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ABSTRACT. — ForK a compact set ol: x n matrices, let I(CK) denote the lamination convex
hull of K.

We give an example of a compact gétof symmetric two by two matrices such thatk)
is not compact, and similar examples for separate convexi?iand bi-convexity inR? x R.
Furthermore we show that functidn whereL (K) = L(K), is not upper semi-continuous with
respect to Hausdorff metric on the space of all compactiSaidiagonal 3x 3 matrices.
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RESUME. — Si K est un ensemble compact des matrices du type n, L(K) signifie le
plus petit ensemble lamineusement convexe contekiaityn ensemble&K est lamineusement
convexe sia, b] C K pour tousz, b € K tels quez — b est une matrice de rang 1.)

Nous démontrons qu'il y &, un ensemble compact des matrices symétriques d’ordre 2 tel
gue L(K) ne soit pas compact. Nous présentons aussi des exemples similaires pour convexi
séparée dan®&® et bi-convexité dan®? x R. En plus, nous démontrons que I'application
L: K — L(K) n'est pas semi-continue superieurement sur 'espace des ensembles compacts
matrices diagonales d’ordre 3 muni de la métrique de Hausdorff.
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1. Introduction

We denote byv["*" the set of all rea x n matrices with theR™" norm; Mg/, Migiag
are the sets of symmetric and diagonak n matrices, respectively. A s& C M™*"
is calledlamination conveX4] if for all A, B € K, which satisfy rankA — B) =1, one
has(1-A)A+AB € K forall » € (0, 1). For a givenk ¢ M™*", thelamination convex
hull L(K) is defined as the smallest lamination convex set which conif§.

Zhang [6] writes that “it is not clear in general whether for a compact set, the
lamination convex hull is closed”. In fact, it is easy to obtain a counter-exampleiri
from a paper of Aumann and Hart [1], see Example 2.4. The main purpose of this pape
is to give an example of a compact getc ngxn% such that I(K') is not compact.

For convenience, we identiffj3;7 with R® by the linear bijections(x,y,z) =

(¥t .2.). We say that(x,y,z) € R® is arank-one directionif det¢(x,y,z) =
7?2 — x? — y2 = 0, that pointsA, B arerank-one connectedf B — A is a rank-one
direction and that a seét  R® is lamination convexf (1 — A)A + AB € K whenever
A, B € K are rank-one connected ande (0, 1). Again, thelamination convex hull
L(K) of a setk c R? is the smallest lamination convex set containikig Obviously,

K C R®is lamination convex if and only i (K) c M7 is lamination convex, and
L(¢(K)) = ¢(L(K)) for everyK c R®.

THEOREM 1.1. — There is a compact s& C M7 such thatl (K) is not compact.

Before proving the theorem for the symmetric two by two matrices in Section 3 we
would like to consider the easier caseMif *” with max(m, n) > 2 where examples can
be constructed using related notions of separate convexity and bi-convexity. In Section
we explain consequences to upper semi-continuity of the mapping L (K).

2. Examples

x 0 O

The diagonal matrix(o ¥ o) is of rank one if and only if exactly one of the
0 0 z

numbersy, y, z is non-zero. Let us say th&t C R” is separately lamination convéi K

contains every segment with end-pointskinwhich is parallel to one of the coordinate
axes. This is equivalent to lamination convexity of the corresponding set of diagonal
matrices. Theseparately lamination convex hull(K) is defined to be the smallest
separately lamination convex setl®i that containsk .

Example 2.1 (Separate convexity iR® and diagonal3 x 3 matrices). — Let
K={111}U{(-10,0),(0,-10),(0,0,-1)}

11 1 1 1 1
CUL( ) ) e ) @
e nn n+1 n n+1 n+1

By induction, Ls(K) contains each of the segments

[(111)(111”9(1 11)
n'n'n) n’n n+1'n' n)’
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Kl 11)(1 11)]9(1 1 1)
n+1'n’ n) \n+1" “n n+1'n+1n/)’

[(1 1 1)(1 1 1)}9(1 1 1)
n+1l'n+1'n)" \n+1 n+1 n+1'n+1'n+1

for everyn € N. Consequently(0, 0, 0) belongs to the closure ofl(K). On the other
hand, it does not belong ta;l(K) since the set

{(=1,0,0), (0, —1,0), (0,0, 1)}
U {A € R% atleast two coordinates ef are strictly positive

is separately lamination convex and contakhsThusK C R? is compact, but k(K) is
not and the same is true for the lamination convex hull of the compact set

x 0 O
{(0 y 0): (x,y,z)eK}.
0 0 z

Example2.2 (Separate convexity irR? and diagonal 2 x 2 matrices). — The
lamination convex hull of a compact subsetMﬁi:é is always compact. This follows
by the next result which is due to Kirchheim [3].

PROPOSITION 2.3. —If C C R? is compact, theth.s.(C) is compact as well.

Proof (B. Kirchheim). -By x;, x, we denote the two coordinates efe R?, and
e1=(1,0),e,=(0,1). Let LO(C) = C and fork € N let

L (©) =y zl: v,z e LTV (C), yp=z10r y2 =22}
Then LY (C) are compact andd(C) = [J, L¥(C). We say that gea(x) = k provided

x e L®C) \ LED(C). Suppose the claim fails. Then we can find a compact set
C C R?\ [—1, 1]? such that

0€ Lse(C) \ Ls(C).
Obviously, fori =1, 2 we findo; € {—1, 1} such that

t-o;e; ¢ Lso(C) whenever > 0. (2)
Moreover, we fince > 0 such that
ox; <—& Or |x3_;|>¢ forallxeC, ie{l,?2}. 3)
Now we set
M; = {x: |x3_;| < e ando;x; > —¢}, Mt ={x € M;: o;x; >0}

and claim that
Ls(C) N M =0, 4)
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Let us assume that (4) is not true for aa {1, 2}. Let g = min{gen.(x): x € Lsc(C) N
M;"}. Due to (3) we knowg > 1 and find xin the compact se¥;" "L (C) maximizing
the non-negative functiom — o;x; over this set. By the definition of § (C) there are
y,z € LED(C) suchthat € LY ({y, z}). From the maximality of;x; we conclude that
0;yi =0 = 0;X; 2 0. The deﬁnition Otg Imp|IeS thaty, Z ¢ Mi+’ hencay3_,-|, |Z3_,'| >

¢ andys_;z3_; < 0. Consequently,

Ls(C)N{t-oje;is t =0} D[y, zIN{t - ojei: t = 0} = {x;e;},

a contradiction to (2) establishing (4).

Finally, denote by’ > 1 the minimum of gep over the nonvoid setd«(C) N M1 N M.
Again, letx’ maximizeos;x; over L& (C) N My N M, and suppose’ € LY ({y’, z'}) for
¥,z e LE™(C). As before, we infer tha; =z} = x}, |4, [z, > & andyjz, < 0. So

Lse(C)N M5 DIy, 21N M5 #0,
which together with (4) finishes the proof

Example 2.4 Bi-convexity inR? x R and2 x 3 matrices). — A setA C Rf x R/ is bi-
convex1] if the sectionsA,, A’ are convex for every € R¥ andy € R!. Thebi-convex
hull L ;,(A) is defined accordingly. Obviously, is bi-convex if and only if the set

X1 X2 ... xx 0 0O ... 0) 2x (k1) -
M ,
{(o 0 ... 0 y y2 .. w)€

(xl,Xz,...,xk;yl,yz,...,yz)eA}

is lamination convex. Aumann and Hart [1] constructed a compadf sefR? x R? such
that L2 2 (K) is not compact. We will show that this is possibleRA x R and hence
also for matrices of the forrg? 7 9).
Let v = (0,2), vo = (-1,0), v3 = (1, -1, v4 = (2,1) be the usual four-point
configuration. Letw; = (0, 1), wz = (0, 0), wz = (1, 0), ws = (1,1) and
Lo= ([0, 1] x [O, 1]) U ({0} x [0, 2]) U ([—1, 1] x {0}) U ({l} x [—1, 1])
U ([0, 2] x {1}) = Lsc({vi, wi}).
Finally, let K = Z(([0, 1] x {v1,v2, v3,va}) U ({1} x {w1, wp, wa, wa})) and L =
Z(((0,1] x Lo) U ({0} x {v1, v2, v3, v4})), WhereZ(x; y, z) = (x, y; z) identifiesR x R?
with R? x R. We claim that lo.1)(K) = L and this is not compact.

Let w;(t) = Z(t,w;), vi(t) = Z(t,v;). We havew;(1) € K and then inductively
w;(27%) € L2.1y(K) for everyi € {4,3,2,1} andk € N, because the following convex
combinations are compatible with the definition of bi-convexiby(t/2) = %wl(t) +
2v4(0) and w; (1) = Jw;a(r) + 3vi(r) for i =3,2,1. Now it is easy to see that
w; (1) € L(z,l)(I?) for everyt € (0, 1] and hencel. C L(z,l)(I?). On the other handl
is bi-convex, so that f2 1)(K) C L.
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3. The proof of Theorem 1.1

Notation — Fora € [0, 7] let e;(a) = (sina + cosa, (=Disina,a +1) andy (o) =

(sine, 0,a). Let Eg = {e;(@): @ € [0, 3], i =1, 2}.

LEMMA 3.1. —Forevery0 <az <oy < %, ¥ (a1) € L(EgU {y (a2)}).
Proof. —Fori = 1, 2, let®; : R® x R® — RR® be defined by

®;((a,b,0), (x,y,2) = ((a—x)*+ (b —y)*— (c —2)%,
sin(z—1)+cosz—1) —x,
(=D'sinz — 1) — y).

For every @ € [ap, 1] and i = 1,2 we have ®;(y(«),e;(«)) = 0, as well as
det(a(iif’z)(y(a), ei(@))) = 2coga — 2 # 0. By the implicit function theorem, there is
8o > 0 and two smooth functiong,, ¢, :Us, — R* defined on they-neighborhood/;,
of {y(a): a € [z, 21]} such thatd; (w, ¢;(w)) =0 for w € Us, and ¢; (y («)) = e; ()
for a € [a, 1]. Note that by the definition ob;, ¢; (w) — w is a rank-one direction and
@i(w) = e; () for all w € Us,, wherea + 1 is the third coordinate af; (w). By making
8o smaller, we may ensure that(w) € Eq for w € Us,. Let u;(w) = ¢;(w) — w. Re-
placing$p by a smaller number again, thereks> 0 such that the functions,, u, are
K-Lipschitz onlfs, and|jus(w) |, lu2(w)|| < K for w € Us,.

It is easy to check that satisfies the equation

_ ui(y (@) +uz(y (o))
5 )

y (@) ®)

Next, we will approximate the solutiop by a piecewise linear curve with derivatives
given byu; on odd and by:, on even segments. We do an easy error estimate usual in
numerical analysis.

Lets > 0 be given. Find e N such that, for: = (a; — a2)/n, Kh < §g and

h )
5@Lipy + K)((A+hK)" ~1) < min<5, EO>
Fork=1,...,n,define

h h
wo = y (ar2), Wi =we-1+ Eul(wk—l)» we =w_1 + EMZ(w"‘%)' (6)

Lete;, = lwy — y(aa+kh)|,k=0,1,...,n. Then
k41 = ||wks1 — ¥ (a2 + (k + Dh)||

ar+(k+1)h

ua(wy) + uz(wy 1)
wg — Y (o2 + kh) +

2

— y (o) do

a+kh

and hence, by (5),
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az+(k+1)h

saecty [ Juao =y )]+ fuatn. ) oy @) | do

a+kh

L&+ = (Llp uy(hLipy + &) + Lip I/lg(]/l Lipy + hHul(wk)H + 8k>)
< Agg + B
whereA = (1+hK) andB = ’“ZTK(Z Lipy + K). We havesg = 0 and, by induction,

B(1+A+A*+. ...+ A" =B(AF-1)/(A-1)

_ %(2 Lipy + K) ((L+hK)* — 1)
<min(é, 8p/2).

Hencewy, Wiyl € Us, (so that the sequence is well defined) dindaq) — w, || < 6.
Furthermorewk+1 € [wy, pr(wy)], wry1 € [wk+1 (pg(wk+1)] and the two segments

have rank-one dlrectlons so thag, Wi, .o Wy belong to the lamination convex hull of

EqU{wg} = EqU{y (a2)}. Sinces > 0 was arbltrarlly smally («y) lies inits closure. O

Remark 3.2. — Under the assumption of Lemma 3.1 we have h@t) belongs to
the rank-one convex hull ofg U {y (a2)}. Also, the corresponding laminage with
barycentre iny («1) can be given explicitly:

w(A)=¢" (a1— az)gy(az)(A) + = Z / g (@) dy. (7

h (Otzal)ﬂe Y

wheres, ) is the Dirac measure at(ay).
Indeed, (6) determinates prelaminatg with barycentrew™ supported by finite set

[y (a2); @1 (w ")), (pz(w(") ), k=1,...,n} C K, recall thatu; (w) = ¢;(w) —w is a

rank-one direction. We ‘added |nd|ce;$) to emphasize that pointe; depend o
as well. A calculation shows that the weak limit gf, is u; the barycentre ofs is
limw™ =y ().

Notation — Let
x(o, t) =Sina + 1 COSa,
y(a, t) =t Sing,
z(a,t) =a +t,
pla, 1) = (x(a, 1), z(, 1)).

Also let P =[0,%] x [0,1] and D = ¢(P) = {(x,2): z € [0,%], sinz < x <
min(l, )} U {(x,2): z€[1, 14 %], 1<x < +/2sinz + Z — 1)}. The functiony : D —
[0, 00) is going to be defined by

Y(p(a, 1) =y(a, 1) (o, t) € P. (8)
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LEMMA 3.3.—Letay, az € [0, 7] anday # ap. Theng(ay, t1) = ¢(az, t2) if and only
if
Sina1 — Sinas — (o — @) COSan
f1 =tn(ay, ap) = )
COSxy — COSg
Sil’lotl — SinOlz — (01 — ap) COSxq

COS» — COS1

(9)

tr =t (ay, ap) =

If a1 > apthent; < 0andr, > 0.

Proof. —Formulae (9) are obvious. Assunag > ay. Let f(x) = sinx — sina, —
(x — ap) cosap. Then f(az) =0 and f(x) = cosx — cosap < 0 for oz < x < 7, hence
f(x1) < 0andr = f(a1)/(cosa, — cosay) < 0. Similarly, forg(x) = sina; — sinx —
(1 — x) cosa; we haveg(a;) =0 and g(x) = —cosx + coswy; < 0 for 0< x < og.
Thusg(ay) > 0and, > 0. O

LEMMA 3.4.— Let the functionz, be defined by formul#9) for o, < «; and by
tr(oeq, o) = 0if o1 =, Letay € (0, %] be fixed. Then

Dy, = {@(az, 1): a2 €0, 1], 1 € [t2(c1, a2), 11}

is a convex subset @b.

Proof. —It is easily seen that

[z z€[0,1],
XD = V3sinz+2 1), ze[l1+3]

is a concave function oh= [0, 1+ 7] and thatD,,, is the part of its subgrapfix, z): z €
I, x < x(2)} which lies above the segmefp (a1, 1): #1 € [t1(x1,0),0] U [0, 1]} =
{o(az, ta(a1, @2)): as € [0, a1]} U {p(ag, t): t € [0, 1]}. (Recall that the functions, 7
came fromyp (g, 1) = @(ap, t2).) O

LEMMA 3.5.—The functiont : D — [0, co) is well defined by8). Y is aC*°-smooth
function on the interior ofD.

Proof. -By Lemma 3.3,¢: P — D is a bijection. The Jacobi determinant @fis
—tsina # 0 on intP, so thaty is aC*>-diffeomorphism of intP onto intD. O

DEFINITION 3.6.—LetT ={(x,y,2): (x,z) € D,|y| <Y(x,2)} and letF;(«,t) =
(x(a, 1), (=1 y(a, t), z(a, 1)) SO thatF»(P) is the “front” surface of 7. Assumeéa, t) €
intP,S= Fy(a,t) andv = A 9, Fo(a, t) + B 0, Fo(a, t) where(A, B) # (0,0). The line
L = S + Rv will be called atangentat the pointS. It is said to be arouteror inneror
surfacetangent if there i > 0 such that, for every € (—¢,0) U (0,¢), S+rv ¢ T or
S+rveTorS+rve F(P), respectively. Tangerit is said to berank-oneif v is a
rank-one direction. The same terminology will be used for any segmens + [r, ro]v,
rg < 0< rp.

_Remark—In order to give an interpretation of what follows, let us recall that if
Y :D — Ris a function which has the second differentiglYDnegatively semi-definite
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everywhere on a convex sB, then the sel’ = {(x, y,2): (x,z) € D, |y| < Y(x,2)} is
convex.

In our case, BY is “negatively semi-definite with respect to a set of directions” (see
Lemma 3.7) and we are going to prove tfats lamination convex (Proposition 3.11).
Note that the set of directions is defined in termalbVariables including the dependent
one and therefore it depends on the gradierit.dfemma 3.9 says thd? is “sufficiently
convex” (which is a property of the palp, Y).

LEMMA 3.7.— With the above notation, assumas a rank-one tangent. Then either
it is an outer tangent, or it is a surface tangent with the directioa 9, F>(«, ).

Proof. —Let

uy =0, Fo(a, t) = (COS — ¢ Sina, 1 COSr, 1),
U =9, F»>(a, t) = (cosw, Sina, 1).

A simple calculation shows that= Au; + Bu, is a rank-one direction if and only if
(A, B) = k(2sirfa, t* — sifa — 2t cosa sina) (k€ R) (10)

or A =0. In the second case,is a multiple ofu, and L is a surface tangent because
F>(a, t) is a linear function of.

Assume (10) holds true. Let us writefDand I f for the first and second differential
of a function f at the pointSy = ¢(a, t), respectively. (Bf is a quadratic form.) We
will write D f(w) = (D f, w) and ¥ f (w) when they are applied to a direction The
set F>(P) can be viewed as the graph of the functiBn(with interchanged second
and third coordinates) andl is contained in the subgraph. To show that the tangent
L is outer it is enough to verify that the second derivativercét Sp in the direction
vo = Ady9(So) + B 9:¢(So) equals

D?Y (vg) = —8k? sin*« cosx < O. (11)

Although this could be done directly, we suggest the following way which reduces the
size of expressions involved. Lel(s) = ¢(a + As, t + Bs). Then

2
g;Y@Kﬂ) = D?Y (vo) + (DY, (D?x(A, B), D?z(A, B))). (12)

s=0

On the other handy (w(s)) = y(@ + As, t + Bs) = (t + Bs) Sin(e + As), so that

9° :
ﬁY(a) (s))| =2ABcosx— A% sina. (13)
N

s=0

Differentiating (8) and solving the resulting equation we easily obtain

1 COSx — Sina  COSx Sina — ¢
DY=< L no ). (14)

—tsine °~  —tSina
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The calculation of Bx and ¥z is straightforward and gives
D?x(A, B) = —A?(sina + t cose) — 2AB sina, D?z(A, B) = 0. (15)

Egs. (12)—(15) imply

D2Y (vo) A( At (A+ZB)sina)
0) = — — .

sina t
Using (10) we get (11). O

LEMMA 3.8.— Let (a1,11) € P, a2 € [0, 5] and 1, < 0. Let p(ay, 11) = ¢(az, 1).
Then0 < y(a1, 11) < —y(a2, 12).

Proof. =By Lemma 3.3¢1 < ap. If o3 =« then 0< 73 =1, < 0. Thusa; < a, and
by (9)

sir? oy — sir? a1 — (oo — aq) Sin(o + aq)
<
COSo; — COSay

(oo, 1) + y(ag, t1) = 0

where the inequality comes from
(o2 — 1) SiN(a2 + arq) > Sin(as — aq) Sin(oeo + o)

1
= E(cos 201 — COS2w)

1
=§(1—2sinza1— 1+ 2sirfay).
Thusy(ay, 1) < —y(ag, ). O

LEMMA 3.9.—LetA =(aq,as,a3) € T andB = (bq, bo, b3) € T be such thaiB — A
is a rank-one direction. Thef{ay, as), (b1, b3)] C D.

Proof. —By assumptionsAg = (a1, az) € D and By = (b1, b3) € D, thus there exist
(a1, 11), (02, T0) € P such thatAg = o(ag, 11), Bo = @(a2, 12). Furthermore,|a2| <
y(a, 11), |b2] < y(oz, 12). If an = a3 then obviously[Ag, Bo] € D. We may assume
e.0.a2 < og.

Let Vo= {(x,y,2): x>+ y2—272<0, z <0}. V is an open convex cone. A point
X is rank-one connected t®, 0, 0) if and only if it belongs t0d Vo when it is below
(0,0,0) or X € —dVy when X is above(0, 0,0) (“below” and “above” refers to the
value of the third coordinate). It is easily seen thal iis a line with rank-one direction
and (0,0,0) ¢ L then L intersectsdVy in at most one point and, therefore,N V; is
either an open half-line directed “downwards” or empty.

Let V4, = A+ Vo andV; = y (1) + Vo. The pointy («1) is rank-one connected to
Fi(a1,71) and A € [Fi(a, 71), Fo(e1, T1)] henceA € —Vp + y (1), v (1) € V4 and
Vi C Vy.

Lety; < 0,1, > 0 solve the equatiop(as, 1) = ¢(az, t2), cf. Lemma 3.3. Since («1)
is also rank-one connected to the two poiftsay, t1), i = 1, 2, we haveF; («q, 1) €
Vi C V4. By Lemma 3.8, with indices 1,2 interchanged<Oy(ao, ) < —y(a, 11).
Thus Fi(az, 12), Fo(az, t) are in the open segme@ly (ay, 11), Fo(a1, t1)) C Vy.
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Since the direction, F; (x4, t) of the line{F; (ay, 1): t € R} is a rank-one vector direct-
ed upwards, we have; (ay, t) € V4 for everyr < t,. Now, B € [Fi(az, 12), Fa(az, 12)]
is not in V4 since it is rank-one connected #o Thereforers > 1 = t>(xq, ap) and hence
Bo=¢(az, 12) € Dy,

By Lemma 3.4, it follows thafAq, Bo] C Do, C D. O

LEMMA 3.10. - LetA = (a1,az,a3) € T, B = (b1,by,b3) € T, Ag = (a1, az), Bo =
(b1, b3). AssumeA and B are rank-one connected. Then the open segmept By)
does not contain any poigt(e, 0), « € [0, Z]. Furthermore(Ao, Bo) contains no point
¢(0,1),t €[0,1], unlesgA, B] C[(0,0,0), (1,0,1)] C T.

Proof. —Let v = (v, v2, v3) = B — A. Assume there is € [0, 7] such thatSy =
¢(a, 0) € (Ag, Bo). Clearlya # 0, becausé Cc R x RT U {(0, 0)}. SinceS is a smooth
point of the boundary ofb and [Ag, Bo] € D by Lemma 3.9, we havév, v3) =
kd,@(a,0) = k(cosa, 1) for somek. Thus v, = +ksina becausev is assumed to
be a rank-one direction. There is no loss of generality in assuming 0, so that
v =k.(COS, Sina, 1).

Note thatv = kd; F»(«, 0) and F5 is linear inz. Thus F(«, t) = A or Fo(«, t) = B for
somet < 0. However, Lemma 3.8 immediately implies thai(«, ¢t) ¢ T for everyt <0
which is a contradiction.

The second assertion is obvious since segniént [(0, 0), (1, 1)] is extremal in
Dc{(x,z):z=2x}andY =00on M. O

PROPOSITION 3.11. — The set7 is lamination convex. Any sét such thatT \
{y(@): a€(0,2Z)} c T CT islamination convex, too.

Proof. —Assume thaf is not lamination convex. Then thereds= (a1, a,a3) € T,
B = (b1, by, b3) € T such that segmeififd, B] is not a subset of andB — A is a rank-
one direction. We will gradually change the segment with the goal to find an inner
tangent parallel to the origin@A, B].

Let Ag = (a1, asz), Bg = (b1, b3) and A6 = (a1, 0, a3), B6 = (b1, 0, b3). ObViOUSly
Ag # Bp. By Lemma 3.9[Ag, Bo] C D.

We claim that(Aq, Bg) C int D and thus(Ag, Bj) C intT. If not, then there is a point
(c1, 2, ¢c3) € (A, B) such that(cy, ¢o) = ¢(as, t3) € dD. Hence(as, t3) € 3 P. The shape
of domain D rules out that; = 1. By Lemma 3. 1013 # 0 andaz # 0. Thu3a3 = %
anda; = by =c1 =1, c3 > 7. Assumeaz > c3 > % (otherwisebs > c3 > 7 which is
similar). Thenlas| < Y (1, a3) = y(’;,a3 %) =az— %. If bz < % then, by Lemma 3.8,
|b2| <Y (1,b3) < —y(5,b3— %) =% — b, hence|a2 —bo| < |Clz| + |b2| < az — bz and,
in consequenced and B are not rank -one connected.bf > % thenY (1, z) =z~ Z is
linear on[bs, az] and[A, B] C T. Since any case leads to a contradiction, we see that,
indeed,(Ag, Bg) CintD.

Eventually truncating the segment at a point 0,z) € T, with (x,z) € D, we
may assumernb, > 0. We lose no generality assuming0a,, 0 < b, becauserl is
symmetric. Finally, we can exchange B to have 0< a, < b,.

Now, we will shift the segmerftA, B]. Fort € [0, by], let A, = (a1, a» — 1, az), B; =
(b1, bp—1,b3),andL, =[A,, B ]N{(x, y,2): y = 0}. Thatmeand., = [A,, B ]Where



J. KOLAR / Ann. I. H. Poincaré — AN 20 (2003) 391-403 401

A, = A, fort <apandA, e (A}, Bp) for a; < t < by. Recall that Aj, By) C intT. Let
intp T be the interior off relative to{(x, y, z): (x,z) € D}. Fort > 0, A, B, eintpT.

Let iy = supt € [0, bo]: L, \ T # ¢}. ObviouslyL,, C T and hencer; < b,. Since
T is closed we have.,, C T and r; > 0. Since the endpoints af,, are in int, T,
L., must have an interior poinf = (s1, s2, s3) which belongs to the boundary df,
i.e. s2 = Y(s1, s3). Since(sy, s3) € intD andY is a smooth function on i, L, is a
rank-one inner tangent.

By Lemma 3.7, we know thaL, must be a surface tangent with the direction
3, F2(¢1(s1, s3)). SinceF, is linear int, L., isinthe surfacd;(P). However,fifl, B, €
intp T. Thus there exists no segmégut, B] as above and is lamination convex.

As regards pointy («), o € (0, 7), the first part of Lemma 3.10 says that they may
be freely removed fronT" and the set remains lamination convexa

Remark—Fora € (0, %), not only the setl" \ {y(a)} is lamination convex. Also
for T=T \ {Fi(a,t): t €[0,1),i = 1,2} the same is true. Indeed ife (0, 1) and
F>(a,t) € (A, B) where the segmergtd, B) has rank-one direction andl, B T, then
by Lemma 3.7(A, B) is a surface tangent with the directiéyF>(«, ). HenceA, B are
in the segment we removed froffy a contradiction.

Proof of Theorenl.1. -LetO< a2 <3 < 5 and
K=EoU{y(a2)}

= {(sina + cosa, (—1) sine, o +1): a €

0, %} i=1, 2} U {(sinaz, 0, a) }.

Then the point(sina, 0, ;) does not belong to the lamination convex hull &f
(Proposition 3.11) but does belong to its closure (Lemma 3.1). For symmetric two by

two matrices, the set
Z+x y .
T(x,y,20)e K
{(y L) }

serves as an exampleij

Remarks. —

(1) Itis very easy to see that for every compactet (K) is anF, -set. Is it always
aGs-set?

(2) We believe that in some classes of compact subsmggf it is typical, in a
sense, for a compad& to have non-closed (K). For example ifK consists of
two curves (or segments) and a point which is rank-one connected to both curves
it is likely that the solution of an equation similar to (5) will move outsid&l)
unlessthe critical area is covered by other rank-one connections (far from or
closely related to the one in (5)). Note, however, that the convex combination
coefficients on the right-hand side of (5) have to be properly chosen and, in
general, they will depend oa. If the above works when the two curves are
segments with rank-one directions, could be replaced by a five-point set.

(3) The first compackK c R3= Mﬁ;nﬁ for which we had proven non-compactness
of L(K) was
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K={(x,5,0: 4x - 1%+ y*< 4} U{(a,0, V8o —2))},
whereaqg € (2, 4]. The lamination convex supersgtof this compact ir((1 —

Dx+t(4—x),£A-1)/4—4(x —1)2,t/8(2—x)): re[0,1], t €[0,1], x €

[0, 2]}. The method of the proof was quite similar: Contracting a “bad” segment
towards point(0, 0, 0), an inner rank-one tangent would be found, but none
exists except “canonical” surface tangents. The sin-based curves in our exampl
were chosen because they lead to much easier calculations at the cost of son
additional reasoning.

(4) We do not know whether the s&tfrom Definition 3.6 (considered as a subset of
M2*2) is rank-one convex or even quasiconvex. Therefore we do not know what
are rank-one convex and quasiconvex hullofln the casel’ would be rank-
one convex, the question Q1 of [2, p. 87 (8 4.1.2)] would be answered negatively
with an impact on understanding of rank-one extreme points.

The setT is not polyconvex. Indeed, taking three matrides= {y (0), e1(%),
ex(B)) andr = (% + 2w — 2)/(n? + 4) = 0.41, the matrixX = (1 — 2)y (0)
+te1(%) +tez2(%) belongs to the polyconvex hull dff since the determinants
of the three matrices atg =0,d1 =d, = ”742 +m —1anditis easy to check that
determinant of the matriX equals(1l — 2r)dy + td1 + td,. On the other hand,
X ¢ T since it does not lie “aboveD. Without giving any details we note that
X can be separated froki by a translate of the quasiconvex functiggndefined
in [5], so that the quasiconvex and polyconvex hullkoére different.

(5) In a future paper we plan to give another proof of Theorem 1.1 as well as some
results related to rank-one convexity, namely a version of Krein-Milman type
theorem and the proof that rank-one convex hull and quasiconvex huIE
have infinite Carathéodory number. Also, we will provide a proof for formula (7)
“different” from direct calculation of the limit of corresponding prelaminates.

4. Upper semi-continuity

Let X be a metric space. Fer> 0, thee-neighborhood of a set ¢ X will be denoted
by U, (A) = {x € X: dist(x, A) < ¢}.

On K(X), the set of all nonempty compact subsetsXgfthe Hausdorff metric is
defined byo (K1, K») = inf{e: K3 C U.(K2) andK, C U.(K1)}. This definition can be
extended for non-compact sets, A,, but it turns out thap (A1, A») = 0(A1, Ay).

We say that a functionf : K(X) — K(X) is upper semi-continuous (with respect
to Hausdorff metric) if for everys > 0 and Kg € K(X) there isé > 0 such that
f(K) CcU:.(f(Kp)) wheneverK € K(X) ando(K, Kg) < 6.

Let Q(K) denote the quasiconvex hull of a gétc M™*". In [6], it is shown that the
function K — Q(K) is upper semi-continuous with respect to Hausdorff metric on the
space of all compact subsetshdf’*". Lamination convex hull and separately lamination
convex hull do not share this property.

PrROPOSITION 4.1. — Function K +— Lg(K) is not upper semi-continuous with
respect to Hausdorff metric oC(R%). Function K — L(K) is not upper semi-
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continuous oriC(X) (with respect to Hausdorff metjievhere

« a b O
X =M3s or X={<O 0 C)}

We do not know what the casesldf,;; andM?*? look like.

Proof sketch. tet K be asin (1)g =3, J =(0,—-1,0), x, = (—3, 3, ) e Lo(K),

x=(-32,0,0) € Le(K) \ Ls(K), Ko =K U {x + J}, K, = K U {x, + J}. Then
o(K,, Ko) — 0. On the other hand

Lso(Kg) CLs(K)U[x 4+ J,(0,—1,0)] (aseparately lamination convex set)
LSC(Kn) D) [xnv Xn + J]v

hence L«(K,) ¢ U, (Ls«(Kop)). ThusK — Ls(K) is not upper semi-continuous @»?
and after a transformation we see tikat> L (K) is not upper semi-continuous Mg,;g

For the last case we start witki and L from Example 2.4 and set = (0, 0; —2),
=230 eleyK), x =030, Ko=KU{x+J}, K, = K U{x, + J}.
Again, the segmentx,, x, + J] is contained in k1,(K,) but [x,x + J] does not
belong to Ly 1,(Ko) (nor to its closure) becausky is contained in the bi-convex set
LU{x+J}. O

Remark— Let L°(K) be theclosed lamination convex hulif K ¢ M™*", i.e., the
smallestclosedlamination convex set containing’. Similarly, the closed separately
lamination convex hull E(K) is defined forK C R". There are compact& such that
LS(K) # L(K) and LS(K) # Ls(K), respectively. The two sets nam&g above serve
as an example. We do not know whethé(k) = L(K) for every compack C ngxn%
or K c M2,
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