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1. PREFACE

This paper is devoted to some boundary value problems for systems
of partial differential equations. In particular we consider Stokes system
and quasilinear elliptic degenerate systems of divergent type with bounded
nonlinearities. The author would like to express his deep gratitude to Prof.
S. Hildebrandt for fruitfull discussions and general support.

It was shown in [3] (see also [4] and [9]) that the question of regularity
of weak solutions for quasilinear elliptic and parabolic systems is closely
attached to the dispersion of the spectrum of the matrix which defines the
ellipticity (parabolicity) of the system. The upper bound for this dispersion is
determined by some coercive constants for elementary elliptic or parabolic
operators. The explicit form of these constants leads to some conditions
which are easy to check in order to obtain the regularity of weak solutions.
This approach can be applied for example to such important systems as the
Stokes system. We divide the paper in three sections.
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356 A. KOSHELEV

The first one is devoted to some constants concerning the operators A
and €0, — A, where ¢ is an arbitrary positive constant.

Let B be a unit ball in R™(m > 2) with the center at the origin and let
a=2-m—-2vy (0 <y <1).If u(z) is equal zero on OB then the inequality

/1; |D?u|?|z|*dz S[H ’—m”;—fw(q)} /B |Au)?|z|*dz

+c( / ]Dzulz)x]"dx> ( / ]Du|2da:>
B B

holds true. Here |D?u|? and | Du|? are, respectively, the sums of all squared
derivatives of u of the second and the first order. An analogous result was
at first obtained by H. O. Cordes [1].

This estimate could be also obtained with the help of the result of
E. Stein [4] concerning the boundness of the singular integral operators in
the weighted spaces Lo o(R™)(]a| < m). But this method doesn’t give the
explicit constant in front of the right-hand side integral containing Awu.

The nonstationary case is also considered in this section. Let Q =
(0,T)x B,u = 0for ¢t =0, and ( is a cut-off function. Then the inequality

/ |\ D202z Cdadt
Q

-2
<21+ 222000 [ - duficana

) C{ (/Q |D2UI2I$'a<d$dt> " [ /Q (1Duf? + |u|2)da:dt} i

+ /Q (|Duf? + |u|2)da:dt}

holds for m > 3, and the constant C' doesn’t depend on £ > 0.

Section 2 is devoted to some coercivity estimates. In section 3 we consider
the Stokes system both for stationary and nonstationary cases. Consider for
example here only the stationary system

{Au-}-Vp =1,
div u =0

in a bounded domain 2 C R™ with a smooth boundary and with v = 0
on Of.

Let zo be an arbitrary point of 2, with dist (z0,0Q) > Ry = const
and R < R,.
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Then the estimates for the weak solution u,p

/ |Vp|?|z — zo|*dx
Bn(zo)

(m =2 +o<w] [ APe-sltir o [ irpa

< [1 +
m-—1 Br(zo)

and

/ |D2u|?|z — zo|*Cdx
Br(xo)

< {1+ [1 + (ﬂ_—z)z]l/z}z[u m-2 +0(7)]

m-—1 m+1

2y

X / |f]2|$—$0|°‘Cda:
Bn(zo)

2120, _ o o i 2 i
+C{(/Q [D?ul|z — o] Cdz) (/Q | Dyl dz)

+/Q (|Dul?® + [u|* + |f|2)d:1:}

hold true and C' doesn’t depend on . The results of this paragraph were
obtained in cooperation with A. Wagner (Cologne).
The third paragraph contains some results about the elliptic system

m
E Dia;(z; u, Du) — ao(z;u, Du) = 0.
i=1
Under natural analytic conditions on the coefficients a;(z,p) we assume
that the eigenvalues A; of the symmetric matrix

A:{a“"} (4,5=0,...,m)

Bpj
satisfy the following inequalities
RS O
1+ p|* 1+ |p|*

with A,A = const. > 0 and 0 < s < 1.
It is proved, for example, that if the inequality
m— 2
1+ —201 - -
(1+ 2 u s m-2m-1
K >1

(1+Z—;i—)[l+(m—2)(m—l)]—l

holds then the “small” weak solution of the system satisfies the Holder
condition in ().
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358 A. KOSHELEV

2. SOME COERCIVITY INEQUALITIES
WITH EXPLICIT CONSTANTS

Consider in R™ (m > 2) a ball Bg(z,) with the center z, and radius
R. The ball B,(0) will be denoted B. In this ball an equation

(2.1) Au = f(z)
with a boundary condition
(2.2) u|33 =0

is given.

Suppose that f € Ly o(B), where L, , is the space of squared integrable
functions with a weight |z|*. Throughout this paper we assume that
a=2-m-2y (0 <% < 1), and |z| denotes the distance from the
origin. The norm in Ly ,(B) as usual is determined by

( /B |ul2[xl“dx) %.

(2.3) |Duf® = Zuf and [Dzul2 = Z Uy,
=1

k=1

Set

where u; are the derivatives with respect to z;.
By Wézcz(B) we shall denote those functions in the Sobolev space

Wz(z)(B) whose second derivatives are square summable with the weight
|z|*. As norm in this space we could take for example the expression

(/BlDzulzlz["dz—i—/|u|2dx>%.

One of the aims of this section is to prove for the solution of the
problem (2.1), (2.2) the inequality

/|D2u|2radzgc§/ |fPPrede, (r=|zl)
B B

where C, has an explicit form. For o/ = m — 2 + 2v such an inequality
was proved by the author in [2].
First we shall prove some lemmas.
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Lemma 2.1. - Ifu € W2(2(B), then the inequalities

(2.4) luw(0))* < n/B [Dufrodz + C’g(n)/B [u|?dz

and
25 Y lwO)F <n /B | D2uf*redz + Co(n) /3 fu|2dz

hold.

Here 1 is as usual an arbitrary positive constant and
(2.6) Coln) = 2m S|~/ 1 Dy~ F 5,

where |S| is the surface of the unit sphere in R™ and X\ is the
smallest absolute value of the eigenvalues for operator A in B with the
condition (2.2).

Proof. — Evidently

w0) = ute) - [ Ghde

Square both sides of this equality and integrate over the ball B;(0) =

with § < 1. We get
r 9 2
/ 2% 4o dx+2/u2dx.
o Jo B

The first term on the right hand side we can write in the equivalent
form and get

[u(O)PIS[m~18™ < 2 /

Bs

IU(0)12ISIm‘15m

<2
8B;s

Applying the Holder inequality to the inmer integral, we obtain the
estimate

[u(0)[*|S|m ™"

1 ) r
< —/ dS/ / ]Vu]zga+m_1dgrm_l+27dr+2/ lu®dz.
Y JoBs o Jo B

Vol. 12, n° 4-1995.
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Putting ¢ instead of the upper bound of the inner integral we get the
following :

5m+2‘y

[u(0)[|S[m ™6™ < m 5

|Vu]2r"+m_1dr + 2/ Iulzdx.
B

Dividing by 6™ and taking into account that m(m + 27)™! < 1, we
obtain the inequality
627
7|S| Bs

2 2 2m 2
lu(0)]” < [Vaul|r dx+m‘§;"—/3|u‘ dz.

Using the notation (2.6) we obtain the inequalities (2.4) and (2.5). O

CoROLLARY 2.1. — Let A be the smallest absolute value of the eigenvalues
for the operator A with condition (2.2). Then the inequalities

@7 O <y / \Duf?r
and
29 Y mOF < [ s+ 0 [ aupd

take place if u satisfies (2.2).

Proof. - In fact both of the second terms on the right hand side of (2.4)
and (2.5) can be easily estimated by the integral of |Aul’.
Using the condition (2.2) and integrating by parts we have

/BlDulzdxz—LuAude (/B |ul2dx>;</B |Au|2dx)%,

Then 1
2 2
L[ul dz < ﬁ/BlAUI dz,

and from the previous inequality we have

/ [Dul?dz < ;1\—/ |Au|*dz,
B B

and so the corollary is proved. (|
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LeEmMMA 2.2. — For u € W2(202(B) satisfying (2.2), the equality

(2.9) / Uik Uk T dT
B

_ /B Aufrods + o /B fus() - us(0)]

X [ukk cos(zi,7) — uik cos(zk, 7)|r* 1de — (m — 1)/ lur|°dS
8B

holds, where wu, is the derivative with respect to T.

Proof. ~ Integrating twice by parts we have

/Buikuikd;v = /B[ui — u3(0)]x[u; — u;(0)]rdz

=/ lAu|2d$+/ {lui — u;(0)]usg cos(r, z4)
B 8B
[ — ui(0)]ukk cos(r, z;) }dS.

Therefore
(2.10) / {lu: — ui(0)]uik cos(r, zx) — [u; — u;(0)]upg cos(r, z;)}dS
8B
- /BB(|D2u|2 ~ |Au?)de.

With the same kind of calculations (see for example [3] p. 142 etc.) we
come to the identity

/Uikuik"'ad-T:/ |Auf?|z|*dz
B B

+ a/B[ui = u;(0)]urer® ! cos(z;, 7)dz
/ (i — w;(0)]uspr™™ cos(;vk, r)dz

/ {[ws — wi(0)]us cos(zg, T)
— [ui — u;(0)] Aw cos(z;,7) }dS.
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After applying (2.10) we arrive at
/ Ui Ui dT :/ |Aul*r®ds + a/ [u; — u;(0)][urk cos(zs, )
B B B ’

— ugg cos(zg, 7)jr* Tdx + / [wiruix — (Au)?])dz.
B

Under condition (2.2) we have from (2.10) that

/B([D ul® — |Au|*)dz = —(m — 1)/83 lu,“dz

and we come to (2.9). O
Consider a function

(2.11) v(z) = u(z) — u(0) — u;(0)z;,
which evidently satisfies the conditions
v(0) = v;(0) =0 and Vip = Usk.
Take a complete orthonormal set of spherical functions
{Y;i.0)} (5=0,1,2,...51=1,...,k;,0 €8)
and consider the expansion

+ k;
(212) = V5, l
=1

8

“,
Il
=)

The derivatives of v;;(r) with respect to r we denote by v’ ,(r).

LemMA 2.3. — For any u € WZ(ZO)I(B), satisfying (2.2), the identity

(2.13) / |D2uf?r*dzx
B

_ /B |AulErods — (m — 1)/ lup 2dS — 9‘-/3 Vo[2ds

+%/ lvrlzds——Zj(]+m—2) ()

i

+ « [(m — Do}, |?
Z/( 1o

+(a+m—3)§(G+m— 2)|vPr Hret™3dr
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holds true (by 3. we understand the summation in the same limits as
.l
in (2.12)).
Proof. — We can write the identity (2.9) in the form

/ ]Dzulzr“d:z::/ ]Au[zradx—(m~1)/ [u.|?dS
B B 4B
+a/ ’U,-A’UTa—leL'—a/ V0T N
B B

Using (2.11) we can integrate by parts in the last term on the right
hand side

/vivirr“_ldx
B
1 1 1
= —/(]Vvlz)rr“_ldx: —/ dS/ (JVv|?)pret™2dr
2 /B 2 Jom 0
1
= 1/ dS[IVv[2TQ+m_2|é— (a+m—2)/ [Vv[zr“+m‘3dr]
2 8B 0

1 —2
= —/ [Vo[2dS — ﬁm—/ |Vu[?r*=2dz.
2 JsB 2 B

So
(2.14) /B[D ul’r®dz

= / [Auf?r®*dr — (m - 1)/ lu,|2dS + a/ v Avr*~tdg
B 8B B
—2
+M/ [Vu|>r*=2de — g/ [Vv|2dS.
2 B 2 JoB

Integrating by parts we get

/]Vvlzra_zdx
B
=/ Uw,-r“_2dx=/ (Uvir“_z)idx
B B

—/ vAvr®*~2dz — (a - 2)/ v 3 ryde
B B

= / vu,dS —/ vAUr* 3dz — (a — 2)
aB B

1
X/ dS/ UUrTa+m”4dr=/ vu,.dS — a—2/ [v]2dS
8B 0 aB 2 Jsm
_ _ 1
—/ vAvr*~3dz + (o 2)(a2+m 4)/ [v|?r*—*ds.
B 0
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Finally

/ |Vo|?re—2dg =/ (vvr -2z 2|v|2)d.5’ —/ vAvr®?dz
B 8B 2 B

(@ —2)(a+m—4) 2 a4
+ 5 /BM T *dz.

Substituting in (2.14) we come to
(2.15) / |D?u |2 r>dg
B

= /B |Au?*r*dz — (m — 1)/33 lu.|?dS

- %/63 [|vv|2 — (e +m — 2)(vv, — W)}ds
ala+m - 2)

+a/ vrAvr“"ldr———/ vAvre~2dg
B 2 B

L ola-2)(a+t m- 2)(a +m —4) /B jo[re—da.

a—2

Let us transform the last three terms on the right hand side of (2.15) with
the help of the expansion (2.12). Then

1
= Z/ V(™) T — (5 4 m = 2)v) e
0
1
= {Tﬂ+m_2’U;’,l’U;‘,lI(1J _/ [U;ilvg,l,,.a+m—2
0
1
+ (@ = () *r* ™™ Pldr — §(G +m = 2) [ et dr
7t 0 7,
[ plas = 3 { Lo e
= I’U,.I dS — {_(U;,l) potm— ‘
OB r 2 0
-2 1
_latm=—2) / oy et dr}
2 0

1
—iG+m- 2)/ V5 05T e + (a0 — 1)/ v, | 2retm™=3dr
0 B
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1 —
= / o, [2dS + 2 / v, |27~ 2de
2 oB 2 B

- Zj(j +m— 2)/ v;’,vj,1r°+m_4dr
3 B

1 ) 1
== ds — = 1¢] -2
2/331114 2;J(J+m )
a+m—4 o 1 .
X Joya(DP + £ 225 (G 4 m - 2) / R
2 3l 0

+ m= a/ |vr|2r°_2dx.
2 B

So

(2.16) I1=/ v Avr® ldg

B
—l/ | ;2ds_lz~(~+ 2)]v;1(1)]?
=2 )05 22 0+m= Nvja(1)]

a+m-—4 . 1
— J(J+m—2)/ |oja|*ret™%dr
1 0

j7

+ m-—a / |vT|2r°_2dx.
B

2

Now

I, = / vAvre2%dz
B
1
= Z/ vy + (m = Dr=to), — §(5 4+ m = 2)r~ 2, )retm2dr
g 70
1
=3[ [ gt +
g 0
1

1
X /0 v;005,rT T dr — (5 +m - 2)/ |v;.1|2retm=5dr
0

Vol. 12, n® 4-1995.
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i
_ g atm—311 ;|2 a+m—3
= Z[vjylv“r lo —/ lvj,l‘ T dr
: 0
7,

1
—(a+m—- 3)/ 005, r T
0

m_
2

1
-jG+m~ 2)/ ’Uiﬂ“a+m_5dr]
0

Then

+

1 —4 rt
R R e Y
0

(2.17) I, = / vAvr*~2dg
B

= Z{“jyl(l)“g,l(l) - Ol—;zlvj,l(l)l2
7l

N [(a+m—24)(a—2) _j(j+m_2)]

1 1
X / lUj,ll2Ta+m—5dT _ / lv;,l|2TQ+m—3dT'
0 0

Combining (2.15), (2.16) and (2.17) we get (2.13) O

Lemma 2.4. - Ifv € W2(20)[(B) satisfies (2.2) and vanishes with all first
derivatives at the center of B then the identity

(2.18) / |Av|*r®dz
=(m—1)/ v 2dS — 22] +m — 2)v ,(1)v;,(1)

7,

+ (-2 Z]]+m 2)[v;,(1 !24-2/{}“112
il

+{(m =11 =)+ 2§ +m = 2] Pr~? + 5 +m - 2)
X [j(G+m—2)+ (2 - a)(a+m — 4)]jv; | 2r~ 4}ty

holds true.
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Proof. — Using the expansion (2.12) we get

/ |Av|*rods
B
1
= Z{/ [loja? + (m = 1272 [ + 52(5 + m = 2)*r v ]
g Y0

il

1
x retm=ldr 4 2(m — 1)/ v v}lr‘”m_zdr —-2j(7+m—2)
0

1
X / v;-",vj,zr""'m_sdr —2(m-1)7G+m-2)
0

1
X/ v;-’,vj,lr“+m‘4dr}
0
1
= S [ = 1P 2 - 2
g Y0

21,.a+m—1 W}z atm—2(1
X |vji|*]r dr +2(m—1) 7 lo—

1
X / ]v;’,|2r°‘+m_3dr:|
0

1
-2i(j+m—-2) [v;-,,vj,zr"+m‘3lé - / l“;‘,ll2
0

a+m—2
2

1
x retm=3dr — (a+m — 3)/ U;',lvj,l’f'a+m_4d'r
0

_2(m-1)j(G+m-2)
2

1
X [lvj,1|2Ta+m_4lé - (a +m — 4) / l’l)j7l|27'a+m_5d7‘} }
0

Continuing this process we come to

/ IAUI2Tadx
B
1
=2 {/0 [[}a? + (m = 120,172 + 52(5 4+ m — 2)?|vj*r ]
il

X et e 4 (m - 1)) (1))

1
—(m-1({a+m- 2)/ I”},z]2ra+m_3dr
0
1
= 2§(5 +m = 2)v; ,(1)v;,(1) + 25(F + m — 2)/ W) [2retm=34y
0
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368 , A. KOSHELEV

1
+2(a+m—3)5(j + m~2) / V5 05,r T4y
0
= (m =13 +m - 2)v;,(1)]?
1
+(m—-1)(a+m-4)ji+m-— 2)/ |v]-,,I2r°‘+m_5dr}.
0

In the same way we get

/ |Av|?r*dz
B

1
-y / (417 + (m = D[o! r 2 + 5205 + m — 2) s [r—]
7l

1
% Ta+m_1d7' + (m _ l)lvé,l(l)lz — (m — 1)(0 +m - 2)/ |U;,ll2
0
X T 3dr — 25(5 + m — 20, (1)v;,(1)
1
+2j(j +m - 2)/ 5l
0

12
X T34 4+ 2(a +m ~ 3)j(j +m — 2) [—lvgl[ rotm=4p

- (a—+g__4)/0 ]”j,z|2T0+m_5dr]
—(m—=1)j(G+m - 2)v;, (1)
+ (m—1)(e+m = 4)j(G +m-2) /0 fujaPro =S .

After simple calculations we come to (2.18). O

LeMMA 2.5. — For any u € Wz(zcz(B) satisfying (2.2) the inequality

(2.19) / |D2uf?r*dz

<(1 +M3)/B |AuPredz — (m — 1) /aB fu, PdS
N (m—2+2y)(m—-1)+mM2 T

> lui(0)S]

i=1

m

+ [(m +1+ 2’7)M72 + %ﬁ} (m ~ 1)|u(0)}?|S]
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holds, where

2 (m—2+27){1+7)?+[2-(1—7)*m}
(220) Mo = (m+1+7)2(1 - ) '

Proof. — From (2.18) we have

S [+ lom = 11— ) + 200G+ m = D

+j(G+m—2)
X [0 +m = 2) + (2 = a) (ot m = 4)]jugPr = pre e

:/ |Av[*rodz — (m — 1)/ [v.|%dS
B oB

+2) 55 +m = 2)v,(Lvsa(1)
il

—(@=2) Y (G +m—2)v(1)

3l

369

According to [3] (p. 51 and p. 54) for @ = 2—m—2v(0 < v < 1) we have

1
GZ/ [(m — 1)|U;~,,]2 + (a+m —3)j(G+m—2)|v;,|2r2retm3dr
it 0

< M? Z,/o {[j1* + [(m = 1)(1 = @) + 2j(j + m — 2)]|v} [*r

+iG+m=2)iG+m—-2)
+ (2= a)(a+m—4)] v | r et m

The fact that in this case v and Vv can differ from zero on B plays

no role.

Vol. 12, n°® 4-1995.



370 A. KOSHELEV

Then from (2.13) and (2.18) we have
/ (|D%u| — |Au|?)r*dz
B
< —(m - 1)/ lu.|?dS + g/ |v/|?dS
8B 2 JoB

< |Av|?rdz — (m —1) | |v,|2dS
B OB

G« ol2 2
: /63|v 248 + M?
+23 50 +m = 2)}(Dvja(1) — (@ =2) Y (G +m - 2)”?,1(1)]

3l 5l

ey
-3 > 3G +m =21
7l

Since u vanishes on 0B and, according to (2.11), v is a linear function
on OB we have that v;; = 0 on 8B for j > 1. Therefore

1Y 3G +m = 2)), (Dvs(1)]

3l

=(m—-1)

k1
Zvi,,u)vl,z(l)‘
=1

< (Z Ivi,l(l)lzf(g o)) =)

([, me) ([

(2.21) 1> 30+ m = 2)0f,(1vs(1)]

3l

So

1

s fwrs) (] )’

In the same way we come to the inequality

@2) P il+m- 2 <(m-1) [ ppps.

il 8B
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With the help of (2.21) and (2.22) we get
(2.23) / | D?u|?*r*dz
B

< (1+M3)/ |Av2redz — (m — 1) /aB Jur|*dS
-2 /aB Vol2ds + 2 / o, 2dS

+ (m—-1)M2 [— /BB v, 2dS + 2(/83 |vr|2d5)%

< (/aB 10[2(15)2 —(a-2) /aB ;v|2ds]

- %(m ~1) /aB |v]2dS.

Let us estimate now the right-hand side of (2.23). Evidently from (2.11)
we have

«x

5 [ (ol = 1vopyas
- %/ {u;._ (iui(O):m) Zlu,—uz |2}dS
/ [lu,_; ~2u,2u, cos(r, z:) (Zuz cos(r, ;) )2
—;[uif2+2;uiul Zm, [2} ds.

Taking into account that on B |Vu|? = 42 and u; = u, cos(r, z;) , after
cancelling some terms we come to the equality

_;‘f/anv,.]?—]w )dS == / {Zluz *leos”(r, z:) = 1]

+2 z u;(0)ux (0) cos(r, z;) cos(r, zk)}dS.

i<k

After easy calculations we have
o
(2.24 ——/ vpl? — [Vu|2)dS = u;(0)]°]S
) 3 aB(l I = Vo zl )PISI.

Vol. 12, n® 4-1995.
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Applying the inequality
2ab < a® + b®

to the middle term in quadratic brackets on the right-hand side of (2.23)
and taking into account that o — 3 = —(m + 1 + 2v), we obtain

/B|D2u|r°‘d1:
<(1+ Mg)/ |Au?rodz — (m — 1) /aB |u,|?dS
+(m 2+2'y ZIW )21S|

=

+ (m+ 1+ 2y)(m - 1)M3/ |v]2dS
8B

—a(mhl)/ [v|?dS.
2 8B

/BB [v]2dS = u¥( ]S}+Zu )|S|m!

we come to (2.19). O

Since

Lemma 2.6. — If u € Wz(zo)[(B) satisfies (2.2), then for any n > 0 the
inequality

(2.25) / | D?ul?r*dx
B

{1 g2 m b
2(m+142y)M2 +m — 2+ 2y
" (1—9)? (m = 1)]}
< (l+M3)/B|Au|2r°‘dm+00(n)[$]
y {(m—2+27)(m— 1) + mM2 y / Vul?ds

+(m=1)[(m+1+2y)M3

+m-2+2)/2 [ lul%zz} F(m-1)

(m+14+29)M2 + (m — 2+ 2v)/2 B "
x[|S| e 7 1]/aBlrldS
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takes place. Here o = 2 —m — 2y (0 < v < 1),Co(n) and M? are
determined by (2.6) and (2.20). The value |S| (the area of the unit sphere

in R™) is determined by the formula

S| = 2#/F(%).

Proof. — From the identity

U; = Ui|r=1 +/ (u;),dp
1

follows the inequality

(2.26) / lu;|*rodz < 2/ |u,~|r=1]2r°‘dm+2/
B B B

Evidently

2

/ Uipdp
1

¢ =7 N U; -—12 .
/'“"" oo = s | el

Since u satisfies the condition (2.2) we have

(2.27) Z / gl [Prde = ﬁ [ furlas.

From the Hardy inequality follows

T 1 2
ui,dp| 7%dx < —————/ i | 2d.
AT =7 Jy

So, taking into account that » < 1, we come to the inequality

T dm<m/ IDZUI

Applying (2.26) and (2.27) we get

2

uzpdp

1 2 2
2.28 / Dul*r*dz < —/ ur|?dS + ——/ D?u|"rodz
( ) Bi | 1—v 6B| | (1—79)? BI |

r%dz.

Now combining (2.4), (2.5), (2.19) and (2.28) we come to the

inequality (2.25).

Vol. 12, n°® 4-1995.

O



374 A. KOSHELEV

COROLLARY 2.2. — We can also apply the inequalities (2.4) and (2.5). Then
we arrive at the relation

(2.29)/13[D2u|2radx{1 _nISI[(m—H?w)(::— 1) + mM?
+2(m+1+27)M3+m—2+27(m_1)]}

(1—7)?
<1+ 03) [ |auprdz + SO
B
{(m—2+2’7)(m~1)+mM3
X m
(m = 1D){(m +1+2y)M? + (m — 2 + 2v)/2]
+ ; }

X / |Aul*dz + (m — 1)
B

(m+14+29)M2 4+ (m — 2+ 2v)/2 _ .
X l|5[ T n 1} /83 |u,[2dS.

CoRrOLLARY 2.3. — Taking into account that v < 1, we can write
/ |Aul?dz < / [Aul*r®dz
B B
and from (2.29) then follows

(2.30) /B |D2u|2r°‘dx{1 — 7S] [(m -2+ 2')’)(:; - 1) +mM?

2m+1+29)M2+m~2+2
L Am MM +m v(m_l)]}

(1—7)?
< (1 a2 ComlSL m =2 = )
 {mm Dl + 14 205 4 (m - 2+ 2/2))

X / [Auf*redz + (m - 1)
B

(m+14+29)M2 4+ (m —2+2)/2 B )
X []SI 15 n 1} /BB lur“dS.
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It is easy to see, that if

- nlS![(m -2+ 27)(7177; — 1) +mM2
2m+1+2M)Mi+m—-2+2y
(=P =)

is nonnegative, then the expression

1+ 2y)M? —2+2v)/2
(2.31) Didia) 1”:’7("’ n2,

is nonpositive. After rescaling in z we come to the following

THEOREM 2.1. — Let u € WQ(ZQ) (BRr) satisfies the condition (2.2). Let also
the inequality

(m—242v)(m - 1)+ mM?
m

2(m+ 14+ 27)M2+m ~2+ 2y

(1-19)?

(2.32) E=1-18| [

(m—l)] >0

holds. Then the following estimates
(2.33) / |D?u|*r®dz
Br

< %{(1 + M2) /BH |Aul?r®dz + Co(n)|S]

-242 — 1) + mM?
X [(m Nm=1) +m 7Ra_2/ [Vul?dz
m Br
+ (m — 1)[(m + 1+ 2y)M?

+(m—2+2y)/2R*™ /BR Iulzdx] }

(2.34) / |D?u|*r®dz
Bg

ColmlS|

1
< — 2 2.«
< E{(1+M7)LRIAUI r%dz + 3
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y [(m—2+2'y)(::— 1) + mM?
. (m—1)((m+14+2y)M2 + (m - 2 + 2v)/2)

A
X / ]Au{zdx}
Bgr

and

(2.35) / | D?u|?r* dx
Bgr

< 1 L+ M2+ Co(m|S| [(m =2+ 2v)(m — 1) + mM?
E v A m

N (m—1)((m+1+2y)M2+ (m - 2+2'y)/2)}}

A
X / |Au|?r®dz
Bgr

hold true.

Let us recall that « = 2 —m — 27 (0 < v < 1), M, and Co(n) are
defined by (2.20) and (2.6) respectively, \ is the least absolute value of the
eigenvalues for the operator A in B with condition (2.2) and

8] = 27™/%/T(m/2)
is the area of the unit sphere in R™.

Consider now the cylinder Qr = (0,T) x Bg (Q; = Q) with boundary
conditions

(236) ulaBR = ultzo =0
for a function u(¢,z) given in Q. Denote 3 = —c and omit for a while
the index R.

For m > 2 the inequality

m

/ ledyu — Aul*rPdadt
-8 Jo

(2.37) / |Au|*rPdadt <
Q

m

was proven in [4] (¢ is an arbitrary nonnegative value).
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LeMMA 2.7. — Let m = 2 and therefore 3 = 2y (0 < v < 1). Suppose
that u satisfies (2.36) and u € Ly{(0,T); WZ(Zg(B)} Then the inequality

(2.38) /QlAulzrﬂda:dt
< |:1+ b 2-F8 j|/]€3tu-—Au|2rﬂda:dt
Q

+
2-8 B8\’
@‘Z>5

holds, where ¢ is an arbitrary nonnegative constant.

Proof. — Denote
(2.39) et — Au=f,

multiply this equality by Aw - r? and integrate by parts on the left-hand
side. Then according to lemma 2 in our paper ([2], (2.38)) we get

E/ ]Vu|2rﬂda:[t=T+ﬁ/ Auu'rda:dt+/ |Au|?rP dzdt
2J/B Q B
:/f(Au+ﬁu:.r_l)rﬂda:dt.
Q

After using for u(x,t) the expansion, analogous to (2.12), according to
the same lemma in [2] ((2.39)), we come to the inequality

_ T ol
(2.40) / |Au*rP dzdt + —ﬁ(2 h) Z/ / |l 2P~ drdt
Q 2 sk Jo Joo 7
5/ f(Au+ Bulr 1)rPdzdt
Q

B(2—-8) Tt _
+T§52/0 /0 lus7k[2rﬂ Sdr.

Now we have to estimate the right-hand side term of (2.40). As in [2]
we multiply (2.39) by u, x7?~%(s > 1). Integrating by parts we come to

the inequality ([2], (3.30) etc.)
T ,1
/ / fs,kus,kr’@_ldrdt .
0o Jo

T o1
{(1—§)ﬁ+52—1]/0 /0 [us g |>rP3drdt <
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It is clear that

T 1
Z s2 / / [ts & |2r5"3drdt
0o Jo

s>1
1

< m 2[(1 - §>ﬁ+ 5% — 1] /OT/Ol e i |>r?~3drdt.

Thus we have

T 1 1
Zsz/ / |us k|2rP3drdt < ——
=1 o Jo

T 1
B~1
(l_g)ﬁ/o /Ofs,kus,kr drdt
4

After applying the Holder’s inequality we get

T 1 1
Zsz/ / [us x [>r?~3drdt < %/ [fI?rPdz.
s>1 0 0 Q

,6 2
(1-5)#

With the help of (2.40) we come to the inequality

92 _ T 1
(2.41) / |Aul?rfdzdt + u Z/ / |ul 2P drdt
Q 2 sk J0 Jo o 7
9 _
< __2=6 5 /]f[2rﬁda:dt+/ f(Au + Bulr=)rPdedt.

2(1 - B 3e Q

4
Applying well known inequalities we get

/ f(Au+ Bulr HrPdzdt
Q

<

/ fAurfdzdt
Q

-}—nﬂ/ [u'rlzrﬁ_zdxdt-}-ﬁ/ |f12rPdxdt.
Q i Jq

According to expansion (2.12)

T 1
/ jup [PrP =2 dadt =y / / uf g |PrP~tdrdt
Q S,k 0 0
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and we can write

/ f(Au+ Bulr YrPdzdt < l/ fAurPdzdt
Q Q

T 1
- B 2.8
+ B / / u, 2Pt dedt + — [ | f)PrPdadt.
g o Jo | * 4n Jo
So, from (2.41) we come to

_ T ;1

/ |Auf?rP dzdt + p2=F) Z/ / ), |>r?~ drdt
Q 2 % Jo Jo
T 1

< l/ fAurP dzdt +nﬂ2/ / lu;,klzrﬁ‘ldrdt

ﬂ / Vil ﬁdwdt+—2——ﬁ—/ |f)2rPdzdt.

2(1‘1)

Taking 1 = 2 ; b and applying the inequality
}/ fAurPdzdt| < / |fPrPdedt + = / |Au|?*r? dzdt,
Q
we get (2.38). O
Set
o 24+« — 9
24+« 187 2 -
A2 = (1 + —) o
4
m m > 2.
m+ o

THEOREM 2.2. — Suppose u € Lp{(0,T); W, (2)(BR)} and satisfies
the boundary conditions (2.36), o € (-m,—2 — m) U (3 — m,0) and
v = (2 = m — «)/2. Then the following estimates

(2.43) / | D?u|?r*(dzdt
Qr

< %{Ai,m(l + M2) / leByu — Aul?r*(dzdt + Co(n)|S|

—242 -1 M?
x [(m F2)(m = 1)+ mM, pe- 2/ \Vul?dzdt

m R
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+(m=1)[(m+142y)M2 + (m — 2+ 2y)/2] R~

X / ]ulzdxdt] } + C’Ro‘/ ledou — Aul’dzdt,
R Qr

(2.44) / |D?u|?r*(dxdt

- FE

1
< —{Ai,m(l + Mﬁ)/ let — Aul?r®(dedt + mm
Qr

y [(m—2+27)(m—1)+mM3

m

N (m—1)((m =1+ 2y)M2 + (m -2+ 2v)/2)

X / |Au]2d$dt} + C’R"/ letr — Au|*dxdt
Qr Qr

and

(2.45) /Q | D?u|?r* (dxdt

E

1
< —{Ai’m(l +M2) +

Co(n)|S]

A

y {(m—2+2’7)(m— 1) +mM?

m

A

N (m—1)((m+1+2y)M2+ (m—2+2fy)/2)}}

X / lew — Aul*r*(dzdt + CR™ / lew — Aul®dzdt
Qr Qr

hold where € and T are arbitrary positive values, and all other constants
are defined at the end of the formulation of theorem (2.1) and by (2.42)

(C does not depend on ¢ and R).

The function ¢ is a smooth monotone cut-off function, defined by the

relation
1
(2.46) ¢(r) = { smooth
0

<r<

IN ot
Ao =

R

IN

r

R

W N = O
IN
-
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Proof. — We can assume at first that u is as smooth as we wish. Let
w(t,x) be a solution in Q of the following boundary value problem

(2.47) edyw + Aw = —Aur(,

w|t=T = ’U)IaBR =0.

Multiply equation (2.47) by Au( and integrate once by parts with respect
to t and twice with respect to z. Then we get

/ (ebiu — Au)Awldzdt = / |Au?ro¢?dzdt + . . .,
Q Q

where the nonwritten terms are those containing the derivatives of (.
Applying the Holder inequality, we get

2
(2.48) (/Q |Au|2'r“C2dxdt>

< (/ ledyu — Au|2'r“(2dxdt> (/ |Aw|2'r“’dxdt>
Q Q

+ C’/ [e0su — Aul*dzdt.
Q

It is trivial that w also satisfies the inequalities (2.37) and (2.38) (one
only has to exchange ¢ by T — ¢). Therefore

/ |Aw|?r~*dzdt < Ai’m/ [e0;w + Aw|*r~*dzdt
Q Q
= A2, / | Aul2re¢2dudt.
Q

Now from (2.48) after rescaling we get the results of the theorem, if
we take into account that

/ |Aul*r®dzdt > / |Au|?r*dzdt — C’/ leOyu — Aul|?dzdt.
Q Q Q

O

Let us return now to inequalities (2.4) and (2.5) of lemma (2.1). Since the
power of the integrals on the right-hand side of these inequalities is equal
to one they belong to the so-called class of the linear inequalities. However
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in some problems it is important to have the so-called multiplicative
inequalities. We shall obtain them in the following.

LemMa 2.8. — Ifu € W2(20)( (BRr) and (2.2) takes place, then the inequalities

u(0)[? < C(/BR |Du|2rada:) e (/BR Iu[2da:> W

(2.49) i u; (0)]% < C(/B lDzul2r"da:> = </B |Dul2dar:)#727

i=0

hold.

Proof. — Evidently it is enough to prove only the first of the inequalities
(2.49). Substituting in (2.4) the expression (2.6), we get

lu(0)|? < 77/ |Dul?r®dz + Cn_%/ lu|*dz.
Br

Br

Take now

-2v/(m+2v) 2v/(m+27)
n= (/ |Du|2r°‘da:> </ lu|2da:>
BR BR

and we come to (2.49) (if |Du| = 0 then v = 0 and (2.49) is trivial.) [J

Remark 2.1. — Under the assumption of the lemma the inequality

(250)  Ju(0)f* < C(/BR [D2U12Tada:) e (/BR IDuIng;) e

holds.
In fact

/ |Dul?r*dz < 2/ |Du — Dulo|*r*dz + 2/ | Dulo|*r*dz
B Br Br
< C[/ |Du — Dulo|*r*%dz + IDulo[2].
Br
From the well known Hardy inequality and from (2.5) it follows that

/ !Du|2rada:§0(/ lD2u|2r°‘dz+/ |Dul2dz>.
Bgr Bgr Br
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Then from (2.2) and inequalities » < 1 and a < 0 we get

/]Du]zr"dmg C(/ |D2u|2r°dm+/ [Dzulzdm>
B Br Br

<C | D?u|?r*dz.
Bpr

Applying (2.49) and (2.50) to (2.19) we come to

THEOREM 2.3. — Let u € Wz(zi(B r) and satisfy (2.2). Then the inequality

(2.51) / |D?u|?r®dz
Bpr

wiy
<1+ Mz)/ |Aul?redz + C(/ |D2u|2r°dx)
Br

Bpr
T
X (/ lDu}zdx)
Bpr

holds true.

Proof. — In fact we omit on the right-hand side of (2.19) the negative
term and apply (2.49) and (2.50). Then we get

/ |D?u)*r*dz
Bpr

wF
<1+ Mvz)/ |Au|?*r*dz + C[(/ {Dzulzr"dx>
BR BR

(o) ([ ippas) ™

After using the relation

L ) uf2dz < /B ) | Dul?dz

we come to the result. O

Suppose now that condition (2.2) is not satisfied; how will estimate
(2.51) change in this case?
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THEOREM 2.4. — Let u € WZ(ZOE(B r)- Then the inequality
(2.52)/ |D?ul?r*¢dz
Br

<1+ M2+ n)/ [Aul*r*¢dz
Br

2

+ c{ ( /B R |D2u}2r°‘§dz) e [ /B (D + [uf)da m

+ /BR(|DU,|2 + ]ulz)dz}

holds true, where ( is defined by (2.46) and 7 is an arbitrary small positive
number.

The result follows immediately by substituting the function u¢ for u
in (2.51). O

THEOREM 2.5. — Suppose that u € L2{(0,T); WZ(Q(BR)} satisfies only
the second of the conditions (2.36), u = 0, when t = 0. Then the estimate

(2.53) / | D?u|?r*(dadt

R

<1+ M2+nAL,, / ledyu — Aul*r*¢dzdt

Qr

+ C{ (/ |D2u|2r°‘§dzdt) e
Du|? + [u})d dt]m%
x[/%u uf? +Juf?)da
Dul? d dt}
+/QR(I uf? + uf?)dz

holds, where C does not depend on .

Proof. — Take a function w which satisfies the equation (2.47) with the
same conditions and multiply both sides of the differential equation by
Au - . After integration over B we come to

/ (edvw + Aw)Auldzdt = —/ |Au2r*¢2dzdt.

R

Annales de I’Institut Henri Poincaré - Analyse non linéaire



SOME PROBLEMS OF MATHEMATICAL PHYSICS 385

After two integrations by parts on the left-hand side with respect to z,
we get

/ [eAdywlu + AwAulldzdt

= / |Au|?*r*¢?dzdt

R

— 2 Vo,wV{¢ - udzdt — ¢ SywAludzdt.
Qr Qr

Integrating on the left-hand side by parts once with respect to ¢ and on
the right-hand side in the second integral once with respect to z, we get

/ (edyu — Au)Aw(dzdt

R

= / [Au|?r*(2dzdt

R

+ ¢ Sywu - Aldzdt — ¢ OywV{Vudzdt.
Qr Qr

Therefore

/ |Auf*re¢?dzdt

:/ (e — Au)Aw(dzdt
- / (eGyw — Aw)uAldzdt + / (edyw — Aw)V{Vudzdt

R

—/ quACdxdt+/ AwVuy - V{dzdt.

Let us now estimate the integrals on the right-hand side. After applying
an elementary inequality we come to the following relations:

1) I/ (e0pu — Au)Awldzdt

1 2
< _ a2
_477/R ledru — Aul r*(*dzdt
+ 77/ [Aw|?r~*dzdt;
R
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2)

/ (e0yw — Aw)uA(drdt

R

< 7)/ ledyw — Aw|?r=*dzdt
Qr
1
+— ul?|ACPrdzdt
L PIA
Sm/ |Au|?r* 2 dzdt

+ C/ [ul*dadt(n, >0 - arbitrary);
R

3)

/ (0vw — Aw)V(¢Vudzdt

R

< / |Au|?r*2dzdt+
Qr
+ C/ [Vul?dzdt(n, > 0 - arbitrary).
R

Then by (2.37) we get

/ |Aul?r*¢dedt

Qr

<nAl., / |Au)?r*¢2dzdt
Qr

1
+ —/ ledyu — Aul*r*Pdzdt + 7)1/ |Aufr*¢dedt
41 Qr Qr

+ C/ (I1Dul? + |u|?) dzdt.
Qr
Taking 1 = A7 ,,/(2m) we obtain the inequality

/ |Auf?r*¢dedt <(42,.+n) / ledsu — Aul?r*(3dedt
R

R

+ C/ (IDuf* + |uf?) dzdt.
Qr

After using Theorem 2.4. the proof of the theorem is concluded. O
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3. COERCIVITY ESTIMATES FOR THE
STOKES SYSTEM IN WEIGHTED SPACES

Consider now at first the stationary Stokes system

Au+ Vp =
(3.1) { TVp=J

divu=0

with the boundary condition

(32) ulag =0.

We assume that the mean value of p is equal to zero. Using the inequalities
(2.52) and (2.53) we shall derive some estimates with explicit constants
for the solution of the problem (3.1), (3.2). The Stokes system was very
extensively discussed in many books and papers we refer here only to the
paper of V. Solonnikov [6] and monograph of O. Ladyzhenskaya [10].
From the results of these paper and monograph in particular follows that
if f e Wq<k) (Q)(g > 1) then the second derivatives of u and the first
derivatives of p also belong to this space. The analogous result for the
nonstationary system is also included there.

Suppose that 2 C R™ is a bounded domain and 952 is sufficiently smooth.

TueoREM 3.1. — If f € Lyo(Q) with a = 2 —m — 29(0 < v < 1)
then the weak solutions of system (3.1) with the boundary condition (3.2)
satisfy the inequalities

(3.3) /B |Vp|*r*(dz

ot

X /BR |f]2r"‘§dx+0(/BR ]p|2dx+/BR |f|2dx),

(3.4) / | D?u)?r*(dz

Br

<o oo -2 )
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e [ ifprecas

’ CK/BR ]DzulzracdﬂE) = (/BB | Duf?dz) =75
+ /BB Ip|*dz + /BR(IDul2 + |ul®)dz + /BR lflzd:v],

where x is an arbitrary point inside 0, R < dist(z¢, 0Q), 7 = const > 0 is
arbitrary, M., is defined by (2.20) and 1 =27 a(a+m—2)(m—1)"1 > 0.

The proof of this theorem is analogous to the proof which was given
in [3] for the solution of the Poisson equation. Let us sketch this proof.
According to the above mentioned results of V. Solonnikov we can at first
assume that both f and the solution u,p are as smooth as we wish. Take
a point o € (2 and consider a ball Br(z,) with R < dist(zo, 0Q). After
rescaling we can consider only the ball B;(0) = B.

Let Y, +(©)(® € S) be a complete orthonormal set of spherical functions
and let

+goo ks
(3.5) p(@) =D poi(r)Y,i(O).
s=0 k=1
Construct the function
+oo ks
(3.6) v(@) =3 vk (r)Yak(©),
=0 k=1

where

Take the function

(3.7) w(z) = v(z){(r),

where the cut-off function {(r) is determined by (2.46).
Multiplying the Stokes system (3.1) by Vw and taking into account that

/ AuVuwdz = —/ A(div u)wdz = 0,
B B
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we come to the equality

/Vprdx:/ fVwdz.
B B

Integrating by parts and substituting the expansions (3.5), (3.6) for p
and w we have

/Vprdx
B
1
:/ plgy retm=ldr 4 Z / {]pskl2 [s(s+m 2)
0 s>1,k
_ofetm—2) +2m _ 2)} ]ps,k]2r_2}r"+m_1gdr +...

where the unwritten terms contain only integrals without singularity.
From this immediately follows

/Vprd:L‘
> [t s 3 [ a2+ s(s +m -2
s>1,k
. s(s+m—2)—ala+m—2)/2 2 —2| atm_1
XIanl{l P ppr— [ps k|“r 7% | Cdr+ ...
Finally

/Vprde[ a(a+m 2)/2]/ |Vp|2r*(de - /|p[2dx
B
On the other hand

/Vprdx:/ fVwdz
B B

1/2 1/2
s(/B |f|2r“<dz) (/B 3/41Vw|2r“’C‘1dx) .

Comparing the last two relations we come to the inequality

1/2 1/2
2, 2 —apr—1
: (A e <dz) (Am o)

+C / Ip|2dz.
Q
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In our book ([3], p. 120 see also [9]) by the same method it was shown

that
m—2
/Q[lezr_"f_ldw < [1 - ___a( 1 )} /Q]Vplzrade

+C/Q]p|2dw.

Therefore one of the statements of the theorem is proved.

Take now in the Stokes system (3.1) Vp to the right hand side and
apply the inequality (2.52). After small calculations you come to the
inequality (3.4). |

Consider now the nonstationary Stokes system

(3.8) dru—vAu+ Vp=f (v=const. > 0)
' divu =0

with boundary conditions
(39) ulag = u|t=0 =0

At first we consider the inner estimates.

Suppose f € Ly{(0,T);L2()} and Qr = (0,T) x Bg, where
R < dist(zg,8Q). It is trivial that estimate (3.3) holds if we change
BR for QR~

Then, dividing the first equation of (3.8) by v and applying (2.53), we
come to

THEOREM 3.2. — Let the conditions for « in theorem 3.1 hold. The solution
of the problem (3.8), (3.9) satisfies the inequalities

(3.10) / |Vp|?r*(daedt

<ot s

X /QR Ip|*r*¢dadt + C</QR [plzdwdt%-/QR |f[2dwdt),

(3.11) / | D?u|?r* ¢dadt
Qr

b e

v? m—1 2(m—1)
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x (14 Mj)Aim/ |f|?r*(dzdt + C[/ lp|*dzdt
Qr Q

R

+ (/ |D2u[2rag’dxdt) (/ ]Du]zdxdt)
Qr Qr
+/ (|Dul? + |u|2)dxdt+/ lf]zdxdt}
Qr Qr
Here C' does not depend on v, M., and A, ,, are relatively defined by

(2.20) and (2.42).
For small v > 0 we have

THEOREM 3.3. — Let the conditions of theorem 3.1. be satisfied, and
assume that vy > 0 is small. Then the following estimates for the solutions
of system (3.1)

5\ 2
/B [Vp|2rraCd1; < [1 + % + 0(7)] /B If!2TaCd$

+c(/ |p|2da:+/ ]f|2dxdt>,
Bgr Br

(3.12) / | D?u|?r*(dz

Br

1 _ 92 1/24 2
Sﬁ{1+[1+(2_1) +0(7)} }
-2
x(l+—-$+1>/B [fI?r*¢da
2,12 T 2 e
+C[(/BR|D ul*r Cdx) (/BR|Du] da:)

+/BR(|Du|2+[u[2)dz+/BR |f|2dx]

are true.

THEOREM 3.4. — Let the conditions of theorem 3.2 be satisfied, and let
¥ > 0 be small. Then the inner following estimates for the solutions of the
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system (3.8)

(3.13) /B ) |Vp2re¢dzdt
< [1 + (Z — ?2 + 0(7)} /R |F[2r¢dzdt

+C | |f*dzdt,
Qr

(3.14) / | D2u|*r*¢dadt
R

< U—%[uow)} / P cdadt

R

+CU |f12da:dt—+-</ 11)2u|2ra<da:dt)m

X Dul?d dt>m+ Dul* + 2ddt], =2
([, 1putasa) ™ + [ (0u s ufyasat] =
(3.15) / | D2u|?r*¢dadt
—9)2 1/2
g{%{l-%[l%—(iln—_l—)%-ow)} }
_2
X (1 + Z—H) /QR f2recdedt
+C[ 2ddt+( D? 2raddt)m
| s | 1Dt

e
X (/ |Du|2da:dt> —+-/ (|Dul* + ]u[2)da:dt],
R Qr

(m > 3)

hold true, where C doesn’t depend on v.

It is necessary now for the solution of the problem (3.1) (3.2), to get
the estimates in the neighbourhood of the boundary 9€2. For this purpose
suppose that a piece of the boundary is flat and has the equation z,, = 0.
Thus in the neighbourhood the domain €2 lies in the half space z,, < 0. Take
a point Mo(a:(lo), e 9353)) in 2 and consider the ball Bg,(M,) such that

(3.16) Ry > |z{9].
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Consider also a parallelelepiped II_

(3.17) {500) R<ze<z®+R, (k=1,...,m-1),

zgg)—RSmeO, (R > Rp).

Suppose for a moment that a:,(co) =0(k=1,...,m—1)and R = «. The
principal part of the estimates doesn’t depend on these assumptions. We
can suppose at first that all the functions f,p and w are smooth. Expand
f(z) in II in the following Fourier series

(k) Zf(k) (T3 )COSNIT] .. . COSTUL_1Tk—1
X SINMETECOSTEL 41T k41 - - - COSNp—1Trr—1,
(3.18) J Tk k+1Tk+1 1 1
(1<k<m-1),
f("‘)(a:) = Z f,(l’")(a:m)cosnlzl . COST—1Tm—1,
where n = (n1,...,Mm_1,) and all n, are nonnegative integers. Take
(3.19) p(z) = an(zm)cosnlxl . COSThyp_ 1 Trm—1,
u(k) (z) = Zu(k) (T3 )COSTLT] . . . COSTUL_1Tk—1
(3.20) X 31nnkxkcosnk+1xk+1 . COSTm_1Tm—1 ,
("‘) Zu( ™) xm)cosnlzl . COSThr—1Tam—1-
Let
Ui, =0 = 0.
Then
(3.21) uP(0)=0, (k=1,...,m).

We see that the functions u®(z) (k < m) satisfy also the following
boundary conditions

(3.22) W m0r =0, w0, =0 (G#£kjEM).
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The functions u(z),p(z) satisfy the Stokes system (3.1) in TI~ if the
following equalities

iigk)—lnF (’Z);l-n kDn = T(Lk), (k —(15...,m—1)7
. 2 m
(3.23) Un InI “” TP =f

Zn us)—

where
m—1
nf* =" n?
s=1

and dots over v denote derivatives with respect to x,,,. Multiply the first

m — 1 equations of (3.23) respectively by ny. After summation and using
the last equation (3.23) we have

(3.24) i~ nal™ + jnffp. = - 3 nef).

If we differentiate the second equation of (3.23) with respect to z,,, and
subtract the relation (3.24) from the result we shall have

m—1

(3.25) 1P = f+ S it = By (@),

k=1

The bounded solution of this equation for z,, < 0 is given by
3.26 = m) = JelEm=—zm)ge
(3.26) pn=p,(z 2|nl / 3

(n|(zm ﬁm ln‘zm
Je dén + Cl_e .

Here F; () is a function which coincides with F,,(z,,) on z,, > —7
and is continuously expanded on z,, < —m. We suppose also that all the
functions are absolutely summable on (—oo,0].

Let us also consider the equation (3.25) in z,, > 0 with such suitable
right-hand side F} (2. ) that p,,(z,,) is continuous and absolutely summable
on the whole strip —oc0 < z,, < +00. The solution for z,,, > 0 is

1 [ .
(3.27) pn :p;(zm)z_m/ FH (£ )emiEn—om)ge
1 Tm
4o [ B Ememen g, + 0y,
2] l +oo
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Substitute z,,, = 0 in (3.26) and (3.27). Suppose that C_ = C and

0 +o0
/ F; (&n)emlmde,, = FH(&n)e Memde,.
o ;

Then
P (0) = p; (0).

We see that F” should be extended symmetrically on z,, > 0. According
to (3.25) the functions £\™ (z.m) and £ (zm)(k = 1,...,m—1) should be
extended respectively in an antisymmetric and symmetric ways. Integrating
once by parts we come to

1

(3.28) Pn -_-p;(a;m) — 5 /I’" f,(,m)(fm)e]"[(em_zm)dfm

1 [ -
43 [ e,
0

m

-1
1 Em -
* 7] 2™ [/ S (Em)elrltemEmddg,
k=1

0

- / T (ém)e'"'“""%’dsm]

— 00

+ CeIMlzml (g, < 0).

The analogous formula following from (3.27) holds true for x,,, > 0.

Denote by f3*()) the Fourier transform of the functions P ) (k=
1,...,m) on —c0 < Ty < +00.

We have

2 [t
¥ () = \/—7?/ FE N\ cosAzpdr, k=1,...,m—1,
0

2 [t
f,(,m) T =—/ M \)sin Az d), k=1,...,m—1.
(@m) 7= ), (A)

For example
sin Az,

2 Ty
Z, = 7 En:cosnlm ...COS nm—ﬂm—l/O f’(lm)(/\)md/\

belongs to Wf)(ﬂ) and therefore its boundary values are defined for JII.
Moreover they can be estimated by the norm of f(™ in Lo(II).
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Then according to (2.52) (theorem 2.4)

SA+M+npm [f>r*¢ds
Br,

,ra d 2 2 .
¢ x) ( / s dx) + [ i dx]

Differentiating p(z) with respect to z(k = 1,...,m — 1) we get the
same estimates. Then

2

9p r®(dz

0T,

dp

wl(f.}5

LTm

(3.29) /B [Vp|*r*(dx

<mE(L+ME ) [ |fPrecds

Bg,

sel(f )™ () )™

0

+ /BRO 1f]2(1x}.

Denote
By, = Br, N (zm > 0), By = Bg, N (zm < 0).
As far as zy € By, then for x € Bf,
|z — zo| < |z — 0],

where Z is symmetric to « with respect to z,, = 0. Fora = 2—-m -2y < 0
we have

|Z — zo|* > |z — zo|*
and from the monotonicity of ¢ follows

(12 = zol) 2 {(lz — o).
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Since f and p are expanded on Bp, in symmetric and antisymmetric
ways we have

6y [ U= [ e [ 1P

<z |ffrecis,

Ro

The same estimate is true for the integral [;  |Vp|*r*(dz. Taking into
0
account that

/ |Vp]2r"Cdx 2/ |Vp|2r"Cd$
Br, BEO
we come with the help of (3.29) to
(3.31) / |Vp|2r*(dz
Bz,

<om(1+ i) [ |ffrecds
By,

+ C[(/B |Vp|2r°‘Cdx>m_+2; (/B_ |f}2dm);—+2—7

o] e )

Ro

THEOREM 3.5. — If the conditions of theorem 3.1 are satisfied then the
solution of the boundary value problem (3.1), (3.2) satisfies the inequalities

(3.32) /Q |Vp|?r*(dz
< W) [ IfPrecas
Qr

sel([ o) ([ )
"o
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and

(3.33) / |D2u|?r*Cdr <
Qg
A2
S — 5L+ M7+ n)(1+ N,)? / |f1PreCdz
Qg

iy ey
+ Cl:(/ |D2u|2r“§dx) </ |Du]2dx>
QR QR

+/ [Duf*dz
Qr

+ (/Q [Vp|2r"§dx)# (/QH lf|2dx>m_2:’ﬂ + /QR lflzdx],

where

Qr = QN Br(zo), R sufficiently small, r = |z - Zol,zo € Q,C doesn’t
depend on o and 1 is an arbitrary small positive number.

Proof. — The inequality (3.32) follows by comparing the estimates (3.4)
and (3.31). In fact it is enough to compare the coefficients in front of

| f[>r*(dz and to take the greatest one. To get (3.33), the system (3.1)
should be written in the form

Au=f—Vp

and the boundary conditions (3.2) are to be used.

In the interior the inequality follows from the estimate (3.4). In the
boundary strip the solution should be continued in an antisymmetric way
and estimated with the help of (3.30). The proof of the theorem can now
be completed by some simple calculations. O

For v =~ 0 we have

THEOREM 3.6. — If the conditions of theorem 3.1 are satisfied and the

positive v is small, then for the solution of problem (3.1), (3.2) the Sfollowing
estimates
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(3.34) / |Vp|?ro¢de

Qr
m— 2 2
§2m2[1+ +1%—0(’)’)] /QR [f]°r*¢dz

m

el ) ([ )
+f lfl"‘dx},

(3.35) /Q . | D%u|?r*(dx
< 2[1 + Z—: +0(7)J

2
x[1+\/§m<1+2—:>] /Q |fI?r*¢de

2,12, .« m_’+n2‘; 2 #"27
+C[(/QR[D u|r§dw> (/{;R]Du] dx)

+ / (D + uf?)de

([ o)™ ([ )™
e

hold.
Consider now the nonstationary system (3.8) with condition (3.9).

TueoreM 3.7. - If f € L{(0,T); L2,()} with o satisfying the
conditions of theorem 3.1 then the solution of system (3.8) with the boundary
condition (3.9) satisfies the estimates

(3.36) /Q Vp|2re Cdudt

< 2m2(N3 +n) / |fIPreCdzdt
Qr
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=i o
+c[( / le]zr"Cdxdt) ( / |f|2dzdt> '
Qr Qr

+/QR lf|2dxdt]

and

(3.37) / | D?u|?r*(dzdt
Qr

ZAi,m 2 2 2, .«
< (1+M7+n)(1+N7)/Q |fIro¢dzdt

Ty e
+c[( / |D2u|2r"g’dzdt) ( / |Du|2dzdt) '
R Qr
i i
+ (/ [Vp|2'r"Cdxdt) (/ ]f|2'r"§dxdt>
Qr Qr

+ / \f|2dudt + / |Du|2dmdt].
Qr Qr

Here v = |t — zo| and Qr = (0,T) X Br(xo) N with sufficiently small
R. The constant C doesn’t depend on xo and v.

The proof is completely analogous to that of the theorem 3.5. The only
difference is that one has to refer to estimate (2.53).

For small v > 0 the last two theorems can be formulated in a more
explicit way.

THEOREM 3.8. — If the conditions of theorem 3.5 are satisfied, then for the
solution of problem (3.1), (3.2) the following estimates

/ |Vp|?r®(de
Qr

< om? [1 +m=2 0(7)] /Q \f2recdz

m+1
2.0 e 2 e 2
+c[(/93 V3] cdz) (/ I dw) +/QR I dz],
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/ |D?u|?*r*(dx
Qg

<2[1+T—_—2—+0( )] [1+\/§m(1+’-”—_3)1/2]2/ [f]2ro¢dz
= m+l m+1 an

L\ O\
+C[</QR|Du|erz) (/inu|dx>

+/Q (|Du)? + |u]*)dz

(e ™ (] )™ e

hold.

THEOREM 3.9. — If the conditions of theorem 3.5 are satisfied, then the
solution of the problem (3.8), (3.9) satisfies the following inequalities:

/ |Vp|?r*¢dzdt
Qr

m+1

) L\ = i
+c[(/QR|Vp| Gt (/leldw) ¥ /Qnmdwdt],

/ | D?u|*r*¢dzdt

R

<om |1+ 222 o) [ trecana

_ _ 2
< [1 + m=2 + 0(7)] [1 +V2m(1 + Z—+%)1/2] /R |f|2.r°‘§dwdt

-2 m+1

T o
+ C[(/ |D2u[2r°‘§d$dt> (/ |Du|2d$dt)
orEy
+ (/ ]Vplzr"gdwdt)
Qr

=

X (/ |f|2dwdt) +/ ]p|2d.7;dt], (m > 3)
R Qr
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4. REGULARITY OF SOLUTIONS FOR
DEGENERATED ELLIPTIC SYSTEMS

In a bounded domain 2 C R™(m > 2) we consider a system

(4.1) L(u) =) Diai(z, Du) = 0,

=0
where u and a;(z,p)(: = 0,1,...,m) are N-dimensional vector functions
with components u® (z), a{*) (z, p)(k = 1,.. ., N),

Dy = (Dou, Dlu, .o ,Dmu), D,’ =

ai. (6=1,...,m) and Dy = —1,

(now, different from §, we include w in Du). About the functions a; (z,p)
we assume, that they satisfy the following conditions:

(1) All a;(z, p) satisfy the Caratheodory conditions and are differentiable
with respect to variables p;

(2) The (m + 1)N x (m + 1)N matrix

dal®) .
(4.2) A=< —- (,j=0,1,....m; k1= 1,..,N;)
ap(-l)
3

is symmetric and the eigenvalues of this matrix satisfy the inequalities

A e <

4.3 N %
(43) 1+ pl* = 14 |pl®

where A\,A = const > 0 and 0 < s < 1:

(3) For arbitrary u € Wq(l)(Q)(q > 1) the result of the substitution
ai(z, Du(z))(i = 0,...,m) will belong to Ly/a-4)(2);

(4) The inequality

(4.4) da;

<Clpl+b (i=1,...,m)

a.’Ek

holds, where b is a sufficiently small nonnegative value;

(5) For all u € Wq(z)(Q) the result of substitution in L(u) belongs to
L, ().

Consider the solution of (4.1) with the boundary condition

(4.5) uIaQ = 0.
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In [3] (chapter 1, § 4) it was proved that the universal iterational process

Atpyr — Uny1 = Aup — U, — A1 L(uy),

(4.6) Unlon = 0(n =0,1,...,)

converges in WY, () to the weak solution u of (4.1), (4.5)if u € Wz(l) Q).
Consider also the process (4.6) with a penalty term,
(4.7)  Aupyr — Ung1 = Aty — Up — A7'[8Au, + L(u,)] (6 >0),

with the same condition (4.5).

In [3] it was also shown that a subsequence of the iterations of process
(4.7) converges weakly to the solution. So, if we want to show that the
solution has Holder continuous first derivatives it is enough to show that
the iterations of(4.6) or (4.7) satisfy the inequality

(4.8) / |D?u, |2r®dz < C,
Qr
where Qp = Br(z0)NQ,z0 € Q,a = 2-m—27(0 < v < 1),r = |z—=0|,

and C doesn’t depend on zy and n. It is also assumed that R is sufficiently
small and fixed.

o (1)
LeMMaA 4.1. — If the conditions 1)-3) are satisfied and uy(z) € W, (2)
then

(4.9) ( /Q ]Dun+1]2dw> v
AATT

1/2
<l1-
- ( 1+ [maX{suplDunl,supIDun+1l}]s)
Q Q

1/2
X (/ lDunlzdw) + A7 al,
Q

holds, where
(4.10) ]a|2=/Z]ai(w,0)|2dz.
L

Proof. — Multiply both sides of the system (4.6) by u,4+; and integrate
once by parts. Then

/ Du, 1 Dupyrdz = /[Diun — A_lai(w,Dun)]D,-uanw,
Q Q
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where summation as always runs over repeated indices.

Adding and subtracting a;(z,0) under the square brackets on the right
hand side, we get

/ Dupy1Dupiade
Q
= /[D,un — A Yai(z, Duy) — ai(,0)))Ditin s dz
Q
-~ / a;(,0) Dty 1dz.
Q
Applying the mean value theorem we come to
/ |Dun+1Dun+1[d:L‘ = / (I — A—IZ)D’U”” . Dun+1d.’1:
Q Q
- / a;(z,0)D;u,1dz,
Q

where A denotes the matrix A with intermediate values of variables.
The Holder inequality gives

( /Q lDun+1[2dl‘)1/2 < sup (I - A—IZH( /Q [Dunlzdx)l’/z + lal,

It can be easily proved (see for example [3] p. 58, (2.29)), that

(4.11) sup ||I — A™YA|] < sup |l — A7)
Q i,

Using the right side of the inequalities (4.3) we get

AT

(4.12) HI-ATA| <1- 1+ [max{Sgp IDunl,s%p | Dt 1|}

O
Suppose that the cut-off function ((r)(2.46) satisfies in addition the
inequality

(4.13) IClig~2 <

Assume now that the boundary of Q belongs to C(H®) (& > 0). If
conditions 4) and 5) are satisﬁ_ed and ug (the initial iteration of (4.6) or
(4.7)) belongs to Wéz)(Q) n Wél)(Q)(q > 1), then all iterations belong
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to the same space. The iterations can be extented outside the domain (2
to a sufficiently narrow strip preserving the class. This can be made with
the help of the well-known procedure which we have used in the previous
paragraph. First one considers a plane piece of the boundary and expands
all of the u, in an antisymmetric way. This gives one the same class
of WP (Q U Qg) for balls Bg(x,) which don’t completely lie in 2. As
we have shown in [3] (chapter 4, § 3) all the conditions 1) - 5) don’t
change, and the values, s, A and A will be the same. This gives also us the
possibility to consider only the case when Qr = Q N Br(zo) = Br(%o)
and this gives the fixed small R,.

LEMMA 4.2. — If the conditions 1)-5) are satisfied and ug € W}z)(ﬂ) N
Wél)(ﬂ)(q > 2) then the iterations (4.6) or (4.7) satisfy the inequality
(4.14) / | D%y i1 |2 ¢ dzdt

Qr

< [1 AN 4
= 1 + [max{sup | Duy|,sup |Dun1]}]* g
Q Q

X D?u,|*¢dzdt + Clal?,
Qr
where C doesn’t depend on o € Q,n and in the case of (4.7) on 6.

Proof. — According to our previous consideration we can suppose that
Qr = Br(zo). Multiply (4.6) (or 4.7) by Au,41( and integrate by parts
as in the proof of lemma 1.2 or lemma 1.5 for o = 0. In [3] (theorem 1)
it is shown that if ¢ satisfies (4.13) then

(415) |Dun+1l Cd:l) <z/ I A~ lA DDk’U/nDDkUn+1Cd£E

1/2
+CIa|</B |Dun+1|2(dm> .

From this and from (4.12) immediately follows (4.14). ]
Let wi(x) satisfy the equation

(4.16) Awg = Atpyg - 7%
and the boundary condition
wkIaBR = O(k = 1,2,...,M),
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where M is a positive integer and «, is monotone and satisfy the following
relations:

ay =-m/2+m,
0<ak_1—2ak <m,
(4.17) o €2-m,3-m),ap_1>2-m
ay=a=2-m-2y0<y<1).

According to results of E. M. Stein [5] and V. A. Kondratjev [8] the
inequality

(4.18) / (ID*wf® + [Dw|* + |w|?)rPdz < C’/ |Aw|?rPdz
Bgr Bgr

holds, if —m < 8 < m and w = 0 on OBg.
Multiply (4.6) or (4.7) by Awy (¢ and integrate twice by parts. It is obvious
that ¢2 also satisfies (2.46) and (4.13). Then we get

(4.19) / [Atny1)?ro2de
Bgr

= / {un,i,j - A_l[ai(x, Dun)]j}wk,i,jgzdx
B

R

+/BR[Un,i_A_lai(xyDun)]wk,ij(<2)jd$_/ [thn,i

Bg
- A_lai(x,Dun)]wk,ij(<2)¢d$ +...=h+L++I4

(the unwritten terms contain only the first derivatives of u, and wg). Let
us estimate at first the integral I,. It is easy to see that

(4.20) I, :/ {tn,ij —A_l[ai(x,Dun)]j}wk,ijgzdx
Bg
<sup [T — A71 4}|
Q

X (/BR [Dzunlzr"kézdax)i (/BR [D2wk|2r”"’°(2dx> + ...

2
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Furthermore,
/ |D2wk]2r—°"42d:c
Br
m
2 —ay M2
= E / Wi ;7 “*C%dz
i,j=17Br

= Z /B (wi€)sj — (wr ;G + wr () — wkCij]zr—akdl'

ij=1
s / |D*(wi{)Pr=*dz - (1 + 1)
Bgr

+ C/ (| Dwi|? + |wk|2)r_°"°|D2C|2d:B.
Br

According to the inequality of S. Chelkak ([9], p. 28, Lemma 1.2), we
have

/BR |D?(wiC)[Pr*da < [1 _ M_l)}

(ax +m)?

[ 18Guofreda

R

Then, from (4.16) and the fact that D¢ = 0 for » < R/2 it follows that

-1
/ ’Dzwk|2r—ak42d$ S [1 _ 4ak(m )J / lAwkIZT—akczdx
Bgr

Br (o + m)?

+C / (|Dwi|? + |wi[*)r~¢|D%¢|?dz
Br

5[1 w__l)]/ | Aty i1 2r o 2y
Br

~ (a+m)?

+ C/ (|Dwi|? + |wy|?)r— 2ok For-1 gy,
Bgr
If oy satisfies (4.17) we can apply (4.18) and come to the inequality

/ ]Dzwklzr“akczdm
Bgr

4og(m — 1) o
S {1 - m] /;R ]Aun+1|27‘ Czdl'

+C(/ IAun+1]2r°"°—lC2d:c+/ ]Dunlzd:c)
Bgr Bgr
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Carrying out the same considerations for I, and I3, (4.12), (4.19) and
(4.20) yield the relation

/ [ A1 |?r* da
Br

<[ -]

o (1 3 A1
1 + [max{sup |Duy|,sup |Dunt1})
Q Q
X / [D?u,|2r**(?dx
Br
+ C([alz +/ [Aun+1|2r°“°_1(2dx+/
Br B

Inequality (2.52) (th. 2.4) gives for k = M

[Dunlzd:v).

R

(4.21) L [D? Uy |2r ¢ de

do(m — 1) n}

5(1+M3)[1— (a1 m)?

o (1 3 AN )
[+ [max{sup | Dun], 50 [Dur i}
Q Q
x/ |D2un|2r°‘(2dx
Bgr

+C[|a|2+/ IDun|2dx+/ | Aty g [2roM-1 (24
BR BR

=T =
+ (/ |D2un+1|2r°‘(2dx> . </ |Dun|2dx> }
BR BR

For k£ < M according to [2] (p. 51, lemma 2.2) (see also [8])
(4.22) / | D%y 1 |2ro* Cda
Br

< |-

. (1 B ML )
1 4 [max{sup |Duy|,sup |Dun+1|}]*
0 0
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x/ |D?u,, |2re (Pda

Br

+ C(/ |Du,|*dz + |a|? +/ ]Aun+1]2r°“‘“‘czd1}).
Bgr Br

THEOREM 4.1. — Suppose the conditions 1)-5) are satisfied and the
inequalities

( / | Dug|?dz < 72,
Q
(4.23) 4 / |D?uo*r*vdz < nf  (k=1,...,M - 1),
“ k—1
laf* + ) n} < emg
\ j=1

hold true (e, a,mi, b = const > 0 are suficiently small numbers).
If the relation

A (1+M3)[1—4€%] -1

(4.24) <1

is satisfied, then the solution of the problem (4.1), (4.5) belongs to C Ly (Q)
with v = —(a + m — 2)/2 and the subsequences of iterations of (4.6) and
(4.7) converge to this solution.

Proof. — Consider at first the case m > 4. As we have mentioned before
it is sufficient to prove inequality (4.8). Suppose that v € W(z)(Q) with
g > m(m+ a)™?

Then all u,, are in W( )(2). From this follows that Yu, € Wz(z(z(Q)

If we write (2.49) for the functions u;( , we get

(4.25)  |uji(zo)

M1 m+2y #27
<o (jo + o) |(f] 1peleciar)
- Br

rTy
(lal"‘+ an) } (G=0,1;i=1,...,m),

H
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where u;; = D;u; In fact, from (2.49) and v = u;{ we obtain after some
calculations that

[uii(zo)l* <C ( /Q iDUj|2dx) i
§ [</BR lDzujlzr"Czdx)# n (/Q lDuJ’lZd_q)) ;L;g;]

(.7 =0, 1)'

Now (4.25) follows from (4.23) for j = 0. Applying (4.9) and the
inequality (a + )% < 2(a® + b%), we have

L]Dullzdw < 2(/Q | Duo|dz + |a|2) < 2(n2 + |a*A72).

After using (4.21) and (4.22), the inequalitiy |ab| < na® + 471n~1b% the
estimates give the relation

M-1
/ | D2y *r*(Pdz < C[/ | D2uo|?r*2dz + |al? + z ng]
Br(=zo) Br(xo)

=0

Therefore

r{zo)

m
w2y

+ (lalz + 1‘:22—11 n,%) T] .

From (4.25) follows that for 3 = 0,1

sup | Du; |?
Q
M-1 =
< C(W + > ni)
k=0
= M1 i
X [(sup lDzuolzro‘Cd.'L') + ([a[2 + z n,zc) }
zo€Q Y Br(zo) k=0
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Take |a|? + le n? so small that C([al2 + le njz) m+27 < 1. Then
@21) gives =
(4.26)
sup / | D?uy |2re(da
z0€R By
<(1+ M,f){l - —4(‘:‘1(?;)12) + n}

/\A“1

('m+2'7)
v+ i) ™ e(ar s 3 k) )
:SOUE%/BR(IU) I uOI * Z

M-1
X sup / |D2uo|?r*¢%dx + C(la]z + 77]2)
R 1

x<1—

1065 B i=
Set
(X, = sup / | D *r*3dx, (1 = 0,1)
zo€Q J By ( 1)
4a(m —
— 2 _—— 7/
(4.27) Q @= (1+Mv)[1 (a +m)? +77:|’
M-1
H= C(|a|2 +y n};).
. k=0

Inequality (4.26) now turns to
AT
14 X 4 gt

XlSQ(l— >X0+H,

which can be written in the form

X, < Xor(@-1{ [1- A a5 b
(@ -D(A+X;7 4 gre) ] Q-1

Let the condition
(4.28) QMY (Q -1 >1,

holds. Then there exists such a gy € (0,1) that QAA~1(Q — qo) > 1. Let H
2(m+2‘y)

be so small that H < (1 — go)[QAY(Q — go) — 1 — H2(m+27)] =

Vol. 12, n® 4-1995,
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P(1-qq). Then after small calculations we get from the inequality X, < P
the relation

(4.29) X, <P
2

M-1 m+2y
Let us return now to (4.22). From (4.25) and C (la|2 > )

k=1
we get

/ | D2y |?ro* g

/\A_1

1+ [(zsouepn/B D% uof*r a<2d””> (Ial2+ Z )2(”27)}

X / | D?ug|2r: 2 d
Bgr
+C[/ |Duo|?dz + |a|? + / |Au|2r“k—1§2dx].
Bg

With the help of (4.27) and (4.29) we have for k < M

/ | D2y |Pro* Cda
Br{zg)
< [1_W—_D+n] [1_M}_1

(ar +m)? (a4 m)?

k-1
X (1+M3)_1/B ( )IDzuolzra*Cdx-i-C(]aP+Zn12~>.
R\To

=0

x|1—

All o} are negative and decreasing. Then from the last inequality we
obtain

k-1

/ - |D?uy |*ro*{dx < (14 M2)™'ni + O’(Ial2 + anz)
BR o

3=0
From (4.23) follows that

/ | D2uy |2ro Cdz < 02
Br(zo)
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and therefore for u; all conditions of the theorem are satisfied. Thus
inequality (4.8) and the theorem are proved for m < 4.

For m = 2 and m = 3 let us remark that if we take a; = -—%+n
then the condition

- % +n<2-m—-2y
can be satisfied at least for small v and all consideration are simplified. O
Remark 4.1. — If -y > 0 is small then the condition (4.24) gives

£<1+ +1)[1+(m 2)(m-1)] -1

Y (1 2 )0+ - 2m -

<1

For m = 2 this inequality does not restrict the dispersion of the spectrum
for the matrix of ellipticity.
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