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ABSTRACT. – We show that the Lyapunov exponents of volume preservingC1 diffeomor-
phisms of a compact manifold are continuous at a given diffeomorphism if and only if the Os-
eledets splitting is either dominated or trivial. It follows that for aC1-residual subset of volume
preserving diffeomorphisms the Oseledets splitting is either dominated or trivial.

We obtain analogous results in the setting of symplectic diffeomorphisms, where the
conclusion is actually stronger: dominated splitting is replaced by partial hyperbolicity. We also
obtain versions of these results for continuous cocycles with values in some matrix groups.

In the text we give the precise statements of these results and the ideas of the proofs. The
complete proofs will appear in [4].
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RÉSUMÉ. – Nous montrons que les exposants de Lyapunov des difféomorphismes de classeC1

qui préservent le volume dans une varieté compacte sont continus à un difféomorphisme donné si
et seulement si sa décomposition de Oseledets est dominée ou bien triviale. Il s’en suit que pour
un sous-ensembleC1-résiduel des difféomorphismes qui préservent le volume, la décomposition
de Oseledets est soit dominée soit triviale.

Nous obtenons des résultats analogues dans le cadre des difféomorphismes symplectiques où,
en fait, les conclusions sont plus fortes : on remplace décomposition dominée par hyperbolicité
partielle. De même, nous obtenons des versions de ces résultats pour des cocyles continus à
valeurs dans plusieurs groupes de matrices.

Dans le texte en anglais nous donnons les énoncés précis de ces résultats, et des idées des
preuves. Les démonstrations complètes apparaitront dans [4].
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Introduction

The results presented in this paper exploit a connection between the following a priori
loosely related problems: How do Lyapunov exponents of conservative (symplectic or
volume preserving) diffeomorphisms depend on the underlying dynamics? How typical
is it for Lyapunov exponents to vanish?

We prove thatLyapunov exponents can be simultaneously continuous at a givenC1

diffeomorphism only if the corresponding Oseledets splitting is dominated or else trivial,
almost everywhere.

Trivial splitting means that all Lyapunov exponents are equal to zero. Domination is
a property of uniform hyperbolicity on the projective bundle, whose precise definition
will be recalled in a while.

As a consequence one gets a surprising dichotomyfor a residual(denseGδ) subset of
volume preservingC1 diffeomorphisms on any compact manifold: the Oseledets splitting
is either dominated or trivial, almost everywhere.

Analogous results holdfor symplectic diffeomorphisms, where the conclusion is even
stronger:domination is replaced by partial hyperbolicity.

Moreover, there are versions of these statements for continuous cocycles with values
in various matrix Lie groups.

In the sequel we give the precise statements, and ideas of the proofs. For that, we
begin by explaining the meaning and significance of the domination property. Complete
proofs of these statements will appear in [4].

Lyapunov exponents

1. Let f :M → M be aC1 diffeomorphism preserving the volumeµ of a compact
Riemannian manifoldM . Oseledets theorem [11] states that, forµ-almost everyx ∈ M ,
there exists a splitting

TxM = E1
x ⊕ · · · ⊕Ek

x, k = k(x) ∈ N,

of the tangent space, and there exist real numbersλ1(x) > · · ·> λk(x) such that

∥∥Df n(x)vj
∥∥ ≈ enλj (x)‖vj‖

for all vj ∈Ej
x and 1� j � k, if |n| is large enough. More precisely,

lim
n→±∞

1

n
log

∥∥Df n(x)vj
∥∥ = λj (x) for all vj ∈Ej

x \ {0}. (1)

TheOseledets subspacesEj
x and theLyapunov exponentsλj(x) depend measurably

onx, and they are invariant under the dynamics:

λj
(
f (x)

) = λj (x) and E
j
f (x) = Df (x) ·Ej

x , with k
(
f (x)

) = k(x).
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2. In particular, one can always findm(x) ∈ N such that

∥∥Df n(x)vi
∥∥ � 2

∥∥Df n(x)vj
∥∥ for all n� m(x) (2)

and all norm 1 vectorsvi ∈ Ei
x andvj ∈ Ej

x with 1 � i < j � k. That is, iterates ofDf
are eventually more expanding alongEi

x than alongEj
x , for anyi < j .

Let us stress, however, that this is a purely asymptotic statement. The limit in (1) is
usually not uniform onx. Correspondingly, the value ofm(x) in (2) does depend on
the point, in a complicated fashion. Most important, in general it is not even possible to
choosem(·) bounded over each orbito(x) = {f �(x): � ∈ Z}.

Domination property

3. We say thatthe Oseledets splitting is dominated atx ∈ M if m(·) ∈ N as in (2)
may be chosen uniform over the whole orbit ofx. That is, domination atx means that
there ism ∈ N such that for every iteratey = f �(x), � ∈ Z, we have

∥∥Df n(y)vi
∥∥ � 2

∥∥Df n(y)vj
∥∥ for all n� m (3)

and all norm 1 vectorsvi ∈Ei
y , vj ∈Ej

y , and 1� i < j � k.
More generally, we say that the Oseledets splitting is dominated over an invariant set�

if there existsm ∈ N such that (3) is satisfied for everyy ∈ �, n � m, 1� i < j � k(y),
andvi , vj as before. The definition in the previous paragraph corresponds to the case
� = o(x), of course.

4. Geometrically, domination is tantamount to uniform hyperbolicity of the dynam-
ics induced on theprojective bundle, i.e. the bundle of directions in the tangent space.
We explain this with the aid of Fig. 1.

From the relation (3) one easily deduces that

∥∥Df n(y)vi
∥∥ � c2n/m

∥∥Df n(y)vj
∥∥ for everyn� 1 (4)

and for ally ∈ o(x), 1 � i < j � k, and norm 1 vectorsvi ∈ Ei
y andvj ∈ Ej

y , where
the constantc > 0 depends only onm andf . Then, given anyy ∈ o(x) and non-zero

Fig. 1. Uniform projective hyperbolicity.



116 J. BOCHI, M. VIANA / Ann. I. H. Poincaré – AN 19 (2002) 113–123

v ∈ TyM , let v = v1 + · · · + vk be the splitting ofv along Oseledets subspaces, and
1� p � q � k be, respectively, smallest and largest such thatvp �= 0 �= vq .

From (4) one gets that, asn increases to infinity the componentDf n(y)vp becomes
much larger than any otherDf n(y)vj . So,Df n(y)v approaches the direction ofEp

f n(y),
exponentially fast. There is also a dual statement for large negativen, with p replaced by
q. Clearly, for most vectorsp = 1 and q= k. This means thatE1 is a global hyperbolic
attractor andEk is a global hyperbolic repeller for the dynamics ofDf on the projective
bundle, with the otherEj ’s in the role of saddles.

5. It is not difficult to find open sets of maps whose Oseledets splitting is dominated,
e.g., any small neighborhood of a linear torus automorphism whose eigenvalues have
multiplicity 1 and different norms. Notwithstanding, domination is really a very rigid
property.

For one thing, if the numberk(y) and the dimensionsdj (y) = dimEj
y of the Oseledets

subspaces are constant on�, domination implies that the splitting is continuous on�,
and even admits a continuous extension to the closure. In particular,the angles between
the various Oseledets subspaces are bounded from zero,uniformly over the invariant
set�. Actually, this last fact remains true even if the number or the dimensions of the
subspaces are variable. That is because we can always partition� into a finite number
of invariant subsets corresponding to fixed values ofk andd1, . . . , dk .

Due to this rigidity, it is often possible to exclude a priori the existence of dominated
splitting, using topological arguments. One such situation will appear near the end of
Paragraph 8, another in Paragraph 18.

A global picture for generic conservative maps

6. Diff 1
µ(M) denotes the space of volume preservingC1 diffeomorphisms onM ,

endowed with theC1 topology. Our first main result is

THEOREM 1. – For any compact manifoldM , there exists a residual subsetR of
Diff 1

µ(M) such that, for everyf ∈R, the Oseledets splitting is dominated or else trivial,
at almost every point.

Later we shall explain how Theorem 1 may be derived from a statement about
continuity of Lyapunov exponents. Right now let us discuss the conclusion of the
theorem in more detail.

First, let us considerf ∈ R to be ergodic. Then the number and dimensions of the
Oseledets subspaces are constantµ-almost everywhere. The theorem says that,

• either all Lyapunov exponents vanishµ-almost everywhere,
• or the Oseledets splitting is dominated, alsoµ-almost everywhere.

In the latter case, the splitting extends continuously to the whole manifold: the system is
projectively uniformly hyperbolic onM .

7. In general, letO(d1, . . . , dk) be the set of points for which the Oseledets splitting
exists and involvesk subspaces, with dimensionsd1, . . . , dk , respectively. In particular
O(d) denotes the set of points whose Oseledets splitting is trivial, that is, whose
Lyapunov exponents are all zero.
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For k � 2, let Odom(d1, . . . , dk) ⊂ O(d1, . . . , dk) be the subset of points where the
Oseledets splitting is dominated. Theorem 1 says that

µ
(
O(d1, . . . , dk) \Odom(d1, . . . , dk)

) = 0

for all k � 2 and any choice ofd1, . . . , dk . Therefore,

M = O(d)∪ ⋃
k�2

⋃
d1,...,dk

Odom(d1, . . . , dk) (5)

up to a zero volume set.
Odom(d1, . . . , dk) may be written as an increasing union

Odom(d1, . . . , dk) =
∞⋃

m=1

Om(d1, . . . , dk) (6)

where eachOm(d1, . . . , dk) corresponds to fixing the choice ofm in (3). The Oseledets
splitting is continuous on everyOm(d1, . . . , dk), and extends continuously to the closure.
In general, these extensions need not coincide on the intersections of the closures.

8. As the reader may easily check, for area preserving diffeomorphisms on
surfaces, domination is equivalent to uniform hyperbolicity (in the usual sense, no
projectivisation). On the other hand, for a residual subset ofC1 diffeomorphisms on
any manifold,2 hyperbolic sets have a sort of automatic ergodicity: either they have
zero volume or they coincide with the whole ambient space.

Because of this, in dimension 2 the conclusion of Theorem 1 is simpler:

THEOREM 2 ([3], partially based on [10]). –For a residual subset of area preserving
C1 diffeomorphisms on any compact surface, both Lyapunov exponents are zero at
almost every point or else the diffeomorphism is Anosov.

It would be nice to know whether this simpler picture remains true in arbitrary
dimension, without assuming ergodicity:

Problem 1. – Is there a residual setR1 ⊂ R for which, in the context of (5)–(6), either
O(d) or someOm(d1, . . . , dk) has full volume inM?

Corollary 1 below gives a partial answer, for symplectic maps.
Also, existence of Anosov diffeomorphisms imposes strong topological restrictions

on the manifold. In particular, the second alternative in Theorem 2 is possible only
if M = T

2.

Problem 2. – Which manifolds support diffeomorphisms having a dominated split-
ting defined on the whole ambient space?

2 This subset includesall C2 diffeomorphisms [6]. A corresponding statement for domination is false
if d > 3: there existC∞ diffeomorphisms exhibiting invariant sets supporting a dominated splitting and
whose volume is neither zero nor full.
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Continuity of Lyapunov exponents

9. Let TxM = E1
x ⊕ · · · ⊕ Ek

x be the Oseledets splitting off ∈ Diff 1
µ(M) at some

point x ∈M . Let

λ̂1(x) � λ̂2(x) � · · · � λ̂d(x), d = dimM,

be the Lyapunov exponents off at x, counted with multiplicity: eacĥλj (x) appears
exactlydj (x) = dimEj

x times. Formally,

λ̂i(x) = λj (x) if 1 � i − [
d1(x)+ · · · + dj−1(x)

]
� dj (x).

This defines measurable functionsλ̂i , 1 � i � d, over a full measure subset of the
manifoldM .

Now we consider theaverage Lyapunov exponentsof a diffeomorphismf , given by
λ̂i(f ) = ∫

λ̂i (x)dµ(x), for 1� i � d. This defines functions

λ̂i : Diff 1
µ(M) → R, 1 � i � d.

Note thatλ̂1(x) + · · · + λ̂d(x) = 0, becausef preserves volume. Hence,

λ̂1(f )+ · · · + λ̂d(f ) = 0 for everyf ∈ Diff 1
µ(M). (7)

10. Another main result, from which we shall deduce Theorem 1, is

THEOREM 3. – Supposef0 ∈ Diff 1
µ(M) is a continuity point for the map

Diff 1
µ(M) � f �→ (

λ̂1(f ), . . . , λ̂d(f )
) ∈ R

d.

Then, at almost every point, the Oseledets splitting off0 is either dominated or trivial.

The converse is true, and much easier. See comments in Paragraph 17.

Symplectic diffeomorphisms

11. The previous results extend to the symplectic case. LetM be a compact manifold
of dimensiond = 2l, endowed with a symplectic formω. Let Symp1ω(M) be the space of
ω-preservingC1 diffeomorphisms onM . This is a closed subset of the space Diff1

µ(M)

of C1 diffeomorphisms that preserve the volume measureµ induced by the volume form
ωl = ω ∧ · · · ∧ω.

THEOREM 4. – Theorems1 and 3 remain true when one replacesDiff 1
µ(M) by

Symp1
ω(M). Actually, in the symplectic context the conclusion is stronger: instead of

domination one gets partial hyperbolicity.

The present notion of partial hyperbolicity is also stronger than usual, in that the
central bundle exhibits only zero Lyapunov exponents, and the dimensions of the stable
bundle and the unstable bundle are equal:
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12. The Oseledets splitting of a symplectic diffeomorphism has a symmetric
structure:

TxM = Es
x ⊕ · · · ⊕E1

x ⊕ [
E0

x ⊕ ]
E−1

x ⊕ · · · ⊕E−s
x

with dimEi
x = dimE−i

x for 1 � i � s (the dimension ofE0
x may be zero) and Lyapunov

exponents

λs(x) > · · ·>λ1(x) >
[
λ0(x) = ]

0> λ−1(x) > · · ·> λ−s(x)

satisfyingλi(x)+ λ−i(x) = 0 for 1� i � s. Let

E+
x = Es

x ⊕ · · · ⊕E1
x and E−

x = E−1
x ⊕ · · · ⊕E−s

x .

We say that the Oseledets splitting ispartially hyperbolicat x if it is dominated atx
andDf is uniformly expanding alongE+ and uniformly contracting alongE−:

∥∥Df−m|E+
y

∥∥ � 1
2 and

∥∥Dfm|E−
y

∥∥ � 1
2 (8)

for any iteratey = f �(x), � ∈ Z, wherem ∈ N is uniform over the orbit ofx.

PROPOSITION 1. –Let f be a symplectic diffeomorphism. If the Oseledets splitting
of f is dominated at a pointx then it is partially hyperbolic atx.

This fact was first observed by Mañé [9]. A proof is given in [1], for dimM = 4, and
in [4], for the general case.

13. Theorem 4 has the following interesting consequence, that extends conclusions
in Paragraph 8.

COROLLARY 1. – For a residual subset ofSymp1
µ(M), either the diffeomorphism is

Anosov or almost every point exhibits some Lyapunov exponent equal to zero(with even
multiplicity).

Indeed, forf ∈ R, the set of points whose Lyapunov exponents are all non-zero is
a countable union of hyperbolic sets: the union is over the value ofm in (8). Hence,
restricting to some residualR1 ⊂ R, either that set has zero measure, or the whole
manifold is hyperbolic forf . Recall also that dimE0

x is always an even number, in the
symplectic case.

The semi-continuity argument

14. We are going to deduce Theorem 1 from Theorem 3. For each 1� i � d, let

$i(f )= λ̂1(f )+ · · · + λ̂i(f ).

The relation (7) means that$d(f ) ≡ 0. Clearly,f �→ (λ̂1(f ), . . . , λ̂d(f )) is continuous
atf0 if and only if f �→ ($1(f ), . . . ,$d−1(f )) is continuous atf0.
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PROPOSITION 2. – Everyf �→ $i(f ), 1 � i � d−1, is upper semi-continuous, both
on Diff 1

µ(M) and onSymp1
ω(M).

This proposition is proved as follows. For the largest Lyapunov exponent$1 = λ̂1 one
uses the relation

λ̂1(f ) = inf
n�1

1

n

∫
log

∥∥Df n
∥∥dµ. (9)

The infimum of continuous functions being upper semi-continuous, the conclusion
follows.

For i � 2, one considers the vector bundleV i overM whose fiberV i
x is the space

of i-forms on(TxM)∗. The derivativeDf induces a fibered mapDf ∧i :V i → V i , and
the largest Lyapunov exponent ofDf ∧i is precisely$i(f ) (see [8]). Thus we have the
relation corresponding to (9) forDf ∧i :

$i(f )= inf
n�1

1

n

∫
log

∥∥(
Df ∧i)n∥∥dµ, (10)

and semi-continuity follows as before.

Remark1. – A natural choice of a norm in (10) is such that the quantity‖(Df ∧i(x))n‖
is the supremum of thei-volume ofDf n(x)(P ) overi-parallelepipedsP ⊂ TxM of unit
i-volume. Of course, any other norm would work as well.

Theorem 1 is now an immediate consequence of Theorem 3, Proposition 2, and the
well-known fact that the set of continuity points of any semi-continuous function defined
on a Baire space contains a residual subset.

The perturbation strategy

15. The proof of Theorem 3 is quite long. Here we only give a glimpse of the strategy
to reduce Lyapunov exponents along finite pieces of orbits.

Recall that the Oseledets splitting is dominated atx if condition (3) is satisfied. It is
not hard to see that this condition can be reformulated as follows: There existsm ∈ N

such that for every iteratey = f �(x), � ∈ Z,

∥∥Dfm(y)v
∥∥ � 2

∥∥Dfm(y)w
∥∥ (11)

for all norm 1 vectorsv ∈E1
y ⊕· · ·⊕Ei

y andw ∈Ei+1
y ⊕· · ·⊕Ek

y , and all 1� i � k−1.
Now suppose the Oseledets splitting is not dominated, over a positive measure set of

orbits: for somei and for arbitrarily largem there exist iteratesy for which (11) does
not hold. The basic idea is to take advantage of this fact to, by a small perturbation
of the map, cause a vector originally inE1,i

y = E1
y ⊕ · · · ⊕ Ei

y to move toEi+1,k
f m(y) =

Ei+1
f m(y) ⊕ · · · ⊕Ek

fm(y), thus “blending” different expansion rates.
More precisely, given a perturbation sizeε > 0 one choosesm sufficiently large with

respect toε. Then forn �m one chooses a convenienty = f �(x), with �≈ n/2, where
domination fails. By composingDf with small rotations near, at most,m iterates of
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Fig. 2. Blending expansion rates.

y, one causes the orbit of somev ∈ E1,i to move toEi+1,k . See Fig. 2. That is, one
constructs a perturbed mapg preserving the orbit segment{x, . . . , f n(x)} such that
Dgn(x)v ∈E

i+1,k
f n(x). As a result, it is possible to show that

∥∥(
Dg∧j (x)

)n∥∥ � exp
[
n

(
$j−1 + λ̂j + λ̂j+1

2

)]
� exp(n$j),

wherej = dimE1,i .
This local procedure is then repeated for several pointsx. Using (10) and a tower

argument, one proves that$j(f ) drops under such arbitrarily small perturbations,
contradicting continuity.

Linear cocycles over transformations

16. The previous methods also extend to products of deterministic continuous ma-
trices. In this setting one considers a measurable invertible transformationf :M → M

on a compact spaceM , preserving a Borel probability measureµ. The system should be
aperiodic, meaning that the set of periodic points off should have zeroµ-measure. For
simplicity, here we also take the system to be ergodic.

Then one considers the space of all continuous mapsA :M → G, whereG is a
convenient matrix group. In all that follows we may takeG = SL(d,R), GL(d,R),
Sp(d), . . . , and we may also replaceR by C as the field of coefficients. Associated
to eachA, one considers thecocycle

F :M × R
d → M × R

d, F (x, v) = (
f (x),A(x)v

)
.

Note thatFn(x, v) = (
f n(x),An(x)v

)
, where

An(x) = A
(
f n−1(x)

) · · ·A(
f (x)

)
A(x) and A−n(x) = [

An
(
f −n(x)

)]−1
,

for n � 1. As before, Oseledets splittings{x} × R
d = E1

x ⊕ · · · ⊕ Ek
x and Lyapunov

exponents

λj (x) = lim
n→±∞

1

n
log

∥∥An(x)vj
∥∥, vj ∈Ej

x \ {0},
are well-definedµ-almost everywhere.

17. We prove that for a residual subset of continuous mapsA :M → G, either
the Oseledets splitting is dominated, and hence continuous, over the whole spaceM ,
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or the Lyapunov exponents are all equal (k = 1) at µ-almost every point. As before,
this follows from proving that average Lyapunov exponents can be simultaneously
continuous at someA0 only if the Oseledets splitting of the cocycle associated toA0

is either dominated or trivial.
The converse is also true: if the Oseledets splitting ofA0 is trivial or dominated then

A0 is a continuity point for all Lyapunov exponents. The proof has two main ingredients.
The first one is the robustness of dominated (or trivial) splittings: everyC0 nearby map
A has an invariant splitting into subspaces with the same dimensions and uniformly
close to the Oseledets subspaces ofA0. The second one is a semi-continuity argument
within each of these subspaces, to show that its Lyapunov exponents are close to the
corresponding exponents ofA0.

It is interesting to put this conclusion together with a theorem of Ruelle [12] stating
that if the Oseledets splitting ofA0 is dominated, and the Oseledets subspaces all have
dimension 1, then the Lyapunov exponents varysmoothlywith the matrix mapA near
A0.

Oseledets subspaces ofC0 generic cocycles need not be 1-dimensional:

Example1. – Let f :M → M have a fixed pointp. Let A0 :M → SL(3,R) be
constant, with one real and two complex conjugate eigenvalues. Assuming the norms of
the eigenvalues are not all equal, the Oseledets splitting ofA0 is the (constant) splitting
into eigenspaces, and it is dominated. Then everyA in aC0 neighborhoodU of A0 admits
a dominated splittingF 1 ⊕ F 2, with dimF i

x = i. In particular, the Lyapunov exponents
of A can not be all equal. So, for everyA ∈ U ∩ R the Oseledets splitting must be
dominated, and it must be a refinement ofF 1 ⊕ F 2. Now, assumingU is sufficiently
small,F 2 admits no continuous invariant proper subbundle. That is becauseA(p) has
complex eigenvalues alongF 2

p . Hence, ifA ∈ U ∩ R then its Oseledets splitting must
coincide withF 1 ⊕ F 2 almost everywhere.

But [5] shows that, for appropriate choices of(f,µ), the majority of Hölder
continuous maps A ∈ U (an open dense subset, whose complement has infinite
codimension) do have all their Oseledets subspaces with dimension 1.

18. Here is one situation where simple topological reasons prevent the existence of
dominated splittings, for a wholeC0 open set of cocycles:

Example2. – Letf : S1 → S1 be a homeomorphism andα :S1 → S1 be a continuous
map with non-zero degree. LetG = SL(2,R). Fix anyB ∈ G and defineA :S1 → G by
A(x) = BRα(x), whereRα is the rotation of angleα. Then the cocycle associated to any
mapM → G in aC0 neighborhood ofA admits no invariant continuous subbundle, let
alone a dominated splitting.

A simple proof goes as follows. Letξ0 :S1 → P
1 be any continuous section in the real

projective spaceP1, andξ1 :S1 → P
1 be its push-forward:

ξ1(x) = A
(
f −1(x)

)
ξ0

(
f −1(x)

) = BRα(f−1(x))ξ0
(
f −1(x)

)
.

Then deg(ξ1) = 2deg(α) + deg(ξ0) (the factor 2 comes from the fact that we are
considering maps toP1 instead ofS1). This implies thatξ1 �= ξ0, henceξ0 cannot be
invariant. These topological arguments extend immediately to aC0 neighborhood ofA.
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In spite of this, non-zero Lyapunov exponents may occur in this setting. For example,
if f is an irrational rotation,α = id, and‖B‖ > 1 then, by Herman’s subharmonicity
argument ([7], see also [2]), the cocycle associated toA has a positive exponent.
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J.-C. Yoccoz, and L.-S. Young, motivated us to write this outline of the arguments, and
helped improve the presentation.
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