Ann. I. H. Poincaré – AN 20, 3 (2003) 391–403 10.1016/S0294-1449(02)00007-0/FLA © 2003 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

NON-COMPACT LAMINATION CONVEX HULLS

ENVELOPPE LAMINEUSEMENT CONVEXE NON COMPACT

Jan KOLÁRˇ ¹

Dept. Math. Anal., Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic

Received 31 July 2001

Dedicated to my friends Renáta and Ivan Zahrádka

ABSTRACT. – For *K* a compact set of $m \times n$ matrices, let $L(K)$ denote the lamination convex hull of *K*.

We give an example of a compact set K of symmetric two by two matrices such that $L(K)$ is not compact, and similar examples for separate convexity in \mathbb{R}^3 and bi-convexity in $\mathbb{R}^2 \times \mathbb{R}$. Furthermore we show that function \tilde{L} , where $\tilde{L}(K) = \overline{L(K)}$, is not upper semi-continuous with respect to Hausdorff metric on the space of all compact sets *K* of diagonal 3×3 matrices.

© 2003 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC: 26B25; 52A30

Keywords: Lamination convex hull; Bi-convexity; Separate convexity; Rank-one convexity

RÉSUMÉ. – Si *K* est un ensemble compact des matrices du type $m \times n$, $L(K)$ signifie le plus petit ensemble lamineusement convexe contenant *K*. (Un ensemble *K* est lamineusement convexe si $[a, b]$ ⊂ *K* pour tous $a, b \in K$ tels que $a - b$ est une matrice de rang 1.)

Nous démontrons qu'il y a *K*, un ensemble compact des matrices symétriques d'ordre 2 tel que L*(K)* ne soit pas compact. Nous présentons aussi des exemples similaires pour convexité séparée dans \mathbb{R}^3 et bi-convexité dans $\mathbb{R}^2 \times \mathbb{R}$. En plus, nous démontrons que l'application $\tilde{L}: K \mapsto \overline{L(K)}$ n'est pas semi-continue superieurement sur l'espace des ensembles compacts de matrices diagonales d'ordre 3 muni de la métrique de Hausdorff.

© 2003 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Mots Clés: Enveloppe lamineusement convexe; Bi-convexité; Convexité separée; Enveloppe convexe de rang un

E-mail address: kolar@karlin.mff.cuni.cz (J. Koláˇr).

¹ Research was partially supported by Max Planck Institute for Mathematics in the Sciences in Leipzig.

1. Introduction

We denote by $\mathbb{M}^{m \times n}$ the set of all real $m \times n$ matrices with the \mathbb{R}^{mn} norm; $\mathbb{M}^{n \times n}_{sym}$, $\mathbb{M}^{n \times n}_{diag}$ are the sets of symmetric and diagonal $n \times n$ matrices, respectively. A set $K \subset \mathbb{M}^{m \times n}$ is called *lamination convex* [4] if for all $A, B \in K$, which satisfy rank $(A - B) = 1$, one has $(1 - \lambda)A + \lambda B \in K$ for all $\lambda \in (0, 1)$. For a given $K \subset \mathbb{M}^{m \times n}$, the *lamination convex hull* $L(K)$ is defined as the smallest lamination convex set which contains K [4].

Zhang [6] writes that "it is not clear in general whether for a compact set, the lamination convex hull is closed". In fact, it is easy to obtain a counter-example in $\mathbb{M}^{2\times4}$ from a paper of Aumann and Hart [1], see Example 2.4. The main purpose of this paper is to give an example of a compact set $K \subset M^{2\times 2}_{sym}$ such that $L(K)$ is not compact.

For convenience, we identify $\mathbb{M}^{2\times 2}_{sym}$ with \mathbb{R}^3 by the linear bijection $\phi(x, y, z) =$ $\begin{pmatrix} z+x & y \ y & z-x \end{pmatrix}$. We say that $(x, y, z) \in \mathbb{R}^3$ is a *rank-one direction* if det $\phi(x, y, z) =$ $z^{2} - x^{2} - y^{2} = 0$, that points *A*, *B* are *rank-one connected* if *B* − *A* is a rank-one direction and that a set $K \subset \mathbb{R}^3$ is *lamination convex* if $(1 - \lambda)A + \lambda B \in K$ whenever $A, B \in K$ are rank-one connected and $\lambda \in (0, 1)$. Again, the *lamination convex hull* L(*K*) of a set *K* ⊂ \mathbb{R}^3 is the smallest lamination convex set containing *K*. Obviously, $K \subset \mathbb{R}^3$ is lamination convex if and only if $\phi(K) \subset M^{2 \times 2}_{sym}$ is lamination convex, and $L(\phi(K)) = \phi(L(K))$ for every $K \subset \mathbb{R}^3$.

THEOREM 1.1. – *There is a compact set* $K \subset M^{2\times 2}_{sym}$ *such that* $L(K)$ *is not compact.*

Before proving the theorem for the symmetric two by two matrices in Section 3 we would like to consider the easier case of $\mathbb{M}^{m \times n}$ with max $(m, n) > 2$ where examples can be constructed using related notions of separate convexity and bi-convexity. In Section 4 we explain consequences to upper semi-continuity of the mapping $K \mapsto L(K)$.

2. Examples

The diagonal matrix $\begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \end{pmatrix}$ 0 0 *z* is of rank one if and only if exactly one of the numbers *x*, y, *z* is non-zero. Let us say that $K \subset \mathbb{R}^n$ is *separately lamination convex* if *K* contains every segment with end-points in *K* which is parallel to one of the coordinate axes. This is equivalent to lamination convexity of the corresponding set of diagonal matrices. The *separately lamination convex hull* $L_{sc}(K)$ is defined to be the smallest separately lamination convex set in \mathbb{R}^n that contains *K*.

Example 2.1 (*Separate convexity in* \mathbb{R}^3 *and diagonal* 3 \times 3 *matrices*). – Let

$$
K = \{(1, 1, 1)\} \cup \{(-1, 0, 0), (0, -1, 0), (0, 0, -1)\}
$$

$$
\cup \bigcup_{n \in \mathbb{N}} \left\{ \left(-1, \frac{1}{n}, \frac{1}{n}\right), \left(\frac{1}{n+1}, -1, \frac{1}{n}\right), \left(\frac{1}{n+1}, \frac{1}{n+1}, -1\right) \right\}.
$$
 (1)

By induction, $L_{\rm sc}(K)$ contains each of the segments

$$
\left[\left(\frac{1}{n},\frac{1}{n},\frac{1}{n}\right),\left(-1,\frac{1}{n},\frac{1}{n}\right)\right]\ni\left(\frac{1}{n+1},\frac{1}{n},\frac{1}{n}\right),\right]
$$

J. KOLÁŘ / Ann. I. H. Poincaré – AN 20 (2003) 391–403 393

 1 *n* + 1 *,* 1 *n ,* 1 *n ,* 1 *n* + 1 *,*−1*,* 1 *n* 1 *n* + 1 *,* ¹ *n* + 1 *,* 1 *n ,* 1 *n* + 1 *,* ¹ *n* + 1 *,* 1 *n ,* 1 *n* + 1 *,* ¹ *n* + 1 *,*−1 1 *n* + 1 *,* ¹ *n* + 1 *,* ¹ *n* + 1

for every $n \in \mathbb{N}$. Consequently, $(0, 0, 0)$ belongs to the closure of $L_{sc}(K)$. On the other hand, it does not belong to $L_{sc}(K)$ since the set

$$
\{(-1, 0, 0), (0, -1, 0), (0, 0, -1)\}
$$

$$
\cup \{A \in \mathbb{R}^3 : \text{ at least two coordinates of } A \text{ are strictly positive}\}
$$

is separately lamination convex and contains *K*. Thus $K \subset \mathbb{R}^3$ is compact, but $L_{sc}(K)$ is not and the same is true for the lamination convex hull of the compact set

$$
\left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix}: (x, y, z) \in K \right\}.
$$

Example 2.2 (*Separate convexity in* \mathbb{R}^2 *and diagonal* 2 \times 2 *matrices*). – The lamination convex hull of a compact subset of $\mathbb{M}^{2\times 2}_{\text{diag}}$ is always compact. This follows by the next result which is due to Kirchheim [3].

PROPOSITION 2.3. – *If* $C \subset \mathbb{R}^2$ *is compact, then* $L_{\text{sc}}(C)$ *is compact as well.*

Proof (B. Kirchheim). – By x_1, x_2 we denote the two coordinates of $x \in \mathbb{R}^2$, and $e_1 = (1, 0), e_2 = (0, 1)$. Let $L_{\text{sc}}^{(0)}(C) = C$ and for $k \in N$ let

$$
L_{\rm sc}^{(k)}(C) = \bigcup \{ [y, z] : y, z \in L_{\rm sc}^{(k-1)}(C), y_1 = z_1 \text{ or } y_2 = z_2 \}.
$$

Then $L_{\text{sc}}^{(k)}(C)$ are compact and $L_{\text{sc}}(C) = \bigcup_{k} L_{\text{sc}}^{(k)}(C)$. We say that $\text{gen}_{C}(x) = k$ provided $x \in L_{\text{sg}}^{(k)}(C) \setminus L_{\text{sg}}^{(k-1)}(C)$. Suppose the claim fails. Then we can find a compact set $C \subset \mathbb{R}^2 \setminus [-1, 1]^2$ such that

$$
0\in \overline{L_{sc}(C)}\setminus L_{sc}(C).
$$

Obviously, for $i = 1, 2$ we find $\sigma_i \in \{-1, 1\}$ such that

$$
t \cdot \sigma_i e_i \notin L_{\rm sc}(C) \quad \text{whenever } t \geqslant 0. \tag{2}
$$

Moreover, we find $\varepsilon > 0$ such that

$$
\sigma_i x_i < -\varepsilon \quad \text{or} \quad |x_{3-i}| > \varepsilon \quad \text{for all } x \in C, \ i \in \{1, 2\}. \tag{3}
$$

Now we set

$$
M_i = \{x: |x_{3-i}| \leq \varepsilon \text{ and } \sigma_i x_i \geq -\varepsilon\}, \qquad M_i^+ = \{x \in M_i: \sigma_i x_i \geq 0\}
$$

and claim that

$$
L_{sc}(C) \cap M_i^+ = \emptyset. \tag{4}
$$

Let us assume that (4) is not true for an $i \in \{1, 2\}$. Let $g = \min\{ \text{gen}_C(x) : x \in L_{\text{sc}}(C) \cap L_{\text{sc}}(C) \}$ *M*⁺_{*i*} }. Due to (3) we know $g \ge 1$ and find *x* in the compact set $M_i^+ \cap L_{\text{sc}}^{(g)}(C)$ maximizing the non-negative function $x \mapsto \sigma_i x_i$ over this set. By the definition of $L_{\text{sc}}^{(g)}(C)$ there are $y, z \in L_{\text{sc}}^{(g-1)}(C)$ such that $x \in L_{\text{sc}}^{(1)}(\{y, z\})$. From the maximality of $\sigma_i x_i$ we conclude that $\sigma_i y_i = \sigma_i z_i = \sigma_i x_i \ge 0$. The definition of *g* implies that $y, z \notin M_i^+$, hence $|y_{3-i}|, |z_{3-i}| >$ *ε* and $y_{3-i}z_{3-i} < 0$. Consequently,

$$
L_{\rm sc}(C) \cap \{t \cdot \sigma_i e_i \colon t \geq 0\} \supset [y, z] \cap \{t \cdot \sigma_i e_i \colon t \geq 0\} = \{x_i e_i\},\
$$

a contradiction to (2) establishing (4).

Finally, denote by $g' \geq 1$ the minimum of gen_{*C*} over the nonvoid set $L_{sc}(C) \cap M_1 \cap M_2$. Again, let *x'* maximize $\sigma_1 x_1'$ over $L_{\rm sc}^{(g')}(C) \cap M_1 \cap M_2$ and suppose $x' \in L_{\rm sc}^{(1)}(\lbrace y', z' \rbrace)$ for y' , $z' \in L_{\text{sc}}^{(g'-1)}(C)$. As before, we infer that $y'_1 = z'_1 = x'_1$, $|y'_2|$, $|z'_2| > \varepsilon$ and $y'_2z'_2 < 0$. So

$$
L_{\rm sc}(C) \cap M_2^+ \supset [y', z'] \cap M_2^+ \neq \emptyset,
$$

which together with (4) finishes the proof. \Box

Example 2.4 (*Bi-convexity in* $\mathbb{R}^2 \times \mathbb{R}$ *and* 2 × 3 *matrices*). – A set $A \subset \mathbb{R}^k \times \mathbb{R}^l$ is *biconvex* [1] if the sections A_x , A^y are convex for every $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^l$. The *bi-convex hull* $L_{(k,l)}(A)$ is defined accordingly. Obviously, *A* is bi-convex if and only if the set

$$
\left\{ \begin{pmatrix} x_1 & x_2 & \dots & x_k & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & y_1 & y_2 & \dots & y_l \end{pmatrix} \in \mathbb{M}^{2 \times (k+l)}:
$$

 $(x_1, x_2, \dots, x_k; y_1, y_2, \dots, y_l) \in A \right\}$

is lamination convex. Aumann and Hart [1] constructed a compact set $K \subset \mathbb{R}^2 \times \mathbb{R}^2$ such that $L_{(2,2)}(K)$ is not compact. We will show that this is possible in $\mathbb{R}^2 \times \mathbb{R}$ and hence also for matrices of the form $\begin{pmatrix} a & b & 0 \\ 0 & 0 & c \end{pmatrix}$.

Let $v_1 = (0, 2), v_2 = (-1, 0), v_3 = (1, -1), v_4 = (2, 1)$ be the usual four-point configuration. Let $w_1 = (0, 1), w_2 = (0, 0), w_3 = (1, 0), w_4 = (1, 1)$ and

$$
L_0 = ([0, 1] \times [0, 1]) \cup (\{0\} \times [0, 2]) \cup ([-1, 1] \times \{0\}) \cup (\{1\} \times [-1, 1])
$$

$$
\cup ([0, 2] \times \{1\}) = L_{sc}(\{v_i, w_i\}).
$$

Finally, let $\tilde{K} = \mathcal{I}((0, 1] \times \{v_1, v_2, v_3, v_4\}) \cup (\{1\} \times \{w_1, w_2, w_3, w_4\})$ and $L =$ $\mathcal{I}((0, 1] \times L_0) \cup (\{0\} \times \{v_1, v_2, v_3, v_4\})$, where $\mathcal{I}(x; y, z) = (x, y; z)$ identifies $\mathbb{R} \times \mathbb{R}^2$ with $\mathbb{R}^2 \times \mathbb{R}$. We claim that $L_{(2,1)}(\tilde{K}) = L$ and this is not compact.

Let $w_i(t) = \mathcal{I}(t, w_i)$, $v_i(t) = \mathcal{I}(t, v_i)$. We have $w_i(1) \in \tilde{K}$ and then inductively *w_i*(2^{−*k*}) ∈ L_(2,1)(\tilde{K}) for every *i* ∈ {4, 3, 2, 1} and *k* ∈ N, because the following convex combinations are compatible with the definition of bi-convexity: $w_4(t/2) = \frac{1}{2}w_1(t) +$ $\frac{1}{2}v_4(0)$ and $w_i(t) = \frac{1}{2}w_{i+1}(t) + \frac{1}{2}v_i(t)$ for $i = 3, 2, 1$. Now it is easy to see that *w_i*(*t*) ∈ L_(2,1)(\tilde{K}) for every *t* ∈ (0, 1] and hence *L* ⊂ L_(2,1)(\tilde{K}). On the other hand, *L* is bi-convex, so that $L_{(2,1)}(\tilde{K}) \subset L$.

3. The proof of Theorem 1.1

Notation. – For $\alpha \in [0, \frac{\pi}{2}]$ let $e_i(\alpha) = (\sin \alpha + \cos \alpha, (-1)^i \sin \alpha, \alpha + 1)$ and $\gamma(\alpha) =$ $(\sin \alpha, 0, \alpha)$. Let $E_0 = \{e_i(\alpha): \alpha \in [0, \frac{\pi}{2}], i = 1, 2\}.$

LEMMA 3.1. – *For every*
$$
0 < \alpha_2 < \alpha_1 < \frac{\pi}{2}
$$
, $\gamma(\alpha_1) \in \overline{L(E_0 \cup \{\gamma(\alpha_2)\})}$.

Proof. – For $i = 1, 2$, let $\Phi_i : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$
\Phi_i((a, b, c), (x, y, z)) = ((a - x)^2 + (b - y)^2 - (c - z)^2, \sin(z - 1) + \cos(z - 1) - x, \quad (-1)^i \sin(z - 1) - y).
$$

For every $\alpha \in [\alpha_2, \alpha_1]$ and $i = 1, 2$ we have $\Phi_i(\gamma(\alpha), e_i(\alpha)) = 0$, as well as $\det(\frac{\partial \Phi_i}{\partial(x,y,z)}(\gamma(\alpha), e_i(\alpha))) = 2\cos^2\alpha - 2 \neq 0$. By the implicit function theorem, there is $\delta_0 > 0$ and two smooth functions $\varphi_1, \varphi_2: U_{\delta_0} \to R^3$ defined on the δ_0 -neighborhood U_{δ_0} of $\{\gamma(\alpha): \alpha \in [\alpha_2, \alpha_1]\}$ such that $\Phi_i(w, \varphi_i(w)) = 0$ for $w \in \mathcal{U}_{\delta_0}$ and $\varphi_i(\gamma(\alpha)) = e_i(\alpha)$ for $\alpha \in [\alpha_2, \alpha_1]$. Note that by the definition of Φ_i , $\varphi_i(w) - w$ is a rank-one direction and $\varphi_i(w) = e_i(\alpha)$ for all $w \in \mathcal{U}_{\delta_0}$, where $\alpha + 1$ is the third coordinate of $\varphi_i(w)$. By making *δ*⁰ smaller, we may ensure that *ϕ*_{*i*}(*w*) ∈ *E*⁰ for *w* ∈ U ^{*δ*₀</sub>. Let *u_i*(*w*) = *ϕ*_{*i*}(*w*) − *w*. Re-} placing δ_0 by a smaller number again, there is $K > 0$ such that the functions u_1, u_2 are *K*-Lipschitz on \mathcal{U}_{δ_0} and $||u_1(w)||$, $||u_2(w)|| \le K$ for $w \in \mathcal{U}_{\delta_0}$.

It is easy to check that γ satisfies the equation

$$
\dot{\gamma}(\alpha) = \frac{u_1(\gamma(\alpha)) + u_2(\gamma(\alpha))}{2}.\tag{5}
$$

Next, we will approximate the solution γ by a piecewise linear curve with derivatives given by u_1 on odd and by u_2 on even segments. We do an easy error estimate usual in numerical analysis.

Let $\delta > 0$ be given. Find $n \in \mathbb{N}$ such that, for $h = (\alpha_1 - \alpha_2)/n$, $Kh < \delta_0$ and

$$
\frac{h}{2}(2\mathrm{Lip}\,\gamma + K)((1 + hK)^n - 1) < \min\bigg(\delta, \frac{\delta_0}{2}\bigg).
$$

For $k = 1, \ldots, n$, define

$$
w_0 = \gamma(\alpha_2), \qquad w_{k-\frac{1}{2}} = w_{k-1} + \frac{h}{2}u_1(w_{k-1}), \qquad w_k = w_{k-\frac{1}{2}} + \frac{h}{2}u_2(w_{k-\frac{1}{2}}). \tag{6}
$$

Let $\varepsilon_k = ||w_k - \gamma(\alpha_2 + kh)||$, $k = 0, 1, \ldots, n$. Then

$$
\varepsilon_{k+1} = \|w_{k+1} - \gamma (\alpha_2 + (k+1)h)\|
$$

=
$$
\left\|w_k - \gamma (\alpha_2 + kh) + \int_{\alpha_2 + kh}^{\alpha_2 + (k+1)h} \frac{u_1(w_k) + u_2(w_{k+\frac{1}{2}})}{2} - \dot{\gamma}(\alpha) d\alpha\right\|
$$

and hence, by (5),

$$
\varepsilon_{k+1} \leqslant \varepsilon_k + \frac{1}{2} \int_{\alpha_2 + kh}^{\alpha_2 + (k+1)h} \left\| u_1(w_k) - u_1(\gamma(\alpha)) \right\| + \left\| u_2(w_{k+\frac{1}{2}}) - u_2(\gamma(\alpha)) \right\| d\alpha
$$
\n
$$
\leqslant \varepsilon_k + \frac{h}{2} \left(\operatorname{Lip} u_1(h \operatorname{Lip} \gamma + \varepsilon_k) + \operatorname{Lip} u_2(h \operatorname{Lip} \gamma + h \| u_1(w_k) \| + \varepsilon_k) \right)
$$
\n
$$
\leqslant A\varepsilon_k + B
$$

where $A = (1 + hK)$ and $B = \frac{h^2 K}{2} (2 \text{Lip}\gamma + K)$. We have $\varepsilon_0 = 0$ and, by induction,

$$
\varepsilon_k \le B(1 + A + A^2 + \dots + A^{k-1}) = B(A^k - 1)/(A - 1)
$$

= $\frac{h}{2}(2 \text{Lip}\gamma + K)((1 + hK)^k - 1)$
< $\min(\delta, \delta_0/2).$

Hence w_k , $w_{k+\frac{1}{2}} \in \mathcal{U}_{\delta_0}$ (so that the sequence is well defined) and $\|\gamma(\alpha_1) - w_n\| < \delta$.

Furthermore, $w_{k+\frac{1}{2}} \in [w_k, \varphi_1(w_k)]$, $w_{k+1} \in [w_{k+\frac{1}{2}}, \varphi_2(w_{k+\frac{1}{2}})]$ and the two segments have rank-one directions, so that w_0, w_1, \ldots, w_n belong to the lamination convex hull of $E_0 \cup \{w_0\} = E_0 \cup \{\gamma(\alpha_2)\}\)$. Since $\delta > 0$ was arbitrarily small, $\gamma(\alpha_1)$ lies in its closure. \Box

Remark 3.2. – Under the assumption of Lemma 3.1 we have that $\gamma(\alpha_1)$ belongs to the rank-one convex hull of $E_0 \cup \{\gamma(\alpha_2)\}\)$. Also, the corresponding laminate μ with barycentre in $\gamma(\alpha_1)$ can be given explicitly:

$$
\mu(A) = e^{-(\alpha_1 - \alpha_2)} \delta_{\gamma(\alpha_2)}(A) + \frac{1}{2} \sum_{i=1}^2 \int_{(\alpha_2, \alpha_1) \cap e_i^{-1}(A)} e^{-(\alpha_1 - \alpha)} d\alpha, \tag{7}
$$

where $\delta_{\gamma(\alpha_2)}$ is the Dirac measure at $\gamma(\alpha_2)$.

Indeed, (6) determinates prelaminate μ_n with barycentre $w_n^{(n)}$ supported by finite set ${\gamma(\alpha_2)}$; ${\varphi_1(w_{k-1}^{(n)})}$, ${\varphi_2(w_{k-\frac{1}{2}}^{(n)})}$, $k = 1, ..., n$ $\subset K$, recall that $u_i(w) = {\varphi_i(w)} - w$ is a rank-one direction. We added indices (*n*) to emphasize that points w_s depend on *n* as well. A calculation shows that the weak limit of μ_n is μ ; the barycentre of μ is $\lim w_n^{(n)} = \gamma(\alpha_1).$

Notation. – Let

$$
x(\alpha, t) = \sin \alpha + t \cos \alpha,
$$

\n
$$
y(\alpha, t) = t \sin \alpha,
$$

\n
$$
z(\alpha, t) = \alpha + t,
$$

\n
$$
\varphi(\alpha, t) = (x(\alpha, t), z(\alpha, t))
$$

Also let $P = [0, \frac{\pi}{2}] \times [0, 1]$ and $D = \varphi(P) = \{(x, z): z \in [0, \frac{\pi}{2}], \sin z \leq x \leq$ $\min(1, z)$ }∪{ (x, z) : $z \in [1, 1 + \frac{\pi}{2}]$, $1 \le x \le \sqrt{2} \sin(z + \frac{\pi}{4} - 1)$ }. The function $Y : D \to$ [0*,*∞*)* is going to be defined by

$$
Y(\varphi(\alpha, t)) = y(\alpha, t) \quad (\alpha, t) \in P.
$$
 (8)

.

LEMMA 3.3. – Let $\alpha_1, \alpha_2 \in [0, \frac{\pi}{2}]$ and $\alpha_1 \neq \alpha_2$. Then $\varphi(\alpha_1, t_1) = \varphi(\alpha_2, t_2)$ if and only *if*

$$
t_1 = t_1(\alpha_1, \alpha_2) = \frac{\sin \alpha_1 - \sin \alpha_2 - (\alpha_1 - \alpha_2) \cos \alpha_2}{\cos \alpha_2 - \cos \alpha_1},
$$

\n
$$
t_2 = t_2(\alpha_1, \alpha_2) = \frac{\sin \alpha_1 - \sin \alpha_2 - (\alpha_1 - \alpha_2) \cos \alpha_1}{\cos \alpha_2 - \cos \alpha_1}.
$$
\n(9)

If $\alpha_1 > \alpha_2$ *then* $t_1 < 0$ *and* $t_2 > 0$ *.*

Proof. – Formulae (9) are obvious. Assume $\alpha_1 > \alpha_2$. Let $f(x) = \sin x - \sin \alpha_2$ – $(x - \alpha_2) \cos \alpha_2$. Then $f(\alpha_2) = 0$ and $f'(x) = \cos x - \cos \alpha_2 < 0$ for $\alpha_2 < x \leq \frac{\pi}{2}$, hence $f(\alpha_1) < 0$ and $t_1 = f(\alpha_1)/(\cos \alpha_2 - \cos \alpha_1) < 0$. Similarly, for $g(x) = \sin \alpha_1 - \sin x$ $(\alpha_1 - x) \cos \alpha_1$ we have $g(\alpha_1) = 0$ and $g'(x) = -\cos x + \cos \alpha_1 < 0$ for $0 \le x < \alpha_1$. Thus $g(\alpha_2) > 0$ and $t_2 > 0$. \Box

LEMMA 3.4. – Let the function t_2 be defined by formula (9) for $\alpha_2 < \alpha_1$ and by $t_2(\alpha_1, \alpha_2) = 0$ *if* $\alpha_1 = \alpha_2$ *. Let* $\alpha_1 \in (0, \frac{\pi}{2}]$ *be fixed. Then*

$$
D_{\alpha_1} = \{ \varphi(\alpha_2, t): \, \alpha_2 \in [0, \alpha_1], t \in [t_2(\alpha_1, \alpha_2), 1] \}
$$

is a convex subset of D.

Proof. – It is easily seen that

$$
\chi(z) = \begin{cases} z, & z \in [0, 1], \\ \sqrt{2}\sin(z + \frac{\pi}{4} - 1), & z \in [1, 1 + \frac{\pi}{2}] \end{cases}
$$

is a concave function on $I = [0, 1 + \frac{\pi}{2}]$ and that D_{α_1} is the part of its subgraph $\{(x, z): z \in$ *I,* $x \le \chi(z)$ } which lies above the segment $\{\varphi(\alpha_1, t_1): t_1 \in [t_1(\alpha_1, 0), 0] \cup [0, 1]\}$ = {*ϕ(α*2*, t*2*(α*1*, α*2*))*: *α*² ∈ [0*, α*1]} ∪ {*ϕ(α*1*,t)*: *t* ∈ [0*,* 1]}. (Recall that the functions *t*1*, t*² came from $\varphi(\alpha_1, t_1) = \varphi(\alpha_2, t_2)$.

LEMMA 3.5. – *The function* $Y: D \to [0, \infty)$ *is well defined by* (8)*. Y is a* C^{∞} -smooth *function on the interior of D.*

Proof. – By Lemma 3.3, φ : *P* \rightarrow *D* is a bijection. The Jacobi determinant of φ is $-t \sin \alpha \neq 0$ on int *P*, so that φ is a C^{∞} -diffeomorphism of int *P* onto int *D*. \Box

DEFINITION 3.6. – *Let* $T = \{(x, y, z): (x, z) \in D, |y| \leq Y(x, z)\}$ *and let* $F_i(\alpha, t) =$ $(x(\alpha, t), (-1)^i y(\alpha, t), z(\alpha, t))$ *so that* $F_2(P)$ *is the "front" surface of T*. Assume $(\alpha, t) \in$ int *P,* $S = F_2(\alpha, t)$ and $v = A \partial_\alpha F_2(\alpha, t) + B \partial_t F_2(\alpha, t)$ where $(A, B) \neq (0, 0)$ *. The line* $L = S + \mathbb{R} v$ *will be called a tangent at the point S. It is said to be an* outer *or* inner *or* surface *tangent if there is* $\varepsilon > 0$ *such that, for every* $r \in (-\varepsilon, 0) \cup (0, \varepsilon)$, $S + rv \notin T$ *or* $S + rv \in T$ *or* $S + rv \in F_2(P)$ *, respectively. Tangent L is said to be* rank-one *if v is a rank-one direction. The same terminology will be used for any segment* $L = S + [r_1, r_2]v$, $r_1 < 0 < r_2$.

Remark. – In order to give an interpretation of what follows, let us recall that if $\tilde{Y}: \tilde{D} \to \mathbb{R}$ is a function which has the second differential $D^2\tilde{Y}$ negatively semi-definite

everywhere on a convex set \tilde{D} , then the set $\tilde{T} = \{(x, y, z): (x, z) \in \tilde{D}, |y| \leq \tilde{Y}(x, z)\}$ is convex.

In our case, D^2Y is "negatively semi-definite with respect to a set of directions" (see Lemma 3.7) and we are going to prove that *T* is lamination convex (Proposition 3.11). Note that the set of directions is defined in terms of *all* variables including the dependent one and therefore it depends on the gradient of *Y* . Lemma 3.9 says that *D* is "sufficiently convex" (which is a property of the pair *D*, *Y*).

LEMMA 3.7. – *With the above notation, assume L is a rank-one tangent. Then either it is an outer tangent, or it is a surface tangent with the direction* $v = \partial_t F_2(\alpha, t)$ *.*

Proof. – Let

$$
u_1 = \partial_{\alpha} F_2(\alpha, t) = (\cos \alpha - t \sin \alpha, t \cos \alpha, 1),
$$

\n
$$
u_2 = \partial_t F_2(\alpha, t) = (\cos \alpha, \sin \alpha, 1).
$$

A simple calculation shows that $v = Au_1 + Bu_2$ is a rank-one direction if and only if

$$
(A, B) = k(2\sin^2\alpha, t^2 - \sin^2\alpha - 2t\cos\alpha\sin\alpha) \quad (k \in \mathbb{R})
$$
 (10)

or $A = 0$. In the second case, *v* is a multiple of u_2 and L is a surface tangent because $F_2(\alpha, t)$ is a linear function of *t*.

Assume (10) holds true. Let us write Df and D^2f for the first and second differential of a function *f* at the point $S_0 = \varphi(\alpha, t)$, respectively. (D²*f* is a quadratic form.) We will write $Df(w) = \langle Df, w \rangle$ and $D^2 f(w)$ when they are applied to a direction *w*. The set $F_2(P)$ can be viewed as the graph of the function *Y* (with interchanged second and third coordinates) and *T* is contained in the subgraph. To show that the tangent *L* is outer it is enough to verify that the second derivative of Y at S_0 in the direction $v_0 = A \partial_\alpha \varphi(S_0) + B \partial_t \varphi(S_0)$ equals

$$
D^{2}Y(v_{0}) = -8k^{2}\sin^{4}\alpha\cos\alpha < 0.
$$
 (11)

Although this could be done directly, we suggest the following way which reduces the size of expressions involved. Let $\omega(s) = \varphi(\alpha + As, t + Bs)$. Then

$$
\left. \frac{\partial^2}{\partial s^2} Y(\omega(s)) \right|_{s=0} = \mathcal{D}^2 Y(v_0) + \langle \mathcal{D}Y, (\mathcal{D}^2 x(A, B), \mathcal{D}^2 z(A, B)) \rangle. \tag{12}
$$

On the other hand, $Y(\omega(s)) = y(\alpha + As, t + Bs) = (t + Bs) \sin(\alpha + As)$, so that

$$
\frac{\partial^2}{\partial s^2} Y(\omega(s)) \Big|_{s=0} = 2AB \cos \alpha - A^2 t \sin \alpha.
$$
 (13)

Differentiating (8) and solving the resulting equation we easily obtain

$$
DY = \left(\frac{t\cos\alpha - \sin\alpha}{-t\sin\alpha}, \frac{\cos\alpha\sin\alpha - t}{-t\sin\alpha}\right).
$$
 (14)

The calculation of D^2x and D^2z is straightforward and gives

$$
D^{2}x(A, B) = -A^{2}(\sin \alpha + t \cos \alpha) - 2AB \sin \alpha, \quad D^{2}z(A, B) = 0.
$$
 (15)

Eqs. $(12)–(15)$ imply

$$
D^{2}Y(v_{0}) = -A\left(\frac{At}{\sin \alpha} - \frac{(A + 2B)\sin \alpha}{t}\right).
$$

Using (10) we get (11). \Box

LEMMA 3.8. – Let $(\alpha_1, t_1) \in P$, $\alpha_2 \in [0, \frac{\pi}{2}]$ and $t_2 < 0$. Let $\varphi(\alpha_1, t_1) = \varphi(\alpha_2, t_2)$. *Then* $0 \leq y(\alpha_1, t_1) < -y(\alpha_2, t_2)$ *.*

Proof. – By Lemma 3.3, $\alpha_1 \le \alpha_2$. If $\alpha_1 = \alpha_2$ then $0 \le t_1 = t_2 < 0$. Thus $\alpha_1 < \alpha_2$ and by (9)

$$
y(\alpha_2, t_2) + y(\alpha_1, t_1) = \frac{\sin^2 \alpha_2 - \sin^2 \alpha_1 - (\alpha_2 - \alpha_1) \sin(\alpha_2 + \alpha_1)}{\cos \alpha_1 - \cos \alpha_2} < 0
$$

where the inequality comes from

$$
(\alpha_2 - \alpha_1) \sin(\alpha_2 + \alpha_1) > \sin(\alpha_2 - \alpha_1) \sin(\alpha_2 + \alpha_1)
$$

=
$$
\frac{1}{2} (\cos 2\alpha_1 - \cos 2\alpha_2)
$$

=
$$
\frac{1}{2} (1 - 2\sin^2 \alpha_1 - 1 + 2\sin^2 \alpha_2).
$$

Thus $y(\alpha_1, t_1) < -y(\alpha_2, t_2)$. \Box

LEMMA 3.9. − *Let* $A = (a_1, a_2, a_3) \in T$ *and* $B = (b_1, b_2, b_3) \in T$ *be such that* $B - A$ *is a rank-one direction. Then* $[(a_1, a_3), (b_1, b_3)] \subset D$.

Proof. – By assumptions, $A_0 = (a_1, a_3) \in D$ and $B_0 = (b_1, b_3) \in D$, thus there exist $(\alpha_1, \tau_1), (\alpha_2, \tau_2) \in P$ such that $A_0 = \varphi(\alpha_1, \tau_1), B_0 = \varphi(\alpha_2, \tau_2)$. Furthermore, $|a_2| \leq$ $y(\alpha_1, \tau_1)$, $|b_2| \leq y(\alpha_2, \tau_2)$. If $\alpha_2 = \alpha_1$ then obviously $[A_0, B_0] \subset D$. We may assume e.g. $\alpha_2 < \alpha_1$.

Let $V_0 = \{(x, y, z): x^2 + y^2 - z^2 < 0, z < 0\}$. V_0 is an open convex cone. A point *X* is rank-one connected to $(0, 0, 0)$ if and only if it belongs to ∂V_0 when it is below $(0, 0, 0)$ or $X \in -\partial V_0$ when *X* is above $(0, 0, 0)$ ("below" and "above" refers to the value of the third coordinate). It is easily seen that if *L* is a line with rank-one direction and $(0, 0, 0) \notin L$ then *L* intersects ∂V_0 in at most one point and, therefore, $L \cap V_0$ is either an open half-line directed "downwards" or empty.

Let $V_A = A + V_0$ and $V_1 = \gamma(\alpha_1) + V_0$. The point $\gamma(\alpha_1)$ is rank-one connected to *F_i*(α_1 , τ_1) and $A \in [F_1(\alpha_1, \tau_1), F_2(\alpha_1, \tau_1)]$ hence $A \in -\overline{V_0} + \gamma(\alpha_1), \gamma(\alpha_1) \in \overline{V_A}$ and $V_1 \subset V_A$.

Let $t_1 < 0, t_2 > 0$ solve the equation $\varphi(\alpha_1, t_1) = \varphi(\alpha_2, t_2)$, cf. Lemma 3.3. Since $\gamma(\alpha_1)$ is also rank-one connected to the two points $F_i(\alpha_1, t_1)$, $i = 1, 2$, we have $F_i(\alpha_1, t_1) \in$ $\overline{V_1} \subset \overline{V_A}$. By Lemma 3.8, with indices 1,2 interchanged, $0 \leq y(\alpha_2, t_2) < -y(\alpha_1, t_1)$. Thus $F_1(\alpha_2, t_2)$, $F_2(\alpha_2, t_2)$ are in the open segment $(F_1(\alpha_1, t_1), F_2(\alpha_1, t_1)) \subset V_A$.

Since the direction $\partial_t F_i(\alpha_1, t)$ of the line $\{F_i(\alpha_2, t): t \in \mathbb{R}\}\)$ is a rank-one vector directed upwards, we have $F_i(\alpha_2, t) \in V_A$ for every $t \leq t_2$. Now, $B \in [F_1(\alpha_2, \tau_2), F_2(\alpha_2, \tau_2)]$ is not in *V_A* since it is rank-one connected to *A*. Therefore $\tau_2 > t_2 = t_2(\alpha_1, \alpha_2)$ and hence $B_0 = \varphi(\alpha_2, \tau_2) \in D_{\alpha_1}.$

By Lemma 3.4, it follows that $[A_0, B_0] \subset D_{\alpha_1} \subset D$. \Box

LEMMA 3.10. – Let $A = (a_1, a_2, a_3) \in T$, $B = (b_1, b_2, b_3) \in T$, $A_0 = (a_1, a_3)$, $B_0 =$ (b_1, b_3) *. Assume A and B are rank-one connected. Then the open segment* (A_0, B_0) *does not contain any point* $\varphi(\alpha, 0)$ *,* $\alpha \in [0, \frac{\pi}{2}]$ *. Furthermore* (A_0, B_0) *contains no point* φ (0*,t*)*, t* ∈ [0*,* 1]*, unless* [*A, B*] ⊂ [(0*,* 0*,* 0*),* (1*,* 0*,* 1)] ⊂ *T*.

Proof. – Let $v = (v_1, v_2, v_3) = B - A$. Assume there is $\alpha \in [0, \frac{\pi}{2}]$ such that $S_0 =$ $\varphi(\alpha, 0) \in (A_0, B_0)$. Clearly $\alpha \neq 0$, because $D \subset \mathbb{R} \times \mathbb{R}^+ \cup \{(0, 0)\}$. Since S_0 is a smooth point of the boundary of *D* and $[A_0, B_0] \subset D$ by Lemma 3.9, we have $(v_1, v_3) =$ $k\partial_{\alpha}\varphi(\alpha,0) = k(\cos\alpha,1)$ for some k. Thus $v_2 = \pm k\sin\alpha$ because v is assumed to be a rank-one direction. There is no loss of generality in assuming $v_2 > 0$, so that $v = k.(\cos \alpha, \sin \alpha, 1).$

Note that $v = k \partial_t F_2(\alpha, 0)$ and F_2 is linear in *t*. Thus $F_2(\alpha, t) = A$ or $F_2(\alpha, t) = B$ for some $t < 0$. However, Lemma 3.8 immediately implies that $F_2(\alpha, t) \notin T$ for every $t < 0$ which is a contradiction.

The second assertion is obvious since segment $M = [(0, 0), (1, 1)]$ is extremal in $D \subset \{(x, z): z \geq x\}$ and $Y = 0$ on *M*. \Box

PROPOSITION 3.11. – *The set T is lamination convex. Any set* \tilde{T} *such that* $T \setminus$ $\{\gamma(\alpha): \alpha \in (0, \frac{\pi}{2})\} \subset \tilde{T} \subset T$ *is lamination convex, too.*

Proof. – Assume that *T* is not lamination convex. Then there is $A = (a_1, a_2, a_3) \in T$, $B = (b_1, b_2, b_3) \in T$ such that segment [*A, B*] is not a subset of *T* and $B - A$ is a rankone direction. We will gradually change the segment with the goal to find an inner tangent parallel to the original [*A,B*].

Let $A_0 = (a_1, a_3)$, $B_0 = (b_1, b_3)$ and $A'_0 = (a_1, 0, a_3)$, $B'_0 = (b_1, 0, b_3)$. Obviously A_0 ≠ B_0 . By Lemma 3.9, [A_0 , B_0] ⊂ *D*.

We claim that $(A_0, B_0) \subset \text{int } D$ and thus $(A'_0, B'_0) \subset \text{int } T$. If not, then there is a point $(c_1, c_2, c_3) \in (A, B)$ such that $(c_1, c_2) = \varphi(\alpha_3, t_3) \in \partial D$. Hence $(\alpha_3, t_3) \in \partial P$. The shape of domain *D* rules out that $t_3 = 1$. By Lemma 3.10, $t_3 \neq 0$ and $\alpha_3 \neq 0$. Thus $\alpha_3 = \frac{\pi}{2}$ and $a_1 = b_1 = c_1 = 1$, $c_3 \ge \frac{\pi}{2}$. Assume $a_3 \ge c_3 \ge \frac{\pi}{2}$ (otherwise $b_3 \ge c_3 \ge \frac{\pi}{2}$ which is similar). Then $|a_2| \leq Y(1, a_3) = y(\frac{\pi}{2}, a_3 - \frac{\pi}{2}) = a_3 - \frac{\pi}{2}$. If $b_3 < \frac{\pi}{2}$ then, by Lemma 3.8, $|b_2| \le Y(1, b_3) < -y(\frac{\pi}{2}, b_3 - \frac{\pi}{2}) = \frac{\pi}{2} - b_3$, hence $|a_2 - b_2| \le |a_2| + |b_2| < a_3 - b_3$ and, in consequence, *A* and *B* are not rank-one connected. If $b_3 \ge \frac{\pi}{2}$ then $Y(1, z) = z - \frac{\pi}{2}$ is linear on $[b_3, a_3]$ and $[A, B] \subset T$. Since any case leads to a contradiction, we see that, indeed, $(A_0, B_0) \subset \text{int } D$.

Eventually truncating the segment at a point $(x, 0, z) \in T$, with $(x, z) \in D$, we may assume $a_2b_2 \ge 0$. We lose no generality assuming $0 \le a_2$, $0 \le b_2$ because *T* is symmetric. Finally, we can exchange A, B to have $0 \le a_2 \le b_2$.

Now, we will shift the segment $[A, B]$. For $\tau \in [0, b_2]$, let $A_{\tau} = (a_1, a_2 - \tau, a_3)$, $B_{\tau} =$ $(b_1, b_2-\tau, b_3)$, and $L_\tau = [A_\tau, B_\tau] \cap \{(x, y, z): y \geq 0\}$. That means $L_\tau = [\tilde{A}_\tau, B_\tau]$ where

 $\tilde{A}_{\tau} = A_{\tau}$ for $\tau \le a_2$ and $\tilde{A}_{\tau} \in (A'_0, B'_0)$ for $a_2 < \tau < b_2$. Recall that $(A'_0, B'_0) \subset \text{int } T$. Let int_{*D*} *T* be the interior of *T* relative to { (x, y, z) : $(x, z) \in D$ }. For $\tau > 0$, \tilde{A}_{τ} , $B_{\tau} \in \text{int}_D T$.

Let $\tau_1 = \sup{\tau \in [0, b_2] : L_{\tau} \setminus T \neq \emptyset}$. Obviously $L_{b_2} \subset T$ and hence $\tau_1 \leq b_2$. Since *T* is closed we have $L_{\tau_1} \subset T$ and $\tau_1 > 0$. Since the endpoints of L_{τ_1} are in $\int T$, L_{τ_1} must have an interior point $S = (s_1, s_2, s_3)$ which belongs to the boundary of *T*, i.e. $s_2 = Y(s_1, s_3)$. Since $(s_1, s_3) \in \text{int } D$ and *Y* is a smooth function on int *D*, L_{τ_1} is a rank-one inner tangent.

By Lemma 3.7, we know that L_{τ_1} must be a surface tangent with the direction $\partial_t F_2(\varphi^{-1}(s_1, s_3))$. Since F_2 is linear in *t*, L_{τ_1} is in the surface $F_2(P)$. However, $\tilde{A}_{\tau_1}, B_{\tau_1} \in$ int_D *T*. Thus there exists no segment [*A*, *B*] as above and *T* is lamination convex.

As regards points $\gamma(\alpha)$, $\alpha \in (0, \frac{\pi}{2})$, the first part of Lemma 3.10 says that they may be freely removed from T and the set remains lamination convex.

Remark. – For $\alpha \in (0, \frac{\pi}{2})$, not only the set $T \setminus \{\gamma(\alpha)\}\$ is lamination convex. Also for $\hat{T} = T \setminus \{F_i(\alpha, t): t \in [0, 1), i = 1, 2\}$ the same is true. Indeed if $t \in (0, 1)$ and $F_2(\alpha, t) \in (A, B)$ where the segment (A, B) has rank-one direction and $A, B \in \hat{T}$, then by Lemma 3.7, (A, B) is a surface tangent with the direction $\partial_t F_2(\alpha, t)$. Hence A, B are in the segment we removed from *T* , a contradiction.

Proof of Theorem 1.1. – Let
$$
0 < \alpha_2 < \alpha_1 < \frac{\pi}{2}
$$
 and
\n
$$
K = E_0 \cup \{ \gamma(\alpha_2) \}
$$
\n
$$
= \left\{ (\sin \alpha + \cos \alpha, (-1)^i \sin \alpha, \alpha + 1) \colon \alpha \in \left[0, \frac{\pi}{2}\right], i = 1, 2 \right\} \cup \{ (\sin \alpha_2, 0, \alpha_2) \}.
$$

Then the point $(\sin \alpha_1, 0, \alpha_1)$ does not belong to the lamination convex hull of K (Proposition 3.11) but does belong to its closure (Lemma 3.1). For symmetric two by two matrices, the set

$$
\left\{ \begin{pmatrix} z+x & y \\ y & z-x \end{pmatrix} : (x, y, z) \in K \right\}
$$

serves as an example. \square

Remarks. –

- (1) It is very easy to see that for every compact set K , $L(K)$ is an F_{σ} -set. Is it always a G_{δ} -set?
- (2) We believe that in some classes of compact subsets of $\mathbb{M}^{2\times 2}_{sym}$ it is typical, in a sense, for a compact K to have non-closed $L(K)$. For example if K consists of two curves (or segments) and a point which is rank-one connected to both curves, it is likely that the solution of an equation similar to (5) will move outside $L(K)$ *unless* the critical area is covered by other rank-one connections (far from or closely related to the one in (5)). Note, however, that the convex combination coefficients on the right-hand side of (5) have to be properly chosen and, in general, they will depend on α . If the above works when the two curves are segments with rank-one directions, *K* could be replaced by a five-point set.
- (3) The first compact $K \subset \mathbb{R}^3 \cong \mathbb{M}^{2 \times 2}_{sym}$ for which we had proven non-compactness of $L(K)$ was

402 J. KOLÁŘ / Ann. I. H. Poincaré – AN 20 (2003) 391–403

$$
K = \{(x, y, 0): 4(x - 1)^2 + y^2 \leq 4\} \cup \{(a_0, 0, \sqrt{8(a_0 - 2)})\},\
$$

where $a_0 \in (2, 4]$. The lamination convex superset *T* of this compact is $\{r((1$ *t*)*x* + *t*(4−*x*), ±(1−*t*) $\sqrt{4-4(x-1)^2}$, $t\sqrt{8(2-x)}$): $r \in [0, 1]$, $t \in [0, 1]$, $x \in$ [0*,* 2]}. The method of the proof was quite similar: Contracting a "bad" segment towards point *(*0*,* 0*,* 0*)*, an inner rank-one tangent would be found, but none exists except "canonical" surface tangents. The sin-based curves in our example were chosen because they lead to much easier calculations at the cost of some additional reasoning.

(4) We do not know whether the set *T* from Definition 3.6 (considered as a subset of $M^{2\times 2}$) is rank-one convex or even quasiconvex. Therefore we do not know what are rank-one convex and quasiconvex hulls of *K*. In the case *T* would be rankone convex, the question Q1 of [2, p. 87 (§ 4.1.2)] would be answered negatively with an impact on understanding of rank-one extreme points.

The set *T* is not polyconvex. Indeed, taking three matrices $M = \{\gamma(0), e_1(\frac{\pi}{2}),\}$ $e_2(\frac{\pi}{2})$ } and $t = (\frac{\pi^2}{2} + 2\pi - 2)/(\pi^2 + 4\pi) = 0.41$, the matrix $X = (1 - 2t)\gamma(0)$ $+ t e_1(\frac{\pi}{2}) + t e_2(\frac{\pi}{2})$ belongs to the polyconvex hull of *M* since the determinants of the three matrices are $d_0 = 0$, $d_1 = d_2 = \frac{\pi^2}{4} + \pi - 1$ and it is easy to check that determinant of the matrix *X* equals $(1 - 2t)d_0 + td_1 + td_2$. On the other hand, $X \notin T$ since it does not lie "above" *D*. Without giving any details we note that *X* can be separated from *K* by a translate of the quasiconvex function F_0 defined in [5], so that the quasiconvex and polyconvex hulls of *K* are different.

(5) In a future paper we plan to give another proof of Theorem 1.1 as well as some results related to rank-one convexity, namely a version of Krein-Milman type theorem and the proof that rank-one convex hull and quasiconvex hull in $\mathbb{M}^{2\times 2}_{sym}$ have infinite Carathéodory number. Also, we will provide a proof for formula (7) "different" from direct calculation of the limit of corresponding prelaminates.

4. Upper semi-continuity

Let *X* be a metric space. For $\varepsilon > 0$, the ε -neighborhood of a set $A \subset X$ will be denoted by $\mathcal{U}_{\varepsilon}(A) = \{x \in X: \text{dist}(x, A) < \varepsilon\}.$

On $K(X)$, the set of all nonempty compact subsets of X, the Hausdorff metric is defined by $\rho(K_1, K_2) = \inf\{\varepsilon: K_1 \subset \mathcal{U}_{\varepsilon}(K_2) \text{ and } K_2 \subset \mathcal{U}_{\varepsilon}(K_1)\}\)$. This definition can be extended for non-compact sets A_1 , A_2 , but it turns out that $\varrho(A_1, A_2) = \varrho(\bar{A}_1, \bar{A}_2)$.

We say that a function $f: \mathcal{K}(X) \to \mathcal{K}(X)$ is upper semi-continuous (with respect to Hausdorff metric) if for every $\varepsilon > 0$ and $K_0 \in \mathcal{K}(X)$ there is $\delta > 0$ such that $f(K) \subset \mathcal{U}_{\varepsilon}(f(K_0))$ whenever $K \in \mathcal{K}(X)$ and $\rho(K, K_0) < \delta$.

Let $Q(K)$ denote the quasiconvex hull of a set $K \subset \mathbb{M}^{m \times n}$. In [6], it is shown that the function $K \mapsto Q(K)$ is upper semi-continuous with respect to Hausdorff metric on the space of all compact subsets of $M^{m \times n}$. Lamination convex hull and separately lamination convex hull do not share this property.

PROPOSITION 4.1. – *Function* $K \mapsto \overline{L_{sc}(K)}$ *is not upper semi-continuous with respect to Hausdorff metric on* $K(\mathbb{R}^3)$ *. Function* $K \mapsto \overline{L(K)}$ *is not upper semi-* *continuous on* K*(X)* (*with respect to Hausdorff metric*) *where*

$$
X = \mathbb{M}_{\text{diag}}^{3 \times 3} \quad or \quad X = \left\{ \begin{pmatrix} a & b & 0 \\ 0 & 0 & c \end{pmatrix} \right\}.
$$

We do not know what the cases of $M_{sym}^{2\times2}$ and $M_{sym}^{2\times2}$ look like.

Proof sketch. – <u>Let *K* be as in (1), $\varepsilon = \frac{1}{3}$, $J = (0, -1, 0)$, $x_n = (-\frac{1}{2}, \frac{1}{n}, \frac{1}{n}) \in L_{sc}(K)$,</u> *x* = $(-\frac{1}{2}, 0, 0)$ ∈ $\overline{L_{sc}(K)} \setminus L_{sc}(K)$, $K_0 = K \cup \{x + J\}$, $K_n = K \cup \{x_n + J\}$. Then $\rho(K_n, K_0) \rightarrow 0$. On the other hand

 $L_{sc}(K_0)$ ⊂ $L_{sc}(K)$ ∪ [$x + J$, (0*,* −1, 0)] (a separately lamination convex set) $L_{sc}(K_n)$ ⊃ $[x_n, x_n + J]$,

hence $L_{sc}(K_n) \not\subset \mathcal{U}_{\varepsilon}(L_{sc}(K_0))$. Thus $K \mapsto \overline{L_{sc}(K)}$ is not upper semi-continuous on \mathbb{R}^3 and after a transformation we see that $K \mapsto \overline{L(K)}$ is not upper semi-continuous on $\mathbb{M}^{3 \times 3}_{\text{diag}}$.

For the last case we start with \tilde{K} and *L* from Example 2.4 and set $J = (0, 0; -2)$, $x_n = (\frac{1}{n}, \frac{1}{2}; 0) \in L_{(2,1)}(\tilde{K}), x = (0, \frac{1}{2}; 0), K_0 = \tilde{K} \cup \{x + J\}, K_n = \tilde{K} \cup \{x_n + J\}.$ Again, the segment $[x_n, x_n + J]$ is contained in $L_{(2,1)}(K_n)$ but $[x, x + J]$ does not belong to $L_{(2,1)}(K_0)$ (nor to its closure) because K_0 is contained in the bi-convex set *L* ∪ { $x + J$ }. $□$

Remark. – Let $L^{c}(K)$ be the *closed lamination convex hull* of $K \subset \mathbb{M}^{m \times n}$, i.e., the smallest *closed* lamination convex set containing *K*. Similarly, the closed separately lamination convex hull $L_{\text{sc}}^{c}(K)$ is defined for $K \subset \mathbb{R}^{n}$. There are compacta *K* such that $L^{c}(K) \neq \overline{L(K)}$ and $L_{\text{sc}}^{c}(K) \neq \overline{L_{\text{sc}}(K)}$, respectively. The two sets named K_0 above serve as an example. We do not know whether $L^{c}(K) = \overline{L(K)}$ for every compact $K \subset M_{sym}^{2 \times 2}$ or $K \subset \mathbb{M}^{2 \times 2}$.

REFERENCES

- [1] R.J. Aumann, S. Hart, Bi-convexity and bi-martingales, Israel J. Math. 54 (1986) 159–180.
- [2] B. Kirchheim, Geometry and rigidity of microstructures, Habilitation thesis, Universität Leipzig, 2001.
- [3] B. Kirchheim, Private communication.
- [4] S. Müller, V. Šverák, Attainment results for the two-well problem by convex integration, in: J. Jost (Ed.), Geometric Analysis and the Calculus of Variations, International Press, Cambridge, MA, 1996, pp. 239–251.
- [5] V. Šverák, New examples of quasiconvex functions, Arch. Rat. Mech. Anal. 119 (1992) 293– 300.
- [6] K. Zhang, On the stability of quasiconvex hulls, Preprint Max-Plank Inst. for Mathematics in the Sciences, Leipzig, 33/1998.