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ABSTRACT. – ForK a compact set ofm × n matrices, let L(K) denote the lamination conve
hull of K.

We give an example of a compact setK of symmetric two by two matrices such that L(K)

is not compact, and similar examples for separate convexity inR
3 and bi-convexity inR2 × R.

Furthermore we show that functioñL, whereL̃(K) = L(K), is not upper semi-continuous wi
respect to Hausdorff metric on the space of all compact setsK of diagonal 3× 3 matrices.
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RÉSUMÉ. – Si K est un ensemble compact des matrices du typem × n, L(K) signifie le
plus petit ensemble lamineusement convexe contenantK. (Un ensembleK est lamineusemen
convexe si[a, b] ⊂ K pour tousa, b ∈ K tels quea − b est une matrice de rang 1.)

Nous démontrons qu’il y aK, un ensemble compact des matrices symétriques d’ordre
que L(K) ne soit pas compact. Nous présentons aussi des exemples similaires pour co
séparée dansR3 et bi-convexité dansR2 × R. En plus, nous démontrons que l’applicati
L̃ : K 	→ L(K) n’est pas semi-continue superieurement sur l’espace des ensembles comp
matrices diagonales d’ordre 3 muni de la métrique de Hausdorff.
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1. Introduction

We denote byMm×n the set of all realm×n matrices with theRmn norm;Mn×n
sym, M

n×n
diag

are the sets of symmetric and diagonaln × n matrices, respectively. A setK ⊂ M
m×n

is calledlamination convex[4] if for all A,B ∈ K , which satisfy rank(A − B) = 1, one
has(1−λ)A+λB ∈ K for all λ ∈ (0,1). For a givenK ⊂ M

m×n, thelamination convex
hull L(K) is defined as the smallest lamination convex set which containsK [4].

Zhang [6] writes that “it is not clear in general whether for a compact set
lamination convex hull is closed”. In fact, it is easy to obtain a counter-example inM

2×4

from a paper of Aumann and Hart [1], see Example 2.4. The main purpose of this
is to give an example of a compact setK ⊂ M

2×2
sym such that L(K) is not compact.

For convenience, we identifyM2×2
sym with R

3 by the linear bijectionφ(x, y, z) =(
z+x y
y z−x

)
. We say that(x, y, z) ∈ R

3 is a rank-one directionif detφ(x, y, z) =
z2 − x2 − y2 = 0, that pointsA, B are rank-one connectedif B − A is a rank-one
direction and that a setK ⊂ R

3 is lamination convexif (1 − λ)A + λB ∈ K whenever
A,B ∈ K are rank-one connected andλ ∈ (0,1). Again, the lamination convex hul
L(K) of a setK ⊂ R

3 is the smallest lamination convex set containingK . Obviously,
K ⊂ R

3 is lamination convex if and only ifφ(K) ⊂ M
2×2
sym is lamination convex, an

L(φ(K)) = φ(L(K)) for everyK ⊂ R
3.

THEOREM 1.1. – There is a compact setK ⊂ M
2×2
sym such thatL(K) is not compact.

Before proving the theorem for the symmetric two by two matrices in Section
would like to consider the easier case ofM

m×n with max(m,n) > 2 where examples ca
be constructed using related notions of separate convexity and bi-convexity. In Se
we explain consequences to upper semi-continuity of the mappingK 	→ L(K).

2. Examples

The diagonal matrix
(

x 0 0
0 y 0
0 0 z

)
is of rank one if and only if exactly one of th

numbersx, y, z is non-zero. Let us say thatK ⊂ Rn is separately lamination convexif K
contains every segment with end-points inK which is parallel to one of the coordina
axes. This is equivalent to lamination convexity of the corresponding set of dia
matrices. Theseparately lamination convex hullLsc(K) is defined to be the smalle
separately lamination convex set inR

n that containsK .

Example2.1 (Separate convexity inR3 and diagonal3× 3 matrices). – Let

K = {
(1,1,1)

} ∪ {
(−1,0,0), (0,−1,0), (0,0,−1)

}
∪ ⋃

n∈N

{(
−1,

1

n
,

1

n

)
,

(
1

n + 1
,−1,

1

n

)
,

(
1

n+ 1
,

1

n+ 1
,−1

)}
. (1)

By induction, Lsc(K) contains each of the segments[(
1
,

1
,

1
)
,

(
−1,

1
,

1
)]
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1
,

1
,

1
)
,
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1

n
,

1

n

)
,

(
1

n + 1
,−1,

1

n

)]


(
1

n+ 1
,

1

n+ 1
,

1

n

)
,

[(
1

n+ 1
,

1

n+ 1
,

1

n

)
,

(
1

n+ 1
,

1

n+ 1
,−1

)]


(
1

n + 1
,

1

n+ 1
,

1

n+ 1

)

for everyn ∈ N. Consequently,(0,0,0) belongs to the closure of Lsc(K). On the other
hand, it does not belong to Lsc(K) since the set{

(−1,0,0), (0,−1,0), (0,0,−1)
}

∪ {
A ∈ R

3: at least two coordinates ofA are strictly positive
}

is separately lamination convex and containsK . ThusK ⊂ R
3 is compact, but Lsc(K) is

not and the same is true for the lamination convex hull of the compact set

{
x 0 0

0 y 0
0 0 z


: (x, y, z) ∈ K

}
.

Example2.2 (Separate convexity inR2 and diagonal 2 × 2 matrices). – The
lamination convex hull of a compact subset ofM

2×2
diag is always compact. This follow

by the next result which is due to Kirchheim [3].

PROPOSITION 2.3. –If C ⊂ R
2 is compact, thenLsc(C) is compact as well.

Proof (B. Kirchheim). –By x1, x2 we denote the two coordinates ofx ∈ R
2, and

e1 = (1,0), e2 = (0,1). Let L(0)
sc (C) = C and fork ∈ N let

L(k)
sc (C) = ⋃{[y, z]: y, z ∈ L(k−1)

sc (C), y1 = z1 or y2 = z2
}
.

Then L(k)sc (C) are compact and Lsc(C) = ⋃
k L(k)

sc (C). We say that genC(x) = k provided
x ∈ L(k)

sc (C) \ L(k−1)
sc (C). Suppose the claim fails. Then we can find a compact

C ⊂ R
2 \ [−1,1]2 such that

0∈ Lsc(C) \ Lsc(C).

Obviously, fori = 1,2 we findσi ∈ {−1,1} such that

t · σiei /∈ Lsc(C) whenevert � 0. (2)

Moreover, we findε > 0 such that

σixi < −ε or |x3−i | > ε for all x ∈ C, i ∈ {1,2}. (3)

Now we set

Mi = {
x: |x3−i | � ε andσixi � −ε

}
, M+

i = {x ∈ Mi : σixi � 0}
and claim that

Lsc(C) ∩M+
i = ∅. (4)
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Let us assume that (4) is not true for ani ∈ {1,2}. Let g = min{genC(x): x ∈ Lsc(C) ∩
M+

i }. Due to (3) we knowg � 1 and find xin the compact setM+
i ∩L(g)

sc (C) maximizing
the non-negative functionx 	→ σixi over this set. By the definition of L(g)sc (C) there are
y, z ∈ L(g−1)

sc (C) such thatx ∈ L(1)
sc ({y, z}). From the maximality ofσixi we conclude tha

σiyi = σizi = σixi � 0. The definition ofg implies thaty, z /∈ M+
i , hence|y3−i|, |z3−i| >

ε andy3−iz3−i < 0. Consequently,

Lsc(C) ∩ {t · σiei: t � 0} ⊃ [y, z] ∩ {t · σiei : t � 0} = {xiei},
a contradiction to (2) establishing (4).

Finally, denote byg′ � 1 the minimum of genC over the nonvoid set Lsc(C)∩M1∩M2.
Again, letx′ maximizeσ1x

′
1 over L(g

′)
sc (C)∩M1 ∩M2 and supposex′ ∈ L(1)

sc ({y′, z′}) for
y′, z′ ∈ L(g′−1)

sc (C). As before, we infer thaty′
1 = z′

1 = x′
1, |y′

2|, |z′
2| > ε andy′

2z
′
2 < 0. So

Lsc(C)∩ M+
2 ⊃ [y′, z′] ∩M+

2 �= ∅,
which together with (4) finishes the proof.✷

Example2.4 (Bi-convexity inR2 ×R and2×3 matrices). – A setA ⊂ R
k ×R

l is bi-
convex[1] if the sectionsAx , Ay are convex for everyx ∈ R

k andy ∈ R
l. Thebi-convex

hull L(k,l)(A) is defined accordingly. Obviously,A is bi-convex if and only if the set{(
x1 x2 . . . xk 0 0 . . . 0
0 0 . . . 0 y1 y2 . . . yl

)
∈ M

2×(k+l):

(x1, x2, . . . , xk;y1, y2, . . . , yl) ∈ A

}

is lamination convex. Aumann and Hart [1] constructed a compact setK ⊂ R
2×R

2 such
that L(2,2)(K) is not compact. We will show that this is possible inR

2 × R and hence

also for matrices of the form
(
a b 0
0 0 c

)
.

Let v1 = (0,2), v2 = (−1,0), v3 = (1,−1), v4 = (2,1) be the usual four-poin
configuration. Letw1 = (0,1), w2 = (0,0), w3 = (1,0), w4 = (1,1) and

L0 = ([0,1] × [0,1]) ∪ ({0} × [0,2]) ∪ ([−1,1] × {0}) ∪ ({1} × [−1,1])
∪ ([0,2] × {1}) = Lsc

({vi,wi}).
Finally, let K̃ = I(([0,1] × {v1, v2, v3, v4}) ∪ ({1} × {w1,w2,w3,w4})) and L =
I(((0,1] ×L0)∪ ({0} × {v1, v2, v3, v4})), whereI(x;y, z) = (x, y; z) identifiesR × R

2

with R
2 × R. We claim that L(2,1)(K̃) = L and this is not compact.

Let wi(t) = I(t,wi), vi(t) = I(t, vi). We havewi(1) ∈ K̃ and then inductively
wi(2−k) ∈ L(2,1)(K̃) for every i ∈ {4,3,2,1} andk ∈ N, because the following conve
combinations are compatible with the definition of bi-convexity:w4(t/2) = 1

2w1(t) +
1
2v4(0) and wi(t) = 1

2wi+1(t) + 1
2vi(t) for i = 3,2,1. Now it is easy to see tha

wi(t) ∈ L(2,1)(K̃) for every t ∈ (0,1] and henceL ⊂ L(2,1)(K̃). On the other hand,L
is bi-convex, so that L(2,1)(K̃) ⊂ L.
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Notation. – Forα ∈ [0, π
2 ] let ei(α) = (sinα + cosα, (−1)i sinα,α + 1) andγ (α) =

(sinα,0, α). LetE0 = {ei(α): α ∈ [0, π
2 ], i = 1,2}.

LEMMA 3.1. – For every0< α2 < α1 <
π
2 , γ (α1) ∈ L(E0 ∪ {γ (α2)}).

Proof. –For i = 1,2, let(i :R3 × R
3 → R

3 be defined by

(i

(
(a, b, c), (x, y, z)

) = (
(a − x)2 + (b − y)2 − (c − z)2,

sin(z − 1) + cos(z − 1) − x,

(−1)i sin(z − 1) − y
)
.

For every α ∈ [α2, α1] and i = 1,2 we have (i(γ (α), ei(α)) = 0, as well as
det( ∂(i

∂(x,y,z)
(γ (α), ei(α))) = 2cos2α − 2 �= 0. By the implicit function theorem, there

δ0 > 0 and two smooth functionsϕ1, ϕ2 :Uδ0 → R3 defined on theδ0-neighborhoodUδ0

of {γ (α): α ∈ [α2, α1]} such that(i(w,ϕi(w)) = 0 for w ∈ Uδ0 andϕi(γ (α)) = ei(α)

for α ∈ [α2, α1]. Note that by the definition of(i , ϕi(w)−w is a rank-one direction an
ϕi(w) = ei(α) for all w ∈ Uδ0, whereα + 1 is the third coordinate ofϕi(w). By making
δ0 smaller, we may ensure thatϕi(w) ∈ E0 for w ∈ Uδ0. Let ui(w) = ϕi(w) − w. Re-
placingδ0 by a smaller number again, there isK > 0 such that the functionsu1, u2 are
K-Lipschitz onUδ0 and‖u1(w)‖,‖u2(w)‖ � K for w ∈ Uδ0.

It is easy to check thatγ satisfies the equation

γ̇ (α) = u1(γ (α))+ u2(γ (α))

2
. (5)

Next, we will approximate the solutionγ by a piecewise linear curve with derivativ
given byu1 on odd and byu2 on even segments. We do an easy error estimate us
numerical analysis.

Let δ > 0 be given. Find n∈ N such that, forh = (α1 − α2)/n, Kh< δ0 and

h

2
(2Lipγ + K)

(
(1+ hK)n − 1

)
< min

(
δ,

δ0

2

)
.

Fork = 1, . . . , n, define

w0 = γ (α2), wk− 1
2
= wk−1 + h

2
u1(wk−1), wk = wk− 1

2
+ h

2
u2(wk− 1

2
). (6)

Let εk = ‖wk − γ (α2 + kh)‖, k = 0,1, . . . , n. Then

εk+1 = ∥∥wk+1 − γ
(
α2 + (k + 1)h

)∥∥
=

∥∥∥∥∥wk − γ (α2 + kh)+
α2+(k+1)h∫
α2+kh

u1(wk) + u2(wk+ 1
2
)

2
− γ̇ (α)dα

∥∥∥∥∥
and hence, by (5),
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εk+1 � εk + 1

2

α2+(k+1)h∫
α2+kh

∥∥u1(wk)− u1
(
γ (α)

)∥∥ + ∥∥u2(wk+ 1
2
)− u2

(
γ (α)

)∥∥dα

� εk + h

2

(
Lip u1(hLip γ + εk) + Lip u2

(
hLip γ + h

∥∥u1(wk)
∥∥ + εk

))
�Aεk +B

whereA = (1+ hK) andB = h2K
2 (2Lipγ + K). We haveε0 = 0 and, by induction,

εk � B
(
1+A+ A2 + · · · +Ak−1) =B

(
Ak − 1

)
/(A− 1)

= h

2
(2Lipγ + K)

(
(1+ hK)k − 1

)
< min(δ, δ0/2).

Hencewk,wk+ 1
2
∈ Uδ0 (so that the sequence is well defined) and‖γ (α1) −wn‖ < δ.

Furthermore,wk+ 1
2

∈ [wk,ϕ1(wk)], wk+1 ∈ [wk+ 1
2
, ϕ2(wk+ 1

2
)] and the two segmen

have rank-one directions, so thatw0,w 1
2
, . . . ,wn belong to the lamination convex hull o

E0∪{w0} = E0∪{γ (α2)}. Sinceδ > 0 was arbitrarily small,γ (α1) lies in its closure. ✷
Remark3.2. – Under the assumption of Lemma 3.1 we have thatγ (α1) belongs to

the rank-one convex hull ofE0 ∪ {γ (α2)}. Also, the corresponding laminateµ with
barycentre inγ (α1) can be given explicitly:

µ(A) = e−(α1−α2)δγ (α2)(A)+ 1

2

2∑
i=1

∫
(α2,α1)∩e−1

i
(A)

e−(α1−α) dα, (7)

whereδγ (α2) is the Dirac measure atγ (α2).
Indeed, (6) determinates prelaminateµn with barycentrew(n)

n supported by finite se
{γ (α2);ϕ1(w

(n)
k−1), ϕ2(w

(n)

k− 1
2
), k = 1, . . . , n} ⊂ K , recall thatui(w) = ϕi(w) − w is a

rank-one direction. We added indices(n) to emphasize that pointsws depend onn
as well. A calculation shows that the weak limit ofµn is µ; the barycentre ofµ is
lim w(n)

n = γ (α1).

Notation. – Let

x(α, t)= sinα + t cosα,

y(α, t)= t sinα,

z(α, t)= α + t,

ϕ(α, t)= (
x(α, t), z(α, t)

)
.

Also let P = [0, π
2 ] × [0,1] and D = ϕ(P ) = {(x, z): z ∈ [0, π

2 ], sinz � x �
min(1, z)} ∪ {(x, z): z ∈ [1,1+ π

2 ], 1� x �
√

2sin(z+ π
4 − 1)}. The functionY :D →

[0,∞) is going to be defined by

Y
(
ϕ(α, t)

) = y(α, t) (α, t) ∈ P. (8)
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LEMMA 3.3. – Letα1, α2 ∈ [0, π
2 ] andα1 �= α2. Thenϕ(α1, t1) = ϕ(α2, t2) if and only

if

t1 = t1(α1, α2) = sinα1 − sinα2 − (α1 − α2)cosα2

cosα2 − cosα1
,

t2 = t2(α1, α2) = sinα1 − sinα2 − (α1 − α2)cosα1

cosα2 − cosα1
.

(9)

If α1 > α2 thent1 < 0 and t2 > 0.

Proof. –Formulae (9) are obvious. Assumeα1 > α2. Let f (x) = sinx − sinα2 −
(x − α2)cosα2. Thenf (α2) = 0 and f′(x) = cosx − cosα2 < 0 for α2 < x � π

2 , hence
f (α1) < 0 andt1 = f (α1)/(cosα2 − cosα1) < 0. Similarly, forg(x) = sinα1 − sinx −
(α1 − x)cosα1 we haveg(α1) = 0 and g′(x) = −cosx + cosα1 < 0 for 0� x < α1.
Thusg(α2) > 0 andt2 > 0. ✷

LEMMA 3.4. – Let the functiont2 be defined by formula(9) for α2 < α1 and by
t2(α1, α2) = 0 if α1 = α2. Letα1 ∈ (0, π

2 ] be fixed. Then

Dα1 = {
ϕ(α2, t): α2 ∈ [0, α1], t ∈ [t2(α1, α2),1]}

is a convex subset ofD.

Proof. –It is easily seen that

χ(z) =
{
z, z ∈ [0,1],√

2sin(z + π
4 − 1), z ∈ [1,1+ π

2 ]
is a concave function onI = [0,1+ π

2 ] and thatDα1 is the part of its subgraph{(x, z): z ∈
I, x � χ(z)} which lies above the segment{ϕ(α1, t1): t1 ∈ [t1(α1,0),0] ∪ [0,1]} =
{ϕ(α2, t2(α1, α2)): α2 ∈ [0, α1]} ∪ {ϕ(α1, t): t ∈ [0,1]}. (Recall that the functionst1, t2
came fromϕ(α1, t1) = ϕ(α2, t2).) ✷

LEMMA 3.5. – The functionY :D → [0,∞) is well defined by(8). Y is aC∞-smooth
function on the interior ofD.

Proof. –By Lemma 3.3,ϕ :P → D is a bijection. The Jacobi determinant ofϕ is
−t sinα �= 0 on intP , so thatϕ is aC∞-diffeomorphism of intP onto intD. ✷

DEFINITION 3.6. – Let T = {(x, y, z): (x, z) ∈ D, |y| � Y (x, z)} and letFi(α, t) =
(x(α, t), (−1)iy(α, t), z(α, t)) so thatF2(P ) is the “front” surface ofT . Assume(α, t) ∈
intP , S = F2(α, t) andv = A∂αF2(α, t) + B ∂tF2(α, t) where(A,B) �= (0,0). The line
L = S + R v will be called atangentat the pointS. It is said to be anouteror inneror
surfacetangent if there isε > 0 such that, for everyr ∈ (−ε,0) ∪ (0, ε), S + rv /∈ T or
S + rv ∈ T or S + rv ∈ F2(P ), respectively. TangentL is said to berank-oneif v is a
rank-one direction. The same terminology will be used for any segmentL = S+[r1, r2]v,
r1 < 0< r2.

Remark. – In order to give an interpretation of what follows, let us recall tha
Ỹ : D̃ → R is a function which has the second differential D2Ỹ negatively semi-definite
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everywhere on a convex setD̃, then the set̃T = {(x, y, z): (x, z) ∈ D̃, |y| � Ỹ (x, z)} is
convex.

In our case, D2Y is “negatively semi-definite with respect to a set of directions” (
Lemma 3.7) and we are going to prove thatT is lamination convex (Proposition 3.11
Note that the set of directions is defined in terms ofall variables including the depende
one and therefore it depends on the gradient ofY . Lemma 3.9 says thatD is “sufficiently
convex” (which is a property of the pairD, Y ).

LEMMA 3.7. – With the above notation, assumeL is a rank-one tangent. Then eith
it is an outer tangent, or it is a surface tangent with the directionv = ∂tF2(α, t).

Proof. –Let

u1 = ∂αF2(α, t) = (cosα − t sinα, t cosα,1),

u2 = ∂tF2(α, t) = (cosα,sinα,1).

A simple calculation shows thatv = Au1 + Bu2 is a rank-one direction if and only if

(A,B) = k
(
2sin2α, t2 − sin2α − 2t cosα sinα

)
(k ∈ R) (10)

or A = 0. In the second case,v is a multiple ofu2 andL is a surface tangent becau
F2(α, t) is a linear function oft .

Assume (10) holds true. Let us write Df and D2f for the first and second differenti
of a functionf at the pointS0 = ϕ(α, t), respectively. (D2f is a quadratic form.) We
will write Df (w) = 〈Df,w〉 and D2f (w) when they are applied to a directionw. The
set F2(P ) can be viewed as the graph of the functionY (with interchanged secon
and third coordinates) andT is contained in the subgraph. To show that the tan
L is outer it is enough to verify that the second derivative ofY at S0 in the direction
v0 = A∂αϕ(S0) +B ∂tϕ(S0) equals

D2Y (v0) = −8k2 sin4α cosα < 0. (11)

Although this could be done directly, we suggest the following way which reduce
size of expressions involved. Letω(s) = ϕ(α +As, t +Bs). Then

∂2

∂s2
Y

(
ω(s)

)∣∣∣∣
s=0

= D2Y (v0)+ 〈
DY,

(
D2x(A,B),D2z(A,B)

)〉
. (12)

On the other hand,Y (ω(s)) = y(α +As, t +Bs) = (t + Bs)sin(α + As), so that

∂2

∂s2
Y

(
ω(s)

)∣∣∣∣
s=0

= 2AB cosα − A2t sinα. (13)

Differentiating (8) and solving the resulting equation we easily obtain

DY =
(
t cosα − sinα

,
cosα sinα − t

)
. (14)
−t sinα −t sinα
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The calculation of D2x and D2z is straightforward and gives

D2x(A,B) = −A2(sinα + t cosα)− 2AB sinα, D2z(A,B) = 0. (15)

Eqs. (12)–(15) imply

D2Y (v0) = −A

(
At

sinα
− (A+ 2B)sinα

t

)
.

Using (10) we get (11). ✷
LEMMA 3.8. – Let (α1, t1) ∈ P , α2 ∈ [0, π

2 ] and t2 < 0. Let ϕ(α1, t1) = ϕ(α2, t2).
Then0� y(α1, t1) < −y(α2, t2).

Proof. –By Lemma 3.3,α1 � α2. If α1 = α2 then 0� t1 = t2 < 0. Thusα1 < α2 and
by (9)

y(α2, t2) + y(α1, t1) = sin2α2 − sin2α1 − (α2 − α1)sin(α2 + α1)

cosα1 − cosα2
< 0

where the inequality comes from

(α2 − α1)sin(α2 + α1) > sin(α2 − α1)sin(α2 + α1)

= 1

2
(cos2α1 − cos2α2)

= 1

2

(
1− 2sin2α1 − 1+ 2sin2α2

)
.

Thusy(α1, t1) < −y(α2, t2). ✷
LEMMA 3.9. – LetA = (a1, a2, a3) ∈ T andB = (b1, b2, b3) ∈ T be such thatB −A

is a rank-one direction. Then[(a1, a3), (b1, b3)] ⊂ D.

Proof. –By assumptions,A0 = (a1, a3) ∈ D andB0 = (b1, b3) ∈ D, thus there exis
(α1, τ1), (α2, τ2) ∈ P such thatA0 = ϕ(α1, τ1), B0 = ϕ(α2, τ2). Furthermore,|a2| �
y(α1, τ1), |b2| � y(α2, τ2). If α2 = α1 then obviously[A0,B0] ⊂ D. We may assum
e.g.α2 < α1.

Let V0 = {(x, y, z): x2 + y2 − z2 < 0, z < 0}. V0 is an open convex cone. A poi
X is rank-one connected to(0,0,0) if and only if it belongs to∂V0 when it is below
(0,0,0) or X ∈ −∂V0 whenX is above(0,0,0) (“below” and “above” refers to the
value of the third coordinate). It is easily seen that ifL is a line with rank-one directio
and (0,0,0) /∈ L thenL intersects∂V0 in at most one point and, therefore,L ∩ V0 is
either an open half-line directed “downwards” or empty.

Let VA = A + V0 andV1 = γ (α1) + V0. The pointγ (α1) is rank-one connected t
Fi(α1, τ1) andA ∈ [F1(α1, τ1),F2(α1, τ1)] henceA ∈ −V0 + γ (α1), γ (α1) ∈ VA and
V1 ⊂ VA.

Let t1 < 0, t2 > 0 solve the equationϕ(α1, t1) = ϕ(α2, t2), cf. Lemma 3.3. Sinceγ (α1)

is also rank-one connected to the two pointsFi(α1, t1), i = 1,2, we haveFi(α1, t1) ∈
V1 ⊂ VA. By Lemma 3.8, with indices 1,2 interchanged, 0� y(α2, t2) < −y(α1, t1).
ThusF1(α2, t2),F2(α2, t2) are in the open segment(F1(α1, t1),F2(α1, t1)) ⊂ VA.
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Since the direction∂tFi(α1, t) of the line{Fi(α2, t): t ∈ R} is a rank-one vector direc
ed upwards, we haveFi(α2, t) ∈ VA for every t � t2. Now, B∈ [F1(α2, τ2),F2(α2, τ2)]
is not inVA since it is rank-one connected toA. Thereforeτ2 > t2 = t2(α1, α2) and hence
B0 = ϕ(α2, τ2) ∈ Dα1.

By Lemma 3.4, it follows that[A0,B0] ⊂ Dα1 ⊂ D. ✷
LEMMA 3.10. – LetA = (a1, a2, a3) ∈ T , B = (b1, b2, b3) ∈ T , A0 = (a1, a3), B0 =

(b1, b3). AssumeA and B are rank-one connected. Then the open segment(A0,B0)

does not contain any pointϕ(α,0), α ∈ [0, π
2 ]. Furthermore(A0,B0) contains no poin

ϕ(0, t), t ∈ [0,1], unless[A,B] ⊂ [(0,0,0), (1,0,1)] ⊂ T .

Proof. –Let v = (v1, v2, v3) = B − A. Assume there isα ∈ [0, π
2 ] such thatS0 =

ϕ(α,0) ∈ (A0,B0). Clearlyα �= 0, becauseD ⊂ R × R
+ ∪ {(0,0)}. SinceS0 is a smooth

point of the boundary ofD and [A0,B0] ⊂ D by Lemma 3.9, we have(v1, v3) =
k∂αϕ(α,0) = k(cosα,1) for some k. Thus v2 = ±k sinα becausev is assumed to
be a rank-one direction. There is no loss of generality in assumingv2 > 0, so that
v = k.(cosα,sinα,1).

Note thatv = k∂tF2(α,0) andF2 is linear int . ThusF2(α, t) = A or F2(α, t) = B for
somet < 0. However, Lemma 3.8 immediately implies thatF2(α, t) /∈ T for everyt < 0
which is a contradiction.

The second assertion is obvious since segmentM = [(0,0), (1,1)] is extremal in
D ⊂ {(x, z): z � x} andY = 0 on M. ✷

PROPOSITION 3.11. – The setT is lamination convex. Any set̃T such thatT \
{γ (α): α ∈ (0, π

2 )} ⊂ T̃ ⊂ T is lamination convex, too.

Proof. –Assume thatT is not lamination convex. Then there isA = (a1, a2, a3) ∈ T ,
B = (b1, b2, b3) ∈ T such that segment[A,B] is not a subset ofT andB − A is a rank-
one direction. We will gradually change the segment with the goal to find an
tangent parallel to the original[A,B].

Let A0 = (a1, a3), B0 = (b1, b3) and A′
0 = (a1,0, a3), B ′

0 = (b1,0, b3). Obviously
A0 �= B0. By Lemma 3.9,[A0,B0] ⊂ D.

We claim that(A0,B0) ⊂ intD and thus(A′
0,B

′
0) ⊂ intT . If not, then there is a poin

(c1, c2, c3) ∈ (A,B) such that(c1, c2) = ϕ(α3, t3) ∈ ∂D. Hence(α3, t3) ∈ ∂P . The shape
of domainD rules out thatt3 = 1. By Lemma 3.10,t3 �= 0 andα3 �= 0. Thusα3 = π

2
anda1 = b1 = c1 = 1, c3 � π

2 . Assumea3 � c3 � π
2 (otherwiseb3 � c3 � π

2 which is
similar). Then|a2| � Y (1, a3) = y(π2 , a3 − π

2 ) = a3 − π
2 . If b3 < π

2 then, by Lemma 3.8
|b2| � Y (1, b3) < −y(π2 , b3 − π

2 ) = π
2 − b3, hence|a2 − b2| � |a2| + |b2| < a3 − b3 and,

in consequence,A andB are not rank-one connected. Ifb3 � π
2 thenY (1, z) = z − π

2 is
linear on[b3, a3] and[A,B] ⊂ T . Since any case leads to a contradiction, we see
indeed,(A0,B0) ⊂ intD.

Eventually truncating the segment at a point(x,0, z) ∈ T , with (x, z) ∈ D, we
may assumea2b2 � 0. We lose no generality assuming 0� a2, 0 � b2 becauseT is
symmetric. Finally, we can exchangeA,B to have 0� a2 � b2.

Now, we will shift the segment[A,B]. Forτ ∈ [0, b2], letAτ = (a1, a2 − τ, a3), Bτ =
(b1, b2−τ, b3), andLτ = [Aτ ,Bτ ]∩{(x, y, z): y � 0}. That meansLτ = [Ãτ ,Bτ ] where
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Ãτ = Aτ for τ � a2 andÃτ ∈ (A′
0,B

′
0) for a2 < τ < b2. Recall that(A′

0,B
′
0) ⊂ intT . Let

intD T be the interior ofT relative to{(x, y, z): (x, z) ∈ D}. Forτ > 0, Ãτ ,Bτ ∈ intD T .
Let τ1 = sup{τ ∈ [0, b2]: Lτ \ T �= ∅}. ObviouslyLb2 ⊂ T and henceτ1 � b2. Since

T is closed we haveLτ1 ⊂ T and τ1 > 0. Since the endpoints ofLτ1 are in intD T ,
Lτ1 must have an interior pointS = (s1, s2, s3) which belongs to the boundary ofT ,
i.e. s2 = Y (s1, s3). Since(s1, s3) ∈ intD andY is a smooth function on intD, Lτ1 is a
rank-one inner tangent.

By Lemma 3.7, we know thatLτ1 must be a surface tangent with the direct
∂tF2(ϕ

−1(s1, s3)). SinceF2 is linear int ,Lτ1 is in the surfaceF2(P ). However,Ãτ1,Bτ1 ∈
intD T . Thus there exists no segment[A,B] as above andT is lamination convex.

As regards pointsγ (α), α ∈ (0, π
2 ), the first part of Lemma 3.10 says that they m

be freely removed fromT and the set remains lamination convex.✷
Remark. – For α ∈ (0, π

2 ), not only the setT \ {γ (α)} is lamination convex. Also

for T̂ = T \ {Fi(α, t): t ∈ [0,1), i = 1,2} the same is true. Indeed ift ∈ (0,1) and
F2(α, t) ∈ (A,B) where the segment(A,B) has rank-one direction andA,B ∈ T̂ , then
by Lemma 3.7,(A,B) is a surface tangent with the direction∂tF2(α, t). HenceA,B are
in the segment we removed fromT , a contradiction.

Proof of Theorem1.1. –Let 0<α2 < α1 <
π
2 and

K =E0 ∪ {
γ (α2)

}
=

{(
sinα + cosα, (−1)i sinα,α + 1

)
: α ∈

[
0,

π

2

]
, i = 1,2

}
∪ {

(sinα2,0, α2)
}
.

Then the point(sinα1,0, α1) does not belong to the lamination convex hull ofK

(Proposition 3.11) but does belong to its closure (Lemma 3.1). For symmetric tw
two matrices, the set {(

z + x y

y z − x

)
: (x, y, z) ∈ K

}

serves as an example.✷
Remarks. –
(1) It is very easy to see that for every compact setK , L(K) is anFσ -set. Is it always

aGδ-set?
(2) We believe that in some classes of compact subsets ofM

2×2
sym it is typical, in a

sense, for a compactK to have non-closed L(K). For example ifK consists of
two curves (or segments) and a point which is rank-one connected to both c
it is likely that the solution of an equation similar to (5) will move outside L(K)

unlessthe critical area is covered by other rank-one connections (far fro
closely related to the one in (5)). Note, however, that the convex combin
coefficients on the right-hand side of (5) have to be properly chosen an
general, they will depend onα. If the above works when the two curves a
segments with rank-one directions,K could be replaced by a five-point set.

(3) The first compactK ⊂ R
3 ∼= M

2×2
sym for which we had proven non-compactne

of L(K) was
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K = {
(x, y,0): 4(x − 1)2 + y2 � 4

} ∪ {(
a0,0,

√
8(a0 − 2)

)}
,

wherea0 ∈ (2,4]. The lamination convex supersetT of this compact is{r((1 −
t)x+ t (4−x),±(1− t)

√
4− 4(x − 1)2, t

√
8(2− x)): r ∈ [0,1], t ∈ [0,1], x ∈

[0,2]}. The method of the proof was quite similar: Contracting a “bad” segm
towards point(0,0,0), an inner rank-one tangent would be found, but n
exists except “canonical” surface tangents. The sin-based curves in our ex
were chosen because they lead to much easier calculations at the cost o
additional reasoning.

(4) We do not know whether the setT from Definition 3.6 (considered as a subse
M

2×2) is rank-one convex or even quasiconvex. Therefore we do not know
are rank-one convex and quasiconvex hulls ofK . In the caseT would be rank-
one convex, the question Q1 of [2, p. 87 (§ 4.1.2)] would be answered nega
with an impact on understanding of rank-one extreme points.
The setT is not polyconvex. Indeed, taking three matricesM = {γ (0), e1(

π
2 ),

e2(
π
2 )} andt = (π

2

2 + 2π − 2)/(π2 + 4π)
.= 0.41, the matrixX = (1− 2t)γ (0)

+ te1(
π
2 ) + te2(

π
2 ) belongs to the polyconvex hull ofM since the determinan

of the three matrices ared0 = 0, d1 = d2 = π2

4 +π −1 and it is easy to check th
determinant of the matrixX equals(1 − 2t)d0 + td1 + td2. On the other hand
X /∈ T since it does not lie “above”D. Without giving any details we note th
X can be separated fromK by a translate of the quasiconvex functionF0 defined
in [5], so that the quasiconvex and polyconvex hulls ofK are different.

(5) In a future paper we plan to give another proof of Theorem 1.1 as well as
results related to rank-one convexity, namely a version of Krein-Milman
theorem and the proof that rank-one convex hull and quasiconvex hull inM

2×2
sym

have infinite Carathéodory number. Also, we will provide a proof for formula
“different” from direct calculation of the limit of corresponding prelaminates

4. Upper semi-continuity

LetX be a metric space. Forε > 0, theε-neighborhood of a setA ⊂ X will be denoted
by Uε(A) = {x ∈ X: dist(x,A) < ε}.

On K(X), the set of all nonempty compact subsets ofX, the Hausdorff metric is
defined by@(K1,K2) = inf{ε: K1 ⊂ Uε(K2) andK2 ⊂ Uε(K1)}. This definition can be
extended for non-compact setsA1,A2, but it turns out that@(A1,A2) = @(Ā1, Ā2).

We say that a functionf :K(X) → K(X) is upper semi-continuous (with respe
to Hausdorff metric) if for everyε > 0 and K0 ∈ K(X) there is δ > 0 such that
f (K) ⊂ Uε(f (K0)) wheneverK ∈K(X) and@(K,K0) < δ.

Let Q(K) denote the quasiconvex hull of a setK ⊂ M
m×n. In [6], it is shown that the

functionK 	→ Q(K) is upper semi-continuous with respect to Hausdorff metric on
space of all compact subsets ofM

m×n. Lamination convex hull and separately laminat
convex hull do not share this property.

PROPOSITION 4.1. – Function K 	→ Lsc(K) is not upper semi-continuous wi
respect to Hausdorff metric onK(R3). Function K 	→ L(K) is not upper semi
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continuous onK(X) (with respect to Hausdorff metric) where

X = M
3×3
diag or X =

{(
a b 0
0 0 c

)}
.

We do not know what the cases ofM
2×2
sym andM

2×2 look like.

Proof sketch. –Let K be as in (1),ε = 1
3, J = (0,−1,0), xn = (−1

2,
1
n
, 1
n
) ∈ Lsc(K),

x = (−1
2,0,0) ∈ Lsc(K) \ Lsc(K), K0 = K ∪ {x + J }, Kn = K ∪ {xn + J }. Then

@(Kn,K0) → 0. On the other hand

Lsc(K0)⊂ Lsc(K) ∪ [x + J, (0,−1,0)] (a separately lamination convex set)

Lsc(Kn)⊃ [xn, xn + J ],
hence Lsc(Kn) �⊂ Uε(Lsc(K0)). ThusK 	→ Lsc(K) is not upper semi-continuous onR3

and after a transformation we see thatK 	→ L(K) is not upper semi-continuous onM
3×3
diag.

For the last case we start with̃K andL from Example 2.4 and setJ = (0,0;−2),
xn = ( 1

n
, 1

2;0) ∈ L(2,1)(K̃), x = (0, 1
2;0), K0 = K̃ ∪ {x + J }, Kn = K̃ ∪ {xn + J }.

Again, the segment[xn, xn + J ] is contained in L(2,1)(Kn) but [x, x + J ] does not
belong to L(2,1)(K0) (nor to its closure) becauseK0 is contained in the bi-convex s
L∪ {x + J }. ✷

Remark. – Let Lc(K) be theclosed lamination convex hullof K ⊂ M
m×n, i.e., the

smallestclosed lamination convex set containingK . Similarly, the closed separate
lamination convex hull Lcsc(K) is defined forK ⊂ R

n. There are compactaK such that
Lc(K) �= L(K) and Lc

sc(K) �= Lsc(K), respectively. The two sets namedK0 above serve
as an example. We do not know whether Lc(K) = L(K) for every compactK ⊂ M

2×2
sym

or K ⊂ M
2×2.
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