e
−A(t−t0). (4.24)

For z = ζ(t0), the first instantth such that we haveZ(t, z)= ζ(t0)−Aδh is given by

th − t0 = − 1

A
Log

(
1− δh

ζ(t0)− ζ0

)
� − 1

A
Log(1−Ah) � h.

As a consequence we haveζ(t0 + h)− ζ(t0) � Aδh, henceζ̇ (t0) � Aδ.

Proof of Theorem 4.2. –In order to prove that the speed of the interface is controlled
from below, we have to show that the interface starts moving immediately. Once this is
done, the nondegeneracy result will follow from comparison with low speed self-similar
solutions.

To prove that the free boundary starts moving at once, let us pick any smallδ > 0;
becausep0 decays linearly in a vicinity ofζ0 there existsq > 0 such thatp(0, ζ0−δ,0) �
qδ. Hence we have

p(t, z, x)� φ2√
qδ

(
z − ζ0 − δ√

t
,
x√
t

)
;

this implies

ζ(t) � ζ0 − δ +√qδz1
√
t;

hence we have, from (3.8):ζ(t) > ζ0 as soon ast �
√
δ/

√
qz1, and we conclude with

the arbitrariness ofδ.
Let us now prove that, for allδ > 0 we have

inf
t∈[δ,T ] lim inf

h→0+

(
1

h
p
(
t, ζ(t)− h,0

))
> 0. (4.25)

If this were not true, there would exist a sequence(tn)n, going to somet0 > 0, a sequence
(hn)n going to 0, such that

lim
n→+∞

1

hn

p
(
tn, ζ(tn)− hn,0

)= 0.

Set

pn(τ, η, ξ)= 1

hn

p
(
tn + hτ, ζ(tn)+ hnη,

√
hnξ

)
;

pn satisfies the same problem asp. Setεn = pn(0,−1,0); because of Proposition 2.7
there existsτn > 0, bounded away from 0 with respect ton, such that

pn(τn,−1,0) = 2εn. (4.26)

Hence we have, for allτ � τn:

pn(τ, η,0) � φ√
2εn

(
η − ζ(tn)√

τ
,

√
hnξ√
τ

)
. (4.27)
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Inequations (4.27) and (3.8) implyζ(τn) �
√

2εnτnz1; on the other hand, becauseζ̇
is bounded away from 0 we have the existence ofµ > 0 such thatζ̇ � µ. Hence
ζ(τn) � µτn; a contradiction.

The nondegeneracy ofp follows from (4.25). We first note that, for everyt0 > 0 and
h > 0, there existsq > 0, bounded away from 0 independently ofh andt0, such that, if
we have

p
(
t0, ζ

1
h (t0),0

)= h, p
(
t0, ζ

2
h (t0),0

)= h

2
thenζ 2

h (t0) − ζ 1
h (t0) = qh. If this were not so, we would contradict, after setting thez

origin at ζ(t0) and rescaling, the fact thatp is Lipschitz. Hence there is a point in the
segment[ζ 1

h (t0), ζ
2
h (t0)] such thatpz � q/2 at that point. Rescaling and applying the

Harnack inequalities, we obtain a control from below for−pz in the segment. Because
of the arbitrariness ofh, this control is valid everywhere.

Finally, a lower bound onpt in the vicinity of the free boundary is obtained from
inequality (4.16). Away from the free boundary, this is once again due to the Harnack
inequalities. ✷

5. The free boundary is C1,α

This section is devoted to the application of the iterative technique of [9] in the context
of Problem (1.2), whose idea is briefly recalled now. Becausept and−pz are controlled
from below in a vicinity of the free boundary, there is a common cone of directions of
the(t, z, x)-space along which the functionp is increasing – in the same neighbourhood
of the free boundary. The basic iteration consists in enlarging this cone by proving that,
if p is nondecreasing along a directionν, thenpν is in fact controlled from below. This
relies on the Harnack inequalities of Section 4, as well as on a separation argument of
the free boundaries of two solutions of (1.2).

Then we rescale and iterate the argument; as we move closer to the free boundary
the common cone of monotonicity tends to be a whole half-space: this implies the
differentiablity of the free boundary. Further, the cone enlargement being controlled at
each step, the argument yields in fact the Hölder continuity ofζ̇ as well aspt andpz.

What will be explained in this section is the construction of sub-solutions – that
slightly differ from [9] – then the basic iteration. The rest of the argument is exactly
as in [9], Section 4.

In the whole section, the problem will be examined on a time interval[tmin, T ] where
tmin > 0 is a little larger than the minimal time required by the free boundary to start
moving. Hence all the constants in the next section will depend ontmin, but we will not
mention this dependence.

5.1. Sub-solutions

Assume the free boundary ofu in the(t, z)-plane to be located at the point(t = 0, z =
0). Let us denote byl(t, z, x, ) a travelling wave with speedV0.

LEMMA 5.1. – Assume that the interfaces ofl and u coincide at timet = 0 and
V0 < ζ̇ (t) for −1� t � 1.
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Pick two positive numbersδ andε. There existδ0 > 0, ε0 > 0 such that, ifδ � δ0 and
ε � ε0, then the function

uε
1 = u+ ε(u− δl)+ (5.1)

is a sub-solution to(1.2) for −1 � t � 0.

Proof. –From the convexity ofX �→ X+, we have(∂t − ∂xx)u
ε
1 � 0. As for the

boundary condition, there is nothing to prove ifu � δl. On the other hand, ifu � δl,
we have

∂xu
ε
1 − uε

1∂zu
ε
1 = −ε(1+ ε)uuz − εδ(1+ εδ)llz

+ εδ(1+ ε)(ulz + luz).

(5.2)

We distinguish two cases.
Case1. (1+ ε)u � l.
Then we useu|uz| � δl|uz| andllz � (1+ ε)u|lz|. This implies

∂xu
ε
1 − uε

1∂zu
ε
1 � −ε2δ2llz � 0. (5.3)

Case2. (1+ ε)u � l.
First, we useδl|uz| � δ(1+ ε)u|uz|; second, we use Lemma 4.1 to infer the existence

of C > 0 such thatC|uz| � |lz|. Hence we haveu|lz| � Cu|uz|, and we end up with

∂xu
ε
1 − uε

1∂zu
ε
1 � −ε2δ2llz − ε

(
1− δ(1+C)

)
(1+ ε)uuz, (5.4)

which implies the lemma as soon as we chooseδ � δ0 := 1
1+C

. ✷
LEMMA 5.2. – There existsλ > 0 such that, for allε ∈ ]0,1), the functionuε

2 given
by

uε
2(t, z, x) = (1+ ε)u(t + ελz, z, x) (5.5)

is a sub-solution to(1.2).

Proof. –Obviously, the heat equation insideR2+ is satisfied. As for the boundary
condition we have

∂xu
ε
2 − uε

2∂zu
ε
2 = (1+ ε)ux − (1+ ε)2(uuz − ελuut )

= −ε(1+ ε)uuz − ελ(1+ ε)2uut .

But we know that−ut � Cuz; hence∂xuε
2 − uε

2∂zu
ε
2 � 0 for λ � 1

2C . ✷
5.2. The iteration

Let (t0, z0) = (ζ−1(z0), z0) be a free boundary point. In order to initiate the sequence
of iterations leading to theC1,α estimate forζ at (t0, z0), we first notice that Theorem 4.2
has led us to the following situation. By translating and rescaling we may assume
(t0, z0)= (0,0). For allρ ∈ [0,1] let us consider the rectangle

R0(ρ) = {
ζ−1(−1) � t � ζ−1(1), −1− ρ � z � 1

}
.
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We denote
• by L a common upper bound forpt and−pz in R0,
• and byγ a common lower bound forpt and−pz in R0.

Hence we have

∀t ∈ [ζ−1(−1), ζ−1(1)
]
,

γ

L
� ζ̇ (t) � L

γ
. (5.6)

Estimates (4.15) hold, in the boxB2L/γ (0,0) and, in particular, inR0(1). Let us examine
the consequences of Lemmas 5.1 and 5.2.

PROPOSITION 5.1. – Let ũ be a solution of(1.2) in R0(1) × R+ such that, for some
ρ ∈ ]0,1[:

ũ � u in R0(ρ)× R+, ũ(t,−1− ρ,0) � (1+ 2ε)u(t,−1− ρ,0). (5.7)

(i) There existsρ0 > 0 such that: if (5.7)holds for a givenρ ∈ ]0, ρ0], then we have

∀(t, z) ∈ [ζ−1(−1
2

)
, ζ−1(1

2

)]× [−1
2,

1
2

]
, ũ(t, z,0)� (1+ ε)u(t, z,0). (5.8)

(ii) Letρ > 0 be chosen as above. There holds

∀(t, z) ∈ [ζ−1(−1
2

)
, ζ−1(1)+ ζ−1(−1

2

)]× [−1
2,1
]
,

ũ
(
t − ζ−1(−1

2

)
, z+ 1

2, α
)
� (1+ ε)u

(
t − ζ−1(−1

2)+ ελ
(
z + 1

2

)
, z + 1

2, x
)
.(5.9)

Proof. –1. Choosez0 ∈ [−1
2,

1
2] andt0 = ζ−1(z0). Set

V0 = 1

3(t0 − ζ−1(−1))
; (5.10)

it is controlled from above and below. Let us consider the travelling wavelV0 translated
in such a way that its interface sits exactly atz = −1

3 at timet = −1; then, att = t0, its
interface is located atz = z0. From Lemma 5.1 the functionuε

1 = u + ε(u − δlV0)
+ is a

subsolution to (1.2) as soon asδ > 0 is small enough. Let us consider such aδ.
2. Let us prove the existence ofρδ > 0 such that: for allρ � ρδ, δlV0 � u on

{t = ζ−1(−1), −1− ρ � z, x � 0}. We have:
• 0= u(ζ−1(−1), z, x) � δlV0 on [−1− ρ,+∞] × R+,
• for z ∈ [−1− ρ,−1] we have, from the Lipschitz property forp:

p
(
ζ−1(−1), z,0

)
� L(1− z)� Lρ.

Hence, for allz ∈ [−1− ρ,−1] we have

δlV0

(
ζ−1(−1),−1− ρ,0

)= δ

√
4πV0(1+ ρ + V0ζ

−1(−1))

� δ

√
8πV0

3
from (5.10).

Hence the result as soon asρ � 8πV0/(3L2).
ThereforeδlV0 � u on [−1−ρ,+∞[×R+ at t = −1 as soon asρ > 0 is less than some
ρδ > 0 whose value is given above. Let such aρ be chosen.
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3. Let us prove (i). Let us first notice that we have obviously:

uε
1(t,−1− ρ,0) � (1+ 2ε)u(t,−1− ρ,0) � ũ(t,−1− ρ,0)

for t � ζ−1(−1). Therefore from1 and2 we haveuε
1(t, z, x) � ũ(t, z, x) for all (t, z, x) ∈

R0 × R+; hence att = t0 we have

∀z � z0, ũ(t0, z,0)� u(t0, z,0)+ ε
(
u(t0, z,0)− lV0(t0, z,0)

)+
.

Moreover att = t0 the interfaces ofu and lV0 coincide. By nondegeneracy, we have
2δlV0(t0, z,0)� u(t0, z,0) as soon asδ is small enough, and this fixesρ once and for all.
We have therefore

(
u(t0, z,0)− δlV0(t0, z,0)

)+ = u(t0, z,0)− δlV0(t0, z,0)+,

and Property (i) holds.
4. Property (ii) is now almost immediate. Indeed, Lemma 5.2 asserts that

ũε
2(t, z, x) := (1+ ε)u

(
t − ζ−1(−1

2

)
, z+ 1

2, x
)

is a subsolution to (1.2). Moreover
• becauseut � 0, we have

ũε
2

(
ζ−1(1

2

)
, z, x

)
� (1+ ε)u

(
0, z + 1

2, x
)= 0

for all (z, x) ∈ [−1
2,1];

• by assumption, we have, atz = −1
2:

ũε
2(t, z,0) � (1+ ε)u

(
t − ζ−1(−1

2

)
, z + 1

2,0
)

for all t � ζ−1(−1
2).

This implies Property (ii). ✷
We may now perform the iterating process. Some notations first: for any(t, z) in the

positivity domain ofp we will set, as in [9]:

∇̂p(t, z,0) := (
∂tp(t, z,0), ∂zp(t, z,0)

)
. (5.11)

For two vectorsν1 andν2 of R
2, we denote bya(ν1, ν2) the angle betweenν1 andν2. For

anyν0 ∈ R
2 andθ ∈ [0, π

2 ], we denote byE(ν0, θ) the cone

E(ν, θ) = {
ν ∈ R

2:
∣∣a(ν0, ν)

∣∣� θ
}
. (5.12)

We finally denote byR0 the rectangleR0(ρ), whereρ is any number chosen so that
Proposition 5.1 works, and byRn the rectangle

Rn =
{
ζ−1

(
− 1

4n

)
� t � ζ−1

(
1

4n

)
,

1+ ρ

4n
� z � 1

4n

}
. (5.13)
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Set

(tn, zn) =
(
ζ−1

(
− 1

4n

)
,−1+ ρ

4n

)
.

Assume that, at thenth iteration, we have found a unit vectorνn andθn ∈ ]0, π
2 [ such

that

∀ν ∈ E(νn, θn), ∀(t, z) ∈ Rn, ∂νp(t, z)� 0.

Let us rescale and consider the function

pn(t, z, x) = 4np

(
t

4n
,
z

4n
,
x

2n

)
, (5.14)

the rescaled interface

ζn(t) = 4nζ

(
t

4n

)
, (5.15)

and the rescaled time and space

t0 = 4nζ−1
(

− 1

4n

)
, z0 = −1− ρ. (5.16)

The rescaled functionpn is defined in the rectangleR0.
We first note that

(i)
∣∣a(νn, ∇̂pn(t0, z0,0)

)∣∣� θn,

(ii) ∀ν ∈ [0, θn], ∂νpn(t0, z0,0) = ∇̂pn(t0, z0,0).ν

� γ cosa
(
ν, ∇̂pn(t0, z0,0)

)
.

(5.17)

Moreover, we know by assumption that∂νp � 0 in R0. Hence the Harnack inequalities,
Theorem 4.2, apply and yield the existence ofq > 0 such that

∀ν ∈ E(νn, θn), ∀(t, z) ∈ [ζ−1
n (−1), ζ−1

n (1)
]× [−1+ ρ,−1− ρ

2

]
,

∂νpn(t, z,0) � q cosa
(
ν, ∇̂pn(t0, z0,0)

)
.

Hence forε > 0 small, we have - for some possibly differentq > 0:

∀ν ∈ E(νn, θn), ∀t ∈ [ζ−1
n (−1), ζ−1

n (1)
]
,

u((t,−1− ρ)+ 2εν;0)

u(t,−1− ρ,0)
�
(
1+ 2q cosa

(
ν, ∇̂pn(t0, z0,0)

))
ε.

(5.18)

Let us apply Proposition 5.1(ii) with

ε̃ := q cosa
(
ν, ∇̂pn(t0, z0,0)

)
(5.19)

and

ũ(t, z, x) := u
(
(t, z)+ 2εν;x). (5.20)

We obtain, in particular
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∀(t, z) ∈ R1, ũ(t, z,0) � (1+ ε̃)u(t + ε̃λz, z,0). (5.21)

Multiplying by u, expanding with respect toε and lettingε to 0 yields

∀ν ∈ E(νn, θn), ∀t ∈ [ζ−1
n

(−1
4

)
, ζ−1

n

(1
4

)]
, ∀z ∈ [−1+ρ

4 , ζn(t)
[
,

∂νp(t, z,0) � qλγ cosa
(
ν, ∇̂pn(t0, z0,0)

)
.

(5.22)

Now, to enlarge the coneE(νn, θn) we could just rely on the geometrical lemma of [6];
the situation being here much simpler, we give a complete proof of this fact.

By construction we have

∣∣a(νn, ∇̂pn(t0, z0,0)
)∣∣� θn;

assume this angle to be> 0: the opposite case is treated in the same fashion. Let us
see how far away from the coneE(νn, θn) we are allowed to pickν without violating
the inequality∂νp(t, z,0) � 0. To simplify the notations, identifyR2 with the complex
plane. Set

ν̃n = νne
iθn .

We have, for all(t, z) ∈ R1:

∂νp(t, z,0) = ∣∣∇̂p(t, z,0)
∣∣cosa

(∇̂p(t, z,0), ν
)

= ∣∣∇̂p(t, z,0)
∣∣cos

(
a
(∇̂p(t, z,0), ν̃n

)+ a(ν̃n, ν)
)

= cosa(ν̃n, ν)∂ν̃n − ∣∣∇̂p(t, z,0)
∣∣sina

(∇̂p(t, z,0), ν̃n
)

sina(ν̃n, ν)

� q cosθn − ∣∣∇̂p(t, z,0)
∣∣sina(ν̃n, ν)

for a possibly differentq, that can anyway be chosen independent ofn. Therefore we
have∂νp(t, z,0)� 0 if and only if

tg a(ν, ν̃n) � L

qtg θn
.

Accordingly, let us set

θn+1 = θn + 1

2
Arctg

(
L

qtg θn

)
,

νn+1 = νne
i(θn+1−θn)/2.

(5.23)

We have∂νp(t, z,0)� 0 in R1 for all ν ∈ E(νn+1, θn+1). Moreover, we may see that the
sequence(θn)n converges geometrically toπ2 . Also, scaling back, we have proved the
following property:

∀ν ∈ E(νn+1, θn+1), ∀(t, z) ∈ Rn+1, ∂νp(t, z,0)� 0. (5.24)

By nondegeneracy, the initiation of the iteration process is trivial.
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5.3. The C1,α estimate

Let us summarize the preceding section. There is a sequence of conesE(νn, θn), with
θn ∈ [0, π

2 ], such that

(i) |νn| = 1,

(ii) a(νn, νn+1) = θn+1 − θn,

(iii) θ n+1 � θn + q

(
π

2
− θn

)
with 0< q < 1.

(5.25)

This is the final ingredient to the

Proof of Theorem 1.1. –Properties (ii) and (iii) of Eq. (5.25) imply

|θn+1 − θn| + |νn+1 − νn| � Cqn; (5.26)

hence there is a unit vectorν∞, a Lipschitz functionζ∞(t), and a Lipschitz function
p∞(t, z, x) such that the sequences(νn)n, (ζn)n and(pn)n converge toν∞, ζ∞ andp∞
respectivey. The functionp∞ is smooth in its positivity set{z > ζ(t)}. Moreover we have

∀ν ∈ {ν∞.ν � 0}, ∀(t, z) ∈ R0, ∂νp∞(t, z,0) � 0. (5.27)

Hence ζ∞(t) is a linear function. This implies the differentiability ofζ at t = 0;
moreover, our analysis being valid at each free boundary point, we end up with the
differentiability of ζ at all t > 0.

Let now (t, ζ(t)) be another free boundary point, close to(0,0). Let n the unique
integer such that (

t, ζ(t)
) ∈ Rn and

(
t, ζ(t)

)
/∈ Rn+1.

If t is close enough to 0, thenn is large and, due to the fact thatζ̇ is bounded and bounded
away from 0, we have

γ

4nL
� |t| � L

4nγ
.

For all s > 0, let ν(s) be the normal vector to the interface{z = ζ }; we note that,
automatically, ∣∣a(νn, ν(t))∣∣� π

2
− θn.

Consequently there holds∣∣ν(t)− ν(0)
∣∣� ∣∣ν(t)− νn

∣∣+ ∣∣νn − ν(0)
∣∣� 2Cqn

�C|t|α, with α = −Logq

Log4
.

This implies ∣∣ζ̇ (t)− ζ̇ (0)
∣∣� C|t|α

for a possibly different constantC; hence the theorem.✷
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6. Qualitative properties

We have now proved that the constructed solutionu is a classical one. First, we will
show how the strong maximum principle property proved in Sections 4 and 5 will allow
us to derive a large time behaviour result. Then, to finish the analogy, we prove the free
boundary relation.

6.1. Large time behaviour

Let us summarize Propositions 4.5 and 5.1 in the following

PROPOSITION 6.1. – Letu1 � u2 two solutions of(1.2), (1.3)such that

sup
z�0

(
u2(0, z,0)− u1(0, z,0)

)
> 0.

Then we have

inf
1�t�4, z�1

(
u2(t, z,0)− u1(t, z,0)

)
> 0. (6.28)

The proof is omitted.

Proof of Theorem 1.2. –Let S(t) denote the semigroup generated by the Cauchy
problem for (1.2), (1.3) and, forz0 ∈ R, let τz0 be the translation operator

τz0u(t, z, x) = u(t, z + z0, x).

Setu(t) := S(t)u0 and

un(t, z, x) = u
(
4nt,2nz,2nx

)
, 0� t � 4. (6.29)

Let us define the discrete semigroup

T u0(z, x) = S(4)u0(2z,2x).

The theorem will be proved as soon as we have shown the convergence of the sequence
(un)n := T nu0 towards a translate ofφ. Let ω(u0) denote theω-limit set of u0 in
C(R+ ×R+) with respect toT . We first observe that, because there is a Lipschitz bound
for p, the sequence(un)n is relatively compact inC([0,4] × R+ × R+); henceω(u0) is
nonvoid.

By homogeneity, the functionun is a solution of (1.2), (1.3) and there are two bounds
of the form

τz0φ � un � τz1φ

independently ofn. Forψ ∈ ω(u0) consider

h(ψ) = inf
{
ẑ: ∀z � ẑ, τzφ � ψ

}
and
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h0 = min
ψ∈ω(u0)

h(ψ). (6.30)

Such anh0 is attained by some elementψ0 of ω(u0). Assume that we do not have
ψ = τh0φ; then by Proposition 6.1 we haveh(T ψ) < h0, contradicting (6.30). ✷
6.2. The free boundary relation

We come back to the sequence(pn)n defined by (5.14) and to its limiting function
p∞. Notice that this functionp∞ is defined on(t, z, x) ∈ R × R × R+.

Proof of Theorem 1.3. –From Eq. (5.27) we infer the fact that, for every(t, z) the
vector∇̂p∞(t, z,0) is proportional to the vectorν∞. Therefore let us setν∞ = (ν1, ν2);
there exists aC1 real functionα(t, z) such that

(
∂tp∞(t, z,0), ∂zp∞(t, z,0)

)= α(t, z)(ν1, ν2).

We have therefore

ν1αz = ν2αt ,

implying thatα(t, z) has the formα0(t − ν1
ν2
z). Hencep∞ is a travelling wave, and hence

has a unique form due to Proposition 3.3. In particular, it satisfies the free boundary
relation. ✷
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