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ABSTRACT. — We show that the Lyapunov exponents of volume presergihgliffeomor-
phisms of a compact manifold are continuous at a given diffeomorphism if and only if the Os-
eledets splitting is either dominated or trivial. It follows that fof & residual subset of volume
preserving diffeomorphisms the Oseledets splitting is either dominated or trivial.

We obtain analogous results in the setting of symplectic diffeomorphisms, where the
conclusion is actually stronger: dominated splitting is replaced by partial hyperbolicity. We also
obtain versions of these results for continuous cocycles with values in some matrix groups.

In the text we give the precise statements of these results and the ideas of the proofs. Tt
complete proofs will appear in [4].
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RESUME. — Nous montrons que les exposants de Lyapunov des difféomorphismes d&¢élasse
qui préservent le volume dans une varieté compacte sont continus a un difféomorphisme donné
et seulement si sa décomposition de Oseledets est dominée ou bien triviale. Il s’en suit que pol
un sous-ensembté!-résiduel des difféomorphismes qui préservent le volume, la décomposition
de Oseledets est soit dominée soit triviale.

Nous obtenons des résultats analogues dans le cadre des difféomorphismes symplectiques
en fait, les conclusions sont plus fortes : on remplace décomposition dominée par hyperbolicit
partielle. De méme, nous obtenons des versions de ces résultats pour des cocyles continu:
valeurs dans plusieurs groupes de matrices.

Dans le texte en anglais nous donnons les énonceés précis de ces résultats, et des idées
preuves. Les démonstrations complétes apparaitront dans [4].
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Introduction

The results presented in this paper exploit a connection between the following a prior
loosely related problems: How do Lyapunov exponents of conservative (symplectic ot
volume preserving) diffeomorphisms depend on the underlying dynamics? How typical
is it for Lyapunov exponents to vanish?

We prove thal.yapunov exponents can be simultaneously continuous at a given
diffeomorphism only if the corresponding Oseledets splitting is dominated or else, trivial
almost everywhere.

Trivial splitting means that all Lyapunov exponents are equal to zero. Domination is
a property of uniform hyperbolicity on the projective bundle, whose precise definition
will be recalled in a while.

As a consequence one gets a surprising dichotfamg residual(denseGs) subset of
volume preserving'* diffeomorphisms on any compact manifold: the Oseledets splitting
is either dominated or triviglalmost everywhere.

Analogous results holtbr symplectic diffeomorphism&here the conclusion is even
stronger-domination is replaced by partial hyperbolicity.

Moreover, there are versions of these statements for continuous cocycles with value
in various matrix Lie groups.

In the sequel we give the precise statements, and ideas of the proofs. For that, w
begin by explaining the meaning and significance of the domination property. Complete
proofs of these statements will appear in [4].

Lyapunov exponents
1. Let f:M — M be aC? diffeomorphism preserving the volumeof a compact
Riemannian manifold/. Oseledets theorem [11] states that,iealmost every € M,
there exists a splitting
T.M=E'® - -®E, k=k(x)eN,
of the tangent space, and there exist real numbgps) > - - - > A (x) such that

| Df™ (x)v; || = €4 v; |

forall v; € E/ and 1< j <k, if |n| is large enough. More precisely,
.1 .
lim =log||Df"(x)v;||=4;(x) forall v; e E/\{0}. 1)
n—ztoo p

The Oseledets subspacéd and theLyapunov exponents;(x) depend measurably
onx, and they are invariant under the dynamics:

2 (f0)) =x;x) and E’,,=Df(x)-E{, with k(f(x)) =k().
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2. In particular, one can always find(x) € N such that
| Df"(x)vi|| = 2||Df" (x)v;|| foralln>m(x) (2)

and all norm 1 vectors; € E. andv; € E/ with 1 <i < j <k. That s, iterates oD f
are eventually more expanding alofg than alongkE?/, for anyi < j.

Let us stress, however, that this is a purely asymptotic statement. The limit in (1) is
usually not uniform onx. Correspondingly, the value af(x) in (2) does depend on
the point, in a complicated fashion. Most important, in general it is not even possible to
choosen(-) bounded over each orbi(x) = { f¢(x): € € Z}.

Domination property

3. We say thathe Oseledets splitting is dominatedxat M if m(-) e N as in (2)
may be chosen uniform over the whole orbitxofThat is, domination at means that
there ism e N such that for every iterate= f¢(x), £ € Z, we have

|Df")vi|| = 2||Df"(y)v;|| foralln>m 3)

and all norm 1 vectors; € E}, v; € EJ,and 1<i < j <k.

More generally, we say that the Oseledets splitting is dominated over an invariéint set
if there existan € N such that (3) is satisfied for evepye T', n > m, 1 <i < j <k(y),
andv;, v; as before. The definition in the previous paragraph corresponds to the cas
I' =o(x), of course.

4. Geometrically, domination is tantamount to uniform hyperbolicity of the dynam-
ics induced on therojective bundlgi.e. the bundle of directions in the tangent space.
We explain this with the aid of Fig. 1.

From the relation (3) one easily deduces that

|Df*()vi|| = c2/™||Df" (y)v;|| for everyn >1 ()

and for ally € o(x), 1<i < j <k, and norm 1 vectors; € E; andv; € E/, where
the constant > 0 depends only om and f. Then, given any € o(x) and non-zero

Ek

El

Fig. 1. Uniform projective hyperbolicity.



116 J. BOCHI, M. VIANA / Ann. |. H. Poincaré — AN 19 (2002) 113-123

veT,M,letv=uv +---+ v be the splitting ofv along Oseledets subspaces, and
1< p < g <k be, respectively, smallest and largest such that 0 # v,,.

From (4) one gets that, asincreases to infinity the componeftf” (y)v, becomes
much larger than any othdéf" (y)v;. So,Df" (y)v approaches the direction Efj’?n(y),
exponentially fast. There is also a dual statement for large negatwigh p replaced by
g. Clearly, for most vectorg = 1 and g= k. This means thak? is a global hyperbolic
attractor ande* is a global hyperbolic repeller for the dynamics@f on the projective
bundle, with the otheE/’s in the role of saddles.

5. ltis not difficult to find open sets of maps whose Oseledets splitting is dominated,
e.g., any small neighborhood of a linear torus automorphism whose eigenvalues hav
multiplicity 1 and different norms. Notwithstanding, domination is really a very rigid
property.

For one thing, if the numbeék(y) and the dimensiong; (y) = dim E)f of the Oseledets
subspaces are constant Bndomination implies that the splitting is continuous Bn
and even admits a continuous extension to the closure. In partithdaangles between
the various Oseledets subspaces are bounded from aeiformly over the invariant
setI". Actually, this last fact remains true even if the number or the dimensions of the
subspaces are variable. That is because we can always paltitigo a finite number
of invariant subsets corresponding to fixed valuek ahdd,, ..., d;.

Due to this rigidity, it is often possible to exclude a priori the existence of dominated
splitting, using topological arguments. One such situation will appear near the end o
Paragraph 8, another in Paragraph 18.

A global picturefor generic conservative maps

6. Diff,lL(M) denotes the space of volume preservifiy diffeomorphisms onV,
endowed with theC'! topology. Our first main result is

THEOREM 1. — For any compact manifold/, there exists a residual subsg of
Diff,i(M) such that, for every € R, the Oseledets splitting is dominated or else trivial,
at almost every point.

Later we shall explain how Theorem 1 may be derived from a statement about
continuity of Lyapunov exponents. Right now let us discuss the conclusion of the
theorem in more detail.

First, let us considerf € R to be ergodic. Then the number and dimensions of the
Oseledets subspaces are constaatmost everywhere. The theorem says that,

e either all Lyapunov exponents vanighalmost everywhere,

o or the Oseledets splitting is dominated, gls@almost everywhere.

In the latter case, the splitting extends continuously to the whole manifold: the system i
projectively uniformly hyperbolic o/ .

7. Ingeneral, leO(ds, ..., d;) be the set of points for which the Oseledets splitting
exists and involveg subspaces, with dimensiods, ..., d;, respectively. In particular
O(d) denotes the set of points whose Oseledets splitting is trivial, that is, whose
Lyapunov exponents are all zero.
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Fork > 2, let Ogom(da, ..., dy) C O(dy, ...,d;) be the subset of points where the
Oseledets splitting is dominated. Theorem 1 says that

w(OWy,....d)\ Ogor(d, ... dy)) =0

for all k > 2 and any choice ofy, ..., d;. Therefore,

M=0@ U] | Odomlds,....do) (5)

up to a zero volume set.
Odom(ds, . . ., dr) may be written as an increasing union

Odom(dy., - ... de) = | ) On(dr, ... dy) (6)

m=1

where eactO,,(d, ..., d;) corresponds to fixing the choice afin (3). The Oseledets
splitting is continuous on evei®,, (ds, . .., d;), and extends continuously to the closure.
In general, these extensions need not coincide on the intersections of the closures.

8. As the reader may easily check, for area preserving diffeomorphisms on
surfaces, domination is equivalent to uniform hyperbolicity (in the usual sense, no
projectivisation). On the other hand, for a residual subsef btliffeomorphisms on
any manifold? hyperbolic sets have a sort of automatic ergodicity: either they have
zero volume or they coincide with the whole ambient space.

Because of this, in dimension 2 the conclusion of Theorem 1 is simpler:

THEOREM 2 ([3], partially based on [10]). +or a residual subset of area preserving
C? diffeomorphisms on any compact surface, both Lyapunov exponents are zero &
almost every point or else the diffeomorphism is Anosov.

It would be nice to know whether this simpler picture remains true in arbitrary
dimension, without assuming ergodicity:

Problem 1. — Is there aresidual sR&; C R for which, in the context of (5)—(6), either
O(d) or someD,,(dy, ..., dy) has full volume inM?

Corollary 1 below gives a partial answer, for symplectic maps.

Also, existence of Anosov diffeomorphisms imposes strong topological restrictions
on the manifold. In particular, the second alternative in Theorem 2 is possible only
if M =T?2.

Problem 2. — Which manifolds support diffeomorphisms having a dominated split-
ting defined on the whole ambient space?

2This subset includeall C?2 diffeomorphisms [6]. A corresponding statement for domination is false
if d > 3: there existC* diffeomorphisms exhibiting invariant sets supporting a dominated splitting and
whose volume is neither zero nor full.
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Continuity of Lyapunov exponents

9. LetT,M =El@® .- @ E* be the Oseledets splitting of ¢ Difft(M) at some
pointx € M. Let

A(x) = ho(x) == hg(x), d=dimM,

be the Lyapunov exponents ¢f at x, counted with multiplicity: each j(x) appears
exactlyd; (x) = dim E/ times. Formally,

M) =2;(x) fL<i—[di(x) + - +dja(x)] <dj(x).

This defines measurable functioﬁs 1< i <d, over a full measure subset of the
manifold M.

Now we consider thaverage Lyapunov exponerdsa diffeomorphismf, given by
%i(f) = [ xi(x)du(x), for 1<i < d. This defines functions

Ji:DiffL(M) >R, 1<i<d.
Note thath1(x) + - - - 4+ Ay(x) =0, becausg preserves volume. Hence,
M(f)+--+ha(f)=0 foreveryf e Diff L (M). 7)

10. Another main result, from which we shall deduce Theorem 1, is
THEOREM 3. — Supposefp € Diﬁ/ﬁ(M) is a continuity point for the map

Diff > (M) 5 f > (Aa(f). ..., ha(f)) € RY.

Then, at almost every point, the Oseledets splitting,a$ either dominated or trivial.
The converse is true, and much easier. See comments in Paragraph 17.

Symplectic diffeomor phisms

11. The previous results extend to the symplectic caseM_be a compact manifold
of dimensiond = 2/, endowed with a symplectic form. Let Symg, (M) be the space of
w-preservingC?! diffeomorphisms on\/. This is a closed subset of the space ﬂlM)
of C* diffeomorphisms that preserve the volume meaguireduced by the volume form

o'=wA - ANo.

THEOREM 4. — Theoremsl and 3 remain true when one replaceBiff,lL(M) by

Sme(M). Actually, in the symplectic context the conclusion is strongestead of
domination one gets partial hyperbolicity.

The present notion of partial hyperbolicity is also stronger than usual, in that the
central bundle exhibits only zero Lyapunov exponents, and the dimensions of the stabl
bundle and the unstable bundle are equal:



J. BOCHI, M. VIANA / Ann. I. H. Poincaré — AN 19 (2002) 113-123 119
12. The Oseledets splitting of a symplectic diffeomorphism has a symmetric
structure:
TM=E& --0FE'e[E°®|E e - 0 E
with dimEl = dim E_ for 1 <i < s (the dimension o2 may be zero) and Lyapunov
exponents
As(x) > > A1(x) > [Ao(x) = ]0> A g(x) > -+ - > A_(x)
satisfyingh; (x) + A_;(x) =0 for 1 <i <. Let
Ef=E'®--@E! and E.=E'® - - -©E "

We say that the Oseledets splittingpiartially hyperbolicat x if it is dominated atx
andDf is uniformly expanding along* and uniformly contracting along —:

IDf™EF|<3 and |Df"E;| <3 (8)

for any iteratey = f“(x), £ € Z, wherem € N is uniform over the orbit of.

PrROPOSITION 1. —Let f be a symplectic diffeomorphism. If the Oseledets splitting
of f is dominated at a point then it is partially hyperbolic aik.

This fact was first observed by Mafié [9]. A proof is given in [1], for difn= 4, and
in [4], for the general case.

13. Theorem 4 has the following interesting consequence, that extends conclusion
in Paragraph 8.

COROLLARY 1. — For a residual subset chymg}(M), either the diffeomorphism is
Anosov or almost every point exhibits some Lyapunov exponent equal tavittreven
multiplicity).

Indeed, forf € R, the set of points whose Lyapunov exponents are all non-zero is
a countable union of hyperbolic sets: the union is over the value of (8). Hence,
restricting to some residudk, c R, either that set has zero measure, or the whole
manifold is hyperbolic forf. Recall also that dint® is always an even number, in the
symplectic case.

The semi-continuity argument
14. We are going to deduce Theorem 1 from Theorem 3. For each 4 d, let
Ai(f)=ha(f)+ -+ hi(f).

The relation (7) means that,(f) = 0. Clearly, f > (A1(f), ..., q(f)) is continuous
at foifand only if f +— (A1(f),..., Aq_1(f)) is continuous alfp.
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PROPOSITION 2. — Every f — A;(f),1<i <d—1,is upper semi-continuous, both
on Diff ., (M) and onSymp},(M).

This proposition is proved as follows. For the largest Lyapunov expafiert A, one
uses the relation

~ !
fa(h)=int - [ log|Ds]| da. (©)

The infimum of continuous functions being upper semi-continuous, the conclusion
follows.

Fori > 2, one considers the vector bundté over M whose fiberV! is the space
of i-forms on(7T M)*. The derivativeDf induces a fibered mapf"': Vi — Vi, and
the largest Lyapunov exponent Dff" is preciselyA; (f) (see [8]). Thus we have the
relation corresponding to (9) fab £ -

1 v
A =int > [ log |(Df*)"] du. (10)

and semi-continuity follows as before.

Remark 1. — A natural choice of a norm in (10) is such that the quatjtiy £ (x))" ||
is the supremum of thevolume of Df" (x) (P) overi-parallelepipeds® c T, M of unit
i-volume. Of course, any other norm would work as well.

Theorem 1 is now an immediate consequence of Theorem 3, Proposition 2, and th
well-known fact that the set of continuity points of any semi-continuous function defined
on a Baire space contains a residual subset.

Theperturbation strategy

15. The proof of Theorem 3 is quite long. Here we only give a glimpse of the strategy
to reduce Lyapunov exponents along finite pieces of orbits.

Recall that the Oseledets splitting is dominated #tcondition (3) is satisfied. It is
not hard to see that this condition can be reformulated as follows: There existy
such that for every iterate= f(x), £ € Z,

IDf" vl = 2| D" (wl| (11)

forall norm 1 vectors € E} @--- @ E} andw € Ef"' @ --- @ EX ,and all 1<i <k —1.

Now suppose the Oseledets spllttlng is not domlnated over a positive measure set «
orbits: for some and for arbitrarily largen there exist iterates for which (11) does
not hold. The basic idea is to take advantage of this fact to, by a small perturbation
of the map, cause a vector originally #j-' = E} & --- @ E} to move toEfm(y) =

E}*,;l(v) DD Efcm(y), thus “blending” different expansion rates.

More precisely, given a perturbation size- 0 one chooses: sufficiently large with
respect te. Then forn > m one chooses a convenient= f*(x), with £ ~ n/2, where
domination fails. By composind f with small rotations near, at mosi; iterates of
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Fig. 2. Blending expansion rates.

y, one causes the orbit of somes EY to move toE/*1*, See Fig. 2. That is, one
constructs a perturbed mappreserving the orbit segment, ..., f"(x)} such that
Dg"(x)v € Efii. As aresult, itis possible to show that

hj+ A

(e o) | S expln (40 25

):| < EXFXHAJ'),
wherej =dimE".

This local procedure is then repeated for several pointdsing (10) and a tower
argument, one proves that;(f) drops under such arbitrarily small perturbations,
contradicting continuity.

Linear cocycles over transformations

16. The previous methods also extend to products of deterministic continuous ma:
trices. In this setting one considers a measurable invertible transformgétidh— M
on a compact spacd, preserving a Borel probability measyre The system should be
aperiodic meaning that the set of periodic points o&hould have zerp-measure. For
simplicity, here we also take the system to be ergodic.

Then one considers the space of all continuous mapaf — G, whereG is a
convenient matrix group. In all that follows we may take= SL(d, R), GL(d, R),
Spd), ..., and we may also replad® by C as the field of coefficients. Associated
to eachA, one considers theocycle

F:MxR'— M xR F(x,v) = (f(x), Ax)v).
Note thatF” (x, v) = (f"(x), A"(x)v), where

A" = A7) - A(F))AR) and A7) = [A ()] T

for n > 1. As before, Oseledets splittings} x RY = EL @ --- & E* and Lyapunov
exponents

N
Aj(x) = nﬂrﬂw - log||A" (x)v;

. v €E]\{0},
are well-definegt-almost everywhere.

17. We prove that for a residual subset of continuous map3/ — G, either
the Oseledets splitting is dominated, and hence continuous, over the wholeMpace
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or the Lyapunov exponents are all equial= 1) at u-almost every point. As before,
this follows from proving that average Lyapunov exponents can be simultaneously
continuous at somd, only if the Oseledets splitting of the cocycle associatedigo

is either dominated or trivial.

The converse is also true: if the Oseledets splittingi @fs trivial or dominated then
Ag is a continuity point for all Lyapunov exponents. The proof has two main ingredients.
The first one is the robustness of dominated (or trivial) splittings: e@@rgearby map
A has an invariant splitting into subspaces with the same dimensions and uniformly
close to the Oseledets subspacesigf The second one is a semi-continuity argument
within each of these subspaces, to show that its Lyapunov exponents are close to tt
corresponding exponents a.

It is interesting to put this conclusion together with a theorem of Ruelle [12] stating
that if the Oseledets splitting ofy is dominated, and the Oseledets subspaces all have
dimension 1, then the Lyapunov exponents vamoothlywith the matrix mapA near
Ap.

Oseledets subspaces®@? generic cocycles need not be 1-dimensional:

Examplel. —Let f:M — M have a fixed pointp. Let Ag: M — SL(3,R) be
constant, with one real and two complex conjugate eigenvalues. Assuming the norms c
the eigenvalues are not all equal, the Oseledets splittin & the (constant) splitting
into eigenspaces, and itis dominated. Then eveirya C° neighborhood/ of Aq admits
a dominated splitting™ @ F2, with dim F! = i. In particular, the Lyapunov exponents
of A can not be all equal. So, for every € U N R the Oseledets splitting must be
dominated, and it must be a refinementfof @ F2. Now, assumingd/ is sufficiently
small, F2 admits no continuous invariant proper subbundle. That is beca(sghas
complex eigenvalues alon@[f. Hence, ifA € Y NR then its Oseledets splitting must

coincide withF! @ F? almost everywhere.

But [5] shows that, for appropriate choices ©f, 1), the majority of Holder
continuousmaps A € U (an open dense subset, whose complement has infinite
codimension) do have all their Oseledets subspaces with dimension 1.

18. Here is one situation where simple topological reasons prevent the existence o
dominated splittings, for a whol€® open set of cocycles:

Example2. — Letf : ST — S* be a homeomorphism and S* — S* be a continuous
map with non-zero degree. Lét= SL(2, R). Fix any B € G and defineA : S* — G by
A(x) = BR,(x), WwhereR, is the rotation of angle.. Then the cocycle associated to any
mapM — G in a C° neighborhood ofA admits no invariant continuous subbundle, let
alone a dominated splitting.

A simple proof goes as follows. Lé&g: S* — P* be any continuous section in the real
projective spac®?, and, : S* — P! be its push-forward:

£1(x) = A(f 7)) Eo(f (X)) = BRy ;100 (f TH(x)).

Then degé;,) = 2deda) + degé&y) (the factor 2 comes from the fact that we are
considering maps t®! instead ofS?). This implies thatt; # &, hence&, cannot be
invariant. These topological arguments extend immediatelyd® aeighborhood ofd.
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In spite of this, non-zero Lyapunov exponents may occur in this setting. For example,
if f is an irrational rotationg = id, and || B|| > 1 then, by Herman’s subharmonicity
argument ([7], see also [2]), the cocycle associated tas a positive exponent.
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