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ABSTRACT. — Solutions of semi-classical Schrddinger equation with isotropic harmonic
potential focus periodically in time. We study the perturbation of this equation by a nonlinear
term. If the scaling of this perturbation is critical, each focus crossing is described by a nonlinea
scattering operator, which is therefore iterated as many times as the solution passes through
focus. The study of this nonlinear problem is made possible by the introduction of two operators
well adapted to Schrédinger equations with harmonic potential, and by suitable Strichartz
inequalities.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC:35B40; 35Q55; 81Q20; 35P25

RESUME. — Les solutions de I'équation de Schrodinger semi-classique avec potentiel
harmonique isotrope focalisent périodiquement en temps. Nous étudions la perturbation de cet
équation par un terme non linéaire. Pour une échelle critique de cette perturbation, chaqt
traversée de foyer est décrite par un opérateur de diffusion non linéaire, qui est par conséque
itéré autant de fois que la solution traverse une caustique. Cette étude est permise par l'usa
de deux opérateurs qui s’avérent bien adaptés a I'équation de Schrddinger avec potenti
harmonique, et par des estimations de Strichartz adéquates.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

Consider the initial value problem,

1 2
iedv" + Ze?Av° = %eﬁ, (t,x) eR, x R”,

Vo = f (X)),

(1.1)
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wheree €10, 1] is a parameter going to zero aifds a smooth function, say € S(R).
The potential is the isotropic harmonic potential,

2

V(x)Ex—:}(xf+--~+x3). (1.2)

2 2
The case of anisotropic harmonic potentials is discussed in Section 5. Even though n
(rapid) oscillation is present in the initial data, the solutignis rapidly oscillating (at
frequency 1/3 for any positive time, and focuses at time- 7 (Section 2). This can be
seen by a stationary phase argument applied to the Mehler's formula (see [12]),

1

U ——— S—;ﬁ(#COS{—x- ) —- &
(2irrssint)"/2/ ¢ Y dy =U (D) f(x). (1.3)

Rr

vi(t, x) =

Perturbations of the harmonic potential by other potentials (sub-quadratic perturbation
see [30,14,21], or super-quadratic perturbation, see [29]) have been studied, and |
particular the role of these perturbations on the singularities of the fundamental solutior
of the Schrodinger equation.

In physics, nonlinear perturbations are considered, for Bose—Einstein condensatio
(see [10]), where the harmonic potential is used for its confining properties,

1 2
ing Y + ShPAY" = %M + Ngly" 2y,

whereN stands for the number of particles agis a coupling constant (ih?).
We study precisely the perturbation of (1.1) with a nonlinear term,

1 2
ieduf + EEZAMS = %us + " uf % uf, (t,x) € R, x R”",
uft:O = f(x) +r8(x)v

(1.4)

witheo > 1/nif n=1,2, andﬁ <o < -% if n > 3. We assume that the perturbation

r¢ of the initial data is small in
> = H'(R") nF(H'(R")), (1.5)

where the Fourier transform is defined by

Fu6) = 06) = [ e Fuen dx,
Rn
and thatf € ¥. The space is equipped with the norm
Iflls =02 + 1V fllzz + llxf 22,

and we assumgr¢|xs — 0.
e—0
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Remark — Initial data with plane oscillations. L& € R”, and introduce

0 gingy.
ué(t, x) = u(t, x — & Sint) ¢! ¥~z Sin-focosi/e

Thenu® solves the Schrodinger equation (1.4), with initial data

v g
Um0 = (f(x) +rf(x))e = .

Therefore, describing the solution of (1.4) is enough to describe the solution when the
initial data have plane oscillations.

We can also prove some results witfoausingcritical nonlinearity (2 = 4/n),

1 x?
igduf + EszAug =—u® —&2uf|¥"u, (t,x)eR, xR,

2 (1.6)
Up—o=f(x).
We will consider the focusing case only in the one-dimensional situation, and state
the corresponding results at the end of this introduction. Similar results for the multi-
dimensional case would be easy to prove.

The idea of this paper is the following. Initially, the nonlinear term is negligible,
essentially because the tetnf | is uniformly bounded in suitable Lebesgue spaces,
therefore it vanishes in the limi# — O because of the factar"”. Meanwhile, the
harmonic potential makes the solution focus near the origin at timer/2, as in the
linear case (1.1). When the focusing effects become relevant, that isaH#comes
of order ¢7"/2, the nonlinear term is no longer negligible. On the other hana if
is localized nean = 0, the termx?u® becomes negligible; only the nonlinear term is
relevant near the focus. When the nonlinearitdéfocusing Eq. (1.4)), the solutiom®
passes through the focus, and the crossing is given by the (nonlinear) scattering operat
associated to the unscaled Schroédinger equation,

1
iy + SAY =1YI7y. (1.7)

Since the nonlinearity is defocusing, dispersive effects in (1.7) are the same as for the fre
equation. Therefore, the solutiosi leaves the focus along dispersive rays. When rays
are dispersed, the energy is no longer localized, the nonlinear term becomes negligibl
again and the harmonic potential makes the rule, as before the focus (Theorem 1.2). Th
process can be iterated indefinitely, and each focus crossing is described by the scatteri
operator (Corollary 1.4).

When the nonlinearity ifocusing(Eq. (1.6)), and when the mass gfis critical (see
[24]), the solution blows up near= /2 (before or after, see Proposition 1.5). The
focusing effects of the harmonic potential first, then of the nonlinear term, cumulate anc
ruin the existence of the solution (Proposition 1.5).

In both situations (focusing or defocusing nonlinearity), two distinct régimes occur.
First, the harmonic potential leads the evolution of the solution, next the nonlinear term
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does so. The two dynamics superpose: they balance each other in the case of a defocus
nonlinearity, and cumulate in the case of a focusing nonlinearity. The matching of these
two régimes occurs in a boundary layer of sizaround the focus, as in [3,15].

Formal WKB expansions suggest that with our choiee> 1, the nonlinear term is
negligible so long as no focusing occurs. We prove that this holds true. It would not be sc
with the choiceno = 1; the nonlinear term would be nowhere negligible, and we leave
out this case.

On the other hand, we show that the nonlinear term alters the asymptotics of the
exact solution near and past the (first) focus. More precisely, we prove that the causti
crossing is measured by the scattering operator associated to (1.7). This phenomenon
to be compared with the results of [5], where focusing is caused by initial oscillations,
and with the results of [3] (see also [1,2]), where such a behavior was first noticed, for
the wave equation. In the present case, focusing is caused by the oscillations creats
by the harmonic potential, but the description of the phenomena near the focal point i
similar.

The asymptotic state for (1.7) we will consider is defined by

A

v_(x) = f ). (1.8)

(2im)n/?

We assume that € T and that the scattering operatbacts ony_, withy, = Syy_e€ X
(see Proposition 3.10), which is verified in either of the following cases,

2—n4/n24+12n+4 or

e 0 > In ,
e | fls is sufficiently small.

ASSUMPTION 1.1. — Our hypotheses are the following

e 1<n <5ando > 1/2, so that the nonlinearityz|?’ 7 is twice differentiable.
If n =1, we assume moreover that> 1.

If 3<n <5, we taker < 2.

If n <2, we assume

. _ /2
— eithero > 2ot/ n+12n44

4n '
— or || fls < § sufficiently small.

Remark— We could treat the case> 6 if we replaced the nonlinear terstf |u® |2 u®
by F(¢"|u®|?)uf, with F smooth and

F(lz1?) S1+1z%.

THEOREM 1.2.— Let2 <r < n%”z If n =1, taker = co. Then under Assump-
tions 1.1, the following asymptotics holdsirf N L7,

e IfO<t <m/2, then

P T
elnz

—~ —X . x2

& —i 35— tant

u®(t,x) ~ _ e ',
e—0 (2n|cosr|)"/2vf (cosr)
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o Ifr/2<1t<3m/2 then

inZ—in%
e 2 — —X _x2
ug(t,x w+< )e 5 tant’

e—0 (27 | cost|)"/2 cost

wherey_ is defined by1.8)and ¢, = Sy_.

Remark — We will prove actually that these asymptotics hold in a stronger sense (see
Corollary 2.5, Propositions 3.9 and 3.22).

We can restate this result when time- 7 /2 is considered as the initial time, in place
ofr =0.

COROLLARY 1.3. —Letgp € 3. Assume that® solves

2

1
iedu® + ESZAM = %u‘s +e"ufl*ut, (t,x) eR xR,

. 1 X 1 /x

with ||r¢]|s = 0, and ¢ satisfies the same assumptions fasDenotevyr. = Wilp,
e—

whereW.. are the wave operator&ee Propositior8.10) Then withr as in Theoren..2
and under Assumptioris 1, the following asymptotics holdsfif N L",
e IfO<t <m,then

(1.9)

n/2 2

o0 5 Y (2

u , ~ - " .
e—0\ 277 Sin? *\sint

o If —7 <t <0, then

. n/2 2
u (t, ~ - | = cant
e—0\ 27 Sint sing

Remark— In [25], the author considers equations which can be compared to (1.1),
that is

. & }2 e __ & f e
igdv® + 28 AP =V +U Ve,
£

A 1 X
U|,:o—m</’ )

whereU is a short range potential. The potentiain that case cannot be the harmonic
potential, for it has to be bounded as well as all its derivatives. In that paper, the autho
proved that under suitable assumptions, the influenc& afccurs near = 0 and is
localized near the origin, while only the valu&0) of V at the origin is relevant in

this régime. For times « |7| < Ty, the situation is different: the potenti&l becomes
negligible, while V dictates the propagation. As in our paper, the transition between
these two régimes is measured by the scattering operator associated to

(1.10)
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Our assumptiomo > 1 makes the nonlinear term short range. With our scaling for
the nonlinearity, this perturbation is relevant only near the focus, where the harmonic
potential is negligible, while the opposite occurs fok |¢| < . In this perspective, a
new point in our paper (besides the fact that the problem is nonlinear) is that we can tel
what happens faanytime, as stated in the following corollary.

COROLLARY 1.4. — Suppose Assumptidnl are satisfied. Let € N*. Then, withr
as in Theoreni..2, the asymptotics af for 7/2+ (k — L)m <t < /2+ km is given,
inL2NL", by

P
1nz—1nk7

—/ —x 2

& k —i %= tant

u(t,x) ~ ——=8§ _<—>e 2
e—0 (2| cost|)"/2 4 cost

whereS* denotes théth iterate ofS (which is well defined under our assumptions;9n

Remark — The phase shift”z-" 7 is present in the linear case, for Eq. (1.1), and is
explained in [11]. On the contrary, the presence of the scattering opératdypically
a nonlinear phenomenon, as in [5]. The new point here is that this operator is iterated,
each focus crossing.

Remark — If the nonlinear perturbation was of the foefii? |u# %2y, with 01 > 02 > 0
(no additional assumption ap) androy > 1, the nonlinear term would be everywhere
negligible, that is,S* should be replaced by the identity in Corollary 1.4. This can be
seen by an easy adaptation of the proof of Theorem 1.2. This shows that the scalin
(1.4) is critical for the nonlinearity to have a leading order influence near the singulari-
ties ¢ = /2+ k).

We conclude this introduction by stating our result when the nonlinearity is focusing
(Eq. (1.6)).

PROPOSITION 1.5. — Letn = 1 and letR be the unique solutiofup to translation
and sign changeof —2R” + R = RS, given by,

3L/4
R(x) = ———. (1.12)
\/cosh2x~/2)
For ¢, € R, definef by f(x) = R(x)e"%*xz, and the approximate solution by
1 e : 2
ﬁg (l" x) — R ( = X ) el /24t —t el 2e(t—m/2—¢ety) . (112)
3 ten—t Nz TEL—I

Letu® be the solution of1.6). Then for any > 0,

limsu su BE() (i (1) — 7% (1) Y
£—0 p%—Aaété%p—‘rat*—ksH ( )HL2 A 400
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whereB*(¢) is either of the operatorid, 9, or x/e +i(t — 7 /2)d,. In particular,

liminf sup  |ledu (0|, —> 400,
e—0 0t </ 2+t —he A0t

liminf sup Jeut ()], 0 — +oo.
¢—0 0<t<n/2+t*s—k8” Ie r—0*

Remark— The blow up occurs at= % + et,, N0 matter the sign of.. This means
thatu® can blow up before or after the focus.

This paper is organized as follows. In Section 2, we study the linear equation (1.1)
using WKB methods, and introduce two operataf§ and H¢) whose role is crucial
in the nonlinear setting. In Section 3, we analyze the nonlinear equation (1.4), and we
prove Theorem 1.2. In Section 4, we prove Proposition 1.5. Finally, Section 5 addresse
the case of anisotropic harmonic potentials.

Some of the results presented in this paper were announced in [6].

2. WKB expansion for the linear equation

We seek an approximate solution of the linear equation (1.1) of the form,
Viop(t, X) = vo(t, x) ¥ V/° (2.1)

To cancel the term® when plugging this approximate solution in (1.1), the phasaust
satisfy the eikonal equation,

1
9 Z(V,p)?=—"—. 2.2
z<p+2( ®) > (2.2)

To cancel the terma!, the amplitudey, must satisfy the transport equation,

1
0;v0 + Vi@ - Vivg + EvoA(p =0. (2.3)

To solve the eikonal equation, one computes the bicharacteristic curves associated to t
classical Hamiltonian

(o) =t 2E2 S

, X, T, =T ~ A

P 2> T2

given by

Therefore,

x(t) = xgCOSt + &g Sint, &(t) = &ycost — xgsint.
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Fig. 1. Rays of geometric optics.

Since no oscillation is present in the initial da§g= 0, and the rays of geometric optics
are sinusoids,

x(t) = xgCOSt. (2.4)

They all meet at the origin at time= 7 /2, and periodically at time = 7 /2 + kx for
anyk € N* (Fig. 1).
Givené&(r) = V,.p(t), one can solve (2.2) for8 ¢ < /2, by

2
o(t, x) = —%tant,

and (2.3) is solved by

()= —— f( - )
vott, X ~ (cost)"/2” \ cost )’
therefore

1 X —'ﬁtant
£ (t,x)= P 2.5
Vappls ) (cosr)"/zf <cosz>e (2:5)

Recall thatV (x) = % The approximate solution solves

> app
v;pﬂt:O = f(x).

Bt AL V)0 Lp2gi0 R e A
180, Vapp+ 58 Avgp, (X)v +28 e Vo, (2.6)
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Denote the remainder® := v® — v¢__. It solves,

app

ied, wé + }szAw‘E =Vx)w® — }82 el 0/e Ay
! 2 2 ’ (2.7)
Recall that
Avo(t. x) 1 1 Af( X )
vo(t,x) = .
0 cogt (cost)/? cost
Recall the classical result,
LEMMA 2.1. - Assume a function?® satisfies
. 5 1 2 5 e 5 n
igd,w +§£ Aw® =U(t, x)w® + S°(,x), (,x)el xR", (2.8)

where U is a real-valued potential/ is an interval, andS® e C,(I, L?). Then the
following estimate holds fare 1,

ed[w* @] 2 < 2 S* @] 2.

Applying this lemma, it follows,

1
0, ||w* (@) 2 < eZEMAfan. (2.9)

With the idea of a nonlinear perturbation in mind, it is natural to seek estimates in other
spaces thai.?, in particular Sobolev like spaces. In geometrical optics, it is classical to
assesg-derivatives to get nonlinear estimates (see for instance [26]). This is because
g-oscillating solutions are studied. This approach is sharp for multi-phase problems, bu
it contains no geometric information (given by the phase(s)). In our case, only one phas
is present, and in the nonlinear setting (1.4), it remains so. In the linear case, this mear
that controllingv;,,in Lebesgue’s spacds’ is equivalent to controllingy in L. With
Gagliardo—Nirenberg inequalities in mind, it is therefore natural to introduce the operator

JE(t) = —i (COSt)e'*/* Y (¢~#/% ) = 2 sint — i costV,.. (2.10)
&
Given the dynamics of the harmonic potential, it is also natural to introduce the
“orthogonal” operator,
H?®(t) =xcost +iesintV,. (2.12)
Whenn > 2, we write, for 1< j <n,
Hj(t) = X, COSt +igsinta,,

ST (2.12)
Jj(t) = = sint — i costd,;.
&
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We now state all the properties we will need, including the action on nonlinear terms.

LEMMA 2.2.— The operatorsH® and J¢ satisfy the following properties.
e The commutation relation,

1 x2 1 x2
Hi(1),ied, + ESZA — 5] = {J;(z), ied, + ESZA -S| = 0. (2.13)

2 2
e Denote Mé(t) = e =" and Q%(t) = ¢ z@w, then J%(¢) and H?(¢) read, for
t¢ 57,

JE(t) = —icostM® (1)V, M (—1), He(@) =iesintQ°(1)V,0°(—1). (2.14)

e The modified Sobolev inequalities. Fpe= 1 ands ¢ 77,

@] < w217 w2
|cosz|1/2 L
(2.15)
12y e 2
Hw(t>HLm| s.m|1/2” w5 ||H Ow®)|,2
Forn > 2, and2 <r < -7, defines(r) by
5(r) = (1 1)
r)=n 2 ; .
Then for any2<r< 5, there exist<”, such that, for ¢ 77Z,
5(r) 5(r)
|lw®)| - < WH ()HLz [EMGIIG
(2.16)
1-5(r) e 8(r)
[w(®) u<WH w® |2 ([ H Ow®)[2.

e For any functionF e C*(C, C) satisfying the gauge invariance condition
3G € C(R,,R), F(z) =2G(|z]?),

one has, for ¢ 37,

H () F(w) =0, F(w)H*(t)w — 3: F(w)H* (t)w, (2.17)
JE)F(w) =0, F(w)J*(Hw — o: F(w)Jé (t)w. .

Remarks. —

e Estimates (2.15) are easy consequences of the conjugation properties (2.14).

e With the WKB approximation (2.5) in mind, thecost|~%/? term in (2.15) gives
optimal time dependence of tHe® estimates of the solution of (1.1) away from
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the focus. This is the main advantage of this operator over all the others one coulc
think of (such asv, in particular).

e The|esint|~Y/2 term in (2.15) gives optimal. > estimates of the solution of (1.1)
near the focus (wheresinz| ~ 1).

e The operator/® can be considered as the modification of the Galilean operator
x + itV,, which is very useful in scattering theory (see [8,16,17]). For semi-
classical problems where focusing at the origin occurs, it was used in [5] and [7],
with the rescalingg +i(t —t,)V,, wheret, is the focusing time. The operatdf
is that operator, transported to the case of a harmonic potential.

e Property (2.17) states th@® and J¢ act on nonlinearities satisfying the gauge
invariance condition like derivatives (EqQ. (2.17) holds for the operdiQ}).

e The fact that all these identities, except the first one, hold only for almasta is
not a problem, since in any case integrations with respect to time will be performed.

e The operators/¢ and H® are known in quantum mechanics, as Heisenberg
observables (metaplectic transforms, see [19,13]),

JE)=U @) (—iV)U*(—1) (2.18)
el T\ pye( T _
(=) rue (3 ), 219
H ) =U®(t)xU®?(—1) (2.20)
el T\ e( T _
=U (z 2)(zer)U (2 t), (2.22)

whereU*®(¢) is the propagator defined by Mehler’s formula (1.3), that is

. 2 -2
U&‘(t) =el%(—8 /2:A+x /2)

The commutation properties (2.13) are straightforward consequences of the
conjugation relations (2.18) and (2.20). Identities between (2.18) and (2.19) on the
one hand, (2.20) and (2.21) on the other hand, are due to the geometric properties
the harmonic oscillator, that rotates the phase space. It is easy to check that Sobole
inequalities (2.15) follow from (2.19), (2.20) and the estimate

1

HUg(t)fHLgo < W”f”ﬂ

The most remarkable fact is certainly that in the case of the harmonic potential,
one can estimate the action of these observables of Heisenberg on a large class
nonlinearities, through (2.17).

Lemma 2.2 makes it possible to get more precise estimates of the approximation give
by (the first term of) WKB methods. Denote

H:={f € H}(R"), such thatcf € H*(R")}. (2.22)
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PROPOSITION 2.3. — Assumef € H. Then there exist§ = C(|| f |l g3, llxf || z2) such

that the remainderp® — vz, satisfies, foO <7 < 7/2,

10 = ) O]+ 150 = ) O]+ 1 (0 = v 0]
<C /td_s + 8_2
= 80 co®s cot )’

Remark— As mentioned in the introduction (Eq. (1.3)), the expressiouof a$ given
explicitly by an oscillatory integral, and the above result could be proved by stationary
phase methods. Nevertheless, we do not use this approach, and rather present 1
approach whose spirit is the same as in the nonlinear setting.

Proof. —The first estimate is given by (2.9), witd = |Af| 2. For the second
estimate, apply¢(¢) to (2.7). The commutation property (2.13) yields,

1 1 ,

ied, JEw® + ZPATE WS = V(x)JEw — _EZJa(t)(elw(t,x)/sAvo)’
2 2 (2.23)

ngr;zo = 0
One has explicitly,
5 ip(t,x)/e X . . —iﬁtant 1 X
JE) (" F Avg) = | =sint —icostV, | (e ' = Af
&

(cost)n/2+2 cost

_ . —i%tant V 1 A X
= —je '% COStV, (Cos) /272 f cosr
_ i 1 g Af( a )

(cost)n/2+2 " cost

and the same estimate as for thecase follows, withC = || f|| ;3. For the last estimate
of the proposition, applyH*(¢) to (2.7). Because of the commutation property (2.13),
the remainde® ¢ (r)w® is estimated by thé&? norm of

. 2 1 X
HE(t l(p(t,x)/sA — cost . sinth < —i 3 tanr A < ))
(1) (e vo) = (x +ie ) e (Co) 22 f =

x2 1
— X e—l'ztant 5 zAf< X )
cost (cost)n/2+ cost

1 X
jetant——— =V, Af| — |.
tie (cost)n/2+2 ! <cosr>

The L? norm of the first term isco%nfoan, and theL? norm of the second term is

scsoig[ | £ Il z3- This completes the proof of Proposition 2.33

From Proposition 2.3, WKB methods provide a good approximation of the exact
solution before focusing. More precisely, the remainder will be small up to a boundary
layer of sizes aroundr =7 /2.
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The assumptionf € H is necessary to estimate precisely the validity of WKB
approximation, but is not really essential. Since the set of stigh dense inZ, the
following lemma shows that this extra regularity can be introduced without modifying
the asymptotics.

LEMMA 2.4.—-Assumef € X, and letv® be the solution of1.1). Then for any > 0,

v O] 2 =11 ll2: [ @] 2 =11V fll 25 |HE@O)v*|| 2 = llxf 2.
Proof. —This lemma is a straightforward consequence of Lemma 2.1 and of the
commutation property (2.13).0

Notice that thel2-norm of Vapp(!) does not depend on time, nor thatﬁf(t)vgltJp or
H*(t)vg,, We can therefore remove the smoothness assumption of Proposition 2.3.
COROLLARY 2.5.— Assumef € X. Then,

limsu su A% () (v — Ve (t — 0,
£—0 pOété%eAgH 2l o ) HL2 A= 00

whereA¢ (¢) is either of the operatorid, J¢(¢) or Hé(¢).

3. The nonlinear case

The proof for asymptotics in the nonlinear setting relies on Strichartz estimates (ever
though we could do without when= 1). We first recall how we get them in the present
case, then prove a general estimate. Then the proof of Theorem 1.2 is essentially splitin
three parts: the asymptotics before the focus(@/2 — ¢), the matching between the
two régimes (linear and nonlinear), and the asymptotics around the foeus (2| < ¢).

3.1. Strichartz inequalities

First, recall the classical definition (see, e.qg., [8]),

DEFINITION 3.1.— A pair (g, r) is admissible i2 < r < % (resp.2<r <o if
n=12<r<xifn=2)and

2_ o _ (11
i (r)=n(§—;>.

Strichartz estimates provide mixed type estimates (that is, in spaces of the forn
LY(L") with (¢, r) admissible) of quantities involving the unitary groefs® (see [27,
18,22,28,8,16,17]). With the scaling of Eq. (1.4), the natural unitary group to consider is

UE(1) :=e/52. (3.1)

Now we can state the Strichartz estimates obtained by a scaling argument from the usu
ones (withe = 1). The notation’ stands for the Holder conjugate exponent of
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PROPOSITION 3.2 (Scaled Strichartz inequalities). —
(1) For any admissible paitg, r), there existg, such that

1
quUé(t)uHLq(R;Lr) < Crllull 2. (3.2)

(2) For any admissible pairgg1, 1) and (g2, r2), and any intervall, there exists
C,,.r, Such that

1

1,1 .
g1 qz” / Ut —s)F(s)ds
IN{s<r}

<C
LIL(I; L")

(3.3)

r1,r2 ” ||Lq/2(1'Lré)'

The above constants are independent ahd 7.

The proof of this result relies on two properties (see [8], or [23] for a more general
statement):

e The groupU§ is unitary onL?, ||U§ ()]l 2.2 = 1.

e Fort 0, it mapsL1(R") into L>(R"),

1

HUO( )HL1—>L°O ~ (8|l|)n/2
As a matter of fact, these two estimates also hold for the propagator associated to tt
Schrodinger equation with a harmonic potential (1.1). Therefore we can obtain similar
Strichartz estimates (see [8]).

If v* solves (1.1), then Mehler’s formula yields, fio¢ 7 Z (see [12]),

1 24,2
vi(t, x) = .—-/easmt( ST f(yydy = U*(1) f (x).

(2ime sint)n/2
R)l

Therefore:
e The groupU¢ is unitary onL?, |U®||;2_, ;2 = 1.
e Forte]—m, O[U]0, [, it mapsLi(R") into L>®(R"),

1

& | —
HU HL1—>L°O ~ (8| Sint|)n/2'

Since for|t| < /2, |sint| > |t|, the proof of Proposition 3.2 still works whe is
replaced byU*, provided that onlyfinite time intervals are considered.

PROPOSITION 3.3. —
(1) For any admissible paixg, r), for any finite intervall, there existsC, (1) such
that

1
quUg(t)uHLq(I;Lr) <G (D)|ullLe. (3.4)
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(2) Forany admissible pairgg1, r1) and(gz, r2), and any finite interval , there exists
C,,.r,(I) such that

1.1
gQ1+¢12

Ug(t —s)F(s) ds < Crr(DIIF)| (3.5)

GBIl
LU L%2(I;L"2)
IN{s<1)

The above constants are independent.of
3.2. A general estimate

We start with an algebraic lemma.

LEMMA 3.4.—Letn > 2, and assumen% <o < -%. There existsy, r, s and k
satisfying

1 B 1 20

r’ _; T’

_1 1 2_0' (3.6)
_/=_+_7

9 qa k

and the additional conditions
e The pair(g, r) is admissible,
° O<%<8(g)<1.
If n =1, we take(g,r) = (00, 2) and (k, s ) = (20, 00).

Proof. —With §(s) = 1, the first part of (3.6) becomes

6@)=a<%—1)

and this expression is less than 1 for< ﬁ Still with §(s) = 1, the second part of
(3.6) yields

which lies in]0, 2[ for n_iz <o < -%5. By continuity, these conditions are still satisfied

n—

fors(s)closetoland(s)<1. O

From now on, we assume>> 2 andﬁ <o < -2 We state a general estimate that

can be applied to nonlinear Schrodinger equations with or without harmonic potential.
Let U°(r) be a group for which Proposition 3.3 holds (typically; or U® in our
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situation). We seek a general estimate for the integral equation,

uf (t) =U(r — to)ul — ie""~ 1/w(z $)F*(u®)(s)ds

— w—l/w(z — $)he(s)ds. (3.7)

This equation generalizes the Duhamel formula for Eq. (1.4),

to the case of the same equation without potential (takén place ofU?),
to the case of any initial time and any initial datg @ndz, are general),
to the possibility of having a nonlinear term which is not a poweiu*),
to the possibility of having a source ter#f,.

PROPOSITION 3.5. — Let 11 > 19, With |f1 — fg] < . Assume that there exists a
constantC independent of ande such that forg < r <11,

Cc

IF @Ol < Googr+ e v Ol

(3.8)

and define

11 dt 20/k
Af(fo, 1) = / .
(f0, 12) ( (|cosz|+s)@(£)>
fo

Then there exis€* independent of, 1, and# such that for any admissible paiy, r),

_1/
16 19110, 15y < C6™ 2 |uag 2 + Cyg IIhglqu ot L")
20 (8(s)—%
+ ™ TR A (10, 1) 14 | L1110 (3.9)
We will rather use the following corollary,

COROLLARY 3.6.— Suppose the assumptions of PropositiBrb are satisfied.
Assume moreover that*s> *2 1 © A% (1o, t1) < 1/2, which holds in either of the two

cases,

e 0< o<t <% — Aeg, with A > Ag sufficiently large,

o o, €[5 — Aa >+ Ag], with 2= < 5 sufficiently small.
Then

_1
0l Lo g, 10;22) < Clluagl[ 12 + Gy, qg AN Lo .17 (3.10)

Proof of Proposition3.5. —Apply Strichartz inequalities (3.4) and (3.5) to (3.7) with
q1=gq,r1=r,andg, = g, ro =r for the term withF*(u®), g2 = q, r» = r for the term
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with h¢, it yields

£ -1/q1|,,& £
Nl L2g iy < CE _’|MOHL2+C%‘18 ”h Il o (to,t13 L)

no—1— 8 e
+ C ||F )HLq (to,l‘]_;LL/)'
Then estimate the space norm of the last term by (3.8) and apply Hdélder inequality ir
time, thanks to (3.6), it yields (3.9).0

Proof of Corollary3.6. —The additional assumption implies that the last term in (3.9)
can be “absorbed” by the left-hand side, up to doubling the constants,

-1
N | g a1y < Co~ Y2 u|] 2+ Ce™ ||hf||Lq(,0tlL,) (3.11)

Now apply Strichartz inequalities (3.4) and (3.5) to (3.7) again, but yith co, r; = 2,
andg, = q,r2=r for the term withF* (4®), g = g, ro = r for the term withi®. It yields

: -1-1
||u8||L°°(to,t1;L2) < CH”SHLZ +Ce ”hslqu (to,11; L")
no—1-1
q & & ,
+Ce | F*(u )HLz (oLt
Like before,

1
1

no—l-3 e e 266~ 4e e

€ iHF (u )HLz/(to,tl;Li/) <Cele LA (1o, 1) ||u ||LZ(;0,,1;U_)
1

< ng ”ug ”Li(to,tl;LL)’

and the corollary follows from (3.11). O
3.3. Existence results

Local existence iz stems from the well-known case of the nonlinear Schrodinger
equation (1.7), once we noticed that the operaféfsand J¢ are the exact substitutes
for the usual operatorsV and: +i(t — 7)V, by Lemma 2.2. Duhamel’s formula for
(1.4) writes

u @) =U @) (f +r°) —ie"™ l/Uf(z ) (|12 u) (s) ds. (3.12)

ReplacingU*® with U§ would yield the Duhamel’s formula for the same equation with
no harmonic potential. From the above remark (the essential point igthaind J¢
commute withU*¢) and the fact that the same Strichartz inequalities holdfoandU§

when time is bounded, local existence is actually a byproduct of the existence theory fo
(2.4) (which relies essentially on the results of Section 3.2, see [22,8,16,17{;d-af)
admissible, introduce the spaces

Ye(D)={u"eC(U,%),u*, Hu®, J°u® € Lig,(I, L?)},
Ye(I)={u* € C(I, £),V¥(q,r) admissible u®, H*u®, J°u® € L (1, L%)}.
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PROPOSITION 3.7. — Fix ¢ €]0,1], and let f,r* € X. There existy® > 0 such
that (1.4) has a unique solution® € Y5 »(0,*). Moreover, this solution belongs to
Y#(0, ¢*). The same result holds for E(..6) and for any initial time.

We can take® = +oo when the nonlinearity is defocusing (Eq. (1.4)), thanks to the
conservations of mass and energy,

lu* @] 2= [[u* O] .2 = OCD), (3.13)

8’10’ 2042

H”S(t)HLzaJrz

1
E°(1) = EHngug(t)Hiz+/V(x)!ug(t,x)|2dx+ —
Rn

(3.14)
= E*(0) = O(1).

The conservation of energy provides an a priori estimate#ftw® and J¢u® thanks to

the identity,

Vi x, | HE(Ous (6, 0+ 25Ot (0, x) | = x2u (1, x)| P + |e Vot (1. x) P (3.15)

PROPOSITION 3.8. — Fixe €10, 1] and letf, r* € . Then(1.4)has a unique solution
u® € Y¢(R) and there existg" such that for any > 0 and anye €10, 1],

Hug(t)HLz + ||8qu8(l)HL§ + qug(t,x)HL; <C. (3.16)
3.4. Propagation before the focus

Before the focus, we take as an approximate solution the solution of the linear
problem, that isp® defined by (1.1).

Notice that from Proposition 2.3, we know the asymptotic behaviar dfefore the
focus. We prove that in the very same regiohis a good approximation of the nonlinear
problem.

PROPOSITION 3.9. — Assumef, r € X. Then

limsu su AP (u® (1) — v (1) — 0,
=0 pogzé%FiAgH ( 4G Aoo

whereA¢ (¢) is either of the operatorid, J¢(¢) or H°(¢).
Proof. —Define the remainden® = u® — v°. It solves

1
ied,w® + 582Aw‘E = V(@)w® + & uf > ut,
& _ £
wh_o=r1".

From Duhamel’s principle, this writes,

wé(t) =U*(t)r° — ie""—l/UE(r — 5)(|uf 1% uf) (s) ds. (3.17)
0
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Sincev® solves the linear equation (1.1), so dogsr)v¢, and

v @ 2= 11112, |75 @V || 2= IV I 2.
From Sobolev inequality (2.16),

e 1-5(s) 8(s)
[EHOTSS |cos¢|5<s) 112" IV Flle
Therefore there exist§g such that
Co
[v°(0)]]s < Toos PO (3.18)

From Sobolev inequality, foe sufficiently small, |w®(0)|;s < Co. From Proposi-
tion 3.8, for fixeds > 0, u® € C(R, X), and the same obviously holds fat. Therefore,
there existg® > 0 such that

Co

_ 3.19
| cost|3(s) (3.19)

lw @] .« <

for anyt € [0, t°]. So long as (3.19) holds, we have

2Cy

[uf@)]| s < oSt P

and we can apply Proposition 3.5. Indeed, tdkeé = U®, h® = £"|u®|*v* and
Fe(w®) = |u®]?* w®. From Holder inequality and the above estimate,

e 5 e 20 e (ZCO)ZU e
|72 @Ol 2 < Ol l[w Oll.- < Geog 2 [ Ol
Assume (3.19) holds for &€t < T.If 0 <t < T < 5 — Ae, thene S cost, and the

above estimate shows thAt satisfies assumptlon (3.8).
From Corollary 3.6, ifA is sufficiently large, then for & r < T <
any (g, r) admissible,

% — Ag, and for

1—— 2
w0702 < ClIre gz + C&™ 70 1 270" Ly .11

Taking (¢, r) = (¢, r) yields, from Holder inequality,

20 Ve e
|||Lt | HLq o710y ”u ”L"(OT LA)”v ||L1(0,T;L£)'

The first term of the right-hand side is estimated through (3.18) and (3.19). The last tern
is estimated the same way, for (3.18) still holds when replaciwgh r. Therefore,

2
H'u |(7 8||Lq(OTL’)<(jT T’lg_l_%v
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and

lwll Lo, 7:02) < ClIrell L2 + C(

no—l—%
. 3.20

Now apply the operatoy® to (3.17). Since/® andU* commulte, it yields,
t

JEOw® = Us()JE(0)rf — ie””‘l/Ug(t — )T () (Ju* [ uf) (s) ds.
0

Because/¢ acts on this nonlinear like a derivative, we have an equation which is very
similar to (3.17), withw? replaced byJ°w* andr¢ replaced by—iVr¢. Therefore the
same computation as above yields

no—1-=
1750 | g g2 < CUVF L2 4+ € g (3.21)
(0.T;L%)

T_T

Combining (3.20) and (3.21) yields, along with (2.16),

g1

- C 1 e+ e \" 1 z)
s I — r 1 .
L cost[5(s) " Tt

Therefore, choosing sufficiently small and\ sufficiently large, we deduce that we can
takeT = 7 — Ae. This yields Proposition 3.9 fot® = Id andJ®. The cased® = H® is
now straightforward. O

Vie[0,T], |Jw()

3.5. Matching linear and nonlinear regimes

When time approaches/2, the nonlinear term cannot be neglected. On the other
hand, since the solution tends to concentrate at the origin, the potential become
negligible. It is then natural to seek an approximate soluitothat solves

e 1 - 1~
1£0,0° + EEZAU’E =" |52 5",

The question that arises naturally is, how can we matandv®? With the results of [5]
in mind, we can expect that is exactly a concentrating profile,

0°(t,x) =

glf/zw(’ ~2 f). (3.22)

& &

The functionyy must be defined to match the soluti@h or one of its approximations®

Or vpp Whent =t /2— Ae, for A sufficiently large. Notice that this problem was already
encountered by Bahouri and Gérard in [3] (see also [1], Gallagher and Gérard [15]). Wk
prove that forA > 0 sufficiently large, the propagation far/2 — Ae <t <7/2+ Acis
described by®.
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Write t; = /2 — Ae, and assume from now on that > 1. For large A,
Propositions 2.3 and 3.9 imply

1 X i x2
u’ (t::’ )C) ~v° (t:’ x) ~ v;pp(t:’ x) = (sin(Ae))”/Zf (sin(Ae)) e i),

For A close to zero, the following approximation is expected,

1 f( X ) e_i 25t;ran) ~ 71 f(i) e—iﬁfm)'
(sin(Ag))"/2” \'sin(Ag) (Ae)n/27 \ Aeg
We prove that this approximation is correct in Lemma 3.13 below. From (3.22), this
should also be close to
1 A X
v (-at)
Recall the classical result,
PropPosITION 3.10 ([20], Theorem 1.1; [9], Theorem 4.2).Assumey_ € ¥ and

L<0<£ifn>2,o>1ifn=1.Denote

n+2
2—n4++/n2+12n+4
4n ’

oo(n) :=

If o > oo(n) orif ||y_|x is sufficiently small, then
e There exists a unique € C(R,, X) solution of(1.7), such that

Jim [y = Uo(=0y ()5 =0,  whereUp(r) = ¢'2*.
e There exists a uniqué¢, € X such that

lim [|y — Uo(=0)y (1)||5, =0.

t——+00

Recall that the asymptotic stafe was defined in introduction by,

Cy— 1 r
Vo= Wf,

and the approximate solution (nea& /2) is given by

B 1 tr—% x
vg(t,x):mx//< 2,—).

& &

We prove,
PROPOSITION 3.11. — Assumef, r® € X. Takey_ defined by1.8). Then

ue (% ~ Ae, ) . gn—l/Z(Uo(—A)w_) (E)

limsup

e—0

— 0,
L2 A— 40
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and the same holds when applying either of the operatdfs or ©= —iAeV, to the
considered functions.

Proof. —From Corollary 2.5 (from which® ~ vz, ) and Proposition 3.9 (from which
Ve~ uf),

lim sup

e—0

— 0 (3.23)

12 A—>+o0

" 1 X ) —i#:m)
”(*’x)_(sin(Aa))"/2f<sin(A8) o

and the same result holds when applying either of the oper&iors) or H*(r2). Notice
that applying/*(z;) or H*(t;) is not so different from applyingV, or £ —iAeV,, for
whenAe goes to zero,

JE(1) ~ g —iAeV,,  H(f) ~ieV,.

Recall thatt} =7 /2 — Ae.

LEMMA 3.12. - Leta®(zZ,-) € ¥ be a family of functions such that there exiéts
independent of € ]0, 1] such that,

o (. 2) 2 + [leVar (5. %) 2 < C-. (3.24)
Then for anyA > 1,

limsupl| (¢ (1) — = +iAeV,)a® (1) | 2
&€

e—0

=limsup|(H®(t;) —ieV,)a® ()], =0.

e—0

In particular, we can take® = u® or a® = vy,

Remark—Lemma 3.12 has a simple geometric interpretation. Near the focus, rays
of geometric optics, given by (2.4), are straightened (Fig. 2). Thus in the neighborhooc
of r = /2, rays are almost straight lines, that is, the geometry is nearly the same a:
in [5]. In that case, with the natural scaling (3.22), the “good” operators ®teand
L 4i(t —n/2)Vs.

Proof of Lemma&.12. —Fix A > 1.
(ﬁ(tj) _r, iAst>a8 (%) = <(cos(As) — ) _i(sin(Ae) — As)Vx>a8 ().
& &
Taking theL? norm yields,

< C(Ag)?
LZ

*

H (18(::) -2+ iAst)aE(tf)

X e
8a(t x)

- C V. (1)
12 ’
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'\. \\ll

[MIE]

Fig. 2. Rays of geometric optics are straightened nearr /2.

The assumption (3.24) (which is a consequence of (3.16)*faand straightforward for
Vapp) IMplies

< CA% + CA382,
LZ

H (Jg(tj) ~Iy iAeVX>a5 )
&
which proves the first part of the lemma. Similarly,
[(* (1) = ieVi)a® (i£)]| .o < C(Ae) [xa® (12 x) [ 2 + C(Ae)?|[eVaa® (1) | 2
< C(Ag) + C(Ae)?

This completes the proof of the lemman

Now we prove that in (3.23), we can replace(gin) and tariAe) with Ae up to a
small error term. Denote

oe 1 al i 5En
— Frea
Uapp(ts X) = z- t)”/2f gy e .

LEMMA 3.13. —Assumef € . Forany A > 1,

lim SéJPH (v;pp ~;pp) ( i) HLZ = IiT_)SéJq‘gvx (v;pp_ 5;pp) (t:)

£—> L2

— lim supH (f - iAst) (Vepp— Topp) ()

e—0 £

=0.

LZ
Proof. —Write A = Ae. For fixed A, A is a small parameter whengoes to zero, and

1 X . 42 1 X i x2
€ ~& ! Zan Tl
(”app app) (15, %) = (sink)"/2f(sink> ¢ e )»”/zf(x) ¢

1 X 1 X —iﬁ:m
- ((sink)’1/2f<sink) B A"/2f<x>) ¢
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Loo(X (i _oite
+Wf X (e ctank — @ ,A)‘
Taking theL? norm yields,

e 1 . 1 /.
H(vapp_ vapp) (t*)HLZ < (Sink)"/2f<sink) - )\"/Zf(X)

F ) (e FRm — e )|

((sini)’l/2 B Nll/2>f<siﬁx\>

v (a) ()

+lreo e D )],
inA\ "2 A.
< (ﬂ) —1‘||f||Lz+Hf(—) — 7O

h ‘ A sini

L2

N

L2

-

L2

L2
-xz Az
+ | f ) (e =@ — 1)

The first term of the right-hand side clearly goes to zero witBo does the second one:
if feCPR),itis O(A?), and by density, it i®(1) whenx goes to zero for any € L2.
Recalling that. = Ae, we have

1/ A2 A

_(__A) :A(——l).

e \tani tana
Thus, for anyfixed A > 1, this term goes to zero whengoes to zero. Therefore, from
dominated convergence, for any fixad> 1,

im sup|f (x) (¢~ 5 @m ) — 1), =0,
e—0

Computations foil|e V, (va,p — Vapp) (t) 122 @Nd [[(5 — i AeVy) (Vg — Vapp) (1) 12 are
similar and essentially involve one more derivative or one more momentum. Ingged,
andvg,, behave well with respect to the operatefé, and= — i AeV,, thus we can use
the same density argument as abovel

The next step to prove Proposition 3.11 consists in compaijggand the rescaled
free evolution of the asymptotic stage. .

LEMMA 3.14. — Assumef € X. The following limits hold, uniformly with respect to
¢ €10,1],

. ~g & 1 :
AlToo Uapp(t*> g2 (Uo(—A)llf—> (g) L2
. ~& 3 _1 ‘
- AL'TOO £V (vapp(t*> N en/2 (UO(_A)]//_) <g>) L2
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’(g _iAev, ) ( Fipplt) — 8n—1/2<Uo<—AW—> <>>

Proof. —From the Fourier Inversion Formula, we have

e 1 X\ il
app(t x) (Ag)n/2f<A_8>e 2o
11

On the other hand, the expression of the free Schrodinger drgumplies, along with
definition (1.8),

1 x i "2z 2 »
W(Uo(—l\)‘ﬁ—) <§> = (27”\8) e”'a% /e en ZAW ) dy
1 1

—i 2 iﬂ_,‘ﬁ N
=G et T [0,
Thus the remainder we have to assess writes

= lim
A— 40

=0.

L2

1 1 22 i iy f
@ny (hey2® / e (1—e™') f(y) dy,

which is also,
1 —ii P A X
- 262 1 —e'7/ — .
e =B ) (1)
The lemma then follows from the strong convergencéne’?* —1 O
Lemmas 3.12, 3.13 and 3.14 imply Proposition 3.11.
3.6. Description of the solution near the focus

Propositions 3.10 and 3.11 imply that

Iimsup{ 8<7T A ) ”(n A ) +
e—0 ! 2 & v 2 & L2
+Iimsup{ Y ( 8<z Ae ) “(z Ae ))
e—0 M 2 ' v 2 ' L2
. X T . T
+ lim sup’ (— — iAer> (u‘E (— — Ae, ) —7° <_ — As, )) — 0.
e—0 & 2 2 12 A—>+00

This means that taking. large enough, and small enough, the differenag — v° is
small at timet; = /2 — Ae, which is the “initial” time in the boundary layer where
nonlinear effects take place (and where the potential is negligible). Since the udle of
is negligible, we first assumeé = 0.

PROPOSITION 3.15. — Assumef € H, and that the nonlinearity i<?, that is,
o > 1/2, which is possible only i < 5. Then the difference® — v* is small around
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the focus.

limsu su A (ub @) —v°(¢ — 0,
e—0 p%—Asgtgp%—&-AEH ( )( ® ( )>||L2 A—+o00

whereA¢ (¢) is either of the operatorid, J¢(¢) or Hé(¢).

Remark— The assumptior > % is needed to prove Lemma 3.17 below. It seems
purely technical, and one expects Lemma 3.17 to hold without this assumptics. 2
the nonlinearity is automaticallg? thanks to the assumption > ﬁ If n =3, then
we have to restrict our study to the cai;e o < 2. In particular, the value = 1, which

corresponds to a cubic nonlinearity, is accepted.

Proof. —Propositions 3.10 and 3.11 imply that

. T [T
imsge (5 =ae) =7 (5 -ne)]
, N s (T
+ IITjoup A% (u (E — Ae, ) (E — Ag, )) L
H X . £ "’8 T
* "Tfé’p\ (F-inev) (wr (G2 ) =5 (5-2e)) Lo AT

Define the remaindew® = u® — v®, and keep the notatiorf = 7/2 — Ae. From
Proposition 3.11,

im sup8° (1) (1), O
where B¢(¢) is either of the operators Ig; +i(t — 7/2)V or ¢V. From Lemma 3.12,
this implies

H & &
lim supj|A* (1) w° (1) 2, =, ©

whereA¢(¢) is either of the operators Id;f () or HE(z).
From the conservation of energy (3.14), we have

Jevar ). <C

From the conservation of energy for (1.7),

d (o8
(1T @I+ — vl ) <o

we have
v @l|,.< €

Therefore, sincer® = u® — v°,

evir o]l < €
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From Sobolev inequality,

1-8(s)

[@° )], < Cllw* @] ;2" Ve )]},

and there exist€’; such that for any € R,

Cy

|@f ()] = < TSR

(3.25)

This estimate will be useful fgr — /2| < Age, whereA is given by Corollary 3.6. For
|t — /2| > Age, sharper estimates are provided by, along with Sobolev inequality
(2.16).

The first step of the proof consists in showing that the harmonic potential can be
truncated near the origin without altering the asymptotics.xetCg°(R") be a cut-off
function, with

suppx € B(0,2), 0<x<1 and % eB(01), x(x)=1
For R > 0, define
(1. x) = (x (1, x)
up(t,x)=x R)u(,x.
LEMMA 3.16. — Assumef e H, o > % and takeR = ¢*. Then forany0 < @ < 1,

limsu su AP (u®(t) —u% @) — 0,
e—0 p%-AaStgp%-i-As” ( R )HLZ A—+oo

whereA¢ (¢) is either of the operatorid, J¢(¢) or Hé(¢).

Proof of Lemm&8.16. —The functionu?, satisfies,

_ 1, x? ot oo g2 x & x
(zeat—l-és A—?>uj}:s |u?| ui-‘,—i—EVX(E) -Vu*’—{—(E) AX<E)u‘9,
therefore the difference, := u® — u% solves,

. 1 x? &2 X £ 2 B
(160 + 362 = Jue = w2 v () v = () e ()

From Lemma 2.1, and because the tefif|x*|%° can be considered as a real potential,

2
& &
ed, 0,2 < C eV @z + € (5 ) I 02

which implies, from (3.13) and (3.16),

. & & 2
e @), < O + c(E) .
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Integrating this inequality of; — Ae, 5 + Ae] gives

2
& )
SUp_w0)]|= < [l (r/2 - o)z + CA g+ CA( )
T—Ae<t<G+As R R

Taking R = &* with 0 < @ < 1 yields,

limsup  sup  |[wi®)| 2 <limsup|w}(7/2— Ag)|,..
e—>0 F-Ae<r<G+Ae e—0

Now sincey_ € L?, 0 < a < 1 implies, along with the dominated convergence theorem,

|(-(z))emto-me )

From Proposition 3.11, the first part of Lemma 3.16 (with= Id) follows.
To estimate/®w#%, notice that

— 0.
12 e—0

JE (w2, x) = <1 —x (%))Jg(t)ug(t, X)+i Ccl’ft Vy (%)w:, X).

and forg — Ae <t < 5+ Ae,

costo [\ e
[T va (e

| cost| Ae
<C <C—

L2

Therefore to prove Lemma 3.16 whdnh = J¢, it is enough to prove,

(1 - X <E>> JEu(t, )

The functionJ*(¢)u® satisfies, from the commutation property (2.13),

=0.

L2

limsup sup
e>0 F-Ae<i<H+As

1 2
(iga, + EEZA — %) JE(Ou® =& JE (1) (|uf)* uf). (3.26)

Notice that from Proposition 3.9 and (3.16), Sobolev inequality implies that there exists
C = C(A) such that for any € [0, 7 /2 + Ae],

Cc

Il @les < Geosi v o

s (3.27)

At this stage,C might depend on\ (even though we will know it does not, afterward).
Therefore, Corollary 3.6, applied to (3.26) a finite number of times to cover the interval
[Z — Ao, T + Ag], implies that for anyA > Ao, J(1)u® is bounded inL? for

t € [0, m/2+ Ae]. Next, commuting the cut-off functiop with (3.26) yields,
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(' 5, + Se2a x—2> 1 (1 >J£(t e
131+28 5 ( —X R) u
no X & &40, € 2 X & &
= (1—X<E)>J ) (Juf|*u) — ZRZAX (E)J QY

ey (x>v18(z) .
- — — u.
R *\R
From Corollary 3.6 and (3.27), if we denate= /2 — Ae, t{ = /24 Ae, we have

1— - JE 2 1— T (5 Y ut
(=)o, <[ ()

+ CW”JE(t)”8|‘Ll(zi,zi;L2) + CEHVJSU)MSHLl(zi,zi;LZ)

<)
"J"CA—HJ (Z)“ HLO@(K 15;L2) +CA—HV‘] (t)“ HLO@(K 15:L2)"

2R?
We can conclude with the following lemma, whose proof is postponed to Section 3.7.

LEMMA 3.17. - Assumef € H ando > 1/2. Let A > 1. There exist®’ = C(A)
such that for any € [n/2 — Ae, m/2+ Ael,

L2

L2

|eVIE@)ul|| 2+ |[eVHE (Duf|) . < C
This completes the proof of Lemma 3.16, the computations Withbeing similar.

To prove Proposition 3.15, we now have to compéafeand the truncated exact
solutionu%.

LEMMA 3.18. — Assumef € H and takeR = ¢*. Then for any0 < o < 1,

limsup  sup  ||A%(0) (uf% () — 0°(0))]],2 0

e>0  S-Ae<t<H+As
whereA®(¢) is either of the operatortd, J¢(¢) or H*(¢).
Proof of Lemm&8.18. —Denotew$ = u% — v°. Recall thau$, solves
2

<. 3+12A x2> e nc7| |20‘ 6+ V <x>v8+<8> A ('x) £
ie —e“A—— u,=¢ — u — — |u®,
‘T2 2 )"k 2R "X\ R R) “*\R

and notice that with our choice for the cut-off functign

() =) (%)

therefore
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1
(iga, + 582A> Uy = Ve(X)u'y + & |uf|% us

o)y (5) e ()
2R "\ R r) S\ R)"
where
The remaindem?, solves
. 1 2 ~g 5 no £120 ¢ ~g120 ~¢&
183,+§8A Wy = VR(Xu% + " (|u’|*uf — |0°°0°)
o () v+ (5) ax( )
- — | Vu — — |u”.
or X\ R r) "X\ R

Apply Proposition 3.5, with noW* = Ug, F* = 0 andh® = hj + h5, where

(3.28)

c_vy (x)u8+£v (f)VuSJr(i)ZA (f>u
1= PRWUR T oRr VAR r) S\ R)"
and
hg — Eno'(|u€|2«:7u(;e _ |l"}’6|20’58).
This yields, forr/2 — Ae <to <ty < 7/2+ As,

1 -1-1
<Ce tl|wk(t0)| 2+ Ce ™ LAl 1y 0r2)

H J)R H L(19,11: L)

_1-2
+ Ce EHhEHLf(m,,LLﬂ)
_1 _1-1 g e s 2
< Ce 2]|wi(to)||, 2+ Ce 1/<R2+E+<E) )dt

Io

n—1t 2o/k -
+C(A2) 188 s + 105t

from Hdolder inequality. Taking

we have

N 1 _1 & & 2
HwRHLZ(to,tl;LL) <C8 sz%(IO)HLZ-i_Cg 1(R2+E+ (E> )
+ CHw;’HLi(to,tl;LL)'

Repeating this manipulation a finite number of times covers the whole interzal
[7/2 — Aoe, /2 + Age]. Doing this, we get a possibly large, but finite, constant,
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which can be seen as the analogue of the exponential term in Gronwall lemma. Fo
Aoe < |t — /2] < Ae, we use time decay estimates provided by, bearing the
comparison with Gronwall lemma in mind, this means that the oper&tgorovides
some integrability forAge < |t — /2|, which is stated in (3.8), and implies the first
condition in Corollary 3.6. This integrability is needed to get a bound independent of
A > Ag. WhenA® = H?, from (2.13),

e . 1 2 e x2 . .
H®(t),ied, + 58 Al =|H"(1), 2 =igxsint,
and H*u% satisfies,
1 .
(isa, + 582A> Heub, =iex(sint)u’y, + &" H® (Ju’|* ufy)
+ Vr(x)H u% +ie(sint)VVe(x)uy

+8—2v <£>H88 ug—i-issintg—zA <£>Vu8
2R "\ R x 2rR2 X\ R

+<8>2A <x>H*’ 8+'ssint82VA <x> é
— — u l — — |u .
r) “X\ R R3O\ R

It follows that the remaindeH “w?, satisfies,

1
<i88, + 582A> HEwh = " H ([uf | ufy — |0° 7 5°)

+ixey <%> (sint)u® + ie(sint)VVe(x)uy

X

+ Ver(x)x (R

How +i Ve sind vy [ 2 )u?
) u —{-lﬁ r(x)(sInt) X<E>u

LBy (f)mwwiesimiA (f)ws
or X\ R or2 X\ R

+(8>2A (x)HE 4 iesin EovA (x) e
— — u l — — U .
r) "X\ R R3O\ R

We can estimate the term iH*9,u® because we can estimaigH*u® (Lemma 3.17)
and the following holds,

[H*(t), V] = —cost =0(g) form/2— Ae <t <m/2+ Ae.
The proof then proceeds as abovel

Lemmas 3.16 and 3.18 clearly imply Proposition 3.15.

The assumptionf € H turns out to be unnecessary. Indeed, we can use a density
argument forb¢, and approaclf € ¥ by functions in{ up to a small error in the norms
that are considered in Proposition 3.15; this stems from global well-posedness of (1.7
(see, e.g., [8,17]). We can mimic the proof of this resultufgrthanks toJ¢ and H¢.

PROPOSITION 3.19. — Proposition3.15still holds if we assum¢g € ¥ andr® 0.
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3.7. Proof of Lemma 3.17

We first use the following remark.
LEMMA 3.20. —-Assume a function®(x) satisfies

[(=&?A +x2)u|| o + lleVu | 2 + w2 < C,
whereC does not depend an Then
le?Au® ) L2 + 62”2 < C.

Now the idea is to differentiate (1.4) with respect to time. This is classical for the case
of the nonlinear Schrédinger equation (1.7), see, e.g., [8], Section 5.2. Thanks to th
above lemma, we can adapt the mentioned results to prove the following proposition.

PrRoOPOSITION 3.21. — Assumef € H. Let A > 1. Then
P T 2 2 1fa T 2
u EC(O,E—I—Ae;H NF(H )) ale (0, E—i—Ae;L )
and there exist€ = C(A) independent of such that

sup ledut )|, .+ sup |[e2Aut®)|,.+ sup ||x%uf(®)|,.<C.
0<t<G+Ae 0<t<G+Ae 0<t<G+Ae

Idea of the proof. -As in [8], the idea of the proof consists in differentiating the
equation satisfied by® with respect to time, and estimat®,u®. Since the harmonic
potential commutes with the time derivative, one can mimic the proof given in [8],
Section 5.2. When there is no potential, like in (1.7), the control of the nonlinear term anc
the time derivative give some control @dAx¢. In our case, this controks Au® — x2u®.

From the above lemma, this means that we can estimate each of these two terms.

Notice that the following algebraic identity holds point-wise, for gny,

e 2 (O [* + |20, I8 (0w |° + [ HE (0u® | + |ede HE (0w

2
(3.29)
where§ . stands for the Kronecker symbol. From Proposition 3.21, the right-hand side

is bounded inL?, uniformly for 0< 7 < Z + Ae. This implies the boundedness of
¢VH®(r)u® stated in Lemma 3.17, and even a little more, that is,

=[x (O + [exid;u O + |e8 10”0 + ex; 00" ()| + |6202,u° (1)

Vi €[0,7/2+ Ael, |eVH (t)u®||,. < C. (3.30)

At this stage, we have not assumed that the nonlinearity was twice differentiable. On th
other hand, we just have

|eVIe(Du’|,2 <

m.|(')
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The idea is that for this term, (3.29) is far from giving a sharp estimate. Indeed, for
|t — /2| = O(¢e), we guess that the main contribution «f lies in |x| = O(e) (semi-
classical Schrodinger equations are morally hyperbolic). This is precisely what we have
to prove. With the additional remark that neat /2, one can replac#&* with ¢V up
to a small error term, this suggests that the leading order term of the left-hand side i
|led, H (1)uf|?, and the leading order term of the right-hand Sidﬁ%@f/_mu‘?(t)ﬁ Thus
there is nothing more to hope from this identity. '

This in fact must not be surprising. The only additional estimates we obtained are
those stated in Proposition 3.21,

sup leduf )|+ sup |[e2Aut(®)],.+ sup ||x%uf(@)|,.<C.
0<t<G+Ae 0<t<G+Ae 0<t<G+Ae

The boundedness of the first two terms means ifatis e-oscillating, and the
boundedness of the last term means that the solution remains confined. This is due
the fact that we work with an unbounded potential, but not to the fact that we consider
the harmonic potential in particular. Therefore, there is no precise geometric informatior
in this estimate. As a matter of fact, away from the focus, this kind of information is given
by the operatov®.

We assume that the nonlinearity is twice differentiable. Recall that fgrj1< n,
YHOUS satisfies

. 1 2 )CZ P e no ye £120 &
ied; + 56°A = = JJjout =" T30 (1w |7 uf).

Differentiating this equation with respect tp yields

1 x2
(ieat +58%A - ?)wkjjg(t)ug =" () (Juf 1P u’) + exi J (Dt (3.31)
The last term comes from the commutation of the harmonic potential dyjthiFrom
(2.17), the following point-wise estimate holds,

|88k-]j8(f)(|u8|2‘7u8)| < |us’26—1

~

|e0eu| - [JE@Ou | + w1 |3, T (0’| (3.32)

The idea is that the last term is well prepared to apply Gronwall lemma. For the first term
of the left-hand side, we have to work a little more. Apply Corollary 3.6 to (3.31), with

|Fe(e0 JE (s ) | S uf 17| e0 J§ (1)u’

|h*) S " |uf |17 Hedpu®| - [TE(us| + |ex S ()u].

We already know thafF* satisfies (3.8). Corollary 3.6 yields,

e 0I5 Ou[| oo g 11:12) < 00 Cs N 2+ €l T} (Ot

|L1(to,t1;L2>

!
+ce [t 2 e T (0w ;- 3:33)

! /
LY (to,11; L”
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For fixedr, Hblder inequality yields,

1% e dpu® JE (t)u®

L S Nl e || oo |5 (Ou” | 2.

with
20 —1 1 20

ai a s .

We can take for instancei; = a, = s. This implies, along with (2.16), since
lled HE (¢)uf|| ;2 is uniformly bounded

C

S(az)
o 1oz I Wedar’||;z" + 1)

1% e dpu® JE (tu®

FHGY:

L’ < Lo

Now apply Holder inequality in time, with

20 1 1
=—+—+-=.
k oo g

MR

This yields

|Hu8|20_188kugjf(t)u8H < A% (10, 1) || 5 (Ou || 1 110

/
LL (0,10, L) ™

+ A% (10, 1) || J° a2 o TS O a e (3:34)

whereA¢ is defined in Proposition 3.5. We also know that

JEOutl| e <Ce Ve,
17 L

(0,115 LE)
therefore (3.33) yields,
le 3k 0| o112y < 0T f M2 + CllaeedFOU" | 11 4,12,
-+C8M_L§A%mJQ(1+HJ%O&&uwfzgﬂw%)

But from Lemma 3.4,
2 1
no—1—— :20(8(;)— —),
q k

1
and we find the same quantity as in Proposition 3.5, thazf’@(i)_E)As(to, t1). With the
remarks that
(€0, Jj(t)] =38 sint,
andd(az) < 1, we have also,

Hsakjjg(t)“sHLOO(zo,zl;LZ) < HsajZkaLz + CkaJjg(t)“SHLl(zo,zl;LZ)

no— _2
+Ce" LA (1, 1) (L4 [ Ou || oo 0.1 12))- (3:35)
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Now it is natural to Studycka(t)uS. It satisfies,

1 2
(isB, + EEZA — )%)xk.]f(t)u‘9 = s”"ka;(t)(lu8|2”u8) + ezaij?(t)uS.

The same computation as above, minus the three terms estimate which is not need
here, yields

”xk‘]f(t)ugHL°°(10,11;L2) < xedjfllz + C”sakjjg(t)“aHLl(zo,zl;LZ)
1.2
Lot 7 A®(to, tl)||xkff(t)“8||Loouo,t1;L2)- (3.36)

Summing (3.35) and (3.36) over and k, Lemma 3.17 follows from the Gronwall
lemma. O

3.8. Past the first focus

After the first focus, we can proceed like before the focus, and iterate this process
Notice that ifn > 3, then% > og(n), and we always have > og(n). Next, we can prove
the analogous of Proposition 3.9, using Proposition 3.11 and Corollary 2.5.

ProPOSITION 3.22. — The following asymptotics holds fat/2 < ¢ < =,

limsu su A%(t) (u® —vi) (1 — 0,
£—0 pn/2+A82t<nH ( )(Lt vl)( )HLZ A—+00

whereA®(¢) is either of the operatortd, J¢(¢) or H*(¢).

Finally, vg,,, approximatesvi like in Corollary 2.5. Then Corollary 2.5, Proposi-
tions 3.9, 3.19 and 3.22 imply Theorem 1.2.

Whent = &, the problem is almost the same as at time 0. The initial dataf is
replaced byf;, and

Ju (. ) = fill = o).
Therefore, Theorem 1.2 can be iterated, which yields Corollary 1.4, because of the
property,

VOeR, Vy_ e X, S(ey_) =€S(y).

4. When the nonlinearity is focusing

In this section, we assume= 1 for simplicity. The first remark to guess the result
of Proposition 1.5 is that in the proof of Proposition 3.9, the sign of the nonlinearity
in unimportant. One needs local existence results to start the “so long” argument
and general estimates on the nonlinear term that do not involve its sign. Therefore
Proposition 3.9 still holds wheir is the solution of (1.6).
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Next, assume for a moment that the matching argument can be used as in Propos
tion 3.11, and that afterward, the harmonic potential can be neglected because of col
centration. The behavior af should then be the same as the solution of

1
ig0,v°® + észafvg = —&2|v°|M°.

Resuming the scaling (3.22), we have to understand the behavior of the solution of thi
same equation witle = 1. It is well known (see [8]) that for small initial data, the
solution exists globally. The critical mass is thé-norm of the ground stat® defined

in Proposition 1.5. Recall what happens in this critical case.

THEOREM 4.1 ([24], casen = 1). —Let ¢ € X, with |l¢| ;2 = || R||;2. Lety be the
solution of the initial value problem,

mw+%ﬁw=—wﬁw
‘/f|t=0 =¢.

Assume that/ blows up at time = ¢,. Then there exist, w, &, x1 € R such that for

t<t,,
w X—x o+ G2
vt x)= Rlw —& ) e T RT T, (4.1)
Vi, —1¢ te —t

The second important remark is that such profiles as in (4.1) are dispersedr when
goes to—oo. If w=1,x; =& =0, then

From the uniqueness in the first part of Proposition 3.1@,$blves the critical nonlinear
Schrodinger equation and behaves asymptotically when—oo like the free evolution
of

Uo(t, — DY (1) — R

— 0. 4.2)

EI—)—OO

207

1 ~
Ty o __
— «/EUO( t*)R7
then is given by (4.1) withw = 1 andx; = & = 0. Back to the scaling (3.22), this
yields the definitions (x) = R(x)e"%"2 (from (1.8) and the definition af"*) and (1.12).

Now sketch the proof of Proposition 1.5. As we noticed, Proposition 3.9 describes the
behavior ofu® up tor = /2 — Ae for large A. What prevents us from mimicking the
proof of Proposition 3.11? The limit (3.23) still holds, as well as Lemmas 3.13 and 3.14.
However, one cannot apply Lemma 3.12 so easily.tand v;,, for estimate (3.16)
is not true when the nonlinearity is focusing. On the other hand, (3.16) is true up to
timer = /2 — Ae for large A, from Proposition 3.9 and the algebraic identity (3.15).
Therefore Proposition 3.11 still holds.

Finally, one can adapt Proposition 3.15 by replacing the time intefwgl —
Ae,m/2+ Ael by [n/2 — Ae, /2 + t.e — re], for any positiver. The method of our
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proof does not allow to go further. Indeed, we have the following estimates,

58<z+t 8—)\8> — ||R”L°° Hga 58<z+l‘ 8—)»8) :@
2 * Lo® «/)\,8 ’ * 2 * L2 )\. ’

Therefore, one cannot hope that (3.25) holds beyord 7 + t.e — Ae (with C;
proportional tox~/2). On the other hand, if our final timeds= % +t,& — A& with A > 0,

we can prove the analogue of Proposition 3.15 by a “so long” argument (that is, (3.25)
with C; proportional tor=1/2). As a result, we have the first part of Proposition 1.5. The
last part follows from the remark we made above, that we knodexplicitly, therefore

in particular its value attime= % +t.& — Ae.

5. Anisotropic harmonic potential
Consider the general harmonic potentialdit,

2.2

V(x) = = (0x? 4+ wdx3 + - - - + 0?x?), (5.1)

1
2
with w; > 0 for all j. It is isotropic when all they;’s are equal, anisotropic otherwise.
We suppose that the;’s take exactlyd distinct values (X d < n), and renaming the
space variables if necessary, we can assume that

O<wi<wy <+ <wy.
We denotei; the multiplicity of w;, 1 < j <d (i1 + --- + iz = n). At least
two possibilities occur, as for the result one can hope for, corresponding either tc

Theorem 1.2 or to Corrolary 1.3. In the former case, one would be interested in the
Cauchy problem

1
ieduf + §s2mﬁ = V()u® + e uf1*u’, (t,x) eRy xR,

(5.2)
ufz:O = f(X) + r&‘(x)’
and in the latter, in
. & 1 2 & & no |, £\20 ¢ n
iedu® + —e“Au* =Vx)u* +&"%u|u’, (,x)eR,. xR,
2 (5.3)

. 1 X 1 . /x
M|I:O= mf g + gn/zr g )

where f,r* € ¥ and ||VE||2—(>)0. We briefly discuss Eg. (5.2), and explain more
precisely what happens for Eq. (5.3).
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For (5.2), the same method as in Section 2 leads to the following phase, profile an
operators,

1 n
o(t,x) = —Eijxf-tan(a)jt),
j=1

vo(t,x) =

[-—— ( X1 X )
i1 V/Codw;1) I\ Gostwrt)” " costwnn) )’ (5.4)

J&‘ — a)]x.] H . a
j(t) = Sln(a)jt) —lCOS(a)jt) s

Hi(t) = wjx;coqw;t) +ieSinN(w;1)d;.

The first focusing occurs for = 2”7[1; the solutionu® focuses on thé,;-dimensional
vector space defined by

E;={x;=0, Vj such thaw; = w,}.

Therefore, the critical index for the nonlinear term to be relevant in (5.2) would-be
dmE,; =i,. If k > iy, then the nonlinear term remains negligible up to tirnez”Td and
before the next focusing, where the same discussion is valid>lmax ;<. i;, then

the nonlinear term is everywhere negligible, provided that no simultaneous focusings
occur; indeed, the; part of the harmonic potential will cause focusing at times

b KT
—+—, k€Z.
2a)j C()j

Two (or more) distincty;’s can cause cumulated focusing if they are rationally related.
To simplify the discussion, we now assume= 2 and thatw; andw, are irrationally
related. In that case;® focuses at time = % on the line{x, = 0}. If k =1, then the
nonlinear term becomes relevant n¢@ar, x,) = (szz, 0)}. The case of a focusing on a
line was treated in [4] without potential, with an initial oscillation that forces such a
geometry for the caustic. With an anisotropic oscillator, the situation is technically much
harder to handle. In [4], no oscillation was present in the other space variable, and thi
variable could be considered as a parameter. In the present case, oscillations are alwe
present in both space variables, so it is harder to measure the dependersioeithf
respect tor; when it focuses offir, = 0}. We leave out the discussion at this stage.

On the other hand, it is possible to understand (and prove) what happens for Eq. (5.3
Because we altered the time origin, the operators we now use write,

WX

Ji@) = coSw;jt) + i sin(w;1)d;,
(5.5)

Hi(t) = wjx;sin(w;t) —ie COYw;1)d;.
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We also have an explicit formula for the linear solution (the analogue of Eq. (1.3)), which
yields in particular Strichartz estimates. The solution of

1
ied,v° + Ze2Av° =V (x)t,

2
Ufzzo = f(x),
is given by
n W 1/2
£ f — J / iS(t,x,y)/e d ,
vt x) .1:[1<2i718$|na)jt> ¢ Fdy
J= R~
where

"ow; (X242
S(t,x,y) = — (’ . cosw;t — x; )
¢ x.7) jz_:lsmwjz 2 A

It is not hard to see that one can mimic the proof of Theorem 1.2 to get the following,

THEOREM 5.1. — Assume <n <5, 3 <o <-4, and let2 <r < 2. If n =2,
there exist$ > 0 such that in either of the two cases,

e 0 > 09(2), or

o Iflx <58,
the following holdg(if 3 < n < 5, no additional assumption is neede®enotey. =

Wilf, and

n 2

1 wixs
(p(t,x)=éz !

J
= tan(a)jt)
Let u® be the solution of5.3). Then for|z| < Z_d (that is, before refocusingand in
L2nrL,
o If0<t < (Z_d’

n 1/2
e wj —~ [ WiX1 WnXn io(t,x)/e
ub(t,x) ~ —_ e' e
o~ TI( )

i 2in sinw; sinwit’ " sinw,t

o If — X <t <0,
wd

n ) 1/2
ua(t’ x) ~ H <L> &:( C.()lxl . C'Un-xn ) plet0)/e
s—>0j:1 2im sinw;t Sinw1t Sinw,t

Attime t = 7, the solution focuses of,, and the nonlinear term is negligible (use
the operatorst; for all indexesj such thatw; = w,, and Ji for the others). The
nonlinear term will be relevant again only if there exists a time where the focusings
caused by the different;’s (1 < j < d) occur simultaneously, that is if there are positive
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integersky, .. ., k4 such that

This means that the;’s are pairwise rationally related. Therefore, at time #,, the
caustic crossing will be described again by the scattering operator. Notice that whel
¢t approaches;, the asymptotics given in Theorem 5.1 has been modified in terms of
Maslov indexes (for instance, since the crossing gfs linear, only linear phenomenon
occur at leading order, that is precisely a phase shift measured by the Maslov index]
More precisely, fork; — D /w; <t < t1, everyw; (1< j < d) part of the harmonic
potential has caused — 1 (linear) caustic crossings, and

d —i(kj=Dym \ ij/2
wije i —~ ( w1x1 WpX ,
W (1 x) ~ H<17> W+< DL O )eﬂﬂ(t,x)/s'
6—>Oj=1

2im|sinw;t| Sinwst Sinw,t

Fort; <t < (kg + Dm/wy, ONe has,

d —ik;m ij/2
wie ' — [ w1x1 wyX .
ut(t,x) ~ ||<7, Al ) S¢+( : e, — 0 )é‘/’(f’”/ﬁ,
£—>Oj_1

2im|sinw;t| Sinwat Sinw,t

and so on.
If the ;s are not pairwise rationally related, then only linear phenomena occur near
caustics, and they are measured by Maslov indexes.
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