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ABSTRACT. – It is shown that the relaxed energy

F(u,A) := inf

{
lim inf
n→+∞

∫
A

f (x,∇un) dx: {un} ⊂W1,β
loc (A;R

d), un → u in L1(A;R
d)

}
,

admits the representation

F(u,A)=
∫
A

f (x,∇u) dx +µs(u,A),

wheref is a convex, Carathéodory integrand satisfying a nonstandard “α–β” growth hypothesis
β ∈ [α,Nα/(N − 1)). Sufficient conditions guaranteeing thatµs(u, ·) = 0 are discussed. A
example asserting that this representation may fail in the quasiconvex case is provided.
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RÉSUMÉ. – Nous montrons que l’énergie relaxée

F(u,A) := inf

{
lim inf
n→+∞

∫
A

f (x,∇un) dx: {un} ⊂W1,β
loc (A;R

d), un → u in L1(A;R
d)

}
,

admet la représentation intégrale

F(u,A)=
∫
A

f (x,∇u) dx +µs(u,A),

lorsquef est un intégrande convexe de Carathéodory vérifiant une condition de croi
non standard de type “α–β” avec β ∈ [α,Nα/(N − 1)). Des conditions suffisantes assur
queµs(u, ·) = 0 sont proposées ainsi qu’un exemple montrant que la représentation o
ne s’applique pas au cas quasiconvexe.

1. Introduction

The Lavrentiev phenomenon, or gap problem, has stirred renewed interest in
years as it challenges traditional theories in the Calculus of Variations. A prot
model, relevant to the study of cavitation in rubber-like materials (see [3,20,27
among others), assigns to each deformationu ∈W 1,N (�;R

N) the total energy

F(u,�) :=
∫
�

|∇u|p + |det∇u|dx, (1.1)

where� is an open, bounded domain inRN , andp ∈ (N − 1,N). Clearly sequence
of deformations inW 1,N (�;R

N) with bounded energy will be weakly compa
in W 1,p(�;R

N) but not necessarily inW 1,N , so it may be possible to approa
energetically functionsu ∈W 1,p(�;R

N) \W 1,N (�;R
N). We then seek to characteri

the limiting, effective energy associated tou. This example has been studied at leng
and in particular we refer to [1,9,16]. More generally, consider a bulk energy de
f :�× R

d×N → [0,+∞) satisfying the following standing hypotheses:

(H1) f is Carathéodory;
(H3) [“α–β”growth condition]|z|α � f (x, z)� C(1+|z|β) for all z ∈ R

d×N ,LN a.e.
x ∈�, and for someC > 0, where 1<α � β < Nα

N−1.

For every open setA⊂� and everyu ∈W 1,1
loc (A;R

d) we set

F(u,A) :=
∫
f
(
x,∇u(x)) dx,
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and for everyu ∈ L1(A;R
d) we introduce therelaxed functional

F(u,A) := inf
{
lim inf
n→+∞ F(un,A): {un} ⊂W 1,β

loc (A),un → u in L1(A;R
d
)}
.

We search for an integral representation forF(u,A).
Whenα = β and (H1), (H3) hold, then it is well known that (see [2,3,10,26])

F(u,A)=
∫
A

Qf (x,∇u)dx,

where thequasiconvex envelopeQf of f is defined by

Qf (ξ) := inf
{ ∫
(0,1)N

f
(
ξ + ∇ϕ(x))dx: ϕ ∈W 1,∞

0

(
Q;R

d
)}
.

If α < β − β/N then one may haveF(u,�) = 0 (see [4]), and in the case whe
α = β − β/N it may happen thatF(u, ·) is not even subadditive (see [11]). Wh
f does not depend on the position vectorx ∈ � these degeneracies cannot occu
β ∈ [α,αN/(N − 1)). Within this range, and using the global method for relaxa
introduced by Bouchitté, Fonseca and Mascarenhas (see [7]), together with an ex
operator fromW 1,p intoW 1,q obtained by Fonseca and Malý (see [15], Lemma 2.2
was proven in [6], Theorem 3.1, that iff = f (∇u) satisfies (H3) and ifF(u,�) <+∞
then

F(u,A)=
∫
A

Qf (∇u)dx +µs(u,A) (1.2)

for all open setsA ⊂ � and for some finite, Radon measureµs(u,A), singular with
respect toLN �, theN -dimensional Lebesgue measure in�. Earlier results on lowe
semicontinuity for certain rangesα < β and with quasiconvex integrands were obtain
by [24,25], and for polyconvex energy densities withα � N − 1, β = N , we refer to
[1,8,9,11,12,17,18,21–23].

In this paper we address the effect of considering an inhomogeneous dens
f = f (x, ξ). In the main theorem of this paper we show that the analogue to (1.2)

F(u,A)=
∫
A

Qf (x,∇u)dx +µs(u,A), (1.3)

still holds providedf satisfies (H1), (H3) and

(H2) f (x, ·) is convex forLN a.e.x ∈�.

Precisely, we prove

THEOREM 1.1. –If (H1)–(H3) hold, if A is an open subset of�, if u ∈ L1(A;R
d),

and ifF(u,A) <+∞, then for every open setB ⊂A

F(u,B)=
∫
f (x,∇u)dx +µs(u,B)
B
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whereµs(u, ·) is a nonnegative Radon measure singular with respect toLN .

Again the proof of this result is strongly hinged on the global method of relaxa
introduced in [7] (see also [5]), although some of the arguments may now be g
simplified by exploiting the convexity assumption. In particular, the uplifting operatP
introduced in [15] (see also [6]) is no longer needed. The proof presented in Sec
concerns the scalar case whered = 1 and the argument is entirely similar in the vec
valued-scalar case. Therefore and for simplicity, we leave the obvious adaptations
reader.

Section 4 is devoted to the study of several sufficient conditions ensuring th
Lavrentiev phenomenon does not occur. In view of Ioffe’s Theorem (see Theorem
the functionalF is lower semicontinuous and thusF � F . We then say that th
Lavrentiev phenomenon occurs when at some point we have the strict inequalityF <F .

The first result, deduced directly from Theorem 1.1, asserts that the Lavre
phenomenon is local, precisely,

PROPOSITION 1.2. –LetA be an open subset of� and letu ∈L1(A) withF(u,A) <
+∞. Assume that for everyx ∈A there is an open neighbourhoodU of x such that

F(u,U)= F(u,U). (1.4)

ThenF(u,B)= F(u,B) for every open setB ⊂A.

An interesting model example of convex functionals depending onx and with
a growth-coercivity gap as in (H3) is provided by

∫ |Du|p(x) dx for some function
p :�→ R (see [29,30]), or, more generally,

u �→
∫
�

f
(
x,∇u(x)) dx

wheref :�× R
N → [0,+∞) satisfies

|z|p(x) � f (x, z)� C(1+ |z|p(x)) for all z ∈ R
N, a.e.x ∈�, (1.5)

and for someC > 0. The proof of Theorem 1.3 below follows closely the original ar
ment of Zhikov and Fan (see [29]), although some of the technical difficulties en
tered by those authors may now be avoided using the theory developed in this pa

Let p :� �→ R be a continuous function such that

1< α � p(x)� β

and

∣∣p(x)− p(y)∣∣� γ

| log|x − y|| whenever 0< |x − y| � 1

2
, (1.6)

for someα,β, γ > 0.
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THEOREM 1.3. –Let f :�× R
N → [0,+∞) satisfy(H1), (H2), (1.5),and assume

that (1.6)holds. Ifu ∈W 1,α
loc (�) is such thatf (·,∇u) ∈L1

loc(�) then

F(u, ·)= F(u, ·).
The last section of this work, Section 5, is dedicated in its entirety to the treatm

an example falling into the class of prototype energies (1.1) which satisfy (H1),
are polyconvex rather than convex, and for which a genuine measurable depende
x prevents (1.3) to hold. This fact provides one more evidence that quasiconvex en
and convex energies do share quite different properties, and that care must be take
generalizing results from the convex to the non-convex setting. With Proposition 1
show that Theorem 1.1 may be false if stated for integrandsf :� × R

N × R
d×N →

[0,+∞), d,N > 1, satisfying (H1), (H3), and

(H2′) f (x, ·) is quasiconvex forLN a.e.x ∈�.

We recall that a Borel functiong :Rd×N → R is said to bequasiconvex(see [Morrey]) if

∫
(0,1)N

g
(
ξ + ∇ϕ(y))dy � g(ξ)

for all ξ ∈ R
d×N and allϕ ∈ W 1,∞

0 ((0,1)N ;R
d). Clearly convex functions are quas

convex, and a simple example of a quasiconvex function which is not convex is
by ξ �→ |detξ | (for a detailed study of quasiconvexity we refer the reader to [1,2,9
12,16,17,23–26]). In the absence of growth-coercivity gap, i.e. whenα = β in (H3), it
was proven by Acerbi and Fusco (see [2]), thatF(·,�) is sequentially weakly lowe
semicontinuous inW 1,α(�;R

d), and, in addition, it can be shown that (see also [10]

F(u,�)=
∫
�

f
(
x,∇u(x)) dx.

If there is a gap and under (H1), (H3), then Theorem 3.1 in [15] still holds, and s
u ∈W 1,α(�;R

d) such thatF(u,�) <+∞ we have

F(u,A)=
∫
A

f u(x) dx +µs(u,A) for all A open subset of�,

whereµs(u, ·) is a nonnegative finite Radon measure on�, singular with respect t
LN �, and for some densityf u.

The next natural question is: under which conditions can we guarantee that

f u(x)= f (x,∇u(x)) for a.e.x ∈�? (1.7)

Theorem 1.1 tells us that (H2), i.e. the convexity off (x, ·) for a.e.x ∈�, implies the
identity in (1.7), and Theorem 3.2 in [6] ensures (1.7) if (H2′) holds and iff does not
depend onx.
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Here we show that this last statement is close to being optimal, in that iff has a
genuine measurable dependence onx, and even though (H1), (H2′), (H3) still hold, then
it may happen that

f u(x) < f
(
x,∇u(x)) for all x ∈E,

whereE is some set with|E|> 0. The construction of such functionf is motivated by
the result of Gangbo (see [18], Theorem 3.1) asserting that

u ∈W 1,N(�;R
N
) �→

∫
�

χK(x)
∣∣det

(∇u(x))∣∣dx

is lower semicontinuous inW 1,N (�;R
N) for the weak topology ofW 1,p(�;R

N), with
N − 1<p <N , if and only if |∂K| = 0.

PROPOSITION 1.4. –Fix θ ∈ (0,1), let p ∈ (N − 1,N), let � ⊂ R
N be an open

bounded domain, letK be a compact subset of� with |∂K| > 0, and let f :� ×
R
N×N → [0,+∞) be given by

f (x, ξ) := θ |ξ |p + χK |detξ | for a.e.x ∈�, and all ξ ∈ R
N×N.

If id(·) is the identity function andI is the identity matrix, then there existsθ0 ∈ (0,1)
such that ifθ < θ0 then for allx ∈ ∂K

f id(x) < f (x, I).

It is clear thatf satisfies (H1), (H3) withα := p, β :=N , andf (x, ·) is quasiconvex
In light of Proposition 1.4, we have

F(id,A)=
∫
A

f id(x) dx +µs(u,A),

where there holds, forθ sufficiently small,f id(x) < f (x, I) for all x ∈ ∂K .

2. Preliminaries

Let � be an open, bounded subset ofR
N , and consider a functionf :� × R

N →
[0,+∞) satisfying the following standing hypotheses:

(H1) f is Carathéodory;
(H2) f (x, ·) is convex forLN a.e.x ∈�;
(H3) |z|α � f (x, z)� C(1+|z|β) for all z ∈ R

N , LN a.e.x ∈�, and for someC > 0,
where

1<α � β < Nα

N − 1
. (2.1)

We recall thatf is said to be Carathéodory iff (·, z) is LN -measurable for allz
andf (x, ·) is continuous forLN a.e.x ∈ �, whereLN stands for theN -dimensional
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Lebesgue measure onRN . Often we will write|E| in place ofLN(E). Also, throughout
this paper the letterC will denote a generic positive constant which may vary from
to line and within the same formula. Note that in view of (2.1), ifA ⊂ R

N is an open
set with Lipschitz boundary then the inclusionW 1,α(∂A)⊂W 1−1/β,β(∂A) is continuous
and compact, whereW 1−1/β,β(∂A) is the space of traces on∂A of functions inW 1,β(A).
More generally standard results in the theory of Sobolev spaces yield the lifting pro
presented below.

LEMMA 2.1. –If A⊂ R
N is an open, bounded, Lipschitz domain and if(2.1) holds,

then there exists a continuous, linear, compact mapping

EA :W 1,α(∂A)→W 1,β(A) such that tr EA(g)= g on ∂A.

Remark2.2. – Since the “uplift” operator EA of Lemma 2.1 is constructed wit
symmetric convolution kernels, it is readily verified that affine functions rem
unchanged, i.e., ifu(x)= a + b · x then EAu= u.

Remark2.3. – (i) The growth hypothesis (H3) together with the convexity off imply
that f is β-locally Lipschitz continuous with respect toz, i.e., for a.e.x ∈ � and all
z,w ∈ R

N (see [10,24,25])

∣∣f (x, z)− f (x,w)∣∣�C(1+ |z|β−1 + |w|β−1)|z−w|. (2.2)

(ii) Let {zi} be a countable dense subset ofR
N , and for all i let Ki be the set o

Lebesgue points of the functionf (·, zi). SettingK(f ) :=⋂
Ki , then|�\K(f )| = 0, and

if x0 ∈ K(f ) then it is a Lebesgue point forf (·, z) for all z ∈ R
N . Indeed, fix 0< ε < 1,

letM := 1+ |z|, and choosezi with |z− zi|< ε. By (2.2)

∣∣f (x, z)− f (x0, z)
∣∣� CMβ−1|z− zi| +

∣∣f (x, zi)− f (x0, zi)
∣∣,

thus forρ > 0

−
∫
Bρ(x0)

∣∣f (x, z)− f (x0, z)
∣∣dx � CMβ−1ε+ −

∫
Bρ(x0)

∣∣f (x, zi)− f (x0, zi)
∣∣dx

and sincex0 ∈⋂Ki , we now have

lim sup
ρ→0

−
∫
Bρ(x0)

∣∣f (x, z)− f (x0, z)
∣∣dx �CMβ−1ε.

The assertion follows by lettingε→ 0.

For every open setA⊂� and everyu ∈W 1,1
loc (A;R

d), we set

F(u,A) :=
∫
f
(
x,∇u(x)) dx.
A
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Given an open setA⊂� andu ∈W 1,1
loc (A;R

d), theset of admissible sequences foru in
A is defined by

A(u;A) := {{un} ⊂W 1,β
loc (A): un → u in L1(A;R

d
)}
,

and we introduce therelaxed functional

F(u,A) := inf
{
lim inf
n→+∞ F(un,A): {un} ∈A(u,A)

}
. (2.3)

We define theset of good sequences foru in A to be

G(u,A) := {{un} ∈A(u,A) :F(u,A)= lim
n→+∞F(un,A)

}
. (2.4)

It is clear thatG(u,A) is nonempty. IfF(u,A) < +∞ then by (H3) we have tha
∇u ∈ Lα(A;R

d×N), and so for almost all ballsBρ ⊂A the trace ofu on ∂Bρ belongs to
W 1,α(∂Bρ;R

d). In view of Lemma 2.1, we may define for every such ball

m(u,Bρ) := inf
{
F(v,Bρ): v ∈W 1,β(Bρ), v − u ∈W 1,α

0 (Bρ)
}
,

and we also set

Fav(u,A) := 1

|A|F(u,A), mav(u,Bρ)= 1

|Bρ|m(u,Bρ),

whereBρ stands for a ballB(x,ρ) of centerx ∈� and radiusρ > 0.
Next we recall a semicontinuity result by Ioffe (see [19]).

THEOREM 2.4. –Let g :� × R
d × R

d×N → [0,+∞) be a Carathéodory functio
such thatg(x,u, ·) is convex for everyu ∈ R

d and forLN a.e.x ∈�. Then the functiona

G(u) :=
∫
�

g(x,u,∇u)dx

is lower semicontinuous onW 1,1(�;R
d) with respect to the weak convergence

W 1,1(�;R
d).

By Ioffe’s Theorem, the functionalF is lower semicontinuous, thus

F �F .

On the other hand, ifu ∈W 1,β
loc (A;R

d) ∩W 1,α(A;R
d) then the constant sequence{u}

is admissible and thusF(u,A) � F(u,A). This, together with the previous inequali
yields

F(u,A)= F(u,A) wheneveru ∈W 1,β
loc

(
A;R

d
)∩W 1,α(A;R

d
)
. (2.5)

Using a good sequence inG(u,A) to approachF(u,A), and in view of (2.5), it now
follows that

F = sup
{
H : H � F,H isL1 lower semicontinuous

}
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where

F(u,A) :=
{
F(u,A) if u ∈W 1,β

loc

(
A;R

d
)
,

+∞ otherwise.

The following lemma will be instrumental to show thatF(u, ·) is the trace inA(�) of
a positive Radon measureµ(u, ·), whereA(�) denotes the class of open subsets of�.

LEMMA 2.5. –Letλ :A(�)→ [0,+∞) andµ be such that
(i) µ is a finite Radon measure on�;
(ii) λ(�)� µ(�);

(iii) λ(A)�µ(A) for all A ∈ A(�);
(iv) (subadditivity)λ(A)� λ(A \ C)+ λ(B) for all A,B,C ∈ A(�) such thatC �

B ⊂A;
(v) (inner regularity)for all A ∈ A(�), ε > 0, there existsC ∈ A(�) such thatC �A

andλ(A \C) < ε.
Thenλ=µ on A(�).

Proof. –We start by showing that

λ(A)�µ(A) for all A ∈ A(�). (2.6)

Fix A ∈ A(�), ε > 0. By (iv) and (v) we may find open setsC � B � A such that
λ(A \C) < ε and

λ(A)� λ(A \C)+ λ(B)� ε+µ(B)� ε+µ(A),

where we used (iii). Clearly (2.6) now follows by lettingε→ 0+.
In order to prove the converse inequality, sinceµ is inner regular forε > 0 we may

find an open setA′ �A such thatµ(A)� ε+µ(A′), and by virtue of (ii), (2.6), and (iv)

µ(A)� ε+µ(A′)= ε+µ(�)−µ(� \A′)� ε+ λ(�)− λ(� \A′)� ε+ λ(A).

By the arbitrariness ofε > 0, we now conclude thatµ(A)� λ(A). ✷
Remark2.6. – If (i) and (iii) in the statement of Lemma 2.5 hold, then the in

regularity property (v) is satisfied provided we can show that there existsC > 0 such
that ifU ∈ A(�), U =⋃∞

i=1Ui , Ui ∈ A(�), Ui �Ui+1 �U , then

λ(U \U1 )� C
∞∑
i=1

λ(Ui+3 \Ui ). (2.7)

Indeed, ifU ∈ A(�), takeUi := {x ∈U : dist(x, ∂U) > 1/i}, and choosek large enough
so that

m(u,U \Uk) < ε

4C
.

We have
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λ(U \Uk)�C
∞∑
i=k
λ(Ui+3 \Ui)� C

∞∑
i=k
µ
(
Ui+3 \Ui )

�C
∞∑
i=k
µ(Ui+4 \Ui)� 4Cµ(U \Uk) < ε.

3. A representation theorem

In this section we prove Theorem 1.1. We start by showing thatF(u, ·) is the trace in
A(�) of a Radon measureµ(u, ·). For everyA ∈ A(�) set

λ(A) := F(u,A).

Consider a sequence{un} ∈ G(u,A) such that

F(u,�)= lim
n→+∞F(un,�)= lim

n→+∞

∫
�

f (x,∇un) dx,

and define the Radon measures onR
N

λn := f (x,∇un)LN �.

Since these measures are equibounded, and up to the extraction of a subseque
have

λn
∗
⇀µ(u, ·) in the sense of measures

for some finite Radon measureµ(u, ·), i.e.,∫
�

ϕ dλn →
∫
�

ϕ dµ(u, ·) for all ϕ ∈ Cc(�).

Note that

µ(u,�)� lim inf
n→+∞ λn(�)= lim

n→+∞

∫
�

f (x,∇un) dx = λ(�), (3.1)

and ifA ∈ A(�) then

λ(A)� lim inf
n→+∞

∫
A

f (x,∇un) dx = lim inf
n→+∞ λn(A)� µ(u,A). (3.2)

Therefore, by virtue of Lemma 2.5 we have

λ= µ(u, ·) on A(�)

providedλ satisfies the subadditivity and inner regularity properties (iv) and (v). T
depend mostly on the growth condition (H3) and on (2.1), and were asserted i
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(see Lemma 2.4) by means of an uplifting operatorP more refined and complex tha
the operator EA introduced in Lemma 2.1. Below we give an alternative proof wh
relies heavily on the convexity assumption (H2), and it bypasses the need to exp
operatorP .

PROPOSITION 3.1. –If A,B,C ∈ A(�), C �B ⊂A, then

F(u,A)� F(u,B)+F(u,A \C).
Proof. –Fix {vn} ∈ G(u,B) and {wn} ∈ G(u,A \ C), let ϕ ∈ C∞

c (B) be such tha
0� ϕ � 1, ϕ = 1 in a neighborhood ofC, and set

un := ϕvn + (1− ϕ)wn,
whereϕvn is taken to be zero there whereϕ = 0, even thoughvn may be not defined
on that set, and analogously(1 − ϕ)wn is to be equal to zero on{ϕ = 1}. Clearly
{un} ∈A(u,A), and for all 0< t < 1 also{tun} ∈A(tu,A), thus

F(tu,A)� lim inf
n→+∞ F(tun,A). (3.3)

By the convexity off , and since 0< t < 1, 0 � ϕ � 1, we may find some positiv
constantM such that

F(tun,A)=
∫
A

f

(
x, t
[
ϕ∇vn + (1− ϕ)∇wn]+ (1− t)vn −wn

1− t t∇ϕ
)
dx

� t
∫
A

f
(
x,ϕ∇vn + (1− ϕ)∇wn)dx

+ (1− t)
∫
A

M

(
1+

∣∣∣∣vn −wn
1− t t∇ϕ

∣∣∣∣
β)
dx

�
∫
A

[
ϕ(x)f (x,∇vn)+ (1− ϕ(x))f (x,∇wn)]dx +M(1− t)|A|

+M ‖∇ϕ‖βL∞

(1− t)β−1

∫
B\C

|vn −wn|β dx

� F(vn,B)+ F(wn,A \C)+M(1− t)|A|

+M ‖∇ϕ‖βL∞

(1− t)β−1
‖vn −wn‖βLβ(B\C),

where we have used the growth condition in (H3). Also, by the coercivity assumpt
(H3), we deduce that{‖∇vn‖Lα(B\C)+‖∇wn‖Lα(B\C)} is bounded, and sincevn−wn →
u− u= 0 in L1(B \C;R

d), we have thatvn −wn ⇀ 0 weakly inW 1,α(B \C;R
d), and

therefore strongly inLβ(B \ C;R
d) by (2.1) and Rellich Theorem. This, together w

(3.3), yields

F(tu,A)� F(u,B)+F(u,A \C)+C(1− t)|A|,
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and the result now follows by lettingt ↗ 1 and using theL1 lower semicontinuity
property ofF(·,A). ✷

Finally, and in light of Remark 2.6, in order to assert inner regularity forλ it suffices
to establish (2.7).

PROPOSITION 3.2. –If U ∈ A(�), U =⋃∞
i=1Ui , Ui ∈ A(�), Ui �Ui+1 �U , then

F(u,U \U1)� 2
∞∑
i=1

F(u,Ui+3 \Ui).

Proof. –Fix U ∈ A(�) and suppose thatU = ⋃∞
i=1Ui , Ui ∈ A(�), Ui � Ui+1 � U .

Choose{u(i)n } ∈ G(u,Ui+2 \Ui) and{u∞
n } ∈ G(u,U), so that, recalling thatλ= F(u, ·),

λ(Ui+2 \Ui)= lim
n→+∞

∫
Ui+2\Ui

f
(
x,∇u(i)n

)
dx, λ(U)= lim

n→+∞

∫
U

f
(
x,∇u∞

n (x)
)
dx.

Let ϕi be a smooth cut-off function such thatϕi = 1 in Ui , ϕi = 0 outsideUi+1, and
{0<ϕi < 1} �Ui+1 \Ui.

Up to the extraction of a subsequence, we may assume thatf (·,∇u∞
n ) U

∗
⇀ η,

whereη is a finite Radon measure onU . Fix ε > 0 and chooseM ∈ N large enough so
thatη(U \UM) < ε. Define

ūn : = χU2\U1
u(1)n +

M∑
i=2

χUi+1\Ui
[
ϕiu

(i−1)
n + (1− ϕi)u(i)n

]
+ χU\UM+1

[
ϕM+1u

(M)
n + (1− ϕM+1)u

∞
n

]
.

Clearly ūn ∈A(u,U \U1), and we have

λ(U \U1)� lim inf
t→1

lim inf
n→+∞

∫
U\U1

f (x, t∇ūn) dx

� lim sup
t→1

lim sup
n→+∞

t

∫
U2\U1

f
(
x,∇u(1)n

)
dx + lim sup

t→1
(1− t)

∫
U2\U1

f (x,0) dx

+ lim sup
t→1

lim sup
n→+∞

M∑
i=2

∫
Ui+1\Ui

f (x, t∇ūn) dx

+ lim sup
t→1

lim sup
n→+∞

∫
U\UM+1

f (x, t∇ūn). (3.4)

Now

lim sup
t→1

lim sup
n→+∞

t

∫
U2\U1

f
(
x,∇u(1)n

)
dx + lim sup

t→1
(1− t)

∫
U2\U1

f (x,0) dx � λ(U3 \U1),

(3.5)
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a

.2),
and

lim sup
t→1

lim sup
n→+∞

M∑
i=2

∫
Ui+1\Ui

f (x, t∇ūn) dx

= lim sup
t→1

lim sup
n→+∞

M∑
i=2

∫
Ui+1\Ui

f

(
x, t
[
ϕi∇u(i−1)

n + (1− ϕi)∇u(i)n
]

+ (1− t)u
(i−1)
n − u(i)n

1− t t∇ϕi
)
dx

� lim sup
t→1

lim sup
n→+∞

t

M∑
i=2

{ ∫
Ui+1\Ui−1

ϕif
(
x,∇u(i−1)

n

)
dx

+
∫

Ui+2\Ui

(1− ϕi)f (x,∇u(i)n )dx
}

+ lim sup
t→1

lim sup
n→+∞

(1− t)
M∑
i=2

∫
Ui+1\Ui

C

(
1+ |u(i−1)

n − u(i)n |β
(1− t)β tβ |∇ϕi |β

)
dx

�
M∑
i=2

[
λ(Ui+1 \Ui−1)+ λ(Ui+2 \Ui)], (3.6)

where we have used the fact thatu(i−1)
n − u(i)n → 0 in Lβ(Ui+1 \Ui).

In a similar way, we can show that

lim sup
t→1

lim sup
n→+∞

∫
U\UM+1

f (x, t∇ūn)

� lim sup
n→+∞

∫
UM+2\UM+1

f
(
x,∇u(M)n

)+ lim sup
n→+∞

∫
U\UM+1

f
(
x,∇u∞

n

)
dx

� λ(UM+3 \UM)+ η(U \UM)
� λ(UM+3 \UM)+ ε. (3.7)

In view of (3.4), (3.5), (3.6), and (3.7), we obtain

λ(U \U1)� 2
∞∑
i=1

λ(Ui+3 \Ui)+ ε.

Letting ε→ 0 yields property (2.7). ✷
PROPOSITION 3.3. – If (H1)–(H3) hold and ifF(u,�) < +∞ then there exists

finite Radon measureµ(u, ·) on� such thatF(u, ·) is the trace ofµ(u, ·) on A(�).

Proof. –The proof follows immediately from Lemma 2.5, Remark 2.6, (3.1), (3
Propositions 3.1 and 3.2.✷
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In the sequel we will often writeµ(u, ·) to designate the measure whose trace on
open sets of� is F(u, ·), and we will denote byµs(u, ·) its singular part with respect t
the Lebesgue measureLN �.

LEMMA 3.4. – If (H1)–(H3)hold and ifF(u,�) <+∞ then there exists a sequen
{un} with the following properties:

(a) un ∈W 1,β
loc (�);

(b) un ⇀ u in W 1,α(�);
(c) F(u,�)= limn→+∞ F(un,�);
(d) F(u,A)= limn→+∞ F(un,A) for all open setsA⊂� such thatµ(u, ∂A)= 0;
(e) for all x0 ∈ � and for almost all 0 < t < R := dist(x0, ∂�), there exists

a subsequence{ukn} such that F(u,Bt(x0)) = limn→+∞ F(ukn,Bt(x0)) and
ukn ⇀ u in W 1,α(∂Bt(x0)).

Proof. –By the definition ofF there exists a sequence{un} satisfying properties
(a), (b), (c). IfA ∈ A(�) is such thatµ(u, ∂A)= 0 then

lim sup
n→+∞

F(un,A)= lim
n→+∞F(un,�)− lim inf

n→+∞ F(un,� \A)
�F(u,�)−F(u,� \A)
=F(u,A)
� lim inf
n→+∞ F(un,A)

and property (d) follows. To prove (e), fixx0 ∈� and remark that due to the finitene
of the measureµ(u, ·), property (d) holds forBt(x0) for L1 a.e.t ∈ (0,R). With

M := sup
n

∫
BR(x0)

|∇un|α dx <+∞,

define forK > 0

EK,n = ⋂
m�n

{
t ∈ (0,R): µs(u, ∂Bt(x0)

)= 0,
∫

∂Bt (x0)

|∇um|α dHN−1 �K
}
,

whereµs(u, ·) is the singular part ofµ(u, ·) with respect toLN �. Clearly |EK,n| �
M/K , and sinceEK,n+1 ⊃ EK,n, we still have|EK | �M/K whereEK :=⋃

n EK,n. As
a consequence, ifE :=⋂K EK then|E| = 0, and ift /∈E then

lim inf
n→+∞

∫
∂Bt (x0)

|∇un|α dHN−1<+∞,

which, together with (d), asserts the existence of a subsequence fulfilling (e).✷
DEFINITION 3.5. –If F(u,�) <+∞ then we say thatBρ(x0) is an uplift ball foru

if :
(i) µ(u, ∂Bρ(x0))= 0 (whereµ(u, ·) is the measure given by Proposition3.3).
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(ii) There exists a sequence{un} satisfying properties(a), (b), (c)of Lemma3.4 and
un ⇀ u weakly inW 1,α(∂Bρ(x0)).

We denote byR(u, x0) the set of all radiiρ > 0 such thatBρ(x0) is an uplift ball.

In the sequel, we shall often deal with limits involving the functionm(u,Bρ(x)) as
ρ→ 0. Sincem is defined only forρ ∈ R(u, x), i.e. for almost allρ, and isnot defined
for the remaining values ofρ, as it is customary for a given functionf when we write
limρ→0f (ρ) it should be understood thatρ is taken only among those points at whi
the functionf is defined.

Remark3.6. – By Lemma 3.4, ifF(u,�) <+∞ then for allx0 ∈� almost all balls
centered atx0 are uplift balls foru. Also, by means of a diagonal argument we m
assume that the sequence{un} satisfying (ii) in Definition 3.5 is the same for a countab
set of uplift balls.

LEMMA 3.7. –Assume thatF(u,�) < +∞ and letB be an uplift ball foru. Let
v ∈W 1,β(B;R

d) satisfyv = u on ∂B, set

ū(x) :=
{
v(x) if x ∈ B,

u(x) otherwise.

Then

µ(ū, ∂B)= 0.

Proof. –Let {un} be a sequence as in Definition 3.5(ii), and letB ′ � B � B ′′ be uplift
balls concentric withB, so close together that if we denote byA the annulusB ′′ \ B ′,
and using the fact thatF(u, ∂B)= 0, then

F(u,A) < ε, F (v,A∩B) < ε.
Since the trace on∂B of un − u converges to zero weakly onW 1,α(∂B;R

d), by
Lemma 2.1 if we takevn := EB(un − u) then

vn ∈W 1,β(B), vn = un − u on ∂B, vn → 0 inW 1,β(B;R
d
)
.

We define inA

ūn(x) :=
{
un(x) if x ∈A \B,

vn(x)+ v(x) if x ∈A∩B.

Clearly ūn ∈W 1,β(A;R
d), and

F(ūn,A)= F(un,A \B)+ F(ūn,A∩B)� F(un,A)+ F(ūn,A∩B).
Sinceūn → ū in L1(A;R

d) and ūn → v in W 1,β (A ∩ B;R
d), by theW 1,β -continuity

of F and the property (d) satisfied by{un}, in view of the fact thatµ(u, ∂A) = 0, we
deduce that

F(ū,A)� lim inf
n→+∞ F(ūn,A)
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],
� lim sup
n→+∞

F(ūn,A \B)+ lim sup
n→+∞

F(ūn,A∩B)
� lim
n→+∞F(un,A)+ F(v,A∩B)

=F(u,A)+F(v,A∩B) < 2ε

and the assertion follows.✷
PROPOSITION 3.8. – If F(u,�) <+∞ then forLN -a.e.x0 ∈�

lim inf
ρ→0

mav
(
u,Bρ(x0)

)
� f

(
x0,∇u(x0)

)
.

Proof. –We use the notation introduced in Remark 2.3. We recall that sinceu ∈
W

1,α
loc (�;R

d), for LN -a.e. pointx0 and every sequenceρj ↘ 0 we have (see [13
Theorem 2, p. 230)

−
∫

Bρj (x0)

[∣∣∇u(x)− ∇u(x0)
∣∣α + 1

ραj

∣∣u(x)− u(x0)− ∇u(x0)(x − x0)
∣∣α]dx→ 0.

Let x0 ∈ K(f ) be any such point, which in addition is a Lebesgue point foru and∇u,
and letρj ↘ 0 be any sequence such thatBρ1(x0)⊂�. OnB :=B1(0) we define

uj(y) := 1

ρj

[
u(x0 + ρjy)− u(x0)

]
, u0(y) := ∇u(x0)y. (3.8)

Then

−
∫
B

[|∇uj − ∇u0|α + |uj − u0|α]dy→ 0,

i.e.,

1∫
0

dt

∫
∂Bt

[∣∣∇u(x0 + ρjy)− ∇u(x0)
∣∣α + ∣∣uj(y)− ∇u(x0)y

∣∣α]dHN−1 → 0,

whereBt := Bt(0), and so, up to a subsequence,

∫
∂Bt

[∣∣∇u(x0 + ρjy)− ∇u(x0)
∣∣α + ∣∣uj(y)− ∇u(x0)y

∣∣α]dHN−1 → 0 (3.9)

for L1 a.e.t ∈ (0,1). As for almost allt

µ(u, ∂Btρj )= 0 and uj ∈W 1,α(∂Bt;R
d
)

for all j, (3.10)

we may findt̄ ∈ (0,1) satisfying (3.9), (3.10), and we relabel as{ρj } the sequence{t̄ρj}.
We then have that the sequence defined in (3.8) with the newρj satisfies
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∫
∂B

[∣∣∇u(x0 + ρjy)− ∇u(x0)
∣∣α + ∣∣uj (y)− ∇u(x0)y

∣∣α]dHN−1 → 0,

µ(u, ∂Bρj )= 0, uj ∈W 1,α(∂B;R
d
)

for all j, (3.11)

anduj still converges tou0 in W 1,α(B;R
d). Settingvj := EBuj , and as EBu0 = u0 (see

Remark 2.2), from Lemma 2.1 and (3.11) we deduce that

vj → u0 inW 1,β(B;R
d
)
,

and

mav
(
u,Bρj (x0)

)
� −
∫
Bρj

f

(
x,∇

(
ρjvj

(
x − x0

ρj

)
+ u(x0)

))
dy

= −
∫
B

f
(
x0 + ρjy,∇vj (y))dy.

Sincef is β-locally Lipschitz (see (2.2)), we obtaind

∫
B

∣∣f (x0 + ρjy,∇vj (y))− f (x0 + ρjy,∇u(x0)
)∣∣dy

� C
∫
B

(
1+ ∣∣∇vj (y)∣∣β−1 + ∣∣∇u(x0)

∣∣β−1)∣∣∇vj (y)− ∇u(x0)
∣∣dy

� C‖∇vj − ∇u0‖Lβ(B)
which vanishes asj → +∞. Therefore

lim inf
ρ→0

mav
(
u,Bρ(x0)

)
� lim sup

j→+∞
mav

(
u,Bρj (x0)

)

� lim sup
j→+∞

−
∫
B

f
(
x0 + ρjy,∇u(x0)

)
dy

= lim sup
j→+∞

−
∫

Bρj (x0)

f
(
x,∇u(x0)

)
dx. (3.12)

By (3.12) and the definition of the setK(f ) (see Remark 2.3), we conclude that

lim inf
ρ→0

mav
(
u,Bρ(x0)

)
� f

(
x0,∇u(x0)

)
. ✷

Remark3.9. – Recall that Ioffe’s Theorem (Theorem 2.4) ensures thatF � F . In
particular, ifF(u,�) < +∞ thenf (·,∇u) ∈ L1(�). Moreover, if the pointx0 in the
previous proof is also a Lebesgue point forf

(·,∇u), which holdsLN -a.e. in�, then the
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sequences{ρj} and{uj } we found above satisfy




µs(∂Bρj )= 0,

u ∈W 1,α(∂Bρj ),

uj → u0 in W 1,α(B;R
d
)

and inW 1,α(∂B;R
d
)
,

lim sup
j→+∞

mav
(
u,Bρj (x0)

)
� lim
j→+∞ −

∫
Bρj (x0)

f
(
x,∇u(x)) dx,

and from the last inequality we deduce, in particular, that for allt > 0 there exists̄j such
that for allj � j̄

m
(
u,Bρj (x0)

)
�

∫
Bρj (x0)

f
(
x,∇u(x)) dx + t∣∣Bρj (x0)

∣∣.

PROPOSITION 3.10. – For LN -a.e.x0 ∈�

lim inf
ρ→0

Fav
(
u,Bρ(x0)

)
� f

(
x0,∇u(x0)

)
.

Proof. –Fix an open set�′ ⊂� and define for everyt ∈ (0,1)

Et :=
{
x ∈�′: ∃ρj ↘ 0 such thatm

(
u,Bρj (x)

)
�

∫
Bρj (x)

f
(
y,∇u(y)) dy + t∣∣Bρj (x)∣∣

}
.

By Remark 3.9 we have that|�′ \Et | = 0, thus, in particular,Et is LN -measurable. Fix
ε > 0 and choose an open setω and a compact setK such that

K ⊂Et ⊂ ω⊂�′,

with

µs(u,ω) < ε+µs(u,Et ), µ(u,ω \K) < ε+µs(u,Et ). (3.13)

Fix δ > 0 and set

X δ :=
{
Bρ(x): x ∈Et, ρ < δ, Bρ(x)⊂ ω, µs(u, ∂Bρ(x))= 0,

u ∈W 1,α(∂Bρ(x);R
d
)
,

m
(
u,Bρ(x)

)
�
∫

Bρ(x)

f
(
y,∇u(y)) dy + t∣∣Bρ(x)∣∣

}
,

Yδ := {Bρ(x): ρ < δ, Bρ(x)⊂ ω \K, µs(u, ∂Bρ(x))= 0
}
.
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m

3),
The balls ofX δ andYδ form a fine cover ofω, and so Besicovitch Covering Theore
yields a countable subcover

ω =N ∪
( +∞⋃
i=1

BY
i

)
∪
( +∞⋃
i=1

BX
i

)
(3.14)

with µ(u,N)= 0, so that the ballsBY
i ∈ Yδ andBX

i ∈X δ are all disjoint. By (3.13) we
may taken large enough such that

µ

(
u,

[
N ∪

(⋃
i

BY
i

)
∪
(⋃
i>n

BX
i

)])
< ε+µs(u,Et ), (3.15)

and for alli � n choosevi ∈W 1,β(BX
i ) such thatvi − u ∈W 1,α

0 (BX
i ) and

F
(
vi,B

X
i

)
� m

(
u,BX

i

)+ δ∣∣BX
i

∣∣. (3.16)

Due to the choice ofX δ and by (H3) we have∫
BX
i

|Dvi|α dx �
∫
BX
i

f
(
x,∇vi(x))dx � m

(
u,BX

i

)+ δ∣∣BX
i

∣∣

�
∫
BX
i

f
(
x,∇u(x)) dx + (δ+ t)∣∣BX

i

∣∣,
and in view of the boundary assumption onvi and Poincaré inequality, using again (H

‖vi − u‖αLα(BX
i
)
� Cδα

( ∫
BX
i

f
(
x,∇u(x)) dx + (δ+ t)∣∣BX

i

∣∣),

where we have invoked the fact that the radius ofBX
i is less thanδ. Set

uδ(x) :=
{
vi(x) if x ∈ BX

i , i � n,

u(x) otherwise.

The previous inequality yields

‖uδ − u‖αLα(ω) � Cδα
( ∫
ω

f
(
x,∇u(x)) dx + |ω|

)
,

thusuδ → u in Lα(ω;R
d).

By Lemma 3.7, (3.14), and (3.15), we have

F(uδ,ω)= F
(
u,ω \ ⋃

i�n
BX
i

)
+∑
i�n

F
(
uδ,B

X
i

)
� ε+µs(u,Et )+

∑
i�n

F
(
vi,B

X
i

)
.
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d by
2.4)

d

Sincevi ∈W 1,β(BX
i ;R

d), by (2.5), (3.16), and in light of the choice ofX δ ,

F(uδ,ω)� ε+µs(u,Et)+
∑
i�n

m
(
u,BX

i

)+ δ
∣∣∣∣ ⋃
i�n
BX
i

∣∣∣∣
� ε+µs(u,Et)+

∫
ω

f
(
x,∇u(x)) dx + (δ + t)|ω|.

TheL1 lower semicontinuity ofF(·,ω) now yields

F(u,ω)� lim inf
δ→0

F(uδ,ω)� ε+µs(u,Et )+
∫
ω

f
(
x,∇u(x)) dx + t|ω|,

so lettingω↘Et and thenε→ 0 we get

µ(u,Et)� µs(u,Et)+ t|Et | +
∫
Et

f
(
x,∇u(x)) dx.

Since|�′ \Et | = 0 this implies

F(u,�′)� µ(u,Et)+µs(u,�′)� 2µs(u,�
′)+ t|�′| +

∫
�′
f
(
x,∇u(x)) dx.

Now letx0 be a Lebesgue point forf (·,∇u(·)) such that

lim
ρ→0

µs(u,Bρ(x0))

ρN
= 0; (3.17)

taking�′ := Bρ(x0) in the previous inequality, dividing through by|Bρ(x0)|, and letting
ρ→ 0 we obtain

lim sup
ρ→0

Fav
(
u,Bρ(x0)

)
� t + f (x0,∇u(x0)

)
,

and by (3.17) the result now follows by the arbitrariness oft . ✷
We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. –The statement of Theorem 1.1 is now easily asserte
appealing to Proposition 3.3, Proposition 3.10, and to the fact that (see Theorem

∫
A

f (x,∇u)dx � F(u,A)

for all A⊂�. ✷
In the remaining of this section we show that, nearx0 ∈�, F(u, ·)may be determine

by solving a Dirichlet problem. Precisely,
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THEOREM 3.11. –If F(u,�) <+∞ then forµ(u, ·)-a.e.x0 ∈�

lim
ρ→0

m(u,Bρ(x0))

F(u,Bρ(x0))
= 1.

We first prove an auxiliary result.

PROPOSITION 3.12. –If F(u,�) <+∞ and ifB is an uplift ball foru then

F(u,B)� m(u,B).

Proof. –By the definition of uplift ball we have thatu ∈W 1,α(∂B;R
d), and conside

a sequence{un} satisfying the conditions of Definition 3.5(ii). Set

ū := EBu, wn := EB(un − u),
so thatū,wn ∈W 1,β (B), ū= u on ∂B. Sinceun ⇀ u in W 1,α(∂B), by Lemma 2.1

wn → 0 inW 1,β (B). (3.18)

Define for allw ∈W 1,β (B)

h(w) := inf
{
F(v,B): v ∈W 1,β(B), v = ū+w on ∂B

}
,

and remark that

h(0)= m(u,B), h(wn)= m(un,B). (3.19)

In order to show thath is lower semicontinuous at 0 with respect to the strong topo
of W 1,β (B;R

d), we prove that it is convex and that it is locally bounded from ab
at 0. To establish convexity we fixw1,w2 ∈W 1,β(B;R

d), 0< t < 1, ε > 0, and choose
v1, v2 ∈W 1,β (B;R

d) such that

vi = ū+wi on ∂B, F (vi,B)� h(wi)+ ε.
Thentv1 + (1− t)v2 = ū+ tw1 + (1− t)w2 on ∂B, and by the convexity off

h
(
tw1 + (1− t)w2

)
�F

(
tv1 + (1− t)v2,B

)
� tF (v1,B)+ (1− t)F (v2,B)

� th(w1)+ (1− t)h(w2)+ 2ε.

It suffices now to letε→ 0.
On the other hand, for allw ∈W 1,β(B;R

d)

h(w)� F(ū+w,B)�C(|B| + ∥∥∇(ū+w)∥∥β
Lβ(B)

)
� C

(|B| + ‖ū+w‖β
W1,β (B)

)
,

from which we conclude thath is bounded from above in the unit ball ofW 1,β(B;R
d).

In view of Lemma 3.4(c), (3.18), and (3.19) we now have

F(u,B)= lim
n→+∞F(un,B)� lim inf

n→+∞ m(un,B)= lim inf
n→+∞ h(wn)� h(0)= m(u,B). ✷
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Proof of Theorem 3.11. –By Proposition 3.12 we have

lim sup
ρ→0

m(u,Bρ(x0))

F(u,Bρ(x0))
� 1. (3.20)

For all t > 0 set

Gt := {
Bρ ⊂�: Bρ uplift ball, F(u,Bρ) >m(u,Bρ)+ tF(u,Bρ)}

and

Et := {
x ∈�: ∃ρh → 0 withBρh(x) ∈Gt

}
.

We claim thatµ(u,Et) = 0, therefore establishing the converse of (3.20). Indeed
every x0 ∈ � \ Et there existsδ > 0 such thatBρ(x0) /∈ Gt for all 0 < ρ < δ. This
implies(1− t)F(u,Bρ(x0))� m(u,Bρ(x0)), hence

lim inf
ρ→0

m(u,Bρ(x0))

F(u,Bρ(x0))
� 1− t. (3.21)

If µ(u,Et )= 0 then we conclude that (3.21) holdsµ(u, ·)-a.e. in�. The arbitrariness o
t yields

lim inf
ρ→0

m(u,Bρ(x0))

F(u,Bρ(x0))
� 1.

We now establish the claim. Note that at this point there is no guarantee thatEt is
even measurable, so we must proceed with care. Letµ∗(u, ·) be the Borel regular oute
measure associated withµ(u, ·). Suppose, by contradiction, thatµ∗(u,Et ) > γ for some
γ > 0. For allδ > 0 we define

X δ := {Bρ(x): x ∈Et, ρ < δ, Bρ(x) ∈Gt}.
This set forms a fine covering ofEt , so by Besicovitch Covering Theorem we may fi
a countable subcover such that

Et ⊂N ∪
( +∞⋃
i=1

Bδi

)
,

with µ(u,N)= 0 and for suitable mutually disjoint ballsBδi ∈ X δ. As µ(u,�) <+∞,
we may findnδ large enough such that

µ

(
u,N ∪

( ⋃
i>nδ

Bδi

))
<
γ

2
,

and thus

µ

(
u,
⋃
i�n

Bδi

)
>µ∗(u,Et)− γ2 >

γ

2
.

δ
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For all i � nδ choosevδi ∈W 1,β (Bδi ;R
d) such thatvδi − u ∈W 1,α

0 (Bδi ;R
d) and

F
(
vδi ,B

δ
i

)
� m

(
u,Bδi

)+ δ

nδ
.

By (H3) and Proposition 3.12 we then get
∫
Bδ
i

∣∣∇vδi ∣∣α dx � F
(
vδi ,B

δ
i

)
� m

(
u,Bδi

)+ δ

nδ
� F

(
u,Bδi

)+ δ

nδ
,

hence ∑
i�n

∫
Bδ
i

∣∣∇vδi ∣∣α dx � F(u,�)+ δ <+∞.

Poincaré inequality now implies that
∑
i�nδ

∥∥vδi − u∥∥α
Lα(BX

i
)
� C δα,

where we used the fact that the radii of the ballsBδi are less thanδ. We define

uδ(x) :=
{
vδi (x) if x ∈ Bδi , i � nδ,
u(x) otherwise.

Clearlyuδ → u in Lα(Uδ0), and by our choice of the functionsvδi and by definition of
the setEt we deduce that

F(uδ,�)=F
(
u,� \ ⋃

i�nδ
Bδi

)
+ ∑
i�nδ

F
(
vδi ,B

δ
i

)

�F
(
u,� \ ⋃

i�nδ
Bδi

)
+ ∑
i�nδ

m
(
u,Bδi

)+ δ

�F
(
u,� \ ⋃

i�nδ
Bδi

)
+ ∑
i�nδ

[
F
(
u,Bδi

)− tµ(u,Bδi )]+ δ
�F(u,�)− tµ

(
u,
⋃
i�nδ

Bδi

)
+ δ

�F(u,�)− tγ
2

+ δ.
By theL1 lower semicontinuity ofF , asδ tends to 0 we obtain

F(u,�)� F(u,�)− tγ
2
,

which is impossible sincetγ /2> 0 andF(u,�) < +∞. We conclude thatµ∗(u,Et )
= 0. ✷
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Remark3.13. – IfF(u,�) <+∞ then

f
(
x,∇u(x))= lim

ρ→0

F(u,Bρ(x))
|Bρ(x)| = lim

ρ→0

m(u,Bρ(x)r)
|Bρ(x)| for LN -a.e.x.

Indeed, if f (x,∇u(x)) > 0 then this follows from Theorems 1.1 and 3.11, and
f (x,∇u(x))= 0 then it suffices to use Proposition 3.12 to deduce that

lim sup
ρ→0

m(u,Bρ(x))
|Bρ(x)| � lim

ρ→0

F(u,Bρ(x))
|Bρ(x)| = f (x,∇u(x))

where the last equality is asserted by Theorem 1.1. Moreover

µs
(
u, {x})= lim

ρ→0
m
(
u,Bρ(x)

)
.

Indeed, ifµs({x}) = 0 then this equality is a direct consequence of Proposition 3
while if µs({x}) > 0 then Theorem 3.11 yields

1= lim
ρ→0

m(u,Bρ)
µ(u,Bρ)

= lim
ρ→0

m(u,Bρ(x))
µs(u, {x}) .

4. Remarks on the Lavrentiev phenomenon

In this section we prove Proposition 1.2 and Theorem 1.3.

Proof of Proposition 1.2. –By Theorem 1.1 there exists a nonnegative Radon mea
µ(u, ·), singular with respect toLN �, such that

F(u,B)=
∫
B

f (x,∇u)dx +µs(u,B) (4.1)

for every open setB ⊂ A. Condition (1.4) implies that for everyx ∈ A there exists
an open neighborhoodU of x such thatµs(u,U) = 0. As µs(u, ·) is a nonnegative
measure, we deduce that it vanishes on every subset ofA. The conclusion follows now
from (4.1). ✷

Remark4.1. – It can be easily verified that condition (1.4) is equivalent to assu
that there exists a sequence{un} ⊂W 1,β (B;R

d) such that

un ⇀ u inW 1,α(B;R
d
)
, F (un,B)→ F(u,B). (4.2)

That (1.4) implies (4.2) follows immediately from the definition ofF(u,B): it suffices
to choose any good sequence foru in B (see (2.4)). Conversely, by Ioffe’s Theore
(see Theorem 2.4) we have thatF(u,Bρ(x)(x))� F(u,Bρ(x)(x)), while (4.2) yields the
converse inequality; hence

F
(
u,Bρ(x)(x)

)= F (u,Bρ(x)(x)) for all x ∈�.
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Theorem 1.3 follows immediately from Proposition 1.2, Remark 4.1, and the le
below.

LEMMA 4.2. –If f is a Carathéodory function satisfying(1.5) and (1.6) then there
exists a sequence{un} such that

un ∈ C∞
0 (�), un → u in L1

loc(�), f (x,∇un)→ f (x,∇u) in L1
loc(�).

Moreover for everyx0 ∈� and for almost allρ < dist(x0, ∂�)

un → u strongly inW 1,α(Bρ(x0);R
d
)

and there exists a subsequence(depending onx0) such that

un → u strongly inW 1,α(∂Bρ(x0);R
d
)
. (4.3)

Proof. –Let ρ(x) be a standard symmetric mollifier with support inB1(0), for every
n ∈ N setρn(x) := nNρ(nx), and set

un := ūn ∗ ρn, ūn(x) :=
{
u(x) if dist(x, ∂�) > 1/n,

0 otherwise.

Clearlyun ∈ C∞
0 (�;R

d),un → u inW 1,α
loc (�), thusun → u strongly inW 1,α(Br(x0);R

d)

for any ballBr(x0) with x0 ∈� andr < dist(x0, ∂�). Since for a fixedBρ(x0)�� and
by Fubini’s Theorem

‖u− un‖αW1,α (Bρ)
=

ρ∫
0

∫
∂Br(x0)

[|u− un|α + |∇u− ∇un|α]dHN−1dr

=
ρ∫

0

‖u− un‖αW1,α(∂Br (x0))
dr,

by Egoroff’s Theorem we have that, up to a subsequence, alsoun → u strongly
in W 1,α(∂Br(x0);R

d) for almost r < ρ. A diagonalization argument now yields
subsequence for which (4.3) holds for almost allρ < dist(x0, ∂�). We only have to
show that

f (x,∇un)→ f (x,∇u) in L1
loc(�). (4.4)

Fix A��, and let dist(A, ∂�)� 2ε0; without loss of generality we may always ta
n > 1/ε0, thus inA we haveDun =Du ∗ ρn. SetA′ := {x ∈�: dist(x, ∂�)� ε0}, and
define

g(x) := f (x,Du(x)), pn(x)= min
{
p(y): |x−y| � 1/n

}
, ϕn(x, z)= |z|pn(x).

Clearlyϕn is a Carathéodory function,ϕ(x, ·) is convex for allx ∈�, and if |x − y| <
1/n thenpn(x)� p(y) and so

ϕn(x, z)= |z|pn(x) � 1+ |z|p(y) � 1+ f (y, z).
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In view of this inequality and by Jensen’s inequality, ifx ∈A then

ϕn
(
x,∇un(x))= ϕn

(
x,

∫
B(x,1/n)

∇u(y)ρn(x − y) dy
)

�
∫

B(x,1/n)

ϕn
(
x,∇u(y))ρn(x − y) dy

�
∫

B(x,1/n)

[
1+ f (y,∇u(y))]ρn(x − y) dy

= 1+ (g ∗ ρn)(x). (4.5)

Now remark that ifx ∈A, then using the fact thatu ∈W 1,α
loc (see (1.5)), we have

∣∣∇un(x)∣∣=
∣∣∣∣
∫
A′

∇u(y)ρn(x − y) dy
∣∣∣∣

�C(α)‖∇u‖Lα(A′) n
N

∣∣∣∣
∫
A′
ρα

′(
n(x − y))dy∣∣∣∣

1/α′

�C(α)‖∇u‖Lα(A′) n
Nn−N/α′

∣∣∣∣
∫

RN

ρα
′
(y) dy

∣∣∣∣
1/α′

=C ′‖∇u‖Lα(A′) n
N/α,

whereC ′ =C ′(α) is a positive constant. By (1.5) we deduce that

1

C
f
(
x,∇un(x))− 1�

∣∣∇un(x)∣∣p(x) = ∣∣∇un(x)∣∣p(x)−pn(x)ϕn(x,∇un(x))
�
(
1+C ′β−α‖∇u‖β−α

Lα(A′)
)(
np(x)−pn(x)

)N/α
ϕn
(
x,∇un(x))

�C eNγ/αϕn
(
x,∇un(x)),

where we have used the fact that

0 � p(x)− pn(x)� γ / logn,

so that (
np(x)−pn(x)

)N/α � eNγ/α.

In view of (4.5) we now have for allx ∈A
0� f

(
x,∇un(x))� C

(
1+ (g ∗ ρn)(x)).

Since∇un → ∇u a.e. inA, by the continuity off (x, ·) and Fatou’s Lemma we have

lim inf
n→+∞

∫
f
(
x,∇un(x)) dx �

∫
f
(
x,∇u(x)) dx. (4.6)
A A
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Moreover, once more by Fatou’s Lemma and using the fact thatg ∗ρn → g in L1(A),∫
A

C
(
1+ g(x))− lim sup

n→+∞

∫
A

f
(
x,∇un(x)) dx

= lim inf
n→+∞

∫
A

[
C
(
1+ (g ∗ ρn)(x))− f (x,∇un(x))]dx

�
∫
A

[
C
(
1+ g(x))−f (x,∇u(x))]dx,

and we conclude that

lim sup
n→+∞

∫
A

f
(
x,∇un(x))dx �

∫
A

f
(
x,∇u(x)) dx.

This, together with (4.6), yields the convergence off (·,∇un(·)) to f (·,∇u(·)) in
L1(A). ✷

The last result of this section shows that under some additional assumptions
convergence of the traces of approximating sequences, it is possible to impose D
boundary conditions on the admissible sequences without increasing the overall
Sincea priori the infimum taken over the class of functions restricted under the Diri
boundary condition is greater than the infimum over the unconstrained class, w
interpret this result as a situation where the Lavrentiev phenomenon is avoided.

PROPOSITION 4.3. –Let F(u,�) < +∞, let A ⊂ � be an open set with Lipschi
boundary, and assume thatun ∈W 1,β(A) satisfies

un ⇀ u weakly inW 1,α(A) and weakly inW 1,α(∂A),

and

F(u,A)= lim
n→+∞F(un,A).

Then there exists a sequencevn ∈W 1,β(A) such that

vn = u on ∂A, vn ⇀ u weakly inW 1,α(A), F(u,A)= lim
n→+∞F(vn,A).

Moreover if the sequence{un} converges tou strongly inW 1,α(A) then so does{vn}.
Proof. –Setwn = EA(un − u), so that by Lemma 2.1wn → 0 strongly inW 1,β(A)

andwn = un − u on ∂A. Fork ∈ N let ε= 1/k and definehε :W 1,β (A)→ [0,+∞] by

hε(w) := inf
{
F(v,A): v ∈W 1,β(A), v = u+w on∂A, ‖v − u‖L1(A) < ε

}
.

Since forn ∈ N sufficiently large

un = u+wn on∂A and ‖un − u‖L1(A) < ε,
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it follows that

hε(wn)� F(un,A). (4.7)

A similar proof to that of Proposition 3.12 yields the convexity ofhε. Also, letC(ε) > 0
be such that

‖w‖W1,β (A) < C(ε) ⇒ ‖w‖L1(A) < ε/2.

We claim thathε is bounded in the ball inW 1,β(A) of center zero and radiusC(ε).
Indeed, asu ∈W 1,α(∂A) there exists̄u ∈W 1,β(A) such thatu− ū ∈W 1,α

0 (A), but then
there existsϕε ∈ C∞

0 (A) such that‖(u− ū)−ϕε‖W1,α(A) < ε/2. Settinguε := ū+ ϕε we
haveuε ∈W 1,β (A), uε = u on ∂A, ‖uε − u‖W1,α (A) < ε/2, and thus for allw ∈W 1,β(A)

with ‖w‖W1,β (A) < C(ε), and in view of (H3)

hε(w)� F(uε +w,A)�C(|A| + ∥∥(uε +w)∥∥β
W1,β (A)

)
�C ′(ε)

for some constantC ′(ε) > 0. Therefore the convex functionhε is lower semicontinuou
at the origin, and by (4.7) we have

F(u,A)= lim
n→+∞F(un,A)� lim

n→+∞hε(wn)� hε(0),

that is

F(u,A)� inf
{
F(v,A): v ∈W 1,β(A), v = u on∂A, ‖v − u‖L1(A) < ε

}
.

In particular, there existsvε ∈W 1,β(A) such thatvε = u on ∂A and

‖vε − u‖L1(A) < ε, F (vε,A)�F(u,A)+ ε (4.8)

and the result now follows by lettingε→ 0.
If un → u strongly inW 1,α(A) then one may replace theL1 norm in the definition of

hε by the norm inW 1,α, thus obtaining in (4.8) that‖vε − u‖W1,α (A) < ε. ✷
5. A counterexample for Carathéodory quasiconvex integrands

Here we present the proof of Proposition 1.4.
Recall that under (H1), (H3), by Theorem 3.1 in [15] ifu ∈W 1,α(�;R

d) is such that
F(u,�) <+∞ then

F(u,A)=
∫
A

f u(x) dx +µs(u,A) for all A ∈ A(�),

whereµs(u, ·) is a nonnegative finite Radon measure on�, singular with respect t
LN �, and (see Theorem 3.2 in [6]) for a.e.x0 ∈�

f u(x0)= lim
ρ→0

m(u,Bρ(x0))

|B (x )| . (5.1)

ρ 0
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Here the limit is taken forρ ∈ E(u, x0), the set of good radiiof the functionu at
the point x0 ∈ � as defined in [6], Definition 3.4; it can be shown that almost
r ∈ (0,dist(x0, ∂�)) belong toE(u, x0).

The following lemma may be found in [6], Lemma 3.5.

LEMMA 5.1. –Under assumptions(H1) and (H3), if R ∈ R(u, x0) and if {un} ⊂
W 1,p(�;R

d) is such thatun ⇀ u weakly inW 1,p(∂BR(x0);R
d) then

m
(
u,BR(x0)

)= lim
n→+∞ m

(
un,BR(x)

)
.

Next we simplify the representation formula forf u in the general quasiconvex conte
and in the case whereu is affine.

LEMMA 5.2. –If (H1) and(H3) hold, and ifu is affine, then forLN -a.e.x0 ∈�

f u(x0)= lim
n→+∞

{
inf −
∫
B

f
(
x0 + εny,∇w(y)) dy: w ∈W 1,β(B;R

d
)
,

w− u ∈W 1,α
0

(
B;R

d
)}
,

whereB is the unit ball centered at the origin and{εn} ⊂ E(u, x0) is any sequence o
positive numbers converging to0.

Proof. –Consider{εn} ⊂ E(u, x0) with εn → 0+. By (5.1) we have

f u(x0)= lim
n→+∞

{
inf −

∫
Bεn(x0)

f
(
x,∇v(x)) dx: v ∈W 1,β(Bεn(x0);R

d
)
,

v− u ∈W 1,α
0

(
Bεn(x0);R

d
)}

= lim
n→+∞

{
inf −
∫
B

f
(
x0 + εny,∇v(x0 + εny)) dy: v ∈W 1,β(Bεn(x0);R

d
)
,

v− u ∈W 1,α
0

(
Bεn(x0);R

d
)}

= lim
n→+∞

{
inf −
∫
B

f
(
x0 + εny,∇w(y))dy: w ∈W 1,β(B;R

d
)
,

w− u ∈W 1,α
0

(
B;R

d
)}
,

where we used the substitution

w(y) := v(x0 + εny)− u(x0)+ εnu(0)
εn

for y ∈ B, and we invoked the fact thatu is affine. ✷
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Proof of Proposition 1.4. –LetK , p andf be as stated. We claim that for allδ ∈ (0,1)
there existsθ0 ∈ (0,1) such that for allθ < θ0 and for allx0 ∈ ∂K

f id(x0) < f (x0, I)− 1+ δ. (5.2)

Fix x0 ∈ ∂K and letε ∈ (0,1). Since 0∈ ∂(K − x0) we may findyε ∈ Bε2(0) such that
yε /∈K − x0. Definexε := yε/ε. Then|xε|< ε andxε /∈ (K − x0)/ε. Denoting byB the
unit ballB1(0), we clearly have

B
(
xε,1− |xε|)⊂ B, ∣∣B \B(xε,1− |xε|)∣∣→ 0 asε→ 0.

Since(K − x0)/ε is closed, there existsrε ∈ (0,1) such that

B(xε, rε)⊂ B(xε,1− |xε|) \ K − x0

ε
, (5.3)

and we define inB the function

vε(x) :=



x if x /∈ B(xε,1− |xε|),
xε + (1− |xε|) x−xε|x−xε| if rε < |x − xε|< 1− |xε|,
xε + 1−|xε |

rε
(x − xε) if |x − xε|< rε.

Clearlyvε ∈W 1,∞(B;R
N), vε = id on ∂B, and

−
∫
B

|∇vε|p dx � 1+
∫

B(xε,1−|xε|)\B(xε,rε)

∣∣∣∣ I

|x − xε| − (x − xε)⊗ (x − xε)
|x − xε|3

∣∣∣∣
p

dx

+
∫

Brε (xε)

∣∣∣∣1− |xε|
rε

∣∣∣∣
p

dx

� 1+C
1−|xε|∫
rε

rN−1−p dr +CrN−p
ε � C0 (5.4)

whereC0 is a constant independent ofx0, and where we have used the fact thatp < N .
In view of Lemma 5.2, and choosing a sequence{εn} ⊂ E(id, x0) of positive numbers
converging to 0, we have

f id(x0)= lim
n→+∞

{
inf −
∫
B

[
χK(x0 + εnx)

∣∣det∇w(x)∣∣

+ θ ∣∣∇w(x)∣∣p]dx: w ∈W 1,N(B;R
N
)
,w= id on∂B

}

� lim inf
n→+∞ −

∫
B

[
χK−x0

εn

(x)
∣∣det∇vεn(x)

∣∣+ θ ∣∣∇vεn(x)∣∣p]dx
� lim inf
n→+∞

|B \B(xεn,1− |xεn |)|
|B| + θ C0 = θ C0,
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where we have used (5.3), (5.4), and the fact that det∇vεn(x) = 0 if rεn < |x − xεn | <
1− |xεn |. Sincef (x0, I)� 1, we have now established the claim withθ0 = δ/C0. ✷
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