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1. PREFACE

This paper is devoted to some boundary value problems for systems
of partial differential equations. In particular we consider Stokes system
and quasilinear elliptic degenerate systems of divergent type with bounded
nonlinearities. The author would like to express his deep gratitude to Prof.
S. Hildebrandt for fruitfull discussions and general support.

It was shown in [3] (see also [4] and [9]) that the question of regularity
of weak solutions for quasilinear elliptic and parabolic systems is closely
attached to the dispersion of the spectrum of the matrix which defines the
ellipticity (parabolicity) of the system. The upper bound for this dispersion is
determined by some coercive constants for elementary elliptic or parabolic
operators. The explicit form of these constants leads to some conditions
which are easy to check in order to obtain the regularity of weak solutions.
This approach can be applied for example to such important systems as the
Stokes system. We divide the paper in three sections.
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The first one is devoted to some constants concerning the operators A
and A, where e is an arbitrary positive constant.

Let B be a unit ball in Rm (m 2 2) with the center at the origin and let
a = 2-m- 2, (0  ~y  1). If u(x) is equal zero on aB then the inequality

holds true. Here and IDul2 are, respectively, the sums of all squared
derivatives of u of the second and the first order. An analogous result was
at first obtained by H. O. Cordes [1].

This estimate could be also obtained with the help of the result of
E. Stein [4] concerning the boundness of the singular integral operators in
the weighted spaces  But this method doesn’t give the
explicit constant in front of the right-hand side integral containing Au.
The nonstationary case is also considered in this section. Let Q =

(0, T) x B, u = 0 for t = 0, and ( is a cut-off function. Then the inequality

holds for m > 3, and the constant C doesn’t depend on ~ > 0.
Section 2 is devoted to some coercivity estimates. In section 3 we consider

the Stokes system both for stationary and nonstationary cases. Consider for

example here only the stationary system

in a bounded domain Q C R"2 with a smooth boundary and with u = 0
on 9H.

Let xo be an arbitrary point of SZ, with dist (xo, 0Q) > Ro - const
and R  Ro.
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Then the estimates for the weak solution u, p

and

hold true and C doesn’t depend on xo. The results of this paragraph were
obtained in cooperation with A. Wagner (Cologne).
The third paragraph contains some results about the elliptic system

Under natural analytic conditions on the coefficients a2 (x, p) we assume
that the eigenvalues Aj of the symmetric matrix

satisfy the following inequalities

with A,A = const. > 0 and 0  s  1.
It is proved, for example, that if the inequality

holds then the "small" weak solution of the system satisfies the Holder
condition in H.

Vol. 12, nO 4-1995.
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2. SOME COERCIVITY INEQUALITIES
WITH EXPLICIT CONSTANTS

Consider in R"’ (m > 2) a ball BR(xo) with the center xo and radius
R. The ball Bi(0) will be denoted B. In this ball an equation

with a boundary condition

is given.
Suppose that f E L2,~(B), where is the space of squared integrable

functions with a weight Ixla. Throughout this paper we assume that
a = 2 - m - 2~y (0  ~y  1), and Ixl denotes the distance from the
origin. The norm in L2,a(B) as usual is determined by

Set

where Ui are the derivatives with respect to xi.
By we shall denote those functions in the Sobolev space

W22~ (B) whose second derivatives are square summable with the weight
As norm in this space we could take for example the expression

One of the aims of this section is to prove for the solution of the

problem (2.1), (2.2) the inequality

where Ca has an explicit form. For a’ = m - 2 + 2~y such an inequality
was proved by the author in [2].

First we shall prove some lemmas.
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LEMMA 2.1. - If ~c E W22~ (B), then the inequalities

and

hold.

Here r~ is as usual an arbitrary positive constant and

where |S| is the surface of the unit sphere in R"‘ and 03BB is the
smallest absolute value of the eigenvalues for operator 0 in B with the
condition (2.2).

Proof. - Evidently

Square both sides of this equality and integrate over the ball B8(0) = jB5
with 8  1. We get

The first term on the right hand side we can write in the equivalent
form and get

Applying the Holder inequality to the inner integral, we obtain the
estimate

Vol. I 2, n ° 4-1995.
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Putting 8 instead of the upper bound of the inner integral we get the
following :

Dividing by 8m and taking into account that m(rrc + 2~y)-1  l, we
obtain the inequality

Using the notation (2.6) we obtain the inequalities (2.4) and (2.5). 0

COROLLARY 2.1. - Let 03BB be the smallest absolute value of the eigenvalues
for the operator 0 with condition (2.2). Then the inequalities

and

take place if u satisfies (2.2).

Proof. - In fact both of the second terms on the right hand side of (2.4)
and (2.5) can be easily estimated by the integral of 
Using the condition (2.2) and integrating by parts we have

Then

and from the previous inequality we have

and so the corollary is proved. D

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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LEMMA 2.2. - For u E satisfying (2.2), the equality

holds, where uT is the derivative with respect to r.

Proof - Integrating twice by parts we have

Therefore

With the same kind of calculations (see for example [3] p. 142 etc.) we
come to the identity

Vol. 12, nO 4-1995.
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After applying (2.10) we arrive at

Under condition (2.2) we have from (2.10) that

and we come to (2.9).
Consider a function

which evidently satisfies the conditions

Take a complete orthonormal set of spherical functions

and consider the expansion

The derivatives of with respect to r we denote by va,l (r).
LEMMA 2.3. - For any u E W22~ (B), satisfying (2.2), the identity

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



363SOME PROBLEMS OF MATHEMATICAL PHYSICS

holds true (by ~ we understand the summation in the same limits as
j,l

in (2.12)).

Proof - We can write the identity (2.9) in the form

Using (2.11) we can integrate by parts in the last term on the right
hand side

So

Integrating by parts we get

Vol. 12, n ° 4-1995.
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Finally

Substituting in (2.14) we come to

Let us transform the last three terms on the right hand side of (2.15) with
the help of the expansion (2.12). Then

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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So

Now

Vol. 12, n ° 4-1995.
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Then

Combining (2.15), (2.16) and (2.17) we get (2.13) 0

LEMMA 2.4. - If v E satisfies (2.2) and vanishes with all first
derivatives at the center of B then the identity

holds true.
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Proof. - Using the expansion (2.12) we get

Continuing this process we come to
p

Vol. 12, n ° 4-1995.
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In the same way we get

After simple calculations we come to (2.18). D

LEMMA 2.5. - For any u E satisfying (2.2) the inequality

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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holds, where

Proof. - From (2.18) we have

According to [3] (p. 51 and p. 54) for a = 2-rrc-27(0  ~y  1) we have

The fact that in this case v and Vv can differ from zero on aB plays
no role.

Vol. 12, nO 4-1995.



370 A. KOSHELEV

Then from (2.13) and (2.18) we have

Since u vanishes on aB and, according to (2.11 ), v is a linear function
on ~B we have that l = 0 on aB for j > 1. Therefore

So

In the same way we come to the inequality
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With the help of (2.21) and (2.22) we get

Let us estimate now the right-hand side of (2.23). Evidently from (2.11)
we have

Taking into account that on ~B |~u|2 = u; and Ui = ur cos(r, xj ) , after
cancelling some terms we come to the equality

After easy calculations we have

Vol. 12, n ° 4-1995.
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Applying the inequality

to the middle term in quadratic brackets on the right-hand side of (2.23)
and taking into account that a - 3 = -(m + 1 + 2~y), we obtain

Since

we come to (2.19). D

LEMMA 2.6. - If u E satisfies (2.2), then for any r~ > 0 the

inequality 
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takes place. Here a = 2 - m - 2q (0  ~y  1), and My are
determined by (2.6) and (2.20). The value ~S~ (the area of the unit sphere
in Rm) is determined by the formula

Proof - From the identity

follows the inequality

Evidently

Since u satisfies the condition (2.2) we have

From the Hardy inequality follows

So, taking into account that r  1, we come to the inequality

Applying (2.26) and (2.27) we get

Now combining (2.4), (2.5), (2.19) and (2.28) we come to the

inequality (2.25). D

Vol. 12, nO 4-1995.



374 A. KOSHELEV

COROLLARY 2.2. - We can also apply the inequalities (2.4) and (2.5 ). Then
we arrive at the relation

COROLLARY 2.3. - Taking into account that r  l, we can write

and from (2.29) then follows
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It is easy to see, that if

is nonnegative, then the expression

is nonpositive. After rescaling in x we come to the following

THEOREM 2.1. - Let u E satisfies the condition (2.2). Let also
the inequality 

holds. Then the following estimates

Vol. 12, n ° 4-1995.
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and

hold true.

Let us recall that a = 2 - m - 2q (0  ~y  1~, My and are

defined by (2.20) and (2.6) respectively, ~ is the least absolute value of the
eigenvalues for the operator ~ in B with condition (2.2) and

is the area of the unit sphere in R"°.
Consider now the cylinder QR = (0, T) x BR (Q1 = Q) with boundary

conditions

for a function u ( t, x ) given in Q. Denote /3 = -a and omit for a while
the index R.

For m > 2 the inequality

was proven in [4] (e is an arbitrary nonnegative value).
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LEMMA 2.7. - Let m = 2 and therefore ,Q = 2q (0  ~y  1). Suppose
that u satisfies (2.36) and u E LZ { (O, T ); Then the inequality

holds, where ~ is an arbitrary nonnegative constant.

Proof. - Denote

multiply this equality by Au . r~ and integrate by parts on the left-hand
side. Then according to lemma 2 in our paper ([2], (2.38)) we get

After using for u(x, t) the expansion, analogous to (2.12), according to
the same lemma in [2] ((2.39)), we come to the inequality

Now we have to estimate the right-hand side term of (2.40). As in [2]
we multiply (2.39) by 1). Integrating by parts we come to
the inequality ([2], (3.30) etc.)

Vol. 12, nO 4-1995.
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It is clear that

Thus we have

After applying the Holder’s inequality we get

With the help of (2.40) we come to the inequality

Applying well known inequalities we get

According to expansion (2.12)
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and we can write

So, from (2.41) we come to

2-/3
Taking ~ = 201420142014 and applying the inequality

we get (2.38).
Set

THEOREM 2.2. - Suppose u E and satisfies
the boundary conditions (2.36), a E (-m, -2 - m) U (3 - m, 0) and
q = (2 - m - a) /2. Then the following estimates

Vol. 12, n ° 4-1995.
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and

hold where ~ and T are arbitrary positive values, and all other constants
are defined at the end of the formulation of theorem (2.1 ) and by (2.42)
(C does not depend on ~ and R).

The function ( is a smooth monotone cut-off function, defined by the
relation
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Proof - We can assume at first that u is as smooth as we wish. Let

w(t, x) be a solution in Q of the following boundary value problem

Multiply equation (2.47) by Au( and integrate once by parts with respect
to t and twice with respect to x. Then we get

where the nonwritten terms are those containing the derivatives of (.
Applying the Holder inequality, we get

It is trivial that w also satisfies the inequalities (2.37) and (2.38) (one
only has to exchange t by T - t). Therefore

Now from (2.48) after rescaling we get the results of the theorem, if

we take into account that

u

Let us return now to inequalities (2.4) and (2.5) of lemma (2.1 ). Since the
power of the integrals on the right-hand side of these inequalities is equal
to one they belong to the so-called class of the linear inequalities. However

Vol. 12, n° 4-1995.
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in some problems it is important to have the so-called multiplicative
inequalities. We shall obtain them in the following.

LEMMA 2.8. - If u E and (2. 2) takes place, then the inequalities

hold.

Proof. - Evidently it is enough to prove only the first of the inequalities
(2.49). Substituting in (2.4) the expression (2.6), we get

Take now

and we come to (2.49) (if IDul = 0 then t6 = 0 and (2.49) is trivial.) D

Remark 2.1. - Under the assumption of the lemma the inequality

holds.

In fact

From the well known Hardy inequality and from (2.5) it follows that
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Then from (2.2) and inequalities r  1 and a  0 we get

Applying (2.49) and (2.50) to (2.19) we come to

THEOREM 2.3. - Let u E and satisfy (2.2). Then the inequality

holds true.

Proof. - In fact we omit on the right-hand side of (2.19) the negative
term and apply (2.49) and (2.50). Then we get

After using the relation

we come to the result. D

Suppose now that condition (2.2) is not satisfied; how will estimate
(2.51) change in this case?

Vol. 12, n° 4-1995.
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THEOREM 2.4. - Let u E Then the inequality

holds true, where ( is defined by (2.46) and r~ is an arbitrary small positive
number.

The result follows immediately by substituting the function u( for u
in (2.51 ). 0

THEOREM 2.5. - Suppose that u E L2 ~ (o, T ); satisfies only
the second of the conditions (2.36), u = 0, when t = 0. Then the estimate

holds, where C does not depend on ~.

Proof. - Take a function w which satisfies the equation (2.47) with the
same conditions and multiply both sides of the differential equation by
Au . (. After integration over BR we come to

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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After two integrations by parts on the left-hand side with respect to x,
we get

Integrating on the left-hand side by parts once with respect to t and on
the right-hand side in the second integral once with respect to x, we get

Therefore

Let us now estimate the integrals on the right-hand side. After applying
an elementary inequality we come to the following relations:

Vol. 12, nO 4-1995.
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Then by (2.37) we get

Taking 1J we obtain the inequality

After using Theorem 2.4. the proof of the theorem is concluded. 0

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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3. COERCIVITY ESTIMATES FOR THE
STOKES SYSTEM IN WEIGHTED SPACES

Consider now at first the stationary Stokes system

with the boundary condition

We assume that the mean value of p is equal to zero. Using the inequalities
(2.52) and (2.53) we shall derive some estimates with explicit constants
for the solution of the problem (3.1), (3.2). The Stokes system was very
extensively discussed in many books and papers we refer here only to the
paper of V. Solonnikov [6] and monograph of O. Ladyzhenskaya [10].
From the results of these paper and monograph in particular follows that
if f E > 1) then the second derivatives of u and the first
derivatives of p also belong to this space. The analogous result for the
nonstationary system is also included there.

Suppose that Q c R"° is a bounded domain and 8Q is sufficiently smooth.

THEOREM 3.1. - If f E with a = 2 - m - 2y(0  ~y  1)
then the weak solutions of system (3.1) with the boundary condition (3.2)
satisfy the inequalities

Vol. 12, nO 4-1995.
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where xo is an arbitrary point inside SZ, R  dist (xo , a52), ~7 = const > 0 is
arbitrary, M~, is defined by (2.20) and 1 - 2-1 a ( a + m - 2 ) (m - 1 ) -1 > 0.
The proof of this theorem is analogous to the proof which was given

in [3] for the solution of the Poisson equation. Let us sketch this proof.
According to the above mentioned results of V. Solonnikov we can at first
assume that both f and the solution u, p are as smooth as we wish. Take
a point xo E S2 and consider a ball BR(xo) with R  dist(xo, c7S2). After
rescaling we can consider only the ball Bi(0) = B.

Let E S) be a complete orthonormal set of spherical functions
and let

Construct the function

where

Take the function

where the cut-off function ((r) is determined by (2.46).
Multiplying the Stokes system (3.1) by Vw and taking into account that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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we come to the equality

Integrating by parts and substituting the expansions (3.5), (3.6) for p
and w we have

where the unwritten terms contain only integrals without singularity.
From this immediately follows

Finally

On the other hand

Comparing the last two relations we come to the inequality

Vol. 12, nO 4-1995.
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In our book ([3], p. 120 see also [9]) by the same method it was shown
that

Therefore one of the statements of the theorem is proved.
Take now in the Stokes system (3.1) Vp to the right hand side and

apply the inequality (2.52). After small calculations you come to the

inequality (3.4). D
Consider now the nonstationary Stokes system

with boundary conditions

At first we consider the inner estimates.

Suppose f E LZ ~ (o, T ); L2,~ (S2) ~ and QR = (0, T) x BR, where
R  dist(xo, It is trivial that estimate (3.3) holds if we change
BR for Q R .

Then, dividing the first equation of (3.8) by v and applying (2.53), we
come to

THEOREM 3.2. - Let the conditions for a in theorem 3.1 hold. The solution
of the problem (3.8), (3.9) satisfies the inequalities
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Here C does not depend on v, M~, and Aa,m are relatively defined by
(2.20) and (2.42).
For small, > 0 we have

THEOREM 3.3. - Let the conditions of theorem 3.1. be satisfied, and
assume that 03B3 > 0 is small. Then the following estimates for the solutions
of system (3 .1 )

are true.

THEOREM 3.4. - Let the conditions of theorem 3.2 be satisfied, and let
q > 0 be small. Then the inner following estimates for the solutions of the

Vol. 12, nO 4-1995.
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system (3.8)

hold true, where C doesn’t depend on v.
It is necessary now for the solution of the problem (3.1) (3.2), to get

the estimates in the neighbourhood of the boundary an. For this purpose
suppose that a piece of the boundary is flat and has the equation xm = 0.
Thus in the neighbourhood the domain n lies in the half space xm  0. Take

a point M° (xi°~ , ... , xt~.°~ ) in SZ and consider the ball BRo (Mo) such that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Consider also a parallelelepiped n-

Suppose for a moment that = 0 (k = 1,..., m - 1) and R = x. The
principal part of the estimates doesn’t depend on these assumptions. We
can suppose at first that all the functions f, p and u are smooth. Expand
f (x) in II in the following Fourier series

where n = (ni , ..., n~.,.t_ 1, ) and all nk are nonnegative integers. Take

Let

Then

We see that the functions (k  m) satisfy also the following
boundary conditions

Vol. 12, nO 4-1995.
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The functions u(x), p(x) satisfy the Stokes system (3.1) in II- if the

following equalities

where

and dots over denote derivatives with respect to Xm. Multiply the first
m - 1 equations of (3.23) respectively by nk. After summation and using
the last equation (3.23) we have

If we differentiate the second equation of (3.23) with respect to xm and
subtract the relation (3.24) from the result we shall have

The bounded solution of this equation for xm  0 is given by

Here is a function which coincides with on xm > -x

and is continuously expanded on xm  -~r. We suppose also that all the
functions are absolutely summable on (-oo, 0].

Let us also consider the equation (3.25) in xm > 0 with such suitable
right-hand side Fn (xm) that is continuous and absolutely summable
on the whole strip -oo  +00. The solution for xm > 0 is

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Substitute xm = 0 in (3.26) and (3.27). Suppose that C- = C+ and

Then

We see that F;; should be extended symmetrically on xm > 0. According
to (3.25) the functions and = 1, ... , m-1) should be
extended respectively in an antisymmetric and symmetric ways. Integrating
once by parts we come to

The analogous formula following from (3.27) holds true for xm > 0.
Denote by the Fourier transform of the functions (k =

1, ... , ~n) on -oo  xm  -f-oo.

We have

For example

belongs to (II) and therefore its boundary values are defined for 
Moreover they can be estimated by the norm of in 

Vol. 12, n° 4-1995.
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Then according to (2.52) (theorem 2.4)

Differentiating p(x) with respect to xk(k = 1, ... , m - 1) we get the
same estimates. Then

Denote

As far as xo E BRo then for x E BRo

where x is symmetric to x with respect to xm = 0. For a = 2 - rrz - 2~y  0
we have

and from the monotonicity of ( follows

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Since f and p are expanded on BRo in symmetric and antisymmetric
ways we have

The same estimate is true for the integral fB Ro Taking into
account that

we come with the help of (3.29) to

THEOREM 3.5. - If the conditions of theorem 3.1 are satisfied then the
solution of the boundary value problem (3.1 ), (3.2) satisfies the inequalities

Vol. 12, n ° 4-1995.
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and

where

SZR = 52 n BR(xo), R sufficiently small, r = E SZ, C doesn’t
depend on xo and ~ is an arbitrary small positive number.

Proof. - The inequality (3.32) follows by comparing the estimates (3.4)
and (3.31). In fact it is enough to compare the coefficients in front of

~ and to take the greatest one. To get (3.33), the system (3.1)
should be written in the form

and the boundary conditions (3.2) are to be used.
In the interior the inequality follows from the estimate (3.4). In the

boundary strip the solution should be continued in an antisymmetric way
and estimated with the help of (3.30). The proof of the theorem can now
be completed by some simple calculations. D

For 03B3 ~ 0 we have

THEOREM 3.6. - If the conditions of theorem 3.1 are satisfied and the
positive, is small, then for the solution of problem (3.1 ), (3.2) the following
estimates
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hold.

Consider now the nonstationary system (3.8) with condition (3.9).
THEOREM 3.7. - If f E L2 ~ (0, T ); L2,a (SZ) ~ with a satisfying the

conditions of theorem 3.1 then the solution of system (3.8) with the boundary
condition (3.9) satisfies the estimates

Vol. 12, nO 4-1995.
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and

Here r = ~ x - xo and Q R = (0, T) x BR (xo ) n SZ with sufficiently small
R. The constant C doesn’t depend on xo and v.
The proof is completely analogous to that of the theorem 3.5. The only

difference is that one has to refer to estimate (2.53).
For small, > 0 the last two theorems can be formulated in a more

explicit way.

THEOREM 3.8. - If the conditions of theorem 3.5 are satisfied, then for the
solution of problem (3.1 ), (3.2) the following estimates
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hold.

THEOREM 3.9. - If the conditions of theorem 3.5 are satisfied, then the
solution of the problem (3.8), (3.9) satisfies the following inequalities:
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402 A. KOSHELEV

4. REGULARITY OF SOLUTIONS FOR
DEGENERATED ELLIPTIC SYSTEMS

In a bounded domain n C 2) we consider a system

where u and ai (x, p) (i = 0,1,..., m) are N-dimensional vector functions
with components u~~~ (x), = 1, ... , N),

(now, different from §, we include u in Du). About the functions ai (x, p)
we assume, that they satisfy the following conditions:

(1) All satisfy the Caratheodory conditions and are differentiable
with respect to variables p;

(2) The (m + 1)N x (m + 1)N matrix

is symmetric and the eigenvalues of this matrix satisfy the inequalities

where A,A = const > 0 and 0  s  1;
(3) For arbitrary u E W~1~(S2)(q > 1) the result of the substitution

ai(x, = 0,..., m) will belong to 
(4) The inequality

holds, where b is a sufficiently small nonnegative value;
(5) For all u E the result of substitution in L(u) belongs to

LQ(st).
Consider the solution of (4.1) with the boundary condition
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In [3] (chapter 1, § 4) it was proved that the universal iterational process

converges in to the weak solution u of (4.1), (4.5) if u E (S2).
Consider also the process (4.6) with a penalty term,

with the same condition (4.5).
In [3] it was also shown that a subsequence of the iterations of process

(4.7) converges weakly to the solution. So, if we want to show that the
solution has Holder continuous first derivatives it is enough to show that
the iterations of(4.6) or (4.7) satisfy the inequality

where 52R = xo E S2, a = 2 -rn- 2q(0  7  1), r = ,

and C doesn’t depend on xo and n. It is also assumed that R is sufficiently
small and fixed.

o (1)
LEMMA 4.1. - If the conditions 1)-3) are satisfied and E WZ (S2)

then

holds, where

Proof. - Multiply both sides of the system (4.6) by Un+1 and integrate
once by parts. Then
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where summation as always runs over repeated indices.
Adding and subtracting ai (x, 0) under the square brackets on the right

hand side, we get

Applying the mean value theorem we come to

where A denotes the matrix A with intermediate values of variables.
The Holder inequality gives

It can be easily proved (see for example [3] p. 58, (2.29)), that

Using the right side of the inequalities (4.3) we get

a

Suppose that the cut-off function ((r)(2.46) satisfies in addition the

inequality

Assume now that the boundary of H belongs to (ae > 0). If

conditions 4) and 5) are satisfied and uo (the initial iteration of (4.6) or

(4.7)) belongs to n > 1), then all iterations belong
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to the same space. The iterations can be extented outside the domain 0

to a sufficiently narrow strip preserving the class. This can be made with
the help of the well-known procedure which we have used in the previous
paragraph. First one considers a plane piece of the boundary and expands
all of the Un in an antisymmetric way. This gives one the same class
of U S2R) for balls BR(xo) which don’t completely lie in H. As
we have shown in [3] (chapter 4, § 3) all the conditions 1) - 5) don’t

change, and the values, s, A and A will be the same. This gives also us the

possibility to consider only the case when S2R n BR(xo) = BR(xo)
and this gives the fixed small Ro.

LEMMA 4.2. - If the conditions 1)-5) are satisfied and uo E n

2) then the iterations (4.6) or (4.7) satisfy the inequality

where C doesn’t depend on xo E SZ, n and in the case of (4.7) on 6.

Proof. - According to our previous consideration we can suppose that
52R = BR(xo). Multiply (4.6) (or 4.7) by and integrate by parts
as in the proof of lemma 1.2 or lemma 1.5 for a = 0. In [3] (theorem 1)
it is shown that if ( satisfies (4.13) then

From this and from (4.12) immediately follows (4.14).
Let wk(x) satisfy the equation

and the boundary condition
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where M is a positive integer and ak is monotone and satisfy the followingrelations:

According to results of E. M. Stein [5] and V. A. Kondratjev [8] the
inequality

holds, if -m aBR.
Multiply (4.6) or (4.7) by Awk( and integrate twice by parts. It is obvious

that (2 also satisfies (2.46) and (4.13). Then we get

(the unwritten terms contain only the first derivatives of un and Let
us estimate at first the integral 7i. It is easy to see that
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Furthermore,

According to the inequality of S. Chelkak ([9], p. 28, Lemma 1.2), we
have

Then, from (4.16) and the fact that D( = 0 for r  R/2 it follows that

If ak satisfies (4.17) we can apply (4.18) and come to the inequality
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Carrying out the same considerations for I2 and 13, (4.12), (4.19) and
(4.20) yield the relation

Inequality (2.52) (th. 2.4) gives for k = M

For k  M according to [2] (p. 51, lemma 2.2) (see also [8])
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THEOREM 4.1. - Suppose the conditions 1)-5) are satisfied and the
inequalities

hold true (~, a, b = const > 0 are suficiently small numbers).
If the relation

is satisfied, then the solution of the problem (4.1 ), (4.5) belongs to 
with ~y = -(cx + m - 2)/2 and the subsequences of iterations of (4.6) and
(4.7) converge to this solution.

Proof - Consider at first the case m > 4. As we have mentioned before
it is sufficient to prove inequality (4.8). Suppose that u E W(2)q (SZ) with
q > m(m + 
Then all un are in Wq 2~ (SZ) . From this follows that dun E W {2~ SZ .
If we write (2.49) for the functions u~ ~ , we get 

2,cx ( )
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where = Diuj In fact, from (2.49) and u = Uj( we obtain after some
calculations that

Now (4.25) follows from (4.23) for j = 0. Applying (4.9) and the

inequality (a + b)Z  2(a2 + b2), we have

After using (4.21) and (4.22), the inequalitiy labl  + the

estimates give the relation

Therefore

From (4.25) follows that for j = 0,1
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(4.21) gives

Set

Inequality (4.26) now turns to

which can be written in the form

Let the condition

holds. Then there exists such a qo E (0,1) that qo) > 1. Let H
be so small that H  (1 - qo) - 1 - Hms 2(m+203B3]2(m+203B3) ms ~
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P(l - qo ) . Then after small calculations we get from the inequality Xo  P
the relation

Let us return now to (4.22). From (4.25) and 

we get

With the help of (4.27) and (4.29) we have for k  M

All ak are negative and decreasing. Then from the last inequality we
obtain

From (4.23) follows that

Annales de l’Institut Henri Poincaré - Analyse non linéaire



413SOME PROBLEMS OF MATHEMATICAL PHYSICS

and therefore for ui all conditions of the theorem are satisfied. Thus

inequality (4.8) and the theorem are proved for m ~ 4.
For m = 2 and m = 3 let us remark that if we take a 1 = - - + 1]

then the condition 
2

can be satisfied at least for small, and all consideration are simplified. D

Remark 4.1. - If 03B3 > 0 is small then the condition (4.24) gives

For m = 2 this inequality does not restrict the dispersion of the spectrum
for the matrix of ellipticity.
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