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ABSTRACT. - We consider the only nontrivial perturbation of the sine
Gordon equation of the type utt - uxx + sin u = eA(u) + O (~2 ) under
which persistence of the unperturbed breather family cannot be ruled out by
first order perturbation theory. We show that in this case, nonpersistence can
be proved by second order perturbation theory. A resonant interaction of the
second order perturbation function with the first order perturbation of the
breathers is responsible for this phenomenon. Number theoretic techniques
make the final analysis manageable.
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RESUME. - On discute de la seule perturbation Utt - Uxx + sin U =
+ O(E2) non triviale de 1’ equation sinus-Gordon pour laquelle il est

impossible de conclure, sur la base de la seule equation du premier ordre
en e, que 1’ ensemble des solutions « breather » (« respirateur ») ne soit
pas conserve. Dans ce cas, on se sert de 1’ equation du second ordre en E
pour demontrer que cet ensemble n’est pas conserve. C’est une resonance
du second ordre de la perturbation de 1’ equation avec le premier ordre
de la perturbation des solutions « breather », qui est responsable pour ce
phenomene. Pour reussir aux evaluations finales, on utilise des resultats de
la theorie des nombres.
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1. INTRODUCTION

This work considers the perturbed sine Gordon equation

for an analytic perturbation function 0 ( ~, ~ ) such that A(0, E) = 0 for all c.
For e = 0, it is well known that the breathers

(m, w > 0) are a family of solutions to the unperturbed equation (1.1)0.
(We use atn for the arc tangent and ch, sh, th for the hyperbolic functions.)
Let us here define a breather to be a nontrivial time periodic solution
to a wave equation that decays as Ix ( --~ oo (often, exponential decay is
stipulated). Not much is rigorously known about (non-)existence of breathers,
but it is generally suspected that their existence is a very rare and singular
phenomenon (see already [11], or already [9], as the referee kindly suggests).
We are interested whether there exists a similar family of breather solutions

to the perturbed equation that reduces to (1.2) for E = 0, i. e. whether

the family of breathers persists under some perturbation. A necessary
condition that the breather u* ( ~, ~; m) persists is that the variational equation

has a solution. Since recently [1], [4], [5], thm. 1, it is known (we omit
technical details) that in order for (1.3) to have a solution for infinitely
many m, it is necessary and sufficient that A(.) lies in the linear space
spanned by the four functions sin u, u cos u, cos u, and a certain A (u) given
below. (The sufficiency part follows from Theorem 12 in [5] and will be
worked out explicitly for the present case in section 3.) The first three of
those functions can be readily explained: For these perturbations, equation

can be reduced to the unperturbed equation ( 1.1 ) o by scaling the
variables (x, t) and u and by shifting u by a constant function. We ruled
out the latter possibility (cos u) by the a priori normalization 0(0, ~) = 0,
which is obviously necessary for the existence of a breather, whereas sin u
and u cos u are the leading orders of scaling perturbations, under which
breathers trivially persist. By normalizing the scalings, too, we can get rid
of the perturbations sin u and u cos u as well and are left with A(u) as the
only remaining perturbation under which, according to (1.3), all breathers
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203SECOND ORDER NONPERSISTENCE OF THE SINE GORDON BREATHER

might persist. There is no simple explanation for this remaining exceptional
perturbation

It is the purpose of this work to show that there is indeed no analytic
perturbation 0(~, ~) whose leading order is A(’) and under which infinitely
many breathers persist.
An essential ingredient to our proof is the analyticity of the second order

perturbation function 0~2~(~). Our result uses second order perturbation
theory, i.e. the order e2 of the equation, but no higher orders, so only Cz
in e is actually needed.

For more background on the persistence problem, we refer to the

introduction of [5]. We repeat shortly those of the arguments given there
which are basic for the following discussion.

First order perturbation theory for equation is by definition

everything that depends only on (1.3). This latter equation can be solved
for v if and only if the conditions

are satisfied for n = 2, 3, 4 ..., where Xn(x, t) solves ,Cxn = 0 and is

asymptotic to exp 1 x) as x - [5]. These conditions

(which depend on m) have to hold for every value of m for which the

corresponding breather is assumed to persist. By an analytic continuation
argument (details omitted here), they have to hold identically in m, if they
hold for infinitely many m (for details, see [1] and [5]).

This determines the four dimensional space spanned by the solutions

given above. The two odd ones among the spanning solutions correspond to
the scalings and are therefore trivial perturbations. The algebraic calculation
involved in determining these solutions (given in [5], but omitted here) is
insensitive to parity, and along with the odd ones, it produces two even
solutions, namely cos u and A(u). As they follow the scalings through all
calculations like a shadow, we can call them shadow scalings. However,
we restrict this name to A(u) only, because the geometric meaning of the
perturbation cos u justifies the more precise name "shift perturbation" for it.
The argument by first order perturbation theory in connection with analytic

continuation of the obstructions (1.5) with respect to m is due to Birnir,
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McKean, and Weinstein [1]. In [5], their argument is improved, assuming
analyticity of the first order perturbations at 0 only. Moreover, the procedure
of solving the first order equations is given there in an accessibly detailed
way. 

’"’-’

Our approach shows that for the single perturbation A for which

persistence of the breather family cannot be ruled out by first order

perturbation arguments, it can be ruled out by second order arguments.
This does not explain what makes A special with respect to the orders
of perturbation theory. A recent paper by Birnir [2] gives some numerical
evidence that the breather may bifurcate under this perturbation into a
quasiperiodic solution.

2. STATEMENT OF THE RESULT

AND OUTLINE OF THE PROOF

THEOREM 1. - Consider the perturbed sine Gordon equation where

A (0,6-) = 0 for all 6, 0(-, -) is C2 in both variables, is the shadow

scaling (1.4), (u) is an arbitrary function that is analytic in some
neighbourhood of 0. Let p be such that u E ]-203C0, 203C0[ || tan u 4  p
is contained in this neighbourhood.

Then, in any interval p", p’] C ] 0, p[, at most finitely many breathers ( 1.2)
can persist under the perturbation. The technical definition of persistence is
given precisely as one hypothesis of Lemma 4 below.

Note. - With only obvious modifications in Lemmas 5 and 6 below,
Theorem 1 holds under the weaker hypothesis that [p", p’] is contained

inside the domain of analyticity of z - + z2 ) without 0.
From now on, we drop the tilde. A will always denote the shadow

scaling (1.4).
Before we go into the details, let us give the core of the proof without

technicalities: We write a presumed breather to the unperturbed equation in
the form u = u* + + O(E2). The order O(EO) of the equation
is satisfied, and we know from [5] that the order 0 ( E) of the equation can
be solved for v for any m. We want to show that it is impossible that the
order O(E2) of the equations can be solved for infinitely many m. In order
to achieve this, we first have to calculate v effectively, because it enters

into the second order equations. In principle, this calculation is done by
a variant of the Fourier transformation and is conceptually easy. But the

explicit calculation in our special case is quite a voluminous task and will
be accomplished in section 3; see Theorem 2 for the result.
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We do not obtain a closed formula for the first order solution v. But it turns

out that only one qualitative feature of v is important for the conclusion
that the second order perturbation equations cannot be satisfied: the fact
that v contains terms that are not powers of 1 / ch mx. More precisely, the
asymptotic expansion of v (x, t) as Ixl -~ oo involves also a term e-Ixl along
with terms e-2fmlxl. The particular term containing e-Ixl can be expressed
in closed form, and the entire proof relies on this term.
As terms with the asymptotic expansion appear on the right hand

of the first order equation, it is natural that they appear in the
solution v, too. But for the n = 0 Fourier component in the time variable

and Ixl ] -~ oo, the leading term of the operator £ is - ~x ~ 1. The crucial
terms with the asymptotic behaviour e-Ixl are related to the kernel of this

operator (on the half lines).
We shall see that the second order equation is

Necessary conditions for this equation to have a solution are obtained, as in
first order perturbation theory, by multiplying it with functions xn E ker.[
and integrating over x and t. The integrals on the right hand side can then be
considered as meromorphic functions of the complex variable 0 (but
with an essential singularity at m = 0). Their sum has to vanish at points
where ( 2 .1 ) can be solved, since = = 0.

We find that the equation

holds for infinitely many values of m E ~p", p’~. Detailed knowledge of
w 

m
the behaviour of the left hand side in dependence of - (for analytic

functions 0394[2]) was already obtained in the discussion of first order

perturbation theory. Using this knowledge and an analytic continuation
argument, one obtains vanishing pole conditions that are necessary for the
persistence of infinitely many breathers: poles that must be expected on
the right hand side have to vanish because they do not appear on the left
hand side.

As the functions xn are asymptotic (for x - to free Klein Gordon

waves exp (inwt + i n2cv2 - lx), the integrals over x are simply Fourier
integrals; the poles just mentioned correspond to the exponential decay of the
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terms in the asymptotic expansion of A’(u* )v as x -~ d:oo,

as is well known from the theory of Fourier transformations.
We are in particular interested in those poles which correspond to the

decay rates because they can come only 
but not from ~’(~c*)v or 0~2~(u*), provided the latter is an analytic function
of u*. Therefore we need not bother with at all, and also A enters only
through an explicitly calculated contribution to v. To complete the proof
of the theorem, we calculate (some of) these poles and show that they do
occur in contradiction to (2.2).
The calculation of the specified poles is explicitly possible, but it has to

take into account many single terms and to ensure that they do not cancel
altogether by some strange conspiracy. This makes the calculation very
lengthy. We stress however that for any given one of these poles, it is a

finite calculation that can be done exactly in some quadratic number field
~ ( ~), where D depends on the pole chosen.

There is still one serious difficulty: the pole which we check must lie in
a domain that corresponds to the domain of analyticity Since the

latter is allowed to be an arbitrarily small neighbourhood of 0, no single pole
is feasible for all possible neighbourhoods. Therefore, we need to calculate
that the residues of a whole sequence of possible poles (accumulating in 0
in order to exhaust all neighbourhoods) do not vanish. But the length of the
calculations involved grows with the sequence index. Thus instead of mere

calculations, one needs an extra argument treating infinitely many poles at
once. This difficulty is of the same type as in [5], where the first order of the
perturbation was allowed to have arbitrarily small domain of analyticity. In
that case, too, one had to work with poles accumulating at 0, and a "locally,
but not uniformly" finite calculation had to be replaced by a hopefully clever
argument. But there, an explicit formula was available, which we do not
have (nor expect to have) here.

In order to treat infinitely many poles with one argument, we reduce the
calculations in the fields Q(D) to calculations in the rings Z[D] by
multiplying with the common denominator. This leaves us with showing
that certain expressions (in fact multiples of the residues) do not vanish in
this ring. We intend to show that they do not even vanish considered as
elements in an appropriate quotient ring modulo some ideal I. It

turns out that it is possible to choose I in dependence of the pole in such
a way that most (but not all) terms are killed by dividing out the ideal, and

only a uniformly finite number of terms remains, whose sum can then be
shown not to vanish in the quotient ring. In these calculations, one uses
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elementary number theory: binomial coefficients modulo a prime, Fermat’s
theorem, and quadratic reciprocity.
We give the calculation of v in section 3, then explain how to obtain the

vanishing pole conditions of second order perturbation theory in section 4.
At this stage, one can work out the easiest of these conditions explicitly (still
3 x 24 terms), thus proving the theorem for a sufficiently large analyticity
domain This is done in section 4.4. We finally give the reduction
to a quotient ring in section 5, which completes the proof without this
assumption on the domain.

3. CALCULATING FIRST ORDER PERTURBATION THEORY

In this section, we solve the equation

with respect to the boundary conditions v(x, t + 27r/w) = v(x, t),
- 0 as x ~ where A is the shadow scaling (1.4). We

use that for A, the necessary conditions ~ dt = 0 are satisfied,

where the xn satisfy = 0 and are 27r /w-periodic in t. These conditions
are also sufficient for the solvability of (3.1). See [5] for the arguments. The
calculation applies the scheme of eigenfunction expansions given in [7].

3.1. The general scheme

In order to calculate v, we need a modified scheme of the sufficiency

proof given in [5]. Let 03C5 v ’ , A = = 
,

A * = O 1 ] . In order to solve the equation 8tv = Av + A,
which is equivalent to (3.1), we fix t and make a generalized Fourier
transform of the right hand side with respect to x. Any 2-component
function f ( ~ , to ), in particular l and v, can be written as

where the functions ~ solve a homogeneous version of (3.1), namely
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The path of integration r will be discussed a little later. The possibility of a
formula like (3.2) is due to a completeness relation [in L2(~)] for solutions
to the linearized sine Gordon equation given already by McLaughlin and
Scott in [7]. See [5] for a sketch of a proof. For real A, the coefficients
f (~, to) can be calculated as

where

and

As a function is bounded for real A / 0, and it even
decays as x ~ ±~ for the zeros 03BB± = (im ± cv)/4 of the function a(A).
For other non-real values of ~, ~ grows exponentially as either x -~ o0 or
x --~ -oo. We cite the explicit formulas for ~ form [7]; they are derived
in the scattering theory for the sine Gordon equation, but can be checked
without this theory in a straightforward, though lengthy way:

where we have set
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Following [7], the path of integration r given in (3.2) is a path in the
complex A-plane that coincides with the real axis except that it leaves it

twice in order to go around ~~ . See figure 1. The contributions from ~~
are quite fundamental for the theory, because the basis necessarily includes
functions whose time evolution is not periodic (~~ below). The small circles
in the figure are not important now, but will be explained after (3.15).

For fixed x, the integral in (3.2) is well-defined and reduces to an integral
over real A plus the residual contributions from ~~, but as soon as we have
to rely on growth assumptions in dependence of x, we interpret (3.2) only
as a shorthand notation for the latter, because no growth assumptions hold
on r off the real axis. Formula (3.3) holds for real ~ ~ 0 only and should be
complemented by similar formulas for the Fourier coefficients corresponding
to the residual contributions. Instead, we are going to argue that / can be
continued analytically, and that inserting the continued function into (3.2)
accounts correctly for the residual contributions.
We represent both v and E in the form (3.2) with generalized Fourier

transforms £ and A.
Letting ~ and ~A := the integral (3.2) reads,

according to our interpretation,

where  ~ ~ ~ > denotes the Lz ( I~ -~ 1R2) scalar product with respect to the
variable x.

FIG. 1. - The path of integration F.
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These formulas follow from (3.2) by calculating the residues of the second
order poles of the A-integral in ~~ and introducing the abbreviations v~
and V:1:. The differential equation 0tF = ~ now reduces to differential
equations for ?)(A), v~, v~, the first of which is:

for real A. But the right hand side of this equation is well-defined

for ]  2m and represents a meromorphic function 0 there

[with double poles at ~~ coming from a2(~)]. We define 0 for complex A
to be the analytic continuation of the right hand side of this equation.

Starting with the definitions introduced in (3.8) and using the differential
equations for v and ~^, straightforward calculations show that the differential
equations for I+ and v~ are

In these calculations, one can pull the residue in ~~ in front of the

x-integral only after the differential equations for v and have been used

to replace v by E, because otherwise undefined intermediate terms would
formally arise.

From (3.9) and the boundary conditions v(x, t) = v(x, t + 2~/c~), i.e.

v(~, t + 2~r/c.~) = v(a, t), one gets

Up to nonvanishing scaling factors, equals the

function X n mentioned in the introduction, where Àn satisfies by the

condition = nw. Therefore, the fact that the necessary conditions

(1.5) are satisfied for the shadow scaling means that the poles of

real A-axis are all compensated by zeros of
the integral in (3.11 ) and v ( ~) has no singularities there. Hence, after the
Fourier synthesis, v will indeed be a decaying solution.
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As was explained in [5], the periodicity conditions for v~ give necessary
conditions that are however automatically satisfied for any A, and the
constants of integration that appear when one calculates v~ from (3.10)
are uniquely determined by the periodicity conditions for v~ . The constants
of integration from the calculation of v~ correspond to the 2-dimensional
kernel of the operator 0t - A. 

_

According to (3.9) and (3.11), t) and t) involve
only even time harmonics (i. e. einwt with even integer n), because A is an
even function and also involves only even time harmonics. This property
of v(À) survives the analytic continuation in A, and we see that vo(x, t),
which will be defined and calculated by

also involves only even time harmonics. But a priori, we have to calculate v
from the first component of (3.8), not from (3.12), so let us see why both
is equivalent (i.e. v = vo):

Using (3.9) and integrating (3.10) shows that

for appropriate constants c~ and c~ . The residues on the right hand side
involve only odd time harmonics [note that SZ(~~) _ ~cv]. Repeating the
discussion of the constants of integration in [5], this parity result implies
that v~ satisfies the periodicity conditions, if and only if c~ = 0. In our
calculation, we shall furthermore choose c~ = 0, thus obtaining the unique
solution vo to equation (3.1) subject to periodicity and decay boundary
conditions that contains only even time hamonics. Thus we have shown
that vo is indeed a solution and that the general solution is vo + ker £, where
ker £ is spanned by 4l+ 

Concluding, let us emphasize that £ [say as an operator defined in

L2 (f~ x S1 ~ (~)] is neither injective nor surjective. Its range has infinite
codimension [characterized by the vanishing of the integrals in (3.11)]. The
above procedure applies only to this range. The basis used in the above
argument is for fixed t and consists of generalized (not in L2) eigenfunctions
of the operator A going from R 3 x to (~2, some of which have non-periodic
time evolution.

We give the detailed evaluation of (3.11), (3.12) below; the author has
also done the much messier calculation according to (3.8) with v~ and 
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evaluated independently [6~. Doing both calculations is a means of checking
against calculational errors.

3.2. Effective calculation

We now prove

THEOREM 2. - The equation (3.1) with boundary conditions v -~ 0 as
x ~ ±~ and v of period 203C0 / 03C9 in t , where u" ( x t; m = 4 atn m sin 03C9t 03C9 ch mxx --+ :1:00 and v of period 27r I w in t, where u (x, t; m) == 4 m sin 03C9t 03C9 ch mx
is the breather solution and 0394 is the shadow scaling given in (1.4), has a
2-dimensional space vo + ker £ of solutions, where ker £ is spanned by the
time- and space derivatives of u*, and vo is even in x and t and ~ periodic
in t. 

w

va (x, t; m) is an analytic function of x, t, and m in the domain

|Im mx (  03C0 2, t ~ , | m I  l. Moreover, it satisfies the following

decomposition for real x:

where v (~, wt; m) is analytic for ( ~ ~  1 and meromorphic in 0 with

poles at = 1 2’ 4’ 1 6’ 1 ... just compensating the ones introduced by
the first term. Also, the nondifferentiability at x = 0 of the first term is

compensated by a similar singularity of the second.

Proof. - Most of the first part has just been explained. We have seen
in the previous section that the solution vo, selected by choosing = 0,
contains only even time harmonics, hence it is 03C0/03C9-periodic. The integrand
in (3.11 ) is analytic for |Im mx| 1  , therefore (03BB, t) can be estimated2

by a constant times Re ~~~» for all c  ~r/2m. Therefore, according to
(3.12), v is analytic in the strip specified in the theorem.

It is an easy calculation that span ~~+, ~_~ = span (~t~c*, 
Among the functions in ker £, none except the zero function contains

only even harmonics, therefore vo is determined uniquely by this property.
Now, for any solution v(x, t) to ,Cv (x, t) = 0 (u* ), v(x, -t) and v(-x, t)
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are also solutions with the same harmonics, and so, vo (being unique) is
even in x and t.

A standard calculation shows the following series expansion as a

consequence of (1.4) :

(In fact, the shadow scaling was constructed through this expansion in [5],
and (1.4) is a consequence. We have reversed this order only for the
exposition.) Evaluation of v proceeds by inserting this series expansion into
(3.11). A side effect of this is that v, which is known to be regular on the
real axis as a consequence of the shadow scaling’s satisfying the necessary
conditions of first order perturbation theory, is written as a series whose

single terms have poles on the real axis. This is the reason, why the path F
used in (3.2) contains small half circles around the points where these poles
will arise intermediately in the calculation. We know from the beginning
that the poles will cancel in the end, so it is irrelevant on which side these
small half circles pass.

Inserting (3.15) and the formula see (3.5), (3.6), into

(3.11), we have to evaluate integrals of the type ch-P mx dx and

j eint cosP wt dt. The integrals with sin wt and sh mx that also appear can
be reduced to the former ones by integration by parts. We finally find that
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Here, p and r run over even positive integers only. We have suppressed the

argument A from k and S2. The series converges for I ~~ I  1, because the

series converges for Izl  1.

p

In this formula, the terms of the type + qw) carry the
poles, which we know have to cancel after the summation over p.

The term k/sh 2m carries the decay properties with respect to A

[remember k = k(03BB)]. Everything else is just Nature’s Camouflage: mess
we have to struggle through but that should not divert the readers’ attention.

In order to calculate v(:r,, t) from (3.12) and (3.16), we intend to change
the variable of integration from A to k = k(A) = 2A - 1/8A. Since

A )2014~ is two-to-one on R B f 0~, but one-to-one on each half-line, we
split the integral in halves. &#x26;i contains a factor ~~4n2(~), which goes
together with the first factor in the formula for ~)(A, t). We use that a = n/n
according to (3.4) and that

where H = 2A + 1/803BB = ±k2 + 1 with the :1: sign for 03BB  0. So, (k,O)
lives on a 2-sheeted cover of the complex k-plane (branched at k = :1:i),
and the two halves of r (in the A-plane) map into two paths on this

2-sheeted cover, both of which lie above the same path Fo, which goes from
-~ to +00 in the complex k-plane.
We do another manipulation: the binomial coefficients () in (3.16) are

defined to be 0 for j > p or j  0, which acquits us of bothering about the
limits of the sum. We these sums

in order to collect terms with the same denominator H This gives us:
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Here again, we have set S = sh mx, C = ch mx, s = sinwt, c = cos wt.
Now add the contributions from F+ and r- under the integral. By this, the
term under the integral will become symmetric under the change 0 --+ -0,
i.e. it will depend only on SZ2 = 1~2 +1, but not on H itself. Then, the integral
in the 2-sheeted cover of the k-plane reduces to one over ro in the k-plane.

Moreover, since q runs from -co to +00, we can replace each term in
the sum by its even part in q. We get:

FIG. 2. - The path of integration Fo.
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where S22 = 1~2 + 1.
Here, only the line containing the integral sign displays important

qualitative features, the rest being Nature’s Camouflage again. For x  0, we
shall close the path of integration Fo in the upper half plane. This is possible,
because the integrand is a meromorphic function of k in the whole plane. For

] > the sh 03C0k 2m term in the denominator ensures a fast decay
of the integrand as k - oo. For I  Im k and x  0, the e" term
ensures a similar decay provided the path keeps outside neighbourhoods of
the poles on the imaginary axis. Therefore, for x  0, we can evaluate the

integral into a sum of residues in the upper half plane. For x > 0, we could
close the path in the lower half plane, but we simply make use of the fact
that v is even in x. There are three types of contributions to be discussed:

. The poles on the real axis (or between i and -2 on the imaginary axis,
if qm is small), due to 1 / ( 1~2 + 1 - 4q2 m2 ) for 0, still cancel after the
summation over p, or in other words they do not bother anyway, since Fo
can be chosen not to include them.

. But for q = 0, the same term gives a pole in k == ~z: its residue yields
a term containing It is this term that will play the basic role in the
later discussion, and it will be calculated explicitly.

2022 There are also p oles from 
k sh 03C0k/2m 

: the ive terms containinw There are also poles from : they give terms containing

which add up to v in the theorem, and we shall not calculate them.

One of these latter uninteresting poles might coalesce with the pole at i to a
second order pole. Then, the decomposition just explained becomes singular,
but the integral itself does not. This happens for 1 E 2mZ. Moreover, closing
the path introduces the distinction according to the sign of x. The single
terms are non-differentiable at x = 0. This non-differentiability will also
cancel when the single residual contributions are added, it is only our
method of evaluation that hides this fact.
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Let us calculate the contribution from the pole at k = i. To this end,
simply choose the q = 0 term above and calculate the residue; for x  0,
we get the contribution:

We claim that this simplifies to

In fact, one evaluates the sum over p explicitly in the following way: Set
p = 2n, r = 2l, m2 = z for simplification and use from (3.15) that

Pulling in front of the sum all the terms that do not depend on p, we
come to use the left hand side of the formula in the following lemma.
With it, the claimed equality follows immediately. The lemma is proved
in the next section.

This last calculation was valid for x  0; we know already, that v is even
in x. So simply replace x and get (3.14). This proves the theorem
relative to the last lemma..
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3.3. Proof of Lemma 3

We start by stating an auxiliary formula:

It is straightforward to prove this by induction over N.
We need (3.19) in order to do a partial summation in (3.18). The partial

summation yields

and we have to prove that this equals 4. (Note the different lower limits in
the products over L) To this end, we claim, similarly to (3.19), that

which again is proved by straight-forward induction; letting N - oo and
isolating the n = 0 term proves the lemma..

4. CONDITIONS FROM SECOND
ORDER PERTURBATION THEORY

Having isolated the important contribution of the solutions to LV = 0 (u* )
in Theorem 2, we can now insert v into the equations of second order. We
derive these equations in section 4.1, then derive from them conditions that
do not depend on the "uninteresting" part v of v in section 4.2, and state an
algorithm for checking these conditions in section 4.4.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



219SECOND ORDER NONPERSISTENCE OF THE SINE GORDON BREATHER

4.1. The second order equations and basic conventions

Just to be definite about the periodicity and decay assumptions, let

The smallest possible c can be taken as a norm, making X a (dense) subspace
of a Banach space (of weighted C1-functions). The particular choice of the
function space is not really important for the following arguments, however.
We say sloppily that a T-periodic (in the second argument) function u is

in X, if the 203C0-periodic function x ) ~ u( x, T 203C0) is in X.

LEMMA 4 (Second order perturbation theory). - Consider and

assume that (u, ~) H ~) is C2 with respect to both variables. Write

Assume that the breather for rn = rno persists under the perturbation,
in other words, that for 0  e  ~max, there exists a T(~)-periodic (in t)
classical solution u(x, t , e ) to satisfying u(x, t , 0) = u* (x , t; rno ),
such that T(.) is continuous and the map from e to the function

(x , t) - u x , t 203C0 T, e is in C2([0, ~max[ - X) .

Moreover, assume that one can solve (3.I) for all rn in a whole real
neighbourhood of m0, I.e. that we have T(~)-periodic solutions v(x, t; rn)
in X to

solves the equation (2.1), i.e.

where ~c* and v stand for the corresponding functions at m = mo.
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Proof - We can write

Inserting this into (1.1)E, the O(~2)-contribution of the resulting equation
is just the claimed condition. []
Remember that for -  1, there is a bijective correspondence between

~ 
W

any two of ~~~ , m, and c~. We shall refer to points in the (unit disc of the)
rrz 

~

- -plane by giving either of these coordinates without further comment.
w

Also remember that = n2cv2 - 1 (either of both values of the root).
In Theorem 1, we have assumed that is analytic in a neighbourhood

of {u| |tan u 4  p  1}. Let xn be the bounded 203C0/03C9-periodic solutions
to Gx = 0 mentioned in the introduction and given exactly by

where An satisfies D(Àn) = 7m; and t, An) is given by (3.5), (3.6),
and the last factor is chosen just for convenience. This leaves two choices
for An, which can be distinguished by the sign of but nothing of
the following will depend on this sign. Then, we can test equation (4.1)
with xn to obtain

The right hand side of this equation reduces to 0 for even n because of
the t-integration; so we choose n odd in all of the following. Suppose that

equation (4.4) holds for infinitely many values of m that accumulate in

]0, 03C1[. It is known [1], [5] that for odd n, times the left

hand side of this equation can be continued to an analytic function of m
w

in the disc - I  p.

Therefore so can the right hand side. Let us state this formally:
LEMMA 5. - If (4.1 ) has a 203C0/03C9-periodic decaying solution for infinitely

many values of m in some interval 0  p"  m  p  p, then the
w 

r 

w
function
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originally defined on m E 0, p[, can be continued to an analytic

function in the disc I  p, except for poles at the zeros of the

function ch 03C0n203C92 - 1 1 and an essential singularity at m = 0.Ch 
2m 

~~ ~~ ~~~~~~/ ~~~M/~r~ ~~ w 
=0.

To completely prove Lemma 5, consider the analyticity properties of the
right hand side of (4.4). The term in parentheses decays exponentially,
namely at least as fast as so the right hand side is analytic
as long as ) Im n2w2 - 11  1 + ~ Re ml, in particular in a small complex
neighbourhood of the real interval 0  m  oo. This function on the

right agrees with the one on the left, which is analytic in a neighbourhood
of 0  m  p according to [1], [5], in a set of points that accumulates

in the interior of the common domain of analyticity. This allows to do the
analytic continuation and thus concludes the proof of Lemma 5..

Note. - For the more general theorem stated in the note after Theorem 1,
a corresponding result on the domain of analyticity of the left hand side
of (4.4) has to be cited from first order perturbation theory. See section 4
of [5].

There is a subtlety in the assumptions here that is not needed in first order

perturbation theory: The point m = 0 is in the interior of the domain of

analyticity of the function

by the above-mentioned non-obvious result of first order perturbation theory.
But 0 must be expected to be on the boundary of the domain of analyticity of

ch 03C003BA(03BBn) 2m times the right hand side of (4.4). Therefore, 0 is not sufficient
as a point of accumulation for the analytic continuation argument. It is for
this purpose that p" has been introduced in the hypotheses. This detail has
erroneously been omitted in Theorem 2.5 and Lemmas 5.4, 5, 8 of [6]. This
extra hypothesis may well be an artefact of our method of proof; but we
simply cannot get rid of it.

4.2. Isolating the relevant vanishing pole conditions

We use the abbreviation kn :== 1~(~n) _ ~ n2cv2 _ 1. Occasionally, we
will find it convenient to reinstate the dependence kn = kn that was

suppressed until now. 
~’
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Before continuing, let us note that the poles when :1:ikn = pm (discussed
in the last lemma) appear only with p > n: in all terms that enter under

the integral every power of 1 / ch mx is multiplied by
time harmonics up to an order no bigger than the power to which 1/ ch mx
is raised. The factor einwt hidden in xn has the effect that during the

t-integration it kills all the terms containing the factor 1/chp mx with
p  n, because their time dependent coefficient does not contain a Fourier

component e-inwt. Therefore, the integral over t and x will be an analytic
function of m in the domain defined by I  nm. This argument

will be used repeatedly below.
Remember that n is chosen to be odd. The following sets of points will

play a role:

the punctured disc.

the points where poles appear in first order perturbation theory.

the points where poles may appear due to the e 

the points where poles may appear due to the 

the points where artificial singularities are introduced by the splitting into

interesting and non-interesting terms according to Theorem 2.
Lemma 5 implies that under its hypotheses, Vn is analytic in D(p) B Pn .

Here, the above argument for the time harmonics (and a parity argument
of the same type) are responsible that only odd p > n lead to points that

must be taken out from D(p).
Our goal will be to eliminate from Vn those terms of v that have not been

calculated in Theorem 2. After this procedure, only the term that contains

will be left over. Some of the eliminated terms contain a factor e ~ ~ ~ ~

and may therefore be responsible for singularities in points of The

detailed argument gives us the following
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LEMMA 6. - If (4.1 ) has a 203C0/03C9-periodic decaying solution for infinitely
many values in some interval 0  p" G m  p’  p, then the

function

with

can be continued to an analytic function in D(p) ~ (Pn U Pn U P*).
On the other hand, the singularities of Wn can immediately be discussed

from its formula. The result is

LEMMA 7. - The function Wn defined in Lemma 6 can be continued to
an analytic function in D ( 1 ) ~ Wn has either a simple pole or no
singularity at all in each of the points of 

Similarly, the function 03BA ~ Wn (m 03C9, 03BA) defined exactly as Wn m
in (4.5a) except that the term which is implicit in ~n, is replaced
by with an independent variable ~, is meromorphic for K E C with at
most simple poles at the points ~ _ ~i (2 + with .~ odd and positive.
When m is a solution to kn = ~i(2 + these poles with respect
to  have non-vanishing residues, if and only if the pole of Wn (.) at that
value of m has non-vanishing residue.

w

All lemmas will be proved in the next section.
According to Lemma 8 below, the sets Pn U Pn and P, z’ are disjoint.

Therefore we conclude, combining Lemmas 6 and 7, that under the stated
persistence assumption the residues of the simple poles of Wn in each of
those points in for which I  p have to vanish (i. e. there are no

poles at all). These are the vanishing pole conditions we are going to check.
Showing that some of them are violated will prove Theorem l.

In particular, note that these vanishing pole conditions do not contain the
second order perturbation function any more. The only trace that is left
of it is the parameter p that describes its domain of analyticity. Only this
qualitative feature enters in our argument.

Let us now state the lemma on the point sets Pn and in detail.
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LEMMA 8. - Given any n > 3 odd. The points in Pn, i.e. the solutions to
= 1 + pm for some odd p > n are given by

if p > n, and m’ (n, n) = -n/2.
The points in i.e. the solutions to = 2 + .~m for some odd

.~ > n are given by

for .~ > n, and m" (n, n) = - (n2 + 3)/4n.
In particular, m’ (n, n) and m" (n, n) lie outside the disc I  l, and

the other points lie neither on the real nor on the imaginary axis. Moreover,
the families Pn and are disjoint for every fixed odd n.
For m = n) defined by (4.7), it holds

4.3. Proof of technical Lemmas

Proof of Lemma 6. - For convenience, we introduce the abbreviation
Q :=

m sin 03C9t 03C9 ch mx.

Let us iirst get rid of the contribution ?) to v, which has not been calculated
in Theorem 2. To this end, write (according to this theorem)
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Remember that the important term in xn is The powers of 1 / ch mx
that appear in xn and u* can be expressed in terms of e-Imxl according
to the formula

In u*, xn and ?), x enters always in the combination mx =: ç, except in
the oscillating term and t enters always in the combination wt =: T.
With this, one has an expansion of the type

where a and b are analytic functions of T and 2014 (except for poles at the
w

points where 1/m G 2Z). The series converges for real ~ 7~ 0 provided
2Z and 2014  1. Its convergence for £ = 0 is dubious, but we need

w
not care: all that is needed is that the series is asymptotic as £ 2014~ iboo.

Consequently, cut off the series at po. The remainder is the oscillating term
function that decays like By a standard estimate,

its integral over £ is an analytic function of 2014 in the domain
w

The same property still holds after integrating this over T from 0 to 27r.
What analyticity properties do the integrals of the single terms in the sum

have? When integrating over £ from -~ to +00, only the even part of
the integrand survives. One can integrate twice this even term from 0 to 00
instead. But for £ > 0, it holds

So, all that remains are terms Using

one sees that the integrals of the single terms are analytic functions of 2014
m 

w

except for simple poles in points 2014 ~ Pn. Therefore, for every po. it
w
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holds that the integral of (4.10) over ç and T (which is 1/m03C9 times the
analytic continuation of the integral over x and t) is analytic in the domain
Dpo B Pn. One can therefore subtract this term from the right hand side
of (4.4) and gets that

can be continued to an analytic function in D( p) B (Pn U P* ).
There is still one term left that contains v. This time, the presence of e -I x I

in front of it makes it useless (but also unnecessary) to scale from (t, x) to
(T, ç) for the purpose of analytic continuation. The other term containing

namely is responsible for the same qualitative features
as (sin and these features are therefore hidden by the unknown
term: We have to get rid of both terms containing Expanding as
above, one finds

where c and d are analytic functions in the same domain as a and b above.
Again, the series converges for real ~ ~ 0, but we only use that it is

asymptotic. The poles that come from the single terms in the sum are at
those points where ±ikn = (1 + pm ) for some odd p > n, and the domain
of analyticity of the remainder term for cutoff at p = po is

Note that without the 1 in the term 1 + po this would exclude the

whole imaginary axis. This is why we had to introduce £ in the case of
the "pure" v-terms before continuing analytically. (This scaling corresponds
to turning the path of x-integration by minus the argument of the complex
number m.) Here, the imaginary axis is not excluded, because for m = iz

with -1  z  1, one has cv2 = 1/(1 - z2 ) > 0, so |Im kn| ]  1. We stress

this here, because we need to cross the imaginary axis later. The union of
all Dpo is the full disc D(l) B (Pn U P* ) .

This is enough information to subtract the from Vn, and
Lemma 6 follows.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



227SECOND ORDER NONPERSISTENCE OF THE SINE GORDON BREATHER

Proof of Lemma 7. - The very same argument that was used to discuss
the immediately shows Lemma 7 without any assumptions on
the solvability of (4.1), but directly from formula (4.5a). Formula (4.12)
can be used as well for the variable /’1; as for the variable m . Although
the residues are different with respect to both variables, they both vanish
or both don’t. We use here that the poles are simple in either case. This in
turn follows from calculating them explicitly. We do not write down these
straightforward calculations; they result in the formulas in Lemma 8.

Proof of Lemma 8. - Beyond these calculations, we only have to show
that the families are disjoint. Suppose, they were not, i.e. that for some

triple (.~, p, n) one has

Then the real parts and the arguments of the complex numbers on either
side have to coincide, i. e.

The second condition can be written in the form

Dividing this by the first condition gives

But for odd f and n, the left hand side of this last equation is divisible by 4,
whereas the right hand side is not..

4.4. Evaluation of the vanishing pole conditions

The calculation of the residues is elementary, but very involved. So, let
us collect what we have to do. According to the above discussion and using
(4.5 a, b), (4.3), (3.5) and (3.6) together with the series expansion
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we want to check whether

where

and

Expanding Bnw2 gives 4 x 6 = 24 separate terms. For the t-integration ofeach of them, we use one of

We shall use later that
eger; in fact, it is

equal to
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The x-integration of each term is not carried out completely, but only the
residues are calculated with the help of (4.9) and (4.11). We find that

Here, we have introduced

provided f - s is even and non-negative; else Ls : - Gs : - 0. In particular,
the vanishing of L and G for negative f - s guarantees that the sum over p
ends with p = f. This is also clear from the very beginning by the qualitative
discussion of the analyticity domains of the single terms.

For every p in the sum (4.15), we isolate (-1)~P+n)~2~(22)p from the
t-integration and ( -1 ) ~p+~~ ~2 2P from the x-integration and get the condition

where are the remaining terms coming from the above integration
formulas and displayed in Table 1. Here, and in Table 1, one should consider
m as determined by m := according to (4.7).
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As we have to evaluate the terms in Table 1 for all odd p = 1, 3, ... , f, the
shortest useful calculation is for f = 5, n = 3, and it involves 3 x 24 terms.
In this case, according to Lemma 8, one has m = (-5 + -23)/8,
and 4 = 3. 8 It is straightforward, ’ though lengthy, to check that

W(3, 5) = -(195635 + 104993 -23)/384 ~ 0. This already proves
Theorem 1 for the case where p > 4 3 / 8.

5. NUMBER THEORETIC REDUCTION
OF SECOND ORDER CONDITIONS

5.1. Outline of the argument

In this section, our goal is to exhibit a set of pairs (n, .~) such that

the corresponding values of accumulate at 0, and such that

0. When we succed in this, Theorem 1 is proved completely,
i. e. for arbitrarily small p. According to (4.8b), m+ (n, 1) ~ 0 if and only
if n/.~ -~ 0, in particular f must tend to infinity. This has the consequence
that the number of terms in (4.21) also tends to infinity. The basic trick by
which we overcome this difficulty is the following:

Instead of showing W (n, f) 7~ 0 by a calculation in the algebraic number
[where D can be read off from (4.7)], it suffices to show

that W (n, f) i 0, where W arises from W by multiplication with common
denominators (i 0), such that the calculation now takes place in the integer
subring 7~ ~~~ . Now, if for some ideal I in this ring, W maps to W ~ 0
under the quotient mapping 7~ ~~~ -~ 7~ ~~~ /I, then of course W ~ 0,
and it is the calculation of W in the quotient ring that we shall actually
carry out.

It turns out that one can choose the ideal in such a way that among the

ori g inall ~ y + 2 1 x 24 terms, only a finite number (independent of .~) survive
the quotient mapping. Their sum can then be evaluated by brute force.

Before carrying out this program, we collect all the choices that will be
made (different choices may work as well).

(1) We let n = 3 and f = 2A - 5, where 03BB > Ao is a prime number. It
then follows that D = -23 mod A. The ideal will be taken to be I := (A),
the principal ideal generated by A G Z[B/D].

(2) We assume that -23 is a square modulo A (i.e. a square in
the finite field Z/AZ), which, according to Gauss’ law on quadratic
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reciprocity (e.g. [8]) is equivalent to A being a square modulo 23.

There are infinitely many such primes, because there are infinitely many
primes in every prime residue class according to a classical theorem by
Dirichlet ([10], [3]). [As a consequence of this condition, our quotient ring
7l[~]/(~) is not the Galois field with ~2 elements, but a ring that has
zero divisors.]

Condition (1) will guarantee that only 42 of the l + 1 2 x 24 terms survive
in the quotient ring. Condition (2) will help to evaluate them.

5.2. Evaluation of the vanishing pole conditions
in some quotient ring

All the 24 entries in Table 1 are integers; for the last column, this

was discussed after (4.18). So are the numbers %. There enter numbers

through m and m2 2 , where

according to (4.7). In particular, D  0 and D - 1 mod 8. Recall that

we have to set

We let

where
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and Tp(n,f) is the 6 x 4-matrix displayed in Table 1, is the row

6-vector

and is the column 4-vector

is manifestly an element of 7~ [~], the ring of all numbers of
the form a + with integers [Algebraic number theorists will

note that this is not the ring of algebraic integers but a strict

subring of it, because D - 1 mod 4, but this distinction is not important 
for

our purpose.] We have to show that for some sequence of (n, I), such that

m+ (n, .~) -~ 0, W (n, .~) does not vanish.
We choose n = 3, .~ = 2A - 5, A prime, and calculate modulo the

ideal (A). Then

mod (A). - But what about the matrices Tp(n, .~) for p = 1, 3, 5, ... , .~?

We claim that

LEMMA 9. - ripTP (n, 1) = 0 mod ~, provided either 7  p  ~ - 6 or

~  p  2~-5.
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Proof - ( 1 ) Here, the binomial coefficients a )
that appear explicitly are all divisible by A. Namely

(a) a > p > A, hence ~ ( a ! . In the last column, p -~- 6 > a > ~ -E- 2,
hence A  a  2A and 

a

(2) The same holds, if p = 2A - 9, except for (lb): ~ ~ if

/3 = 2 but in this case L~ p+ 6 = = 0.

The same holds also, if p = 2A - 7, except for (lb): But again in those
cases, in which a ~ I (3!, the L or G terms vanish.

(4) Let 7  p  ~ - 6. Here, the binomial coefficients that are implicit
in the terms L3 and G j are divisible by 03BB, namely ((03B1 + 03B2)/2 (03B1 - 03B2)/2) and

( 
(cx - 03B2)/2 )’ where the former appears only for GQ.

(c) ~3  p + 4  A - 2 for the G~ terms, and ~3 - 1  p + 5  A - 1 for

all terms, hence hence À t /3!, ({3 - I)!..

This lemma leaves us with five values for p, namely p E

~l, 3, 5, ~-4, ~-2~. But also for these values, there are several zero entries
modulo A due to arguments of the the same type. Taking into account the
vanishing of binomial coefficients modulo A and the formulas (4.20), one
obtains the remaining 6 x 4-matrices:
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The coefficients are

For the further evaluation of the binomial coefficients in the
matrices I), we can use
LEMMA 10. - Let A be any prime; then the following congruences hold

mod A:
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Proof - We show the third one; all others are proved by the same method.

We may cancel C ~ 2 1 J ! from this congruence, because it is nonzero in
the field Multiplying by 2 gives the claimed result..

This lemma can be used to evaluate the terms completely. A symbolic
manipulation package is very helpful (we used Mathematica), but patience
and a pocket calculator may also suffice. We get

and

Therefore we have to show that A + B 7~ 0 in the ring 7~ ~~~ / ( ~ ) .
For this, it is sufficient to show that ( ( 3A ) 2 - ( 3B ) 2 ) ( -17 ~ 5 ~) 4 ~ 0
in this ring. For this latter expression, we can use Fermat’s little theorem
a~‘-1 - 1 mod A for a = 48, but according to the next lemma also for
a == -17 + provided -23 is a square modulo A. The result is quite
ugly, but different from zero; we get in fact

219(412900291171260646060599121129
- 18367854246388929869140462291B/D)

This is not congruent to 0 modulo any 03BB ~ 2 (because the two long integers
are relatively prime).
Now, here is why the use of Fermat’s theorem was allowed for

( -17 + as well.

LEMMA 11. - Let a, b, and D be integers and 03BB ~ 2 a prime that does not
divide a2 - Db2. Suppose that D is a square modulo ~ (but not a square in 7~),
and A f D. Then in the ring 7~~~~, it holds (a + 1 mod (~).
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Proof - Let s E 7L such that s2 - D mod A. Applying the binomial
formula to both (a + ~~)~’-1 and (a ~ b.s)~-1, one gets

where the quotients on the right hand side can be evaluated in Z.
Since (a + bs)(a - bs) - a2 - Db2 t. 0 mod A, neither factor is divisible

by A. According to Fermat’s little theorem, it holds (a:1: bs)~-1 - 1 mod A.
Therefore, 

, ~

Neither 2 nor 2s vanishes in the field thus the right hand side of (5.5)
is congruent to 1 + 0D mod (03BB). t
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