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ABSTRACT. — We study the existence of infinitely many solutions
for the Cauchy problem associated with the nonlinear heat equation
us = (u™ lu, ), in the fast diffusion range of exponents —1 < m < 0 with
initial data ug > 0, up # 0. The issue of non-uniqueness arises because of
the singular character of the diffusivity for « ~ 0. The precise question we
want to clarify is: can we have multiple solutions even for initial data which
are far away from the singular level u = 0, for instance for ug (z) = 1?
The answer is, rather surprisingly, yes. Indeed, there are infinitely many
solutions for every given initial function. These properties differ strongly
from other usual types of heat equations, linear or nonlinear.

We take as initial data an arbitrary function in L{ _ (R). We prove that
when the initial data have infinite integral on a side, say at x = co, then
we can choose either to have infinite mass for all small times at least on
that side, and the choice is then unique, or finite mass, and then we need to
prescribe a flux function with diverging integral at ¢ = 0, being otherwise
quite general. Moreover, a new parameter appears in the solution set. The
behaviour on both ends, z = oo and z = —o0 is similar and independent.
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174 A. RODRIGUEZ AND J. L. VAZQUEZ

RESUME. — Nous étudions I’existence d’une infinité de solutions pour
le probleme de Cauchy associé a I’équation de la chaleur non linéaire
ug = (™ luy), dans le rang d’exposants —1 < m < 0, avec donnée
initiale ug > O et non triviale. La possibilité de non-unicité apparait a cause
de la singularité de la diffusivité 4™~ pour u ~ 0. La question précise que
nous voulons clarifier peut étre formulée comme suit : est-il possible d’avoir
une multiplicité de solutions méme pour une donnée initiale qui est partout
loin du niveau singulier u = 07 La réponse (plutdt surprenante) est OUI,
il y a toujours non unicité, et méme une infinité de solutions pour chaque
donnée initiale uq. Ces propriété€s different notablement de celles des autres
équations de la chaleur linéaires ou non linéaires qu’on a étudiées.

loc

diverge en £ = 400 on a ou bien le choix d’une masse infinie de ce coté
pour tout temps petit (et ce choix est unique) ou bien d’une masse finie
toujours, et alors on a besoin d’imposer une fonction de fluxe f(¢) a I’infini
avec intégrale divergente en ¢t = 0, autrement arbitraire. L’ensemble des
solutions montre encore un parametre supplémentaire. Le comportement
pour x = —oo est similaire et indépendant.

On prend des données initiales uo € Ll _(R). Quand I'intégrale de ug

0. INTRODUCTION

In this paper we investigate the existence of infinitely many solutions
u = u (z, t) > 0 of the fast-diffusion equation

(0.1) uy = (U tug),, for —1<m<0,
posed in @ = {(z, t) : z € R, t > 0}, taking initial data

(0.2) u(z, 0) =uo(z), z€eR,

where ug € LL_(R), up > 0. The nonlinear evolution equation (0.1) has

been proposed in several physical applications in the range of exponents
m < 1 as a model of diffusive phenomena where the diffusivity tends to
infinity as u — 0, thus receiving the name of fast-diffusion equation. Thus,
the case m = 0 (i.e. u; = (log u).,) appears for instance in the expansion
of a thermalized electron cloud (Lonngren and Hirose [LH]), in gas kinetics
(Carleman’s model of Boltzman equation, Carleman [C], McKean [MK]),
in ion exchange kinetics (Hellfrich and Plesset [HP]). Recently, Chayes,
Osher and Ralston [COR] studied equation (0.1) for m < 0 in connection
with self-organized critical phenomena.
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NON-UNIQUENESS OF HEAT EQUATIONS 175

The first mathematical studies concerned the range 0 < m < 1, and
it was proved that the Cauchy Problem is well-posed in L' (R), just as
it happens in the classical heat equation, i.e. in the case m = 1, and in
the porous medium equation, . > 1. However, this is not the case when
m < 0. Indeed, the authors proved in [RV1] that in the present range
—1 < m < 0 The Cauchy Problem with initial data in L' (R) admits
infinitely many solutions. More precisely, a well-posed problem can be
obtained if we supplement (0.1)-(0.2) with flux data at infinity. For every
fixed ¢ > 0 we impose the conditions

(0.3) u™ lu, - —f(t) as T — oo,

(0.4) u™ tu, — g (t) as T — —oco.

Given f, g € BV (R), f, g > 0, Problem (0.1)-(0.4) admits a unique
solution u € C* (Qr) where Q7 = R x (0, T') for some time T' > 0.

It is also proved in [RV1] that the “Neumann data” f and g cannot take
negative values. Since the usual comparison theorems are valid, it follows
that when f and g vanish identically we obtain the maximal solution of the
problem. This solution has been investigated in an earlier paper with J. R.
Esteban [ERV] and has special properties which it shares with the unique
solution of the Cauchy Problem when m > 0. A complete characterization

of maximal solutions for general data measures is done in [RV2].

The aim of this paper is to clarify the existence of multiple solutions for
the Cauchy Problem in the case when the initial data u is not integrable, but
merely locally integrable function, i.e. ug € L}, (R), uo ¢ L' (R). Some
results are already known for this problem. The existence of a maximal
solution u € C ([0, o0) : LL_(R)) which is C°°-smooth in Q is also
shown in [ERV]. Nonmaximal solutions appear in the literature in the form
of travelling waves

(0.5) u(z, t) = f(x +ct), ¢>0,

which satisfy the following side conditions for ¢ > 0:

u—1 as z — oo,

u™ lu, -k as x — —oo.

Such problems have been investigated by several authors, like Takac [T1],
[T2], Zhang {Z] and Chayes et al. [COR]. Self-similar solutions are also
constructed by van Duijn, Gomes and Zhang [DGZ].
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176 A. RODRIGUEZ AND J. L. VAZQUEZ

All the above-mentioned cases of non-uniqueness concern solutions which
approach the “singular level” 4 = 0. It could be conjectured that data
which stay away from that level, like uo (z) = 1, would not admit multiple
solutions. In fact, the main purpose of this work is to show that such
assertion is always false, and more precisely, that for every nontrivial
initial data ug € L{,. (R), ug > 0, there are infinitely many solutions of
the Cauchy problem, corresponding in particular to the prescription of flux
data (as in (0.3), (0.4)), subject only to certain compatibility and regularity
conditions. Even more, in cases of infinite initial mass we discover the
existence of an additional free parameter than can be prescribed.

It is interesting to remark that for bounded initial data we construct
infinitely many bounded solutions of the Cauchy problem, a radical
deviation from the behaviour of the equation for m > 0, in particular
of the classical heat equation.

Our study is complemented by showing the uniqueness of the solution
which corresponds to zero-flux prescription, which coincides with the
maximal solution. Uniqueness also holds for cases of finite initial mass
on one side with the corresponding flux prescription on that side. Further
information and comments are given in the final Section 7.

1. PRELIMINARIES. GENERAL CONSIDERATIONS

According to the theory developped in [RV1] we can solve the mixed
initial and boundary-value Problem (0.1)-(0.4) for every nonnegative initial
data ug € L' (R) and every pair of flux functions f and g which are
nonnegative and belong to L (0, 0o) N BV, (0, o). The solution is a
positive and C*°-smooth function defined in a strip Q7+ = R x (0, T)
for some T > 0. We have u € C ([0, T] : L' (R)), and the following
formula holds

(L /Ru(a:, t)da:z/Ruo(x)dx—/Ot(erg)dt,

It is customary to refer to the integral | u (z, t) dt = M (t) as the mass

of the solution at time ¢, and (1.1) is then called the global mass balance.
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NON-UNIQUENESS OF HEAT EQUATIONS 177

The formula is valid for all times ¢ > O if / uo (z) dz is larger than
R

/ (f + g) dt. Otherwise, there exists a time at which the second member
0

of (1.1) becomes 0. This time is given by

T = sup {t>0 : /uo(x)da:>/0t(f+g)dt}.

If T is finite our solution vanishes identically as ¢ — T, and the equation
ceases to have a meaning for ¢ > T'. Such T is called the extinction time.

A very interesting property of the mixed problem (0.1)-(0.4) is the
stability property which can be stated as follows. Let u;, ¢ = 1, 2 be
two solutions with initial data ug; and flux functions f;, g¢;, all of them
satisfying the properties stated above. Then

(12) /R (U1 (t) — U2 (t))+ dzx S / (u01 - UO2)+ dx

R

+ / ((fam f)s + (92— g1)+ ) dt,

as long as both solutions exists. As a consequence, we have the following
Maximum Principle: If ug; < ugo, fo < fi and g2 < g1, then Ty < Ty
and u; < ug in Qr,.

The study of uniqueness is performed in [RV1] by means of the “potential
function”

(13) U (s, t):/j u (z, t)dz;-l-/ot g (1) dt.

Using the fact that u (z, t) is a solution of equation (0.1), this potential
can be written equivalently in the form:

(1.4) Uz, t) = / udz 4+ u™ ! udt,
Y

integrated along any curve -+ lying in @ and joining the points (—oc, 0) and
(z, t), since in (1.4) we are integrating an exact differential. It is explained
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178 A. RODRIGUEZ AND I. L. VAZQUEZ
in [RV1] that U (z, t) is the unique solution of the problem
( Ut - llemhlUwz

J oo t
U(+oo,t)=/ u(a:,t)da:—{—/ g dt
— 00 0

® :/_:ouoda:—/otfdt
U-oe.t)= [ 900
\U(a:,O):/gc wo (z) da.

—oC

Arguments involving U will be frequent in the sequel. When the integral

0
/ ugdz is infinite we shift the origin of v from z = —o00 to £ = 0.

Let us now comment on our present project. We want to describe the
solutions of the Cauchy Problem (0.1)-(0.2) for general initial data in

Li,. (R), ug > 0. Therefore, we have to consider solutions with infinite

initial mass, i.e. with / up dz = o0o. Though the general results will have

a unified outlook, it will be convenient to divide the study into a number
of cases as follows.

Firstly, the behaviour at both ends, z — oo and z — —oo turns out to
be independent in a sense. Therefore, we may consider two different initial
situations: (i) when the mass is infinite only at one end, say, when

hade e

0 oo
(1.5) / uy dz < 0o and / ug dr = oo
0

(the simply infinite case) and (ii) when both integrals are divergent (the
doubly infinite case). We will also need to consider independently the two
partial mass functions

0

oo
(1.6) M, ()= / u(z, tyde, M_(t) = / u (z, t) dz.
0 - 00

There are then two possibilities to be considered for a solution which has an
infinite initial mass on one side. Either (a) it stays infinite on that side for all
time (and this happens for instance with the maximal solution constructed
in [ERVY]), or (b) it becomes finite at a certain time. Once a mass becomes
finite (on one side) it stays finite as we show next.
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NON-UNIQUENESS OF HEAT EQUATIONS 179

PrOPOSITION 1.1. — If the partial mass of a solution u (z, t) is finite at
a time t1 > 0, say M, (t;) < oo, then for every t > t, this partial mass
is finite, M, (t) < oo.

Proof. — We compare our solution with the maximal solution % starting at
t = t; with the same data as u. For this one we multiply by a cutoff function
(n(x) = ¢ (nx) such that 0 < ¢ < 1,¢(z) =1forz < 1and {(x) =0 for
z > 2 and integrate the equation in the rectangle R = (0, oo) X (t1, t) to get

/Onu(x, t)dxg/oooﬁ(x, t)gn(x)dxz/oooﬂ(x, t) Co (z) do

+/tt /E(x, t) $n, 2z () d:rdt—/t W, (0, t) dt,

ty

where W = ™ /m if m > 0 but w = log (u) for m = 0. We only have to
control the second integral of the second member. This is done thanks to
the estimate W = o (x) valid for maximal solutions, ¢f. [ERV]. This means
that the integral tends to 0 as n — oo.

Combining these facts we find the following possibilities to be studied:
I. Simply infinite initial data and solution.

IL. Simply infinite initial data and solution with finite mass.

IIL. Doubly infinite initial data and simply infinite solution.

IV. Doubly infinite initial data and solution with finite mass.

V. Doubly infinite initial data and solution.

It is clear from the results, but probably worth mentioning here, that
combinations of the above cases can be produced: thus, a solution with,
say, infinite mass on one side for a time 0 < ¢ < ¢;, can be continued after
t; with a finite-mass solution by prescribing a convenient flux function.

2. UNIQUENESS OF THE SOLUTION WITH
INFINITE MASS. BACKLUND TRANSFORM

Our first result concerns case V where we have initial data which are
“doubly infinite”, i.e. such that

0 (o)
2.1) / ug (z) dz = / ug (z) de = oo,
0

— o0
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180 A. RODRIGUEZ AND J. L. VAZQUEZ

and we want the solution u (z, t) to have also doubly infinite mass for
positive times, My (t) = M_ () = oo. Such a solution turns out to be
unique, thus giving a convenient characterization of the maximal solution
under conditions (2.1).

THEOREM 1. — Let ug be a nonnegative and locally integrable function
satisfying (2.1). Then there exists only one solution of the Cauchy Problem
0.1)-(0.2), uw € C* (Q), u > 0, with the property that for every t > 0

0 o]
(2.2) / u(z, t)dr = / u (z, t) dz = 0.
0

— 00
This solution coincides with maximal solution constructed in [ERV].

Proof. — The existence of a maximal solution of the Cauchy problem
is established in [ERV, Theorem 9]. Arguing as in Proposition 1.1 one
easily concludes that infinite mass is conserved for such solutions, i.e. that
M, (0) = oo implies M, (t) = co for every t > 0, and likewise for M_.

The proof of the uniqueness result will be very different according to the
value of m. There are two cases, —1 < m < 0 and m = 0. In the former
one we apply the technique of Béickiund transform, BT, which allows to
transform equation (0.1) with exponent m into the same equation with
exponent m’ = —m. In this way the range —~1 < m < 0 is mapped onto
the range 0 < m’ < 1. Uniqueness in the latter range is known. The BT
is well-known in the case m = —1, where the resulting equation is the
heat equation u; = u,,, ¢f. [BK], [R], [H]. (Observe that for m = —1 the
transform linearizes the equation; this does happen in the present case).
The BT applies equation (0.1) into itself when m = 0. The uniqueness
argument is in this case more involved.

Proof of uniqueness for m < 0. Let u (z, t) be a solution of the
Cauchy Problem (0.1)-(0.2) satisfying (2.1) and (2.2). We define the BT
transformation as follows:

Z(z, t)= /UI u(z, t) dz +/0 (u™ Mauy) | oo dt
=1
w(zZ, t) = 1/u(z, t),

which uniquely determines a function % (Z, t), solution of the problem

2.3)

o~

(PC)
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NON-UNIQUENESS OF HEAT EQUATIONS 181
in the domain I x (0, oo) with I = (T (—oo0, t), T (0o, t)). Observe that
the Jacobian of the transformation 0 (%, t)/0 (z, t) = u (z, t) > 0 in Q.

Under conditions (2.2) we have T = R he_nce the domain of % is just Q.
Conversely, if @ (Z, t) is a solution of (PC') in § and we put

r=2z (T, t) = /: u (T, t)dT + /Ot (@™ 'z [z=odt

u(z, t) = 1/T (T, t),

then u (z, t) is a solution of the original Cauchy Problem in Q.

Let us now check the transformation of the initial data; let

M(m):/: uo (z) da.

Then by the equations of the BT we have that

Z (z, 0) :/: uo () dz = M ().

Conversely, let ¢ (z) = M~ (z) so that z = ¢ (T) (the transformation
T — T is one-to-one if uy > 0 a.e., otherwise we have to argue by limits
as t — 0). Then

so that

M(Zc‘):/ Ho(f)dfz/ U (T) uo (z) dz = =.
0 0
Therefore, we conclude the equivalence of the problems:

m—1

U = (U U )z
(PC) { u(z, 0) =uo(z) con wu(zr,t)gLi, (R), Vi>D0,

Vol. 12, n® 2-1995.



182 A. RODRIGUEZ AND J. L. VAZQUEZ

and

T (Z, 0) =u (z) with % (z) ¢ LL_ (R).

By [HRP] we known that there exists a unique solution of this latter
problem u (T, t) € C (((0, c0) x R) N C ([0, oo); LL. (R)) and
u (7, t) > 0. Consequently, there exists a unique solution u (z, t) €
C* ((0, o0) x R)NC ([0, 00); LL. (R)) and u (z, t) > 0 of the original
Cauchy Problem. Obviously, it must coincide with the maximal solution
constructed in [ERV].

Remark. — We can make use of the transformation even if the mass of
the solution is finite. In that case the solution of the transformed problem
(PC) is defined in a variable spatial domain I (t) = (a (¢), b(t) =
(z (=00, t), T (400, t)), with

w(@(t), t) =u(d (1), t) = oo,

i.e. we get singular boundary conditions. Similarly for solutions with
semi-infinite mass.

Uniqueness for m = 0. (i) We use the same BT which now reads

T(x, t)= /0$ u(z, t)de + /Ot (u™ g ) pmodt

This determines a function % (%, t) which solves problem (PC) (which is
the same as (PC) but for the initial function) in a domain T = R as before.
Therefore, a solution of problem (PC) with doubly infinite mass is mapped
by BT into a similar solution of the same problem.

CLAM 1. — Maximal solutions are mapped into maximal solutions.

Proof. — Let u (z, t) be a maximal solution, i.e. a solution satisfying
([ERV])

24) —Z<u <

~ie
~le
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Let @ (7, t) be its image by BT and let

T(T, 1) = —=

[~
| =
=

be the “pressure” of the image solution. Then

T 1 u
—Vzz = Uzz = (U_) = a (10g U)zz = 7;

U’z

We conclude from the equation that

(2.5) Tag > ——.

This inequality is another way of characterizing maximal solutions, see
[ERV].

(ii) We resume the proof. Let U by the maximal solution of problem
(PC) for a given initial function uo and let u be any other solution. Thus,
u(z, t) < U(z, t)in Q. Let

U=f(X,t) and u=g(7,t)

be the respective transformed functions. By BT they are solutions of (PC)
in terms of the corresponding variables. They take the same initial data
since the transformation is the same for both in all respects at ¢ = 0.
Notice however that X and T, as functions of z and ¢, need not coincide.
We know that

. 1 1
26 e RN

=u (T, t).

One has to be careful in applying this comparison since it involves in
principle different space positions. We continue as follows: according to
our claim the function f (s, t) is a maximal solution of problem (PC)
written in coordinates s and ¢. Since g (s, t) is also a solution we get

Q.7 g(s,t) < f(s,t) forevery s€R, t>0.

Vol. 12, n® 2-1995.
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Using (2.6) and (2.7) (with s = T) we get

(2.8) U(X,t)<u(%, t) <U (T, 1)

(iii) In order to exploit formuli(Z.S) we need an observation about the
relative values of the functions X and Z. By direct differentiation of the
defining formulas for fixed time we get

oxX oz
—_— =U(z, t —_— = t
8‘T t=const (:r’ )’ 8.7) t=const U(z, )7
so that
2.9) o =2 <
. ay t———const_ U -

This means that for every fixed ¢ > 0 we can view Z as a monotone
increasing function of X with slope < 1. There are in principle two options:

& There exists at a time ty a point sg such that T = X.

In this case we use (2.8) with X = sy = Z to conclude that at this point
U = %. In a more convenient way this means that the solutions f and g
coincide at one point (s, o). Since they are ordered solutions of equation
(0.1) (with m = 0) and the Strong Maximum Principle can be applied, both
solutions coincide, % = U. Inversing the transformation we get u = U.

& No such intersection exists.

Let us assume that Z < X for every z € R and ¢ > 0. Using (2.8) with
y =7 and z = X we conclude that z > y and

(2.10) Uz t)<u(y, t) <U(y, t).

It follows that U and @ are decreasing functions of their space variable,
hence they have nonzero limits as z, y — —oo. The situation at +o0 is
studied as follows: since z > y and the slope of 3’ (z) < 1 there exists
a constant ¢ such that

z(z, t) <y(z,t)+ec

for every y > 0. Going back to (2.10) we find that % (y, t) > U (y — ¢)
for y > 0. In this way we conclude that w has a decay like a maximal
function on both sides. Clearly, the estimates at both ends can be done
locally uniformly in ¢ > 0. The solution is therefore maximal, i.e. ¥ = U.
Consequently, © = U. A similar argument applies when z < y.
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3. SIMPLY INFINITE DATA. SOLUTIONS WITH INFINITE MASS

We begin our existence theory with the case where the initial mass is
unbounded only on one side, say, as z — oo. Thus, we assume that ug is
a nonnegative and locally integrable real function such that

0 oo
(3. / up (z) dz < oo and / up (z) dz = oo.
0

— 00

According to what was said in the Section 1 we will be able to impose the
usual flux data at the end z = —o00. At £ = oo we have two choices, either
to have infinite mass at positive times, or to have finite mass. We will treat
here the former situation which is mathematically simpler.

THEOREM 2. — Let ug be a nonnegative and locally integrable real function
satisfying assumption (3.1). Let g be a standard flux function. Then there
exists a solution u (z, t) € C*= (Q) N C ([0, 00); Li,. (R)) of problem

(0.1)-(0.2) with flux data (0.4) at x = —oo, while at t = o0 we have
M, (t) = o0 and

3.2) u™(z,t)=o0(x) as z— 0.

(For m = 0 it is replaced by log (u) > 0(z).)

Remark. — Condition (3.2) is the typical condition at infinity satisfied
by the maximal solutions with zero flux, see [ERV], [RV2]. Therefore,
our solution is “maximal at +00”. Our results cover the travelling waves
treated in [T1], [Z] or [COR].

Proof. — We are going to obtain the solution of the Cauchy problem as
the limit of the solutions of the following mixed problems

Uy = um_luz)z

(U™ e )|o=moo = g (£)
(um—luz)lzzoo =0

u (z, 0) = ug, » (7)

m—1

where ug, , is given by

up, n (2) = uo (7) X{z<n} (z).

Vol. 12, n® 2-1995.



186 A. RODRIGUEZ AND J. L. VAZQUEZ

By [RV1] there exists a unique solution wu, (z, ¢) of such a problem
satisfying:

u, € C ([0, 00); L* (R))NC™ (Q), u (z, t) > 0, vit>0.

By Theorem 3 of [RV1] we have

+o0
[ 00 =t 5 e (o 1)

— 00

+oo0
< / [0, — w0, my]s () d,

— o0

hence the sequence {u, (z, t)} is nondecreasing in n. Moreover, it is
bounded above by the maximal solution corresponding to the Cauchy
problem with initial data ug (), hence there exists

u(z, t) = lim wu, (z, t).

Since the limit is taken monotonically, u is positive everywhere so that by
standard theory we conclude that u(z, t) € C*°(Q) and solves the equation.

The flux data are taken uniformly in 7, and we can pass to the limit
taking into account that {u!* (x, t)} is a nonincreasing sequence in n and

lim v™ 'u, (z,t)=0 & w=o(z) as z— oo,
with w = u™/m for m < 0, w = log (u) for m = 0.
THEOREM 3. — The solution of Theorem 2 is unique.
Proof. — Let us check that the solution u constructed in Theorem 2 is
unique. For that let v (x, £) be another solution of the problem. Let
w=@w"-v")/m, m>0, (w=log (u/v) for m =0),

letp € C°(R)suchthat 0 < ¢ <1,¢(z)=1forz <1land ¢(z)=0
for £ > 2, we define ¢, by ¢, () = ¢ (z/n) and choose a function
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p € C* (R) such that p (s) =0 for s < 0, 0 < p’ (s) < 1 for s > 0 and
p (00) = 1. Then, for every fixed ¢ > 0 we have

/_ " (@) p () (u—v)edo = — / we (p () $u)eds = ws p (W)|mn

< e p (W) — / we p (W) bus

= w0, p ()]emn + / § () 0w d

where j (s) = / p(r)dr. Letting p (r) — sign, (r) we have j (s) — [s]+
0

and then

2n

(1) (, )4 () < — - [l (—n, D)+ / [l b o0 do

dzx n

d oo

dr J_,

Integrating in 0 < s < ¢t we have

/ T lu e 1) — v (2 O], b (@) da

-7

< / T lulen 5) - vz, )y b (@) de

-7

- /: [wlz (=, 7) dr + /: /:"[w]+ Gn, oz drdT.

Letting n — oo and taking into account that [w]; = o (z) as £ — oo and
the flux condition at z = —oo we end the proof.

4. SIMPLY INFINITE DATA. SOLUTIONS WITH FINITE MASS

We tackle now the case where as in the previous section we have initial
data with infinite mass on one end but now we want to construct a solution
with finite mass on both ends for all positive times ¢ > 0. We recall that
the existence of such solutions is new and makes this theory very different
from the classical heat equation, and more generally from equation (0.1)
with m > 0.
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In view of the mass balance, formula (1.1), the flux function must have
infinite integral at ¢ = 0. This turns out to be the only extra condition.
The existence of the solution is based on approximation using the existence
results of [RV1]. A novel feature is the fact that we can also prescribe the
mass at any positive time, say at t = 1. The precise result is as follows.

THEOREM 4. — Let ug be a nonnegative and locally integrable real function
satisfying (3.1). Let f be a nonnegative flux function in BVi,. (0, o) such

that [ f (t) dt diverges at t = 0 and let g be a standard flux function.

Finally, let ty be any positive time and let M be a number, 0 < M < oco.
Then there exists a solution of the mixed problem (0.1)-(0.4) defined for
0 <t < ty and satisfying moreover

+o0
4.1 / u(z, to) de = M.
Proof. — (i) For simplicity we take without loss of generality ¢, = 1. We

obtain the solution of the Cauchy problem as the limit of the solutions of
the following mixed problems

(MP,) Toree

where we define

U, n (CL') = Uo (CL') X{zgn} (CL'),

fn (t) = f (t) X{t>en} (t),

xe denoting the characteristic function of a set E; ¢, is a positive and
nonincreasing sequence chosen so that the following mass balance is
satisfied:

1 0o
0 -0
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In other words, we set

1 n
/f(t)dt:/ wo (z) dz — M,
(4.3) - 0 o
Mlz/ gdt+M—/ ug (z) dx.

0 —00

This is where the divergence of f is needed. Clearly, ¢,, — 0 as n — oo.
For every n problems (MP,) satisfies the conditions of Theorem 2 of
[RV1], hence there exists a solution w, (z, ¢) satisfying:

Uy (7, t) € C ([0, 00); L* (R)) N C™ ((0, o0) x R)
Un (2, t) > 0, Vit >0, VzeR.

Moreover, the mass balance at time 0 < ¢ < 1 reads

(4.4) M, (t):/m Un (2, t)dx:/muo,n(x)dx—/ot (fa+g)dt

1
:M+/(h+m#

It follows that

0o n 1
4.5) /+ Un, (z, 1)dx:/ uo(x)da:—/ (fnt+g)dt=M,
0

—0o - 00

holds independently of n. On the other hand, if 0 < e, < ¢t < 1 we get
for t > 0 as a consequence of (4.4)

/ Un (2, t) dz < / Unt1 (2, t) dz, Vn.

—o0 — 00

(i) We now consider the potential functions:

x t
@6) U, (z, ) = / wn (2, £) dz + / g (t) dt.
0

—0o0

Since the u, (z, t) are solutions of equation (0.1), this expression can be
written equivalently in the form:

x 1
@7 Un(z t) = / o (z) dz + / (= ) (s, 1) dt.
0

—0
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The U, (z, t) are the unique solutions of the problems

( Ut = le!m_lez

+oco t
U (400, t):/ U, (2, t) dx—l—/ g dt
—00 0

+oo t
= Uo, n dz — / fn dt
® [ et

U (~o0, 1) = / g (t)dt,

| U0 :/ U (z) da.

— 00

Observe that we can write the value of U, (oo, t) as

U, (o0, t)IM-I-/l fn(t)dt-l-/lg(t)dt,

which is independent of n for ¢ > €,,, n > ng. In view of the conditions
we have U, (z, 0) < U,y (z, 0), U, (=00, t) = U,y1 (—o0, t),
U, (400, t) < Upy1 (400, t) and the Maximum Principle we obtain
U, < U,41, hence

/ Un (2, ) dz < / Uny1 (z, t) dz.

— 00 — o

Consequently, U, (z, t) is a nondecreasing sequence. Now, if we consider
the solution % (z, ¢) corresponding to the mixed problem with initial data
up (z) and flux data zero at +oco and the same g at —oo, as constructed
in Theorem 2, we have for all n

so that

4.8) U, (z,t) <V (z, t),
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where V (z, t) the integral of the solution % (x, t), defined as in (4.6).
Hence, there exists

4.9) U(z, t)= lim U, (z, t),

n—o0

(iii) We now check that u(z, t) = 0U/Oz > 0 everywhere, which implies
that U (z, t) is the solution of the problem:

( Ut = lelmﬂlez

t
U (—o0, t)=/ gdt
0

(P) 1 1
U(—I—oo,t)/ gdt-I-M-I-/ fdt
0 t

\U(x,O):/I ug () dz,

— o0

and, correspondingly, u (z, t) satisfies the conditions of Theorem 4. Due
to the fact that f,, € BV (0, o) we can apply Lemma 5.7 of [RV1] to
conclude that

K
(u)e (2, ) < 7, Vize>0
independently of w. Letting n — oo:
m K
@10) ™)z (2, O] <

which implies that either u (z, t) =0, or u (z, t) > 0, forall t > ¢ > 0.
Now, the first alternative is not possible for { < 1 since

U0 )= [ ot
and
U (+00, t) > U, (+00, t):M-I—/lg(t)dt-I-/l f()dt

so that U (o0, t) — U (—o00, t) > M. Thus, u cannot be identically zero.
Notice that u (-, t) € L (—oo, 0].
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(iv) Finally, we check that the initial data ug (z) is taken uniformly in

Li.(R)ast — 0. Let R fixed and n, large enough. Then

/R u(z, t)de/R Un, (2, t) dt

— 00 — 00

Z/R uo (z) dz — €.

— 00

where we have used (4.8) and the fact that u,, € C ([0, c0); L* (R)). On
the other hand, if we take the maximal solution % (z, ¢):

/R u(z, t)dxg/R 7 (z, t)dtg/R o (5) dz + <.

— 00 — O — 00

R R
Hence, / u(z, t)dz — / uo (2) dz, uniformly if 0 < ¢ < e.

Remarks. — 1) If M > 0 the solution can be continued beyong ¢ = £, as
a finite mass solution by prescribing acceptable flux data at +oo and using
the existence and uniqueness theory of [RV1].

2) The above construction gives for every fixed triple (ug, f, g), and
fixing also t; > 0, a one-parameter family of different solutions, with
parameter M > 0. It is clear that ; is not an additional freedom of the
set of solutions since changing the time £y does not produce an essentially
different family. To be precise, changing from ¢, = 1 to ¢, < 1 only gives
as additional solutions those with maximal time ¢y (i.e. M (¢¢) = 0) which
cannot of course be continued beyong {.

We have been unable to settle the uniqueness of the solution constructed
with the above specifications (viz ug, g, f, to and M). However we have
the following characterization.

THEOREM 5. — The solution constructed above is the minimal solution in
an integral sense among the solutions of the stated problem.

Proof. — Let u (z, t) the solution just constructed and let v (z, t) be
any other solution of the problem with the same data. We compare the
problems satisfied by the integrated functions, U, (z, t) defined in (4.6)
and the corresponding formula for V' (z, t) in terms of v. It is immediate
from the Maximum Principle that U, (z, t) < V (z, t), hence in the limit
Uz, t) <V (z,t), ie. Uz, t) is minimal.
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5. INFINITE MASS ON BOTH SIDES

We turn now to the study of solutions whose initial data are infinite on
both ends, i.e. when

0o 0
(5.1 / up (z) do = / ug (z) do = oo
0

— 00

We begin with the case where we impose a flux function on only one side,
the other side being assigned zero flux.

THEOREM 6. — Let uy be a nonnegative and locally integrable function
satisfying (5.1). Let f € BVi,. (0, 00) be a nonnegative flux function such
t

that f (t) dt = oo. Let also to > 0 and M, € R. Then there exists a
0
solution of the Cauchy Problem such that for all t > 0

0 0o
(5.2) / u(z, t)dez =00 and / u (z, t) dz < o0,
0

— 00

satisfying also

to o0
(5.3) / (u™ g | =0 dt + / u(z, to) de = M.
0 0

Proof. — (i) As before we take to = 1. Here we are going to obtain the
solution u(, t) as the limit of the solutions of the following mixed problems

m—1

Uz )z
u™ u, (=00, 1) =0
—u™ g (400, 1) = [ (1)

u(z, 0) = up, » (z),

up = (u

(PM)

where now g ,, (z) = ug (z) if £ > —n and 0 for z < —n. Thanks to
Theorem 4 (after the change z — —z) for every n there exists a solution
uy, (z, t) satisfying the standard properties. We also want (5.3). This is
obtained as follows:

1 o0
/ up ™ i, z]z=odt + / Uy, (z, 1) dz
0 0

:/ ug, n (T) dx+/ Un (z, V) de =1 + Is.
0

— o0
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Since we can fix I at any value M,, > 0 and I; — —co as n — oo for all
n large enough we can obtain a solution with the property (5.3).

(i) We now define the integral function

t z
(5.4) Up(z,t) = / (ul My o) |e=odt +/ U (z, t) dz
0 0

which is solution of the following problem:

( Ut = [Uz!m_le:t

0 t
U@%o:_/‘uA%wm+/(@H%ﬁmﬂﬁ
0

— o0

—00
:/ Uy, n AT
Jo

(5.5) o0 ¢
U (400, t) = / un (z, 1) dz + / (7 My o )|emo dt
0 Jo

:M+[fmﬂ
U@@:Azmﬂmm

The sequence {U, (z, t)} satisfies the following conditions:

U, (+00, t) = constant withn
(5.6) U, (z, 0)= /I U, n (x) dz > Upyq (2, 0)
U, (—o00, 1) :0Un (=00, 0) > Upq1 (=00, 0).
We may apply the Maximum Principle and obtain
Unp(z,t) > Upy1 (2, ), Vn.

(iii) We want to establish the convergence of the monotone sequence U,,.
For this we only need a bound from below and this is given by the solution
Uy, of problem (PM) with initial data

_ _ Jup(z) for xz<m,
i (2, ) = {0 otherwise,
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zero flux data at z = —oo, and finite flux data at infinity:

< _ff@) for e, <t<l1
fm(t)—{o for 0<t<enm,

where m is large and &, is determined by the condition

/Om uo(m)dm——-/: f @) dt+ M,

(this needs m >> 1), so that the corresponding 1ntegrated function U, given
by (5.4) still satisfies U, (00, t) = M +/ f@)dt fore, <t<1,

while U, (00, t) = Uy, (00, 0) for 0 < t < &r,. The existence of such a
solution comes from Theorem 2 above.

It is clear from the boundary conditions that U, (z, t) < U, (=, t) for
every n, m > 0 large enough. Hence we can pass to the limit

lim U, (z, t) = U (z, t).

n—o0

On the other hand, since |(u7 tu,, ) (z, t)| < c/t, either we have that

n

u>0orw=0,Yt>e>0.Asu = 0 would imply that u(z, t) = 0 and in
the limit U (—00, t) = —oc while U (00, t) is finite, we conclude that u > 0.

(iv) Moreover, we have

/Ooo (xtdz—M-’r-/ / ™y ) (0, t) dt.

Letting n — oo, t > € > O:

/ u(z, t)dz < k.
0

If we now consider:

0 0 t
/ Uy (2, 1) dmz/ uo, n () d$+/ u™ . (0, t)dt
- 0

— 00
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0
Letting n — oo, if t > € > 0 we have that / u(z, t)dz = oo. Therefore,

-0

u¢g L (-o0, R) and since UL"_l uz — 0 as £ — —oo V n, we have that
v =o0(z]) f - —o0.

The proof is complete.

6. SOLUTIONS WITH FINITE MASS
FOR DOUBLY INFINITE DATA

THEOREM 7. — Let ug be a nonnegative, nontrivial and locally integrable
oo

0
Sfunction satisfying / ug (z)dz = / ug (z)dz = oo. Let f (t) and g(t)
—00 0

be nonnegative flux functions in BV, (0, 00) both with diverging integrals

att = 0. Let tg be a fixed time > 0 and let M, M, be two constants,
M > 0 and M; € R. Then there exists a solution of (0.1)-(0.4) such that

6.1) / u (z, to) de = M < 0.
and
to oo
6.2) / u™ ! g fpg dt + / u (2, to) dz = M;.
0 0

Proof. — As before we may take t; = 1. We approximate ug by
UQ,n = UQ * X[—n, +00)- We solve the problems

up = (um~l

Ug)x
u (z, 0) = ugn ()
(u™ tug) (o0, t) = —f (¢)

(um‘luz) (—OO? t) =9gn (t)’

(6.3)

where g, () = g (£) - X{e,., 1) () with &, determined through the condition

— 00 1
(6.4) / o (z) dz + / on (£) dt = My,
0 0

with My = M; — M. Observe that ¢, — 0 and the g¢,’s form a
nondecreasing sequence. By Theorem 4 above there exists a solution

Annales de UInstitut Henri Poincaré - Analyse non linéaire



NON-UNIQUENESS OF HEAT EQUATIONS 197

un (2, t) > 0, up, € C ([0, 00) : L}

1. (R)) of this problem satisfying
the extra condition

(6.5) / un (z, 1) dz = M < oo.

—-— 00

We define the integrated functions U, (z, t) as in (5.4). They satisfy a similar
problem. In particular the value at z = oo, 0 < ¢ < 1 is independent of
n, while the value at £ = —o00

U, (—o0, t):Mg—/1 gn (t) dt

is nonincreasing with n. An application of the Maximum Principle gives
Upyi (z, t) < U, (z, t). Since U, (z, t) is monotone nondecreasing in
for every ¢ we conclude that there exists the limit

lim U, (z, t) =U (z, t),

and U (z, t) < U, (z, t).

We have to verify that « = 9U/8z is a solution of our problem, or
equivalently that U is a solution of the integrated problem. First of all, U
satisfies obviously the boundary condition at z = —oo (use the fact that
it is a monotone limit of monotone functions). As for the limit at z = oo
it follows by comparison with the solution constructed in Theorem 6,
which lies obviously below (compare the boundary data). Both boundary
conditions mean immediately (by arguments already used) that « is a no
trivial solution of (0.1) and that the initial data are satisfied.

Remark. — As mentioned in Section 4 the solution constructed here for
0 < t < t, can be continued if M > 0 with the standard theory for L!
data, ¢f [RV1].

7. CONCLUSION AND COMMENTS

We have discussed the existence of multiple solutions for the Cauchy
problem (0.1)-(0.2) with initial data ug € Li,_ (R), ug > 0, uo nontrivial.
Our main point has been to show that, independently of the bounded
or unbounded character of the mass function / U (z) dz as x — Foo,

0
there is always the possibility of adjoining suitable flux functions on both
ends, (0.3)-(0.4), thus giving rise to an infinite multiplicity of solutions
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parametrized by the functions f and g. Moreover, we have also found an
additional free parameter in the solution set for problems with infinite mass
on one end at ¢ = 0 but finite mass for ¢ > 0 (two free parameters if
the above situation occurs at both ends). The behaviour of the solutions of
z = oo and r = —oo has turned out to be independent of each other in
the matters of concern in this study.

As for the characterization of the solutions we have shown the uniqueness
of the solutions corresponding to situations at oo of the form: (i) infinite
mass for all times (without any further specification), or (ii) finite mass
for all times (with flux condition). The uniqueness of the solutions with
infinite initial mass but finite mass for ¢ > 0 is open (recall that these are
the cases with additional parameters).

Observe also the behaviour of the solutions as |z| — oc. If the flux, say
f (t) is not zero then u — 0 as x — oo with the rate

u~z/™ i m<O0, ur~e it m=0,

same behaviour at —co. When the flux is zero we get 1/u < O([z]?/ (™)),
¢f. [ERV].

We are talking about non-uniqueness of positive solutions to a Cauchy
problem, something that does not happen for m > 0. Moreover, since the
functions « = constant are maximal solutions (Theorem 1), the infinitely
many solutions corresponding to initial data 0 < ug (z) < ¢ are bounded
and satisfy all of them 0 < u (z, t) < c

It is worth mentioning the change of variables w = u™ (m < 0) which
transforms equation (0.1) into

Wy = WWee, a@=(m—1)/m>0.

Then 0 < u < ¢ implies 0o > w > C = ¢/™. In the case m = 0 if we
do w = —log (u) the equation becomes

Wy = ¥ Wey.

With these definitions w — +o00 as |z| — oo in both cases for solutions
with nonzero flux.

Though the data considered here are quite general, there are natural
extensions. Thus, the initial data can be taken in the set of locally bounded
measures. The corresponding study for maximal solutions is done in [RV2].
Adapting our results to such generality involves few essential novelties and
some technical complications, that we have preferred to avoid. Possibly
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more interesting is the generalization of the flux data (also to nonnegative
measures), where some curious results appear.

The features described in the present analysis apply to other boundary
value problems for equation (0.1) in the same exponent range 0 > m > —1.
This is in particular true of the mixed problem posed in a quarter of the
plane, @ = (0, oo) x (0, co), with Neumann data at = 0. The analysis
is essentially the same, being simplified by the fact that we deal with only
one free end, £ = oo. For this reason it could even be preferrable for
expository purposes.

Let us finally remark that the above described situation is not found when
we consider equation u; = div (™! Du) in several space dimensions,
N > 1, with m < 0. Thus, it is proved in [V] that finite mass solutions
posed in a domain Q@ = R" x (0, T) exist only for N = 2 and m = 0.
Even in this case the results are different, ¢f. [VER].
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