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ABSTRACT. — It is shown that the relaxed energy

F(u, A) :=inf{|imJirnf/f(x,Vun)dx: {un} C WEP (AT RY), u, — uin Ll(A;Rd)},
n—>+00
A

admits the representation

F(u, A) =/f(x, Vu)dx + pus(u, A),
A

wheref is a convex, Carathéodory integrand satisfying a nonstandaiglgrowth hypothesis,
B € [a, Na/(N — 1)). Sufficient conditions guaranteeing thaf(«, -) = 0 are discussed. An
example asserting that this representation may fail in the quasiconvex case is provided.
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RESUME. — Nous montrons que I'énergie relaxée
F(u, A) :=inf{|imJirnf/f(x,Vun)dx: {un} C WEP (AT RY), u, — uin Ll(A;Rd)},
n—-+0oo
A
admet la représentation intégrale

Fu,A)= / fx, Vu)dx + pug(u, A),
A

lorsque f est un intégrande convexe de Carathéodory vérifiant une condition de croissanc
non standard de typex=B” avec B € [a, Na/(N — 1)). Des conditions suffisantes assurant
qgue us(u, -) = 0 sont proposées ainsi qu'un exemple montrant que la représentation obtenut
ne s’applique pas au cas quasiconvexe.

© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

The Lavrentiev phenomenon, or gap problem, has stirred renewed interest in recer
years as it challenges traditional theories in the Calculus of Variations. A prototype
model, relevant to the study of cavitation in rubber-like materials (see [3,20,27,28],
among others), assigns to each deformatienW-" (Q; R") the total energy

F(u, Q)= / [Vul? + |detVu|dx, 1.1
Q

whereQ is an open, bounded domain R, andp € (N — 1, N). Clearly sequences

of deformations in WV (Q; RY) with bounded energy will be weakly compact

in WtP(Q;RM) but not necessarily ifW:", so it may be possible to approach
energetically functiong € W17 (Q; RY) \ WLV (Q;RY). We then seek to characterize
the limiting, effective energy associated:toThis example has been studied at length,
and in particular we refer to [1,9,16]. More generally, consider a bulk energy density
f:Q x RN — [0, +00) satisfying the following standing hypotheses:

(H1) f is Carathéodory;
(H3) [*a—B"growth condition]|z|* < f(x,z) < C(1+]z|#) forall z e RN, LN a.e.

x € Q, and for some& > 0, where 1< o < 8 < Y%

For every open set C Q and every € W5l (A; RY) we set

F(u, A) ::/f(x, Vu(x))dx,
A
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and for everyu € L1(A; RY) we introduce theelaxed functional
F(u, A) i=inf{liminf F(u,, A): {u,) C Wl (A), u, — uin LY(A; RY)}.

We search for an integral representation fi, A).
Whena = 8 and (H1), (H3) hold, then it is well known that (see [2,3,10,26])

Fu, A) :/Qf(x,Vu)dx,
A
where theguasiconvex envelop@f of f is defined by

0r@i=int{ [ f(&+Vow)dx peWE™(QiRY}.

(5L

If « < B — B/N then one may have-(u, Q) = 0 (see [4]), and in the case where

a =B — B/N it may happen thatF(u, -) is not even subadditive (see [11]). When

f does not depend on the position vecioe 2 these degeneracies cannot occur if

B € [a,aN/(N — 1)). Within this range, and using the global method for relaxation
introduced by Bouchitté, Fonseca and Mascarenhas (see [7]), together with an extensic
operator fromWw™? into W4 obtained by Fonseca and Maly (see [15], Lemma 2.2), it
was proven in [6], Theorem 3.1, thatff= f(Vu) satisfies (H3) and ifF (u, ) < 400

then

f(u,A):/Qf(Vu)dx—i—/Ls(u,A) (1.2)
A

for all open setsA ¢ @ and for some finite, Radon measuytg(u, A), singular with
respect taZV |, the N-dimensional Lebesgue measureidnEarlier results on lower
semicontinuity for certain ranges< g and with quasiconvex integrands were obtained
by [24,25], and for polyconvex energy densities with> N — 1, 8 = N, we refer to
[1,8,9,11,12,17,18,21-23].

In this paper we address the effect of considering an inhomogeneous density, i.e
f = f(x,&). Inthe main theorem of this paper we show that the analogue to (1.2),

.7-"(u,A)=/Qf(x,Vu)dx+Ms(u,A), (1.3)
A

still holds providedf satisfies (H1), (H3) and
(H2) f(x,-) is convex forLN a.e.x € Q.
Precisely, we prove

THEOREM 1.1. —If (H1)—(H3) hold, if A is an open subset &, if u € L1(A; RY),
and if F(u, A) < +0o0, then for every open sé& C A

F(u,B) = /f(x, Vu)dx + us(u, B)
B
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wherep, (1, -) is a nonnegative Radon measure singular with respe¢tto

Again the proof of this result is strongly hinged on the global method of relaxation
introduced in [7] (see also [5]), although some of the arguments may now be greatly
simplified by exploiting the convexity assumption. In particular, the uplifting opef@tor
introduced in [15] (see also [6]) is no longer needed. The proof presented in Section !
concerns the scalar case where- 1 and the argument is entirely similar in the vector
valued-scalar case. Therefore and for simplicity, we leave the obvious adaptations to th
reader.

Section 4 is devoted to the study of several sufficient conditions ensuring that the
Lavrentiev phenomenon does not occur. In view of loffe’'s Theorem (see Theorem 2.4)
the functional F is lower semicontinuous and thus < F. We then say that the
Lavrentiev phenomenon occurs when at some point we have the strict inequality.

The first result, deduced directly from Theorem 1.1, asserts that the Lavrentiev
phenomenon is local, precisely,

PROPOSITION 1.2. —Let A be an open subset &f and letu € L1(A) with F(u, A) <
+o0. Assume that for every € A there is an open neighbourhodd of x such that

Fu,U)=F(u,U). (1.4)

ThenF(u, B) = F(u, B) for every open seB C A.

An interesting model example of convex functionals dependingxoand with
a growth-coercivity gap as in (H3) is provided byjDu|?™ dx for some function
p:Q — R (see [29,30]), or, more generally,

ur | f(x,Vu(x))dx
/

wheref:Q x RY — [0, +00) satisfies
12IP < f(x,2) < C(1+z|P™Y) forallzeR", a.ex e Q, (1.5)

and for someC > 0. The proof of Theorem 1.3 below follows closely the original argu-

ment of Zhikov and Fan (see [29]), although some of the technical difficulties encoun-

tered by those authors may now be avoided using the theory developed in this paper.
Let p: Q2+ R be a continuous function such that

l<a<px)<p

and

4

———— whenever O< [x — y| <
[loglx — I

[p(x) — p(y)| < , (1.6)

NI =

for someq, 8,y > 0.
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THEOREM 1.3. —Let f:Q x RY — [0, +-00) satisfy(H1), (H2), (1.5),and assume
that (1.6) holds. Ifu € W,52(2) is such thatf (-, Vu) € LL () then

Fu, )= F(u,-).

The last section of this work, Section 5, is dedicated in its entirety to the treatment of
an example falling into the class of prototype energies (1.1) which satisfy (H1), (H3),
are polyconvex rather than convex, and for which a genuine measurable dependence
x prevents (1.3) to hold. This fact provides one more evidence that quasiconvex energie
and convex energies do share quite different properties, and that care must be taken wh
generalizing results from the convex to the non-convex setting. With Proposition 1.4 we
show that Theorem 1.1 may be false if stated for integrafd® x RV x RN —

[0, +00), d, N > 1, satisfying (H1), (H3), and

(H2) f(x,-)is quasiconvex foL" a.e.x € Q.

We recall that a Borel functiog: RY*"¥ — R is said to bequasiconvexsee [Morrey]) if

/ g€ + Vo) dy > g(6)

1N

for all £ € RN and allg € W3 ((0, 1); RY). Clearly convex functions are quasi-
convex, and a simple example of a quasiconvex function which is not convex is given
by & — |detg| (for a detailed study of quasiconvexity we refer the reader to [1,2,9,11,
12,16,17,23-26]). In the absence of growth-coercivity gap, i.e. whers in (H3), it

was proven by Acerbi and Fusco (see [2]), tiigt, ©2) is sequentially weakly lower
semicontinuous iW1*(2; RY), and, in addition, it can be shown that (see also [10])

Fu, Q)= /f(x, Vu(x)) dx.
Q

If there is a gap and under (H1), (H3), then Theorem 3.1 in [15] still holds, and so for
u € Wt(Q; R?) such thatF(u, Q) < +oo we have

f(u,A):/f”(x)dx+,uS(u,A) for all A open subset a2,
A

where u,(u, -) is a nonnegative finite Radon measure @nsingular with respect to
LN Q, and for some density™.
The next natural question is: under which conditions can we guarantee that

f“(x) = f(x,Vu(x)) fora.exeQ? (1.7)

Theorem 1.1 tells us that (H2), i.e. the convexityfdf, -) for a.e.x € 2, implies the
identity in (1.7), and Theorem 3.2 in [6] ensures (1.7) if (H®lds and if f does not
depend onx.
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Here we show that this last statement is close to being optimal, in thathifs a
genuine measurable dependencer pand even though (H1), (MR (H3) still hold, then
it may happen that

f () < f(x,Vu(x)) forallxekE,

whereE is some set withE| > 0. The construction of such functigf is motivated by
the result of Gangbo (see [18], Theorem 3.1) asserting that

uewhV(Q;RY) > /XK(x)| det(Vu(x))|dx
Q

is lower semicontinuous i1 (Q2; RY) for the weak topology oV 17 (Q; R"), with
N—-1<p<N,ifandonlyif[0K|=0.

PROPOSITION 1.4. —Fix 6 € (0,1), let p € (N — 1, N), let @ c R" be an open,
bounded domain, leK be a compact subset & with [0K]| > 0, and let f:Q x
RV*N — [0, +00) be given by

f(x, &) :=0|&|" + xx|dets| fora.e.x € Q, and allé e RV*V,

If id(-) is the identity function and is the identity matrix, then there exisig e (0, 1)
such that ifd < 6y thenforallx e 0K

) < fx, D).

Itis clear thatf satisfies (H1), (H3) withx := p, 8 := N, and f (x, -) is quasiconvex.
In light of Proposition 1.4, we have

Fid, A) = / FYG) dx + 15 (. A),
A

where there holds, fat sufficiently small,f%(x) < f(x, 1) for all x € K.

2. Preliminaries

Let @ be an open, bounded subset®Y, and consider a functiorf : Q x RY —
[0, +00) satisfying the following standing hypotheses:

(H1) f is Carathéodory;

(H2) f(x,-) is convex forLN a.e.x € Q;

(H3) 1z]1* < f(x,2) < CA+|z|?) forall z e RV, LN a.e.x € 2, and for some&” > 0,

where
Na

N-1
We recall that f is said to be Carathéodory if(-,z) is £Y-measurable for alk
and f (x, -) is continuous forL" a.e.x € , where£" stands for thev-dimensional

l<a<f<

2.1)
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Lebesgue measure @1". Often we will write | E| in place ofC" (E). Also, throughout

this paper the lettef will denote a generic positive constant which may vary from line
to line and within the same formula. Note that in view of (2.1)Aif- RY is an open

set with Lipschitz boundary then the inclusiti-* (9 A) c W~Y££(3A) is continuous

and compact, wher@1~1/A-8(3 A) is the space of traces @ of functions inW#(A).

More generally standard results in the theory of Sobolev spaces yield the lifting property
presented below.

LEMMA 2.1.—If A c RY is an open, bounded, Lipschitz domain an¢RifL) holds,
then there exists a continuous, linear, compact mapping

Er: Wh*(9A) > WP (A) suchthat trE,(g)=g oOnaA.

Remark?2.2. — Since the “uplift” operator Eof Lemma 2.1 is constructed with
symmetric convolution kernels, it is readily verified that affine functions remain
unchanged, i.e., i (x) =a + b - x then Eyu = u.

Remark2.3. — (i) The growth hypothesis (H3) together with the convexity aihply
that f is B-locally Lipschitz continuous with respect tg i.e., for a.ex € Q and all
z,w € RY (see [10,24,25))

[fe,2) = f,w)| < CL+ 12/ + w1z — wl. (2.2)

(i) Let {z;} be a countable dense subsetRf, and for alli let K; be the set of
Lebesgue points of the functiofy-, z;). SettingK(f) := (N K;, then|Q\K(f)| =0, and
if xo € K(f) thenitis a Lebesgue point fgf(-, z) for all z € R". Indeed, fix O< ¢ < 1,
let M :=1+ |z|, and choose; with |z — z;| < . By (2.2)

’

| f(x,2) = fxo, 2)| SCMP Yz — 7| + | f(x, 20) — f(x0.2)

thus forp > 0

][ | f(x,2) — f(x0,2)|dx <CMP~te + ][ | f(x,zi) — f(x0,20)| dx

B, (x0) B, (x0)

and sincexg € () K;, we now have

limsup | f(x,2) — f(xo0,2)|dx < CMPLe.

The assertion follows by letting — 0.

For every open set C Q and every € Wig (A; RY), we set

F(u, A) ::/f(x, Vu(x)) dx.
A
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Given an open set C Q andu € W>1(A; RY), theset of admissible sequences foin
A is defined by

Au; A) := {{u,) € Wgl (A): u, — win LY(A; R},
and we introduce theelaxed functional
F(u, A) = inf{l}imrgl‘ F(uy, A): {u,} € A(u, A)}. (2.3)
We define theset of good sequences fwoiin A to be
Glu, A) = {{un) € A, A): Flu, A) = lim_F(u,, A)}. (2.4)

It is clear thatG(u, A) is nonempty. If F(u, A) < +oo then by (H3) we have that
Vu € L*(A; R¥*N), and so for almost all ball8, C A the trace of, ond B, belongs to
Wlﬂ"’(aBp; R%). In view of Lemma 2.1, we may define for every such ball

m(u, B,) :==inf{F(v, B,): ve W¥(B,), v—u e Wy*(B,)},

and we also set

1 1
fav(u» A) = _f(uv A)v mav(u» B,O):—m(uv B,O)v
|Al |By|

whereB, stands for a balB(x, p) of centerx € & and radiug > 0.
Next we recall a semicontinuity result by loffe (see [19]).

THEOREM 2.4. —Let g:Q x R? x RN — [0, +00) be a Carathéodory function
such thatg (x, u, -) is convex for every € R¢ and for £V a.e.x € Q. Then the functional

Gu):= [ gx,u,Vu)dx
/

is lower semicontinuous ofV11(Q;R?) with respect to the weak convergence in
wii(Q; RY).

By loffe’s Theorem, the functionak' is lower semicontinuous, thus
F<F.

On the other hand, if € Wgf (A; RY) N Wle(A; RY) then the constant sequengs
is admissible and thu% (u, A) < F(u, A). This, together with the previous inequality,
yields

F(u,A) = F(u, A) whenevem € W! (A; RY) N W (4; RY). (2.5)

Using a good sequence iWu, A) to approach(u, A), and in view of (2.5), it now
follows that

F=sup{H: H<F,H is L* lower semicontinuous
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where
; LB (4.
Fu Ay:=1 F@ IfueV['/bc (A;RY),
+00 otherwise.

The following lemma will be instrumental to show th&tu, -) is the trace im\ () of
a positive Radon measurgu, -), whereA () denotes the class of open subsetS20of

LEMMA 2.5.—-Letd:A(2) — [0, +o0) andu be such that
(i) wis afinite Radon measure ao;

(i) A(9) > p();

(i) A(A) < w(A) forall A e A(Q);

(iv) (subadditivity) A(A) < A(A\ C) + A(B) for all A, B, C € A(R) such thatC e
B C A;

(V) (inner regularity)or all A € A(R2), ¢ > 0, there exist€ € A(2) such thatC € A
andA(A\C) <s.

Theni = u on A(Q).

Proof. —We start by showing that
A(A) < u(A) forall Ae ARQ). (2.6)

Fix A € A(Q), ¢ > 0. By (iv) and (v) we may find open sets € B € A such that
AMA\C) < ¢ and

A(A) SAMAN\C) +A(B) <&+ u(B) <&+ pn(A),

where we used (iii). Clearly (2.6) now follows by lettimg— O*.
In order to prove the converse inequality, sincés inner regular for > 0 we may
find an open set’ € A such thatu(A) < & + u(A’), and by virtue of (ii), (2.6), and (iv),

p(A) <e+p(A)=c+n(Q) —n(Q\A) <e+r(Q) —AQ\A) <e+A1(A).

By the arbitrariness of > 0, we now conclude that(A) < A(A). ]

Remark?2.6. — If (i) and (iii) in the statement of Lemma 2.5 hold, then the inner
regularity property (v) is satisfied provided we can show that there eXists0 such
thatif U € A(Q), U =2, Ui, U; € A(RQ), U; € U1 € U, then

AMUN\TL) <CY MUz \Up). 2.7)
i=1

Indeed, ifU € A(Q2), takeU; := {x € U: dist(x,dU) > 1/i}, and choosé large enough
so that

£
Mm@, U \ Uy) < c

We have
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A(U\Uk><CZA(UI+3\U> CZM Uiys\ Ti)

i=k

<CY uUina\U) SAC LU\ Up) <.

i=k

3. A representation theorem

In this section we prove Theorem 1.1. We start by showingfat -) is the trace in
A(R2) of a Radon measune(u, -). For everyA € A(Q2) set

ACA) :=F(u, A).

Consider a sequende, } € G(u, A) such that

F(u, 2) :nﬂrpooF(un, Q) znﬂrpoo/f(x, Vu,)dx,
Q

and define the Radon measuresioh
A= f(x, Vu )LV L Q.

Since these measures are equibounded, and up to the extraction of a subsequence,
have

Ay — w(u, ) inthe sense of measures
for some finite Radon measugu, -), i.e.,

/(pdkn — /(pd,u(u, ) forall ¢ € C.(2).
Q Q

Note that
(e, @) < liminf 2,(2) = Erroo/f(x,wn)dx:x(sz), 3.1)
Q

and if A € A(Q) then

() gligirg/f(x,an>dx=|iTir£ 2 (A) < (. A, 3.2)

Therefore, by virtue of Lemma 2.5 we have
A=pu, ) OonA(R)

provided satisfies the subadditivity and inner regularity properties (iv) and (v). These
depend mostly on the growth condition (H3) and on (2.1), and were asserted in [15]
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(see Lemma 2.4) by means of an uplifting operagfomore refined and complex than
the operator E introduced in Lemma 2.1. Below we give an alternative proof which
relies heavily on the convexity assumption (H2), and it bypasses the need to exploit th
operatorp.

PropPOSITION 3.1.-If A, B,C € A(R2),C € B C A, then
Fu,A) < F(u,B)+Fu,A\C).

Proof. —Fix {v,} € G(u, B) and {w,} € G(u, A \ C), let ¢ € C>*(B) be such that
0< ¢ <1,¢=1inaneighborhood of, and set

Uy == @Qu, + (1 - (P)wn,

whereguv, is taken to be zero there whege= 0, even thoughy, may be not defined
on that set, and analogousiit — ¢)w, is to be equal to zero ofyy = 1}. Clearly
{u,} € A(u, A), and for all O< ¢ < 1 also{tu,} € A(tu, A), thus

F(tu, A) < I|m |nf F(tu,, A). (3.3)

By the convexity of f, and since O<r < 1, 0 < ¢ < 1, we may find some positive
constantM such that

F(tu,, A) =/f<x,t[(van +(1—-9)Vuw,] + (1 - t)v”l__
A

Wy
; tV(p) dx

<t [ £l 0o+ A= 9)Vun)da

o —
+@1-1) M(l—l— ‘
A/ -

< /[w(X)f(x, Vo) + (1— o)) £, V)] dx + M(L— 1] A]

A
||V(P||Loo B
t)ﬁ 1 / | I’l wnl dx

B\C

B
Wy
; tho‘ )dx

< F(vy, B) + F(w,, A\ C) + M(1—1)|A|

IVollex |\
(1—1)p-1 n = Wn LB(B\C)’
where we have used the growth condition in (H3). Also, by the coercivity assumption in
(H3), we deduce thiiﬂan I eve) + VWl o g} is bounded, and singel —w, —>
u—u=0in LY(B\ C;R?), we have that,, — w, — 0 weakly inwW*(B\ C; R%), and
therefore strongly inL?(B \ C; RY) by (2.1) and Rellich Theorem. This, together with
(3.3), yields

+M

F(tu, A) < F(u, B) + F(u, A\ C) + C(1—1)|A],
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and the result now follows by letting ~ 1 and using thel.! lower semicontinuity
property of F(-, A). O

Finally, and in light of Remark 2.6, in order to assert inner regularityrfarsuffices
to establish (2.7).

PrROPOSITION 3.2. —If U € A(Q), U =72, Ui, U; € A(Q), U; € U1 € U, then

Fu, U\U) <2 Fu, U3\ U).
i=1

Proof. —Fix U € A(2) and suppose that =2, U;, U; € A(Q),U; € U;11 € U.
Choose{u"} € G(u, U;12 \ U;) and{u} € G(u, U), so that, recalling that = F(u, -),

A(Uis2\TU) = lim /f(x,Vuff))dx, A(U):nﬂrroo/f(x,Vuzo(x))dx.
U

n—+00
Uit2\Ui

Let ¢; be a smooth cut-off function such that=1 in U;, ¢; = 0 outsideU;,,, and
{0<¢ <1} €Uis1\ U,

Up to the extraction of a subsequence, we may assumefthaVu )L U A n,
wheren is a finite Radon measure @h. Fix ¢ > 0 and choosé/ € N large enough so
thatn(U \ Uy) < ¢. Define

M

. . - .

iy 2= Xy gt + Y Xviaw i P + Q= gull]
i=2

+ XU\Ups1 [(PM+1ME,M) + (1 —puiDuy].
Clearlyu, € A(u, U \ Uy), and we have

(U \T7) < liminf liminf / F(x. 1Vil,) dx
t—1 n—>+
U\Uy

< limsuplimsup ¢ / £ (x, Vul?) dx + limsup(l — 1) / f(x,0)dx

t—1 n—>+oo _ t—1 _
U2\U1 U2\U1

M
+ limsuplimsup® _ / f(x,tVii,) dx
t—1 n—>+x i:2Ui+1\U;

+ lim suplim sup f(x,tVii,). (3.4)
t—1 n—>+x Uy

Now

lim suplim suprz / £ (x, Vut?) dx 4+ limsup(1 — 1) / f(x,00dx < A(Us\ Uy),

t—1 n—>+o0 _ t—1 _
Uz\U1 U2\U1

(3.5)
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and

M
lim suplimsup _ / f(x,tVii,)dx
t—1 n—-+00 i:ZU,url\U;

M
= lim suplimsup> / f(x,t[inu,(f_l)+(1—<pi)Vu,(j)]
b=y

i1 _ @)
+(1- t)%twl) dx

M
< limsuplimsup ¢ Z{ / i f (x, Vu™) dx

t—1 n—-+00 T
i=2 Uit1\Ui—1

+ / (1—<o,->f<x,wz”)dx}

Uir2\Ui

M =D —u®pF 5
+ limsuplimsup(1 — 1) / C(1+ L P V| )dx
t—1 pn—>+oop lz:; . (]__ t)ﬁ %
Ui+1\Ui
M —_— [
< Z[)»(Uzurl\ Ui—1) + 2(Uis2\ Uy)], (3.6)

i=2

where we have used the fact thdt — u® — 0in LA (U; 11\ U)).
In a similar way, we can show that

lim suplim sup f(x,tVi,)
t—1 n—>+o00
U\Um+1

< limsup / £ (x, vul™) +limsup / f(x, Vu®) dx
n—+00 n—+00
Um+2\Up 41 U\Up 41

<AUnms3\ Un) + 01U\ Uy)
<A(Un+3\ Un) +e. 3.7)
In view of (3.4), (3.5), (3.6), and (3.7), we obtain

MUN\UD) <2) Uiz \ U +e.
i=1
Letting e — 0 yields property (2.7). O

PropPosSITION 3.3. — If (H1)—-(H3) hold and if F(u, ) < 400 then there exists a
finite Radon measure (u, -) on Q such thatF (u, -) is the trace ofu(u, -) on A(Q).

Proof. —The proof follows immediately from Lemma 2.5, Remark 2.6, (3.1), (3.2),
Propositions 3.1 and 3.2.0
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In the sequel we will often writgw(«, -) to designate the measure whose trace on the
open sets of2 is F(u, -), and we will denote by.* (u, -) its singular part with respect to
the Lebesgue measu’ |_ Q.

LEMMA 3.4. —If (H1)—-(H3)hold and if 7 (u, ) < +oc then there exists a sequence
{u,} with the following properties

(@) U € Wigt (2);

(0) u, = uin Wh(Q);

(€) F(u, ) =lim,_ o F(u,, Q2);

(d) F(u, A) =Ilim,_ 1o F(u,, A) for all open setsA C 2 such thatu(u, 9A) =0;

(e) for all xg € 2 and for almost all0 < ¢t < R := dist(xg, 9R2), there exists
a subsequencdu,} such that F(u, B,(xo)) = lim,_ oo F(uy,, B:(x0)) and
uy, — u in W9 B;(xo)).

n?

Proof. —By the definition of 7 there exists a sequende,} satisfying properties
(@), (b), (c). IfA € A(R) is such thaj(u, dA) = 0 then

limsSupF (u,, A) = lim F(u,, Q) —liminf F(u,, Q\ A)
n—-4o00 n——4o00

n—+00
<Fu, Q) — Fu, 2\ A)
=F(u, A)
< I,;mgj F(u,, A)
and property (d) follows. To prove (e), fiy € 2 and remark that due to the finiteness
of the measureu(u, -), property (d) holds fo, (xo) for £ a.e.r € (0, R). With

M:=Sup/ |Vu,|*dx < 400,

BR(x0)

define forK >0

Exn= () {te (0, R): i, (u, 3B, (x0)) =0, / |Vum|“dHN—1>K},

mzn 3By (x0)

whereu, (u, ) is the singular part oft(u, -) with respect tolV | Q. Clearly |Ek | <
M/K, and sinceEx ,+1 D Eg ., we still have|Ex| < M/K whereEg :=J, Ex..- AS
a consequence, i := "y Ex then|E| =0, and ifr ¢ E then

liminf / Vi, |*dHY 1 < 400,

n—+00
9Bt (x0)

which, together with (d), asserts the existence of a subsequence fulfillingcge).

DEFINITION 3.5. —If F(u, ) < +oo then we say thaB,(xo) is an uplift ball forx
if:
(i) w(u,dB,(x0)) =0 (whereu(u, -) is the measure given by Propositi8rB).
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(i) There exists a sequenée,} satisfying propertiega), (b), (c)of Lemma3.4 and
u, — u weakly inWi*(a B, (xo)).

We denote bR (u, xo) the set of all radiip > 0 such thatB, (x) is an uplift ball.

In the sequel, we shall often deal with limits involving the functioiu, B,(x)) as
o — 0. Sincem is defined only forp € R(u, x), i.e. for almost allp, and isnot defined
for the remaining values ¢f, as it is customary for a given functiofi when we write
lim,_.o f(p) it should be understood thatis taken only among those points at which
the functiony is defined.

Remark3.6. — By Lemma 3.4, ifF (u, ) < +oo then for allxg € 2 almost all balls
centered aio are uplift balls foru. Also, by means of a diagonal argument we may
assume that the sequer{eg} satisfying (ii) in Definition 3.5 is the same for a countable
set of uplift balls.

LEMMA 3.7.—Assume thatF (u, Q) < +oo and let B be an uplift ball foru. Let
ve WHA(B; RY) satisfyv = u on 9 B, set

i )'_{v(x) if x € B,
= u(x) otherwise.

Then
w(,dB)=0.

Proof. —Let {u,,} be a sequence as in Definition 3.5(ii), and#te B € B” be uplift
balls concentric withB, so close together that if we denote Aythe annulusB” \ B’,
and using the fact thak(u, 9 B) = 0, then

Fu,A) <es, F(v,ANB) <es.

Since the trace o B of u, — u converges to zero weakly oW'*(3B;RY), by
Lemma 2.1 if we take,, := Eg(u,, — u) then

v, e W¥(B),  v,=u,—u ondB,  v,—0 inWH(B;RY).

We define inA
_ Uy (x) if x e A\ B,
Mn(-x) ::{ .
v, (x) +v(x) ifxeANB.
Clearlyi, € W-A(A; R?), and
F(u,, A)=F(u,, A\ B)+ F(u,, AN B) < F(u,, A) + F(u,, AN B).

Sincei, — i in LY(A; RY) andi, — v in WA N B; RY), by the W-£-continuity
of F and the property (d) satisfied Hy,}, in view of the fact thafu(u, 9A) =0, we
deduce that

Fa, A) <liminf F(@,, A)
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< limsupF (it,, A\ B) +limsupF(it,,, AN B)
n——400 n——400
< lim F(u,, A)+ F(v,ANB)
n—+o00
=Fu,A)+ F(v,ANB) <2¢
and the assertion follows.O

PROPOSITION 3.8. — If F(u, Q) < +oo then for£V-a.e.xg € Q
lim igf May(u, B, (x0)) < f (x0, Vuu(xo)).
p—

Proof. -We use the notation introduced in Remark 2.3. We recall that sinee
m%,b“(Q;Rd), for £V-a.e. pointxy and every sequence; \, 0 we have (see [13],
Theorem 2, p. 230)

][ {]Vu(x) — Vu(xo)]a + %]u(x) —u(xg) — Vu(xg)(x — xo)]a dx — 0.

By, (x0) !

Let xo € K(f) be any such point, which in addition is a Lebesgue pointfand Vu,
and letp; N\ 0 be any sequence such ti} (xo) C . On B := B1(0) we define

1
uj(y) = po [u(xo+ pjy) — u(xo)], uo(y) := Vu(xo)y. (3.8)
J

Then

][[IVuj — Vuol* + |uj — uol"] dy — 0,
B

1

/dt / [|Vu(xo + p;y) = Vulxo)|” + |u;(») = Vu(xo)y[*]dHY ™ = 0,
0 dB;

whereB, := B,(0), and so, up to a subsequence,

/ HVu(xo +p;y) — Vu(xo)’a + |uj(y) — Vu(xo)y|a] dHY 1 =0 (3.9)
3B,

for £1 a.e.r € (0, 1). As for almost allt
w(u,0B,)=0 and ueW"*(3B;R’) forallj, (3.10)

we may findr € (0, 1) satisfying (3.9), (3.10), and we relabel{ag} the sequencép;}.
We then have that the sequence defined in (3.8) with themesatisfies
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J119uto + 1) = Vuteo)[* +[u; () = Vutxo)y|] dHY >
B

mw(u,dB,)=0, u;eW-*(dB;R’) forall j, (3.11)

andu; still converges tag in W (B; RY). Settingv; := Epu;, and as Buo = uo (see
Remark 2.2), from Lemma 2.1 and (3.11) we deduce that

v, —>ug in Wl’ﬁ(B; Rd),

and

J

May(ut, By, (x0)) < ][ f<x7 V(Pjvj <x ;x()) +M(xo)>> dy

Pj

=fﬂm+m%WMWMM
B
Sincef is B-locally Lipschitz (see (2.2)), we obtaind
150+ 013, 0,09) = £ (30 + 3, V() dy
B

<€ [ @+ Vo0 + [ Vuto) ") Vo) = Vuo)| dy
B
< Cl|Vv; — Vugll s
which vanishes ag — 4oc. Therefore

liminf may (u, B, (x0)) <limsupmay(u, B, (xo0))
p—0 Jj—>+o0o ’

<limsup+ f(xo+ p;y, Vu(xo)) dy

j——+00
! B

= limsup f(x, Vu(xg)) dx. (3.12)

J—>+o0
By (3.12) and the definition of the sEi( /) (see Remark 2.3), we conclude that
lim iro]f May(u, B,(x0)) < f(x0, Vuu(xo)). O
p—

Remark3.9. — Recall that loffe’s Theorem (Theorem 2.4) ensures that F. In
particular, if F(u, Q) < +oo then f(-, Vu) € LY(Q2). Moreover, if the pointyy in the
previous proof is also a Lebesgue point fof, Vi), which holdsC"-a.e. inQ, then the
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sequence$p;} and{u;} we found above satisfy

Ms(aB,o_/) = 0»

ueWh(dB,),

u; — ugin W*(B; R?) and inw'“ (3 B; RY),

lim supmay(u, By, (xo)) < .|iT ][ f(x, Vu(x)) dx,
’ Jj—>+o00

j—>+oo
By, (x0)

and from the last inequality we deduce, in particular, that for all0 there existg such
that forallj > j

M (u, By, (x0)) < / f(x, Vu(x)) dx +t|B,, (xo)|.
By, (x0)

PrRoPOSITION 3.10. — For £V-a.e.xp € Q

lim Ifo1f fa\,(u, BO(XO)) < f(xo, VM(XO)).
p—>

Proof. —Fix an open sef2’ ¢  and define for every € (0, 1)

E, = {x € Q" 3p; \ 0 such that(u, B,, (x)) < / F (v, Vu(y)) dy —I—t|Bp_/.(x)|}.

By, (x)

By Remark 3.9 we have th&é®' \ E,| = 0, thus, in particularg, is £L"-measurable. Fix
¢ > 0 and choose an open setind a compact s& such that

KCE CocCg,
with
s (u, ) < &4 g (u, Ey), pu,w\ K) < e+ pu, E). (3.13)
Fix 6 > 0 and set
X% .= {Bp(x): x€E, p<8, By(x) Cw, ps(u,dB,(x)) =0,
ue Wh(3B,(x); RY),

m(u, B,(x)) < / f(y,Vu(y))dy+t]Bp(x)|},

Bp(x)

V' i={B,(x): p<8, B,(x) Cw\K, us(u,dB,(x)) =0}.



E. ACERBI ET AL./Ann. I. H. Poincaré — AN 20 (2003) 359-390 377

The balls ofx? and)?® form a fine cover ofv, and so Besicovitch Covering Theorem
yields a countable subcover

+oo +oo
a)=Nu<UBQ’>u<UB,.X> (3.14)
i=1 i=1

with 11(u, N) =0, so that the bally’ € )* and B € X* are all disjoint. By (3.13) we
may taken large enough such that

M(u, {NU (LiJBS’) u(

and for alli < n choosey; € W#(B¥) such that; — u € Wy*(B) and

UBiX):|> <&+ s (u, Ep), (3.15)

i>n

F(vi, BY) <m(u, BY¥) + 8| B|. (3.16)
Due to the choice of? and by (H3) we have

/|Dv,-|“dx</f(x,w,-(x))dxgm(u,Bf“)+3]Bf‘y

X X
B; B;

k)

< / f(x, Vu(x)) dx + (8 +1)|Bi*
B

and in view of the boundary assumptiongrand Poincaré inequality, using again (H3),

)

s = e, <% [ e, Vo) dx 46 +0)| B

X
Bi

where we have invoked the fact that the radiusgf is less thars. Set

us) = 4 Vi) e BT i<n,
e u(x) otherwise.

The previous inequality yields

lits — ullfay < ca“( [ xvue) dx+ |w|),

0]

thusus — u in L% (w; RY).
By Lemma 3.7, (3.14), and (3.15), we have

.7-"(u,;,a))=‘7:<u,a)\U?> +Z‘7:(M5,BI-X) <8+Ms(u,Ez)+Zf(vi’Bf()-

i<n i<n i<n
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Sincev; € W (B:¥; R?), by (2.5), (3.16), and in light of the choice af,

U

i<n

Flus, ) <&+ ps(u, E)+ > m(u, BY) +35

i<n

<o+ E)+ [ f(x Vuw) dx + G +0lol

The L* lower semicontinuity ofF (-, w) now yields

Fu,w) < |ig1 igf Flug, w) <&+ us(u, E;) +/f(x, Vu(x))dx + tlol,

so lettingw N\ E; and there — 0 we get
s E) < iy, )+ H1E+ [ f(x, Vu) d.
E,

Since|' \ E;| = 0 this implies

Flu, ) < ity Ep) + s (s ) < 2005, ) +119] + / £ (. Vu(o) dox.
Q/

Now letxq be a Lebesgue point fof (-, Vu(-)) such that

lim s, By(xo)) _

fim == 0; (3.17)

taking ' := B, (xo) in the previous inequality, dividing through b#,(xo)|, and letting
o — 0 we obtain

lim supFay(u, B,(x0)) <t + f(x0, Vu(xo)),

p—0

and by (3.17) the result now follows by the arbitrariness. of O
We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Fhe statement of Theorem 1.1 is now easily asserted by
appealing to Proposition 3.3, Proposition 3.10, and to the fact that (see Theorem 2.4)

/f(x, Vu)dx < F(u, A)
A

foralACcQ. O

In the remaining of this section we show that, neae 2, F(u, -) may be determined
by solving a Dirichlet problem. Precisely,
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THEOREM 3.11. —If F(u, Q) < +oco then foru(u, -)-a.e.xg € 2

M(u, B,(xo)) 1
p—0 F(u, B,(x0))

We first prove an auxiliary result.
PROPOSITION 3.12. —If F(u, 2) < o0 and if B is an uplift ball foru then

F(u, B) > m(u, B).

Proof. —By the definition of uplift ball we have that ¢ W' (3 B; R%), and consider
a sequencéu,, } satisfying the conditions of Definition 3.5(ii). Set

u:=Egu, w, = Ep(u, —u),
so thatiz, w, € WY#(B), it = u ondB. Sinceu,, — u in W-%(3B), by Lemma 2.1
w, — 0 in W (B). (3.18)
Define for allw € WH#(B)
h(w) :=inf{F(v, B): ve W*(B), v=ii+wondB},

and remark that
h(0) =m(u, B), h(w,) =m(u,, B). (3.19)

In order to show thak is lower semicontinuous at 0 with respect to the strong topology
of W8 (B;R?), we prove that it is convex and that it is locally bounded from above
at 0. To establish convexity we fix;, w, € WH#(B;R%), 0<t <1, > 0, and choose

v1, v2 € WHB(B; R?) such that

vi=u+w; ONJIB, F(vi, B) < h(w;) +¢.

Thentvy + (1 —t)v, =i + tw1 + (1 — t)w, on 3 B, and by the convexity of
h(twr+ (1—t)wy) < F(tvg 4+ (1 —1)v, B) <tF(v1, B) + (1—t)F(v2, B)
<th(wy) + (L —1)h(wp) + 2.
It suffices now to let — 0.
On the other hand, for alb € W%#(B; R%)
h(w) < F(i+w, B) < C(IBl+ ||V + w5 ) < CUBI + i+ wllfyss )

from which we conclude that is bounded from above in the unit ball 8f%-# (B; R?).
In view of Lemma 3.4(c), (3.18), and (3.19) we now have

Fu,B)= lm_F(u,, B)>liminf m@u,, B) =lminf h(w,) > h(©) =m@, B). O
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Proof of Theorem 3.11. By Proposition 3.12 we have

lim supm(u’ B, (x0))

— <1 3.20
p—0  F(u, By(x0)) (3:20)

Forallr > O set
G,:={B, C Q: B, upliftball, F(u, B,) > m(u, B,) +tF(u, B,)}

and
E, = {x € Q: 3p, - O with B, (x) € G,}.

We claim thatu(u, E;) = 0, therefore establishing the converse of (3.20). Indeed, for
everyxg € Q \ E, there exists5 > 0 such thatB,(xp) ¢ G, for all 0 < p < §. This
implies (1 — 1) F(u, B,(x0)) < m(u, B,(x0)), hence

liminf M Bolx0)

>1-—1. (3.21)
p—0  F(u, B,(x0))

If w(u, E;) =0 then we conclude that (3.21) holdsu, -)-a.e. inQ2. The arbitrariness of
t yields

liminf M Bo(0) 4
=0 F(u, B,(x0))

We now establish the claim. Note that at this point there is no guaranted that
even measurable, so we must proceed with careutét, -) be the Borel regular outer
measure associated witt(u, -). Suppose, by contradiction, that («, E;) > y for some
y > 0. For all§ > 0 we define

X’ :={B,(x): x € E,, p<3$, B,(x)€G,}.

This set forms a fine covering @,, so by Besicovitch Covering Theorem we may find
a countable subcover such that

+o00
E,CNU ( UB?),
i=1

with w(u, N) = 0 and for suitable mutually disjoint balB} € X°. As u(u, Q) < +o0,
we may findns large enough such that

14
,NU B? -,
(o (U ) <3
and thus

,u(u, U Bf) > u*(u, E) — % > %
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For alli < ns choosev’ € W#(B?; R?) such thaw® — u € Wy (B?; RY) and
) ) 8 8
F(v),B)) <m(u, B)) + —.
By (H3) and Proposition 3.12 we then get

o b
/ywﬂ dx < F(v), BY) <m(u, BY) + — < F(u, BY) + —,
ns ns
B‘S

hence

Z/ (Ve " dx < Fu, Q)+ 8 < +o0.
isn s
Poincaré inequality now implies that

Z HvzgS - “H(zd(BiX) < C8%,

i<ng

where we used the fact that the radii of the b#fsare less thad. We define

s (x) o= vf(x) if x € BiB, i <nsg,
") otherwise.

Clearlyus — u in L*(Us,), and by our choice of the functiong and by definition of
the setE, we deduce that

Flus, Q) =f(u, o\ U Bf) +> F(v.B))

i<ns i<ng

gf(u,sz\ U Bf)—i—Zm(u,Bf)—i—(S

i<ns i<ng

<f<u,s2\ U Bf) + > [F(u, B)) —tiu(u, BY)] + 6

i<ns i<ns

<.7:(u,§2)—t,u<u, U Bf) +3

i<ng
ty
<F(u, Q) — ?‘F(S-

By the L lower semicontinuity ofF, ass tends to O we obtain

t
Flu, Q) < Flu, Q) — g

which is impossible sincey /2 > 0 and F(u, Q) < +o00. We conclude thai*(u, E;)
=0. O



382 E. ACERBI ET AL./ Ann. I. H. Poincaré — AN 20 (2003) 359-390

Remark3.13. — If F(u, Q) < +oco then

f(x, Vu(x)) = lim P Bo(0) _ jiy MO BN g v g g,

p=0 [B,(x)] >0 |B,(x)]

Indeed, if f(x, Vu(x)) > 0 then this follows from Theorems 1.1 and 3.11, and if
f(x, Vu(x)) =0 then it suffices to use Proposition 3.12 to deduce that

. m(u, B,(x)) - F(u, B,(x))
i LT TR U R T NS TR A

where the last equality is asserted by Theorem 1.1. Moreover
ws (u, {x}) = /I)iinom(u, B,(x)).

Indeed, ifu;({x}) = 0 then this equality is a direct consequence of Proposition 3.12,
while if u,({x}) > 0 then Theorem 3.11 yields

1= lim ™ Bo) _ iy M0 B, 00)
=0 pu(u, By)  p—0 pug(u, {x})

4. Remarkson the Lavrentiev phenomenon

In this section we prove Proposition 1.2 and Theorem 1.3.

Proof of Proposition 1.2. By Theorem 1.1 there exists a nonnegative Radon measure
w(u, -), singular with respect taV | @, such that

.7:(14,B):/f(x,Vu)dx—l—,us(u,B) (4.2)
B

for every open seB C A. Condition (1.4) implies that for every € A there exists
an open neighborhood of x such thatu,(u, U) = 0. As u,(u, -) is a nonnegative
measure, we deduce that it vanishes on every subsét ©he conclusion follows now
from (4.1). O

Remark4.1. — It can be easily verified that condition (1.4) is equivalent to assuming
that there exists a sequengg } ¢ W1#(B; RY) such that

u, —~u inW(B;RY),  F(u,, B)— F(u, B). (4.2)

That (1.4) implies (4.2) follows immediately from the definitionBfu, B): it suffices
to choose any good sequence foin B (see (2.4)). Conversely, by loffe’s Theorem
(see Theorem 2.4) we have thiitu, B,)(x)) = F(u, By)(x)), while (4.2) yields the
converse inequality; hence

F(u, Bp)(x)) = F(u, Byy(x)) forallx e .



E. ACERBI ET AL./Ann. I. H. Poincaré — AN 20 (2003) 359-390 383

Theorem 1.3 follows immediately from Proposition 1.2, Remark 4.1, and the lemma
below.

LEMMA 4.2.—If f is a Carathéodory function satisfyind.5) and (1.6) then there
exists a sequende,,} such that
U, € CE(Q),  up—u INLE(Q),  fx,Vu,) — f(x,Vu) inLi ().
Moreover for everyg € Q and for almost allo < dist(xg, 92)
u, — u  strongly inWh*(B,(xo); RY)
and there exists a subsequer(depending on) such that
u, — u  strongly inW* (3B, (xo); RY). (4.3)

Proof. —Let p(x) be a standard symmetric mollifier with supportBr(0), for every
n € N setp,(x) :=n"p(nx), and set

u(x) ifdist(x,0Q) > 1/n,

Uy = Uy * Py, L_t(x)Z:{ i
e 0 otherwise.

Clearlyu, € C§°(S2; RY), u, — uin W52 (2), thusu,, — u strongly inW# (B, (xo); RY)
for any ball B, (xp) with xo € 2 andr < dist(xo, €2). Since for a fixedB, (xg) € €2 and
by Fubini's Theorem

o
”I’l_unllt‘x/vl,a(Bﬂ):/ / “M—I/lnla"l‘ |Vu—Vun|a] dHN_ldr
0 9B (x0)

o
:/||u — UnllYyre s, (xp) 47
0

by Egoroff’'s Theorem we have that, up to a subsequence, lse> u strongly
in WX (3B, (xo); RY) for almostr < p. A diagonalization argument now yields a
subsequence for which (4.3) holds for almost @lk dist(xg, 2). We only have to
show that

f@x, Vu,) — f(x,Vu) inLi (). (4.4)

Fix A € @, and let distA, 092) > 2¢; without loss of generality we may always take
n > 1/gg, thus inA we haveDu,, = Du * p,. SetA’ := {x € Q: dist(x, dQ) > &o}, and
define

g(x) = f(x, Du(x)), pa(x) =min{p(y): [x—y| < 1/n}, On(x, 2) = 2]

Clearly ¢, is a Carathéodory functiom(x, -) is convex for allx € 2, and if|x — y| <
1/n thenp,(x) < p(y) and so

0n(x,2) = 2] <1+ (2P <1+ f(y, 2).
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In view of this inequality and by Jensen’s inequalityy i€ A then

@n (X, Vi, (x)) = @y (x, / Vu(y)p,(x — y)dy)
B(x,1/n)

< / @n(xavu()’»,on(X—)’)dy
B(x,1/n)

< / [+ £ (y. Vu())] pulx — y) dy
B(x,1/n)

=1+ (g * /On)(x) (45)
Now remark that ifc € A, then using the fact that e W| (see (1.5)), we have

|V, (x)] =‘/Vu(y)pn(x—y)dy‘
bt

1/a’
< C@) Vil o ayn / P (n(x — y)) dy
J
1/a’
< C@IVullzeinyn™n ™| [ o () dy
RN

:C/”VI/‘”L“(A’)nN/a,

whereC’ = C’(«) is a positive constant. By (1.5) we deduce that

1 x X)—pn(x
o (Vi (@) - 1< Vi, ()" = | Vi (0)| "7V, (x, Vi (x))

< (L4 P NVullEy) (17O Y g, (x, Yy (x)
<Cep, (x, Vu, (x)),
where we have used the fact that
0< p(x) = p,(x) < y/logn,

so that
(np(x)—pnm)f‘//a <eVr/e,

In view of (4.5) we now have for alt € A
0< f(xv Vun(x)) < C(1+ (g * /On)(x)>~

SinceVu,, — Vu a.e. inA, by the continuity off (x, -) and Fatou’s Lemma we have

I|m|nf f(x, Vu,(x)) d /f x, Vu(x)) dx (4.6)

n——+
A
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Moreover, once more by Fatou's Lemma and using the factgthat, — g in L1(A),

C(1+4g(x)) —limsup [ f(x, Vu,(x))dx

n——+00

=liminf [ [C(1+ (g * p.)(x)) — f(x, Vu,(x))] dx

n——+00
A

2/[C(l—l—g(x))—f(x,Vu(x))]dx

A
and we conclude that

limsup | f(x, Vu,(x)) dx < /f(x, Vu(x))dx

n—+00
A

This, together with (4.6), yields the convergence fof, Vu,(-)) to f(-, Vu(:)) in
LYA). O

The last result of this section shows that under some additional assumptions on th
convergence of the traces of approximating sequences, it is possible to impose Dirichle
boundary conditions on the admissible sequences without increasing the overall energ
Sincea priori the infimum taken over the class of functions restricted under the Dirichlet
boundary condition is greater than the infimum over the unconstrained class, we ma
interpret this result as a situation where the Lavrentiev phenomenon is avoided.

PROPOSITION 4.3. —Let F(u, Q) < +00, let A € Q be an open set with Lipschitz
boundary, and assume that ¢ W1-#(A) satisfies

u, —u weakly inW*(A) and weakly inW**(3A),

and
Fu,A) = nﬂ)rpm F(u,, A).

Then there exists a sequengee W#(A) such that
v, =u ONJA, v, = u  weakly inWt(A), Fu, A)= lim_F(,, A).
n——+0o0

Moreover if the sequende,,} converges tar strongly inW%(A) then so doesv,}.

Proof. —Setw, = E,(u, — u), so that by Lemma 2.1, — 0 strongly inW%#(A)
andw, =u, —u ondA. Fork e N lete = 1/k and defines, : W1#(A) — [0, +00] by

he(w) :=inf{F(v, A): ve W (A), v=u+w ondA, [[v—ullpi <e}.
Since forn € N sufficiently large

U, =u+w, ondA and |lu, —ull 1, <&,
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it follows that
hs(wn) < F(Ltn, A) (47)

A similar proof to that of Proposition 3.12 yields the convexityhof Also, letC(e) > 0
be such that

lwliwisay < Cle) = |wlliia <e/2.

We claim thath, is bounded in the ball ifW#(A) of center zero and radiug((e).
Indeed, asc € W1(9A) there existsi € W#(A) such that: — iz € Wy (A), but then
there exists, € Cg°(A) such that|(u — it) — ¢ |l wreay < £/2. Settingu, := i + ¢, we
haveu, € W (A), u, =u ondA, lue — ullwia(a, < &/2, and thus for alw € W#(A)
with [|wlly1e4) < C(e), and in view of (H3)

he(w) < Fue +w, A) < CIA]+ [[te + )|y q)) < C'€)

for some constant’(¢) > 0. Therefore the convex function is lower semicontinuous
at the origin, and by (4.7) we have

Fu,A)= nlrroo F(un, A) 2 nlrroo he(wy,) 2 he(0),
that is
F(u, A) >inf{F(v, A): ve WHP(A), v=u0ndA, ||v—ul i <e}.
In particular, there exists, € W#(A) such that, =u ondA and
lve — ullLaca) <&, F(v,, A< F(u,A)+¢ (4.8)

and the result now follows by letting— 0.
If u, — u strongly inW¢(A) then one may replace thie' norm in the definition of
h. by the norm inw™-#, thus obtaining in (4.8) thatv, — ullyie4)y <&. O

5. A counterexample for Carathéodory quasiconvex integrands

Here we present the proof of Proposition 1.4.
Recall that under (H1), (H3), by Theorem 3.1 in [15kiE W1%(Q; R?) is such that
F(u, Q) < +oothen

]—"(u,A):/f”(x)dx+us(u,A) for all A € A(Q),
A

where u,(u, -) is a nonnegative finite Radon measure @nsingular with respect to
LV Q, and (see Theorem 3.2 in [6]) for ax.€ 2

F4(xg) = lim m(u, B,(xo))

51
p=0 B, (xo0)] &1
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Here the limit is taken foro € £(u, xo), the set of good radiiof the functionu at
the pointxg € Q as defined in [6], Definition 3.4; it can be shown that almost all
r € (0, dist(xg, 32)) belong to& (u, xo).

The following lemma may be found in [6], Lemma 3.5.

LEMMA 5.1. —Under assumptiongH1) and (H3), if R € R(u, xo) and if {u,} C
wir(Q; R?) is such thats, — u weakly inW? (3 Bg(xo); RY) then

M (u, Br(x0)) = lim m(u,, Br(x)).

Next we simplify the representation formula f6¥ in the general quasiconvex context
and in the case wheteis affine.

LEMMA 5.2. —If (H1) and(H3) hold, and ifx is affine, then forL"-a.e.xp € Q

f(x0) = Iirpoo{inf][f(xo—i-gny,Vw(y))dy: we W (B; RY),
B

w—ue W&’“(B;Rd)},

where B is the unit ball centered at the origin and,} C £(u, xg) is any sequence of
positive numbers converging @

Proof. —Consider{¢,} C &£ (u, xo) with ¢, — 0". By (5.1) we have

f“(xo):nﬂrpoo{inf ][ f(x, Vo)) dx: ve WHP (B, (xo): RY),
Bsn(XO)

v—uc€ Wol’a (B, (x0); Rd)}

= lim {inf][f(xo+8ny,Vv(xo—i—gny))dy: ve WHP (B, (xo); RY),
B

n——+00

v—ue Wy (B, (x0); Rd)}

n——+00

= lim {inf][f(xo+8ny,Vw(y))dy: w e WhA(B;RY),
B
w—ue Wol’a(B;Rd)},

where we used the substitution

v(xo + &,y) — u(xg) + &,u(0)
8’1

w(y) ==

for y € B, and we invoked the fact thatis affine. O
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Proof of Proposition 1.4. +et K, p and f be as stated. We claim that for &lE (0, 1)
there exist®, € (0, 1) such that for alb < 6y and for allxg € 0K

f9x0) < f(xo, 1) —1+38. (5.2)

Fix xo € 9K and lete € (0, 1). Since Oc d(K — xo) we may findy, € B,2(0) such that
ve ¢ K — xo. Definex, := y./e. Then|x,| < ¢ andx, ¢ (K — xg)/¢. Denoting byB the
unit ball B1(0), we clearly have

B(x;,1—|x.|)C B, |B\B(x;,1—|x.|)|— 0 ase— 0.

Since(K — xp)/¢ is closed, there exists € (0, 1) such that

K — X0
B(x6vr£)CB(x£vl_|xs|)\ e ’ (53)
and we define i3 the function
X if x ¢ B(xs, 1— |xc]),
ve() = e+ (L= xel) 225 i re < v — x| < 1—|x.l,
xg—{—%;gl(x—xg) if |[x — x| <re.
Clearlyv, € W-*(B; R"), v, =id on 3B, and
I _ _ P
f|va|pdx<l+ / _ (x x8)®(x3 Xe) dx
|x — x| |x — x|
B B(x5s1_|xa|)\3(xaara)
1_ P
n / ‘ |xe | dx
Ve
Brg(xs)
1—|xe|
<1+C / NP dr 1 NP < G (5.4)

whereCy is a constant independent aof, and where we have used the fact tpat N.

In view of Lemma 5.2, and choosing a sequeligg C £(id, xo) of positive numbers
converging to 0, we have

fid(xO) — ,1£Tm{lnff[XK (xo + 8,1x)| detVW(x)’
B

+0|Vw(x)|"] dx: we WY (B;RY), w =id on aB}

<liminf £ [x 5 (x)] detVu,, (x)| + 6]V, (x)|"] dx
B "

. . . |B\B ,1—
<liminf |B\ B(x, e, D]
n—+00 |B|

+ 60 Co =106 Co,



E. ACERBI ET AL./Ann. I. H. Poincaré — AN 20 (2003) 359-390 389

where we have used (5.3), (5.4), and the fact thavdet(x) =0 if r,, < [x — x| <
1—|x,|. Sincef(xo,I) > 1, we have now established the claim with=35/Co. O
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