
Microscopic structure of shocks
in one conservation laws

Fraydoun REZAKHANLOU (1)
Department of Mathematics, University of California,

Berkeley, California 94720, U.S.A.

Ann. Inst. Henri Poincaré,

Vol. 12, n° 2, 1995, p. 119-153 Analyse non linéaire

ABSTRACT. - We show that in one conservation laws, the disturbances
are propagated along the characteristic lines and shocks. We use this

to investigate the macroscopic behavior of the second class particles in
stochastic models such as asymmetric simple exclusion and zero range
processes, in one space dimension. We show that a second class particle
will follow the characteristic lines and shocks of the hydrodynamic equation.

1. INTRODUCTION

An outstanding problem in statistical mechanics is to establish the

connection between the microscopic structure of a fluid and its macroscopic
behavior. Perhaps the most celebrated problem in this context is the

derivation of Euler’s equations from the small scale dynamics governed
by Newton’s second law. Euler’s equations can also be obtained through
purely macroscopic considerations. One can formally derive these equations
employing the conservation of mass, momentum and energy.
We can simplify the problem above by considering other models with

only one conservation law, one such being that of particles with simple
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120 F. REZAKHANLOU

exclusions. Although this model is simpler, it retains many aspects of the
original problem.
An important aspect of one conservation law with nonlinear flux is the

development of discontinuities in its solutions, physically corresponding to
the occurrence of shocks in fluids. The main objective of this paper is to
investigate the microscopic structure of shocks in one conservation law.
The simple exclusion process (SEP) is a continuous time particle system

in which particles move as random walks on a one-dimensional lattice but
are excluded from occupying the same site. The precise definition of SEP
will be given in the next section.
The Law of Large Numbers for random walks suggests scaling space by

a small factor of order and speeding time by a large factor of order
L. If p(x, t) denotes the macroscopic particle density, it is known that p
satisfies the hydrodynamic equation

where 1 is a constant denoting the stochastic mean of the underlying random
walk, and h( p) = p( 1- p). See for example [13] and the references therein.

It is well known that if h is nonlinear, equation ( 1.1 ) does not in

general possess globally defined smooth solutions. It is therefore necessary
to interpret (1.1) in the distributional sense. Since there are infinitely many
distributional solutions to (1.1) that share the same initial condition, some
additional conditions are needed to ensure uniqueness. We say p is an

entropy solution if it satisfies

for every entropy pair (~, q) with § convex and q satisfying = q’.
There is a simple recipe for constructing entropy solutions of (1.1),

providing h is either strictly convex or strictly concave. Let us assume 1 h
is strictly convex and continuously differentiable.

y(x, t) denote a point at which the minimum of

is attained, where L is the convex conjugate of ~yh
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121MICROSCOPIC STRUCTURE

wo is given by

and po denotes the initial density.
Then, according to the Lax-Oleinik formula [9], p can be defined by

It turns out that for each positive t, y(x, t) is nondecreasing in x. We
denote the inverse of y(., t) by x(., t).
One of the main results of this paper characterizes x (a, . ) as the trajectory

along which the disturbances in the density propagate. More precisely, let
be an initial density which is different from po(’) only in a 6-

neighborhood of the point a. If 03C103B4(x, t) denotes the unique entropy solution
of (1.1) with the initial density po,s, then p~(~, t) is different from p(x, t)
only in a small neighborhood of x(a, t).
We also identify x(t) = x(a, t) to be the generalized characteristic

of (1.1) emanating from a. Generalized characteristics were initiated by
Dafermos [2] as solutions to the ODE

Since p is not continuous, (1.6) is understood in the Filippov sense [7]:
an absolutely continuous function x is a solution if for almost all t, 2014
is between the essential infimum and the essential supremum of 1h’ (p)
evaluated at the point (x(t), t).

It can be shown that the generalized characteristics are either classical
characteristics or shocks. In the former case p is continuous at (x(t), t)
whereas in the latter case p is discontinuous at (x(t), t).

For nonconvex h, the identification of the propagation of disturbances
with the generalized characteristics remains open.

It is believed that, at least for piecewise constant densities, second class
particles follow either shocks or characteristic lines. To define a second
class particle, we take two systems of particles that are different initially
at a single site - one of the systems contains an additional particle. Both
systems evolve according to SEP and it is possible to couple them in such
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a way that at later times, the discrepancy between the two will occur at
a single site. This site is the location of the additional particle known as
the second class particle.

Ferrari [4] shows that if a second class particle is initially added to the site

[aL] (the integer part of aL), then 1 L times the location of the second class
particle at time tL converges to x(a, t), provided that the initial density is
constant on the left and right sides of the origin (Riemann solutions). We
will show that Ferrari’s theorem holds even if the density is not a Riemann
solution. In fact our results are not restricted to SEP. They also apply to zero
range processes with concave rate functions. See the next section for details.

An important problem in this context is the fluctuation of the position of the
second class particle around the trajectory of x(a, t). A better approximation
for the location of the second class particle is conjectured to be

where p~ = t) are the left and right limits of p at (x(t), t),
t) are the largest and smallest value y at which the minimum of (1.3)

is attained, and ço denotes the random noise of the initial density. It is not
hard to see that the second term in (1.7) is a Gaussian process where in the
case of SEP its variance equals

So far (1.7) has been established for SEP in the case of Riemann solutions

([4-6], [8], [15]). In the last section we will give a formal derivation of (1.7)
for general initial data. See also Spohn [14].
The organization of this paper is as follows: §2 is devoted to the statement

of our main results. In §3 we study the propagation of disturbances and
its relation with generalized characteristics. The proof of the Law of Large
Numbers for second class particles will be given in §4. A formal derivation
of the formula (1.7) will be given in the last section.

2. NOTATION AND MAIN RESULTS

The primary purpose of this section is the statement of the main results.
This section is divided into three parts. In the first part we define SEP,

zero range processes and state a theorem concerning their hydrodynamical
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behavior. In the second part we discuss the Lax-Oleinik formula and the

Filippov solution. The main results of this paper will be presented in the
last part.

Part 1

We start with the definition of the so-called processus misanthrope that
includes the SEP.

Let p( 1) and p(-1) be two nonnegative numbers with p( 1)  p(-1) and
p( 1) + p(-1) = 1. For notational convenience we define p(z) for all z E 7L

and set p(z) = 0 for z ~ 1, -l.
Let b : [0, oo) be a bounded function with the following

properties:

Given p and b we define E Z) as the unique Feller process
with state space E = and the infinitesimal generator £, where £ acting
on cylinder functions, is defined by

where

provided > 1 and u ~ v; = ~ otherwise.

Some restrictions on b are needed to ensure that the invariant measures for
the process 7] are of simple form. We will formulate conditions that imply
product measures are invariant.

Let g : N - [0, oo) be a given bounded nondecreasing function with
g(0) = 0. For such g, and any given A E we define a

probability measure Oa on N by
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where is the normalizing factor. Set

Then

is strictly increasing, and

The inverse of cp ( ~ ) will be denoted by A(.) and let 8P = O ~, ( P ~ . The
probability measure vP is obtained by taking the product of OP,

so that = k) = O~(1~~. We certainly have

For a given b as in (2.1), we assume that there exists a bounded

nondecreasing g such that

for n, m > 1. We also assume

for n, m > 0. Conditions (2.5) and (2.6) imply that vP are invariant with
respect to £.

If we choose

and restricting the process 7/ to ~0,1 ~~, we obtain the SEP. In this case
there is at most one particle per site. For SEP, the invariant measures are
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125MICROSCOPIC STRUCTURE

~vP : p E ~0,1~ ~, where each vp is a product measure with marginals Op
where

If we choose b(n, m) = g(n) both (2.5) and (2.6) are satisfied and the
resulting process is called a zero range process (ZRP). In this case the rate

of jump from u to v does not depend on the occupation number r~ ( v ) .
We now describe the kind of initial distribution that we will consider

for the process r~t.

Notation 2. l. - Let ~cL be a sequence of probability measures on E and let

po : [0, oo) be a bounded integrable function. We then write po

if the following conditions hold:

(a) ~cL is a product measure

(b) there exists a sequence of constants pu,L such that

for every positive l. ([xL] denotes the integer part of 
Note that if po is continuous, we may choose po ( L ) for every
We define the constant ~y as the mean of p:

and the scalar valued function h as the average of b with respect to the
invariant measure vP :

Since vP is a translation invariant product measure, the right side of (2.8)
is independent of u and v.

In the case of SEP, h(p) = /)(! - p) and in the case of ZRP, h( p) = A(p)
(see (2.4)).

Let p(x, t) denote the unique entropy solution of

Vol. 12, nO 2-1995.
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’

More precisely, (1.2) holds for every entropy pair and

for every positive .~.
Let PL denote the distribution r~ where r~o is distributed according to ,uL.

In [13] ] we proved

THEOREM 2.2. - Suppose po for some po E Ll n L°°. Then for every
bounded continuous J, and every t > 0,

An important implication of the monotonicity assumption (2.1) is the
monotonicity of the process For this we first define the following partial
order on E: r~  ~ if r~(~c)  ~(u) for all u E Z. It is possible to construct a
coupled process (r~t, (t) on E x E such that the evolutions of r~t and (t are
governed by £, and if initially (o then 7]t  ~t for all t. The generator
of ( r~t , ~t ) is given where

In particular, if

for some zo, then this situation persists at later times. In other words, there
exists a site xt so that
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It turns out that the process is also a Markov process and its

infinitesimal generator is given by

The main goal of this paper is to study the asymptotic behavior of 1 x
as L goes to infinity.

Part 2

Throughout the paper we assume h is nonlinear.

ASSUMPTION 2.3. - h is either strictly convex or strictly concave, i.e.

0 for all p.

Under this assumption, p(t, . ) can only have first kind discontinuities for
every positive t. Let us assume 1 h is strictly convex.

For every positive t define

It is well known that w solves the Hamilton-Jacobi PDE

and in fact w is given by Hopf’s formula (see [9], [10]). More precisely
if 0  ti  t2, then

where L is the convex conjugate of 1h (see (1.4)).

Vol. 12, nO 2-1995.
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Let denote the set of values y at which the minimum in
(2.13) is attained. Let y+ (x; tl , t2 ) and ~- (x; tl , t2 ) denote, respectively
the largest and the smallest values in I (x; tl , t2 ) . It is shown in [9] that

tl, t2) is nondecreasing in x2. More precisely if xl  x2, then

~+(~l; tl, t2)  ~-(x2; tl, t2). Furthermore we define

where G = L’ (the derivative of L). Clearly p+ is right continuous and
p- is left continuous in x. According to the Lax-Oleinik Theorem [9], p+
coincides with the unique entropy solution to (2.9). Throughout the paper
we will refer to (2.14) as the Lax-Oleinik formula.
Note that for each t1, t2, y+ (x; t1, t2) = y-(x; t 1, t2 ) for all but at most

countable x. At such point p(x, t2 ) is defined to be p+ (x, t2 ) = p- (~, t2 ) .
Moreover since p is bounded, (2.14) implies

We denote the inverse of ~~ (x; tl , t2 ) in x-variable by ~~ (~; tl , t2 ), and
they enjoy the following relationships

By (2.13),

This and the continuity of w imply that y+ (y- ) is right (left) continuous
in x. Indeed we can regard ~+ and y- as the right and left limit of some
nondecreasing function.

Notation 2.4. - (i) ~~ (x, t) .- ~~ (x; 0, t), x~ (~, t) .- x~ (~; 0, t). If
~+(x; tl, t2) _ ~-(x; tl, t2), we denote it by ~(x; tl, t2). Similarly we
define x(~; tl, t2), x(y, t) and y(x, t).
Remark 2.5. - It is worth mentioning that since h is smooth, L is strictly

convex and G is strictly increasing.
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DEFINITION 2.6. - An absolutely continuous function x : [0, T] is

a Filippov solution to

if for almost all t E [0, T~,

Part 3

Our first theorem settles the uniqueness problem for the initial value

problem (2.17).

THEOREM 2.7. - Suppose

Then there is at most one Filippov solution to (2.17).
The proof of this theorem will be given in §3.
We will show that 1 LxtL converges to the unique Filippov solution of

(2.17) providing xo = [aL].
Let QL denote the law of the process where Xo = [aL] and r~~ is

distributed according to ~,L with po.

THEOREM 2.8. - In the case of SEP, suppose

for every positive b , and ( 2.18 ) holds. Then the law of 1 x is tight
with respect to QL and

where x (a, ~ ) denotes the unique solution of (2.17).
Note that we are requiring the initial density to be nonzero on the left of

a and less than one on the right of a, on a set of positive Lebsegue measure.
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We can also establish (2.20) for ZRP under the concavity assumption
on the jump rate g.

DEFINITION 2.9. - We say g : i~ --~ R is concave if the function

a(n) := g(n + 1) - g(n) is nonincreasing in n.

THEOREM 2.10. - (2.20) holds for ZRP if g is concave, 0,
p(1) = 1,

for every 8 > 0, and (2.18) holds.
The condition p( 1) = 1 means that particles can jump to the right only. If

we assume p(-1) = 1, then (2.20) is replaced with / 0.

The proof of Theorem 2.8 and 2.10 will be given in §4.
We can also prove (2.20) for processus misanthrope under some stringent

assumptions on b. These assumptions will be stated at the end of §4.
To define the location of a second class particle, we take two configurations

(r~o, (o) that initially are different at a single site; (o has an additional particle.
At later times the discrepancy occurs at a single site we defined to be the
location of the second class particle.
We imitate the above procedure macroscopically in the following manner.

We take two initial densities po and PO,8 that are different only in the interval
~a - 8, ~z + b~. We consider the set of points (x,t) at which p(~, t) 7~ p~ (.x, t)
where p and p8 solve (2.9) with initial densities po and respectively.
The set of discrepancies converges to a one-dimensional set that we expect
to be the macroscopic trajectory of the second class particle.
We now briefly describe our strategy for the proof of Theorems 2.8

and 2.10.

First we show that asymptotically the trajectory of the second class
particle lies in the set of points (:~, t,) at which p6 (:~, t) ~ for a

suitably defined This will be done in §4.
Second, we prove that the set of points (:c, t) such that for every 8,

pb(:~, t) ~ p(x, t) can be embedded in a neighborhood of the set

Finally we show that this set coincides with the trajectory of the unique
Filippov solution of (2.17). This will be done in §3.
Our next theorem asserts that a disturbance in the initial density at point

a will be propagated 
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THEOREM 2.11. - (a) C L1 be a uniformly bounded sequence
of initial densities such that

for almost all x ~ ~a - b, a + b~. Let ps (x, t) denote the unique entropy
solution given by the Lax-Oleinik formula and with initial density po,s. Then
the set

is a subset of

denotes the topological closure.
(b) If (2.18) holds then

for all t > 0.

Our next theorem identifies x ( a, t) to be the generalized characteristic
emanating from point a.

THEOREM 2.12. - Suppose (2.18) holds. Then x(t) = x(a, t) is the unique
Filippov solution to (2.17).

See the next section for a proof.

3. PROPAGATION OF DISTURBANCES
AND GENERALIZED CHARACTERISTICS

This section is devoted to the proof of Theorems 2.7, 2.11 and 2.12. We
start with some preliminary lemmas.

LEMMA 3.1. - Suppose 0  t2 ~ t3, ~2 E I(x; t2, t3) and
I(~2; tl, t2). Then

Vol. 12, n° 2-1995.
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Proof. - Since I(x; t2, t3) and ~1 E I (~2; tl, t2), we have

Therefore

because L is convex.

On the other hand, by (2.13),

Therefore we have equality in (3.2) and this in turn implies (3.1). For
(3.1)(ii) we have used the strict convexity of L. D

LEMMA 3.2. - Suppose x-(a, t)  :z+(a, t). Then

we have

Proof. - If x-(a, t)  x+ (a, t), then y(z, t) = a for every z such that
x- (a, t)  z  ~~ (a, t). On the other hand, since a is a minimizer of

tL z t ~ + wo(y) for such z we have
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or

Since G is strictly increasing, we cannot have equality. Therefore (i) holds.

To prove (ii), we first observe that y(z, t) = a implies p(z, t) _

By continuity, we also have y+(z; s, t) = y- (z; s, t) for

every s E (0, t). We denote the common value by x. If u E I(x; 0, s) then

by (3.1) the points (z, t), (~, s), (~, 0) are collinear and u is in the set

I(z; 0, t) _ ~a}. Therefore u = a and as a result 0, s) _ {a} which

in turn implies p is continuous at (x, s) with p(x, t) = G C ~ s a J . Since
every point (z, s) as in (ii) lies on a line segment connecting (a, 0) to (z, t)
for some z E (~-(a, t), x+(a, t) ) , we are done. D

COROLLARY 3.3. - (i) If (2.18) holds, then :c-(a, t) = x+(~z, t) for every
positive t.

(ii) We have s, t) := x-(a; s, t) = x+(a; s, t) whenever 0  s  t.

Proof. - Clearly (i) follows from Lemma 3.2(i). For (ii) first we observe

that by Lax-Oleinik formula, p-(~, s) > p+(x, s) if s > 0. Therefore (2.18)
holds for s > 0, which implies (ii).

LEMMA 3.4. - For every x and positive t3, define

Then

Moreover if t2 E (0, t3), then p is continuous at (cv~(t2), t2).

Proof. - Let yf = 0, t2) where y2 = y+(:c; t2, t3). Then by (3.1)
the points (x, t3), (yz, t2), (yf, 0) are collinear. Thus ,yl = ~i which
implies the continuity of p at (y2, t2) _ (w+(t2), t2). Similarly one can
prove the continuity of p at (c~-(t2), t2).
The linearity of w~ follows from the fact that the left-hand side of

is independent of t2.
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The next lemma establishes the semigroup property of tl, t2~ and
~~(x; tl, t2~.
LEMMA 3.5. - Suppose 0  t1  t2  t3. Then

Proof. 2014 Step 1. - Choose I(x; t2, t3) and ?/i E I(y2; t1, t2). By
(3.1), the points (x, t3 ), ( ~2 , t2 ), ( ~l , tl ) are collinear and

where

To prove (3.8) it suffices to choose ~2 = and 

t1, t2). Equivalently (3.7) can be written as

Step 2. - To prove (3.5), let z~ = x~ (a; tl, t2 ) and x~ = t2, t3 )
which is well defined by Corollary 3.3(ii) since t2 > 0. Then by definition

Now (3.9) can be used to conclude

that in turn implies

x+ (a; tl , t3 ), = x* which implies (3.5).

Step 3. - To complete the proof of (3.5), it is left to treat the case

x-(a; t3)  x+(a; tl, t3). Note that by Corollary 3.3(ii), tl can only
be zero.
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Define v~ by

By Lemma 3.2, p(z, t) = every z E (v-, 03C5+). In particular
p is continuous at such z which implies y(z; 0, t2) = a. Therefore

Our goal is to show 0, t3) = x~ and by (3. lo) it suffices to rule

out x+  x+ (a; 0, t3) and x- > x- (a; 0, t3). We only treat the former one
because the latter one can be treated in the same way.

If x+  x+ (a; 0, t3 ), then by Lemma 3.2(ii), p is continuous

at (x+, t3). Therefore y(x+; t2, t3) = z+ and by (3.1) the points
(x+, t3), (z+, t2), (a, 0) are collinear. This implies z+  v+ which
contradicts (3.11).

Final step. - Let a* = y- (x; t~ , t3 ) . By (3.9) we already know a*  a.

To prove (3.6) we need to show a  a*.

By definition we have x E ,p+] where

where, for the second equality we have used (3.5). Therefore

which in turn implies

Since x  p+, we conclude a  cx* . Similarly we can show ~3 =

~~(x~ tl, t3). D

In our first application of the semigroup property we show that indeed
w~ in Lemma 3.4 are the classical characteristics.

LEMMA 3.6. - Let w+ be defined as in Lemma 3.4. Then for every
t2 E (0, t3), we have p(w~(t2), t2) = t3).

Proof. - By semi group property (3.6),
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(Here we are using the continuity of p at (w~(t2), (t2)). Hence

Here we used (3.4) for the second equality. D

The semigroup property (3.5) can be used to show that in fact ~~ (a; 0, t)
are Filippov solutions to (2.17).
LEMMA 3.7. - Let x(t) _ 0, t). Then x is Lipschitz and a Filippov

solution to the initial value problem (2.17).

Proof - Let A = {t : = 03C1-(x(t), t)}. By the Rankine-
Hugoniot formula, for almost all we have

(see Dafermos [2], Theorem 3.1). Therefore for almost all t g A, (2.17a)
holds.

Fix a positive to E A and let t E A n (to, -~-oo). Since to, t E A, we have

Therefore

By semigroup property

which implies

By (3.13), w(y, to ) is differentiable at y = x(to). On the other hand, at
the minimum of
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is attained. Hence (3.14) implies

By the Lax-Oleinik formula we also have

Therefore

for every t e A f1 (to, +oo).
From this we conclude that for almost all to E A,

Finally we show is Lipschitz. By semigroup property, it suffices to
show that there exists a constant C such that for every z E R,

Let x = t, t + b). Then

Therefore we only need to show

By the Lax-Oleinik formula (2.14),

which implies (3.15) because p is bounded.
It has been shown in Dafermos [2] that the initial value problem

has a unique solution providing to > 0. By Lemma 3.7 this solution is

z(t) = x(zo; to, t). If (2.18) holds, we have a unique solution even when
to = 0. In fact we can prove more:

Vol. 12, n° 2-1995.
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THEOREM 3.8. - Let _ ~~ (a; 0, t). Then z+, z- solve (2.17).
Moreover, for every solution z(t) to (2.17) we have

for all t > 0.

Proof. - Let z(t) be any solution to (2.17) and suppose to the contrary
(3.17) does not hold. Suppose for some positive
ti. Since z+, z- both solve (3.16) and we have uniqueness for (3.16) if
to > 0, we conclude that in fact z(t) tJ (z-(t), z+(t)~ for every t E (0, tl~.
Suppose for example z(t)  z-(t) for every t E (0, tl~. The other case
can be treated analogously.

Since (3.16) has a unique solution if to > 0, we have

for every positive to. This in turn implies

By Lemma 3.4, the points to , t) , to) are collinear if we vary to and
fix t. By passing to the limit to 1 0, we obtain

If

then for sufficiently small s,

because by Lemma 3.4, y+ (z (t) ; s, t) is continuous (in fact linear) in s
and z- (0) = a. But this implies

which contradicts our assumption z ^ (t) > z (t) . Hence the strict inequality
in (3.18) cannot be true;
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This in turn implies

which is not possible. Thus E ~z-(t), z+(t)~. 0

An immediate corollary to Theorem 3.8 is Theorem 2.12. The following
example shows that without (2.18) we may have more than one solution
to (2.17).

Example. - Let 

Then = ct is a solution to (2.17) for every c E [0, 1]. One can easily
check that z-(t) - 0 and z+(t) = t.

The rest of this section is devoted to the proof of Theorem 2.11.
First we start with a lemma that asserts ~~ are nonincreasing with respect

to the initial condition po.

LEMMA 3.9. - Suppose E L1 n L°° and

almost everywhere. Let t), t), t), t) denote the

corresponding minimizer and entropy solutions given by the Lax-Oleinik

formula. Then for every t > 0,

and

Proof. - By the Lax-Oleinik formula, (3.19) implies (3.20).
Set
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and let I (x, t) denote the set of points y at which the minimum of 03C8 is

attained. Analogously we define and I (x, t). Suppose zi E I (x, t)
and z2 > Then

Therefore,

Hence either zi E t) or Î(x, t) C ( -oo, zl ). Similarly if ~l E I (x, t)
then either Y1 E I(x, t) or I(x, t) C (Y1, +00). Now (3.19) follows if we
choose zi = ~- (x, t) and ?/i = ~+ (x, t). D

Proof of Theorem 2.11. - (a) Step 1. - Since b > 0~ is uniformly
bounded, there exists a constant k such that

where = = po(x) for ~a - 8, a + 6~, and

for x E [a - 6, a + b~. Let t) and t) denote the corresponding
entropy solutions with the initial densities and qs (x) respectively.

If at a point (x, t) we have

then = as well. ’Therefore the set (2.22) is a subset of the
closure of the set of points (x, t) at which, for every 8 > 0, at least one of
the four relations in (3.22) fails. Hence, one of these relations would fail
for infinitely many 8 which by monotonicity property (3.20) would fail for
all sufficiently small 8. Let 80 > 0 and

where Ds - c.~ Ff and
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We will show that D~ is a subset of (2.23) for every 80. The other cases

corresponding to qs can be treated analogously.
Step 2. - It suffices to show

This is equivalent to showing that if a ~ (y-(x, t), ~+(:c, t)~ then there
exists a positive 8 such that

where Bs(x, t) == {(z,  b, Is - tl  b}.
Pick a point (x, t) with t E (0, T) and a / ~y-(x, t~, y+(~, t)~. For each

t, y(~ , t) is nondecreasing and y+, y- denote its right and left limits.
Therefore for some 80 > 0,

This means that either a  y- (x - 80, t) or a > y+(x - 80, t). By semigroup
property (3.6) and estimate (3.15), t) is Lipschitz in t. Therefore we
may choose a smaller 80 to ensure that either

or

Step 3. - We would like to show that both (3.27) and (3.28) imply (3.25).
We start with (3.27). Write

where

Let denote the set of points y at which the minimum of is

attained. We write for the largest and smallest values in

respectively.
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Since there exists a constant such that = wo(y) + k(~S) for
y > a + 6, any minimizer of 1/;8 in the interval of [a + 8, +0oo) is also a
minimizer of y. Suppose (3.27) holds for (x, t). Then for every 6 E (0, bo~,
every s E [t - 8,t + 8] and z E [x - 8,x + 6], we have

Hence if ,yh (z, .s) > a ~- b, then p have the same set of minimizers
which implies s) = .s) that in turn implies s) = s)
or (z, s) ~ F~ U F8-. Therefore if (3.25) fails for every 6 then for every
8 E (0, bo~, there exists a pair (z(b), s(b)) such that

and

Since in the interval (-oo, a - 8], it is not hard to show that the

sequence ~~ (z(b), s(b)) is bounded below. We also know

Hence

If, for a subsequence we have

then

which implies

On the other hand, (3.30) implies b  a, so ~~ (x, t)  a, contradicting
(3.27). Thus (3.27) implies (3.25).

Final Step. - It is left to show that (3.28) implies (3.25). Suppose (3.28)
holds. By monotonicity (3.19) we have
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for every (z, s) E [x - b~, x + 60] x [t - 80, t + 80], This implies
= because = wo(Y) for y E (-oo, a - b~~ and as

a result have the same set of minimizers. Thus p~ (z, s) = p o (z, s)
which implies (3.25). ~

4. SECOND CLASS PARTICLES

In this section we prove Theorems 2.8 and 2.10. The nearest neighbor
jump assumption in the SEP case and the concavity of g plus the uniform

asymmetry in the case of ZRP imply that a single second class particle will
be trapped between a bunch of second class particles. This can be utilized to
reduce the law of large numbers for a single second class particle to the law
of large numbers for the density of second class particles. We then apply
Theorems 2.11 and 2.12 to complete the proof of Theorems 2.8 and 2.10.
We start with the proof of tightness.

LEMMA 4.1. - The sequence of processes {1 L xtL} is tight.
Proof. - Recall that for every f, the following are martingale:

where A is defined by (2.11).
If we choose = x, we have

where

Since V is bounded, the middle term in the right-hand side of (4.2) is

uniformly Lipschitz in t. Therefore it suffices to show
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By Doob’s inequality we only need to show lim 1 EM2tL = 0. UsingY q Y Y ~2 tL g

(4.1 ) again we have

that clearly goes to zero as L -~ oo. D

Proof of Theorem 2.8. - The proof of (2.20) is carried out in several steps.

Step 1. - Write q = p ( 1 ) , p = p ( -1 ) and assume p > q. Let ( r~t , Xt) be a
process generated by A such that initially r~o is distributed according to ~L
with po and xo = ~aL~ . In the case of SEP, A can be written as

where r~~‘~v is as before and

Here we are assuming that initially = 0. This implies 0

for all times.

The middle terms in (4.3) represent the purely asymmetric part of the
generator. The last term corresponds to the symmetric part of the generator.
According to the last term, the second class particle jumps as a symmetric
random walk and if there is an 7]-particle at the site it is jumping to, the
7]-particle and the second class particle exchange sites. Note that the rate
of a jump in the last term does not depend on the confiuration. Here we
used the new notation 7]u,v to simplify the notation and put emphasis on the
symmetric feature of the last term.
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Step 2. - Let (t be a process generated by £ with initial distribution
po,s where

By monotonicity we can write

We regard at(u) as the occupation number of second class particles. One
can easily write down the generator of (r~, a). For our purposes we will
write the generator in an appropriate way.
As before we decompose the generator into symmetric and purely

asymmetric parts. Let B denote the infinitesimal generator of the process
(77, a). We write

The first three terms represent the purely asymmetric part of the generator.
The last term corresponds to the symmetric part. According to this part,
particles move as symmetric random walks. At the transition times, if

the sites of a bond are occupied by an 7]-particle and an a-particle, they
exchange sites.

Step 3. - If q = 0, it is possible to couple the processes so that
for all times there is no a-particle on the left of Xt. This is not possible if

0. However the special form of the last term in (4.4) makes it possible
to construct a coupling so that a good number of a-particles stay on the
right of xt. The idea is as follows. We label a-particles from 1 to N where
N is the total number of a-particles. We let a particle of a given label jump
according to the following rules:

(1) with rate p - q it jumps to the left if there is no (-particle there,
(2) with rate p - q it jumps to the right if there is no a-particle there,

but there is an 7] particle,
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(3) with rate q it jumps as a symmetric random walk.

Now it is possible to couple zt with the labeled a-particles so that an
a-particle of a fixed label stays on the right of xt at all times. Of course it
is possible that the other a-particles cross zt and jump to its left. Since a
particle of fixed label with an arbitrary initial location stays on the right of
xt, we conclude that a good number of a-particles must be on the right of
zt as well. To make this precise we start with the precise definition of the
labeled particles and their dynamics.

Let ..., zN denote the locations of the a-particles :

The infinitesimal generator of zt) is as follows:

where is the configuration obtained from z by exchanging the content
of u with the content of v. For example if and zj = v for some
i, j (i ~ j ), then in the i-th particle is sitting at v and the j-th particle
is sitting at u.

Step 4. - We already know how a(u) = ((u) - 7](u) are distributed

initially. We assume that z is distributed symmetrically at t = 0. In other
words, if at t = 0, we change the labels the probability assigned to a

configuration does not change. This property survives at later times. We
write
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and we claim that there is a coupling of the processes such that if

xo then

for all t. To see such coupling exists, we compare the rate of the jump
of xt with zl,t.

Suppose for some t, zt = zi,t = u. Then

(1) zt jumps to the left with rate p - q if 1) = 0 and

(2) zt jumps to the left with rate q

while

(1) zi,t jumps to the left with rate p - q if (t (u - 1) = 0 and

(2) zl,t jumps to the left with rate q.

Therefore the rate of the jump to the left for zt is not less than the rate for

zt,1 because ((u) = 0 implies 7]( u) = 0. Moreover,

(1) xt jumps to the right with rate p - q if 7]( u + 1) = 1 and

(2) zt jumps to the right with rate q

while

(1) jumps to the right with rate p - q if + 1) = 1 and

(2) jumps to the right with rate q.

Again we conclude that the rate of the jump to the right for zt is not greater
than the rate for zl,t. From this and the previous discussion we conclude
that there is a coupling of Xt and such that Xt  for all times. We

omit the tedious formula of the generator of the coupled process.

Step 5. - Fix a positive c. Let be such that initially pt
equals PO,8. By Theorem 2.11 there exists a 8 = ~ ( ~ ) such that

= p(x, t) for t E [0, T~ if (x, t) does not belong to the set

r s _ ~ (x, t) : x- (a, t) - ~  x  x+ (a, t) + c, 0  t  T ~. Let RL
denote the law of the (x, z) process. Then by Theorem 2.2 applied to both
the ~ and ( process, we have

In particular, if J = Rr, the indicator function of the set r~, we obtain
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Here r~ denotes the complement of the set r é. On the other hand, by
symmetry assumption (see the first paragraph of Step 4),

Moreover,

which follows from our assumption 2.19. This, (4.7) and (4.6) imply

for every t.

Since xt ~ zi,t we have

where A is any finite subset of [0, T].
Final Step. - Let ~t be a process generated by £ with initial distribution

po,s where

By monotonicity we can write

As in the previous step, it is possible to couple the processes zt so that

a good number of the ,8-particles stay on the left of xt for all times. In the
same way we conclude that for every positive E,

where A is any finite subset of [0, T~ . Thus

which implies that any limit point of QL concentrated on the trajectory of
the unique solution of (2.17) providing (2.18) holds. D
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Remark 4.1. - If (2.18) does not hold we can still prove that any limit

point of ~ Q L ~ is concentrated on the set of all solutions of (2.17). We know
that if (2.18) fails we may have more than one solution.
We follow the same strategy for the proof of Theorem 2.10. The following

formulation of the concavity of g will make it possible to compare the jump
rate of zi,t with xt in ZRP.
We omit the easy proof of the following lemma.

LEMMA 4.2. - The concavity of g is equivalent to

Proof of Theorem 2.10. - In this case A can be written as

where £ acts on 7] variables only.
Suppose ( is as in the second step of the previous proof,

The generator of the process (~, a) can be written as

As in the third step of the previous proof we label a-particles from 1 to
N where 

’

Let z=(zl ... zN ) denote the locations of the a-particles;

The rate of the jump of an a-particle is g(n + k) - g(n) if n = 
a (u; z) . We assume that each a-particle jumps with rate
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k (.9(~ + k) - g(n)) so that the total rate of a jump from u to u + 1
becomes g(n + k) - g(n). The generator of (~, z) is

where is a confiuration obtained from z by moving the i-th particle
from zi to zi + 1.
The first inequality in (4.12) implies that the jump rate to the right for zt

is not less than the jump rate for Therefore we can couple x with zi in
such a way that always stays on the left of xt. This implies (4.8). The
other inequality in (4.12) and (2.12) can be used to deduce (4.10). D

It is also possible to prove something like Theorem 2.10 for processus
misanthrope. The concavity assumption or equivalently (4.12), is replaced
with

These conditions imply (but are not equivalent to) the concavity of b(n, m)
in n and m.

5. FLUCTUATIONS

It is expected that both the macroscopic density and the location of the
shock undergo Gaussian fluctuations.
For simplicity we assume p is smooth in the set [0, T] x R except on

the shock curve

Annales de l’Institut Henri Poincaré - Analyse non linéaire



151MICROSCOPIC STRUCTURE

To model the fluctuation we write

We expect that for a suitable (random) function x(t),

We regard ~(t) as the "true" location of the shock.
We conjecture that the position of the second class particle 1 LxtL is

~/
approximated by (t) with an error of order o( 

If x is not between :c(t) and .z(t), then we expect

where £ is the fluctuation in the density and it satisfies the linearized

hydrodynamics equation

Initially ~(:c, 0) _ ço(x) is a Gaussian white noise that in the case of

SEP its covariance is given by

See for example [14], part II, chapter 5.
Fix t and let cv~ (s) _ ~~ (x(t); s, t) for 0  x  t. It follows from

Lemma 3.6 that w+ and w- are characteristic lines.
Since on the set

p is smooth, it is not hard to show that a solution £ to (5.4) satisfies
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for every characteristic line z(t). This implies

Similarly,

Therefore

because = and = x.

Now we argue that the second term in the right-hand side of (5.5) is
responsible for the fluctuation in the location of the shock.

Since the total number of particles is conserved, we have

On the other hand,

using (5.2) and (5.3). This and (5.5) imply

In the case of SEP with 1 > 0 and if p is a Riemann solution,

with ~-  k+, the derivation of ( 1.7) is due to Spohn [ 14].
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A rigorous derivation of (1.7) can be found in [3] and [8] under the

additional assumption k- = 0. The case k- > 0 has been recently treated

by Ferrari and Fontes [5,6].
In the case of ZRP, (1.7) was established by Wick [15] under the

assumptions p(l) = 1, g(n) = 1l (n > 0), and k- = 0.
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