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ABSTRACT. — We study the long-time behavior of solutions of the nonlinear Schrédinger
equation in one space dimension for initial conditions in a small neighborhood of a stable solitary
wave. Under some hypothesis on the structure of the spectrum of the linearized operator, w
prove that, asymptotically in time, the solution decomposes into a solitary wave with slightly
modified parameters and a dispersive part described by the free Schrédinger equation. W

explicitly calculate the time behavior of the correction.
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RESUME. — On étudie le comportement aux temps longs des solutions de I'équation de Schrd
dinger nonlinéaire unidimensionnelle pour des conditions initiales proches d’une onde solitaire
stable. Moyennant des hypothéses sur la structure du spectre de I'opérateur linearisé autour
soliton, on montre qu’asymptotiquement en temps, la solution se décompose en la somme d’ur
onde solitaire avec des paramétres faiblement modifiés et d’'une composante dispersive, sol
tion de I'équation de Schrodinger libre. On calcule explicitement le comportement en temps de

termes correctifs.
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1. Introduction

This article deals with the scattering theory of the Nonlinear Schrodinger equation in
one space dimension

ivi ==Y+ F(IWP)¥, xeR, (1.0.1)
¥ (x,0) = o(x) (1.0.2)

wherey (x, t) is complex-valued function. We suppose that it possesses solitary wave
solutions of the form

Y(x, 1) =€p(x, w) (1.0.3)

whereg is the positive solution of the equation
¢" —wp — F(p?)p =0 (1.0.4)

vanishing exponentially at infinity. The problem of stability of solitary waves for
nonlinear dispersive equations has been the object of numerous works [1,8,16].

We suppose that (1.0.1) possesses stable solitary wave solutions and we investiga
their asymptotic stability, that is the long-time behavior of solutions whose initial
conditions are close to a stable solitary wave. In the case of integrable nonlinea
equations (such as Korteweg—de Vries equation, cubic Schrodinger equation, Benjamir
Ono equation..), the inverse scattering method, under certain conditions, provides an
asymptotic decomposition of the solution into a sum of solitary waves and a dispersive
component. In this paper, we deal with non-integrable equations and the approach |
completely different and local.

Our method, initiated in [2], is based on the spectral decomposition of the solution on
the eigenspaces associated to the discrete and continuous spectrum of the lineariz
operator near the solitary wave. To present our result, we need to introduce som
notations and state the hypothesis. It is convenient to rewrite the nonlinear Schrédinge
equation in the vectorial form

J¥ ==V + F(1¥19) ¥, (1.0.5)
Y (x,0) = Yo(x) (1.0.6)
wherej = (9 ), w=(12), vi=Rey, yo=Imy.
For technical reasons, we restrict ourselveswen solutions.
Assumptior(NL). — We suppose that the nonlinearifys) is aC”-function ofs > 0,

such thats = 0 is a root of multiplicityr with » > 4, and that fors > 1, it satisfies the
lower estimate

F(s) > —Fis?, with F; >0,9 <2. (2.0.7)

Assumption (1.0.7) ensures that for an initial conditigg in the Sobolev space
HY(R), the solutiony (x, ¢) exists for all time as a continuous functionzofvith values
in HX(R). In addition, if initially xvyo € L?(R), thenxy (x, t) remains inL?(R) for all
time [6].



V.S. BUSLAEY, C. SULEM/ Ann. I. H. Poincaré — AN 20 (2003) 419-475 421

Assumptior(SL). — Further assumption is made in terms of

92

U(p) = ——go — / (s)ds. (1.0.8)

0

We assume that, for alb in an interval centered at some,, the mappingy —
U (¢p) has a positive root and the smallest positive rpgis simple. We also assume

U'(¢o) # 0.

Under this assumption there exists a unique, even solytianw) of ¢, = —U,,
decreasing liket (w)e v®* asx — +o00. Eq. (1.0.5) has solutions in the form of solitary

waves é' ¢, ¢ = (“’("6“’)).
The linearized operator near the solitary wa¥e ¢ is

u=—d .+ ou+ F(|¢?)u+2F (1¢1?) (u, 9)p, (1.0.9)

where(., .) denotes the usual scalar productfidefined by(u, v) = w101 + usv,.

Let C = j B = j~%(—d,, + w) + V. In general, the spectrum @ is located on
the real and imaginary axis. The continuous spectrum is located on the two half axis
(—ioo, —iw] U [iw, ico). Because the potential decreases exponentially fast at infinity,
the discrete spectrum is composed of a finite number of eigenvalues. The correspondir
invariant spaces are of finite dimension. The point 0 belongs to the discrete spectrum ar
the dimension of its invariant subspace is at least 2. Recall that we restrict the ogerator
to even solutions. We assume more specific conditions:

Assumption(SP). — There is no real eigenvalue except 0, and the invariant
subspace associated to the eigenvalee0 is of dimension exactly 2. In addition, there
are 2 simple eigenvaluesi ., which satisfy the property/2> . Their corresponding
eigenspaces are of dimension 1. We assume the generic condition that the edges of t
continuous spectruntti w are not resonances, or equivalently, that there are no solutions,
bounded at infinity (virtual levels), nor bound state€af = +iwu. We also assume that
there are no embedded eigenvalues in the continuous spectrum.

If Assumptions (SL) and (SP) are true for a fixed valug they are also true for
values ofw in a small interval centered aty. A detailed analysis of the spectral theory
of the operatolC was developed in [2]. A key point in the analysis of the non self-adjoint
operatorC is that the coefficients of the matrix-potenti@dldecrease exponentially fast
at infinity. The hypothesis on the spectrum®fw) ensures orbital stability of solitary
waves.

We consider initial conditiongrq in the form:

Vo(x) = ¢ (x, wo) + (zou(x, wo) + Zou™ (x, wo)) + fo(x) (1.0.10)

whereu (x, wg) andu*(x, wp) are the eigenvectors @f(wg) associated to the eigenvalues
+iu(wo), and fp belongs to the eigenspace associated to the continuous spectrum o
C(wo). We also assume a non-degeneracy condition{..étdenote the scalar product
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in L? of C?-valued functionsiu, v) = Jg(u,v)dx, andE5[ f, f] be the quadratic terms
coming from the Taylor expansion of the nonlinearity:

Eolf, f1=F (1811 1?0 + 2F"(191°) (¢, )% + 2F (1) (¢, ) f.  (1.0.11)

The condition has the form

(Eo[u, ul, u(2iug)) #0, (1.0.12)

whereu(2i11g) is the eigenfunction associated x6= 2i ;1o = 2i u(wp). This condition
expresses that the interaction of the term of double frequepgyg2nerated by the
nonlinearity with the continuous spectrum is nontrivial and is sometimes referred to as «
nonlinear version of the Fermi Golden rule.

Let |zo| = Y2 andN = || foll g1 + 111 + x2) foll2 < ce¥? wherec is a constant. Fas
sufficiently small, we construct a solution in the form

Yx,t) = ef(féw“)d””’”(qs (x, (1)) + w(x, 1) + f(x,1)), (1.0.13)
wherew(x, t) = z(Hu(x, w(t)) + z(H)u*(x, w(¢)), and f (x, t) belongs to the subspace

associated to the continuous spectrunCaod (¢)). The dependency onof w andy is
defined by the structure of the solution. We show that,-as+o0, w () - w,, and

Y. =00, 0)) + 2 (Ou, w) + 2 (Ou*(x 0]+ Ay +o(D)

(1.0.14)
in L?, where @1) is taken with respect to the variablg
q)+(t) :CO+I +C+ |Og(l+k+81) +]/+, (1015)
wy, ¢, ky andy, are constantg, >0, L = —%22
g h+t
2. (1) =&Y? S (1.0.16)

(1+ kyer)l/2=io’

us = u(wy), 8 areal constant angd, = O(1) ase — 0, andh . € L?, independent of.
Asymptotically inz, f(x, t) reduces to a purely dispersive wave. We have-asoo,

I1flla=&/ " “"hy|,+ o). (1.0.17)

If x is bounded (i.e., wherf is estimated in a norm with a decreasing weight) then
f =02, while for largex, (f is then estimated i >-norm) f = O((1;)"/?).
Furthermore, we have, for the conservation of mass

9 G )5 = l1w, 112 + s 112 (1.0.18)

An analogous formula for the energy is also true.
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The result shows that in the neighborhood of a stable soliton state, the system i
equivalent to the direct sum of two systems: the first one is a Hamiltonian system
with one degree of freedom and the second is the free Schrdédinger equation. Th
linear dispersion works like dissipation, leading to a locally vanishing radiation part
and eventually to an independent behavior of the localized soliton and the spreadin
radiative term. Under the Fermi Golden rule assumption, the interaction between highe
harmonics of the soliton and the radiative field remains always nontrivial.

The case where the discrete spectrum is reduced 400 was studied in [2]. In
a subsequent paper, the authors [3] proved the asymptotic stability of solitary wave:
when the operato€ (wp) satisfies the spectral properties (SP). Following their ideas,
we develop a more transparent and explicit calculation of the splitting of motions, and
give a detailed description and explicit formulas for the correction terms. In particular,
we calculate the period of oscillations of the phase as well as of the amplitude of
the solution. An heuristic analysis of the phenomenon of amplitude oscillations was
developed in [11].

The question of asymptotic stability has been investigated for various related
problems. Soffer and Weinstein [12] considered the nonlinear Schrodinger equation wit
a potential term

iV + Ay = (V) + Ay ")y, (1.0.19)

for x e R, and 1< m < (d + 2)/(d — 2). Under the assumptions th&t(x) decays
fast enough at infinity and that the operaterA + V has exactly one bound state
(isolated eigenvalue) ih?(R?), with strictly negative eigenvalug,, they proved that for
a class of initial conditions, the solution of (1.0.19) is givempoy= € © Vg, + £ (1),
e = fé E(s)ds — y(t), wheregg is a spatially localized solitary wave anda purely
dispersive wave. As— +o0, E(t) — E. andy (t) — y.. The case where the operator
—A + V has 2 bound states was investigated recently by Tsai and Yau [17] using idea:
that Soffer and Weinstein [13] developed in the context of resonance solutions of the
nonlinear Klein—Gordon equation.

The scattering theory of the Nonlinear Schrodinger equation

iV, + Ay —elylly =0, [>2 >0, (1.0.20)
with respect to the free Schrodinger equation
iV, + Ay =0, (1.0.22)
was studied by Ginibre and Velo [6], Strauss [14], McKean and Shatah [9]. This case
corresponds to the absence of bound states.
Deift and Zhou [5] considered a perturbation
iV + Y = 29 P —elyl'y =0, 1>2, >0, (1.0.22)

of the defocusing one-dimensional cubic Schrddinger equation

Y, + Ve — 2J¥ 2y =0. (1.0.23)
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Since (1.0.23) is completely integrable, they viewed (1.0.22) as a perturbation of ar
infinite dimensional integrable system on the line. They proved thataso, solutions

of (1.0.22) behave like solutions of (1.0.23) and that the long-time behavior is universal
for a large class of initial data.

Cuccagna [4] extended the analysis of [2] to the case of spatial dimension largel
or equal to 3. The method of decomposition of motion was recently used to prove
rigorously the blow-up properties of the nonlinear Schrédinger equation with critical
power nonlinearity in one space dimension [10] (see [15] for a review of the properties
of blowing-up solutions).

The paper is organized as follows. In Section 2, we recall basic facts about the
decomposition of motions and the linearized operator and we derive a system o
equations for the various components of the solution in the form

o= Q(w,z, f), y =T(w,z f), (1.0.24)
t=ipz+Z(w,z, f), f=C@f+F(,z f). (1.0.25)

In Section 3, we calculate the leading terms in the equations, and estimate th
remainders. In Section 4, we transform the evolution equations to a simpler, canonica
form using the idea of normal coordinates, with the purpose of keeping unchanged th
estimates for the remainders. In Section 5, we introduce the notion of majorants define
in terms of norms ofw (¢), y (), z(¢t), and f(x, ), with appropriate time dependent
weights in a fixed interval of timg0, 7'] and establish uniform bounds independent of
T, for initial conditions sufficiently close to a solitary wave. In Section 6, we find the
precise long time behavior of the various components of the solution.

Notice that in general, it is not easy in practice to check the spectral properties of
a given operator. For the purpose of examples, and for simplicity, let us restrict to a
polynomial nonlinearity. The condition of orbital stability can be expressed in terms of
sign of the derivative of th&2-norm of the solitary wave with respect o In the case
of a power lawF (s) = —s” we havelg, |3 = %771 ¢1||3, and the condition for orbital
stability is that% llg,|l3 > 0 or equivalentlyp < 2. The casg = 1 is the integrable case,
with a discrete spectrum of the linearized operator reducedt® and the boundary of
the continuous spectrustiw being resonances. Ford p < 2, the linearized operator
has the required spectrum: one eigenvalue between 0 and the boundary of the continuo
spectrum, and no resonancesp is close to 1, the eigenvalue is close to the boundary of
the continuous spectrum. To satisfy that the nonlinearity has a root of high multiplicity at
0 (condition (NL)), one can perturbe slightly the nonlineattys) only near the origin.
The soliton will change slightly and it follows from the general theory of linear ordinary
differential operators that the general structure of the spectrum will not be modified anc
the eigenvalue remains close to its original location. Now we have to take care of the
nonlinearity F (s) at infinity. If we change the nonlinearity only for values that are larger
than the maximum value of the soliton solution, this does not affect the structure of the
soliton and therefore, the spectral properties of the linearized operator. Thus, by thi
modification of the nonlinearity, we can satisfy the conditionsrin) for larges. As
for embedded eigenvalues, if they exist, a small perturbation of the nonlinearity will
eliminate them.
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Grikurov [7] investigated numerically the spectral properties of the linearized operator
near a solitary wave of the NLS equation with a saturated nonlinearity:

iy + tyy + |u|?Pu — a|u|®u =0, (1.0.26)

with p = 3, g = 6, for various small values of the coefficiemt He observed that the
point spectrum is composed, in addition to the eigenvalue0, of two opposite real
eigenvalues whea is smaller than a specific value, while for o > «,, it is composed
of two complex conjugate imaginary eigenvalues.

We conclude this part by listing some open problems that can be seen as natur:
extensions to this work. One could replace the hypothesis- 2> of Assumption (SP)
by nu > w, and also allow more than one pair of eigenvaltggs. One could also drop
the restriction to even solutions and consider general solutions. This would lead to twc
additional equations to (1.0.24)—(1.0.25) for the center and the velocity of the solitary
wave. A more difficult problem is to allow the presence of resonances at the edge of the
continuous spectrum.

Notations — All integrals are taken oveR unless indicated otherwise. Norms/iri -
spaces are denotéd ||, and| f|l, = llof |l denotes the weighted norm It (p) with
the decreasing weight(x) = (14 x?)~*, wherea > 0 will be fixed later.

2. Decomposition of motion

2.1. Thesoliton and thelinearization near the soliton

The linearized operator near the solitary wa{€ ¢, ¢ = (g), whereg is the positive
solution, decreasing like (w)e v“I*! at infinity, of

2
dx
is
82
Bu=(— s @+ F(8P) Ju-+ 2F () . 9. (2.1.2)
Equivalently,

_ (D
Bu = <D2u2> ,
whereDy = — L5 + o + F(1$[2) + 2F (19|61 andD, = — 25 + o + F(¢[?). The
operator

82
C=j‘1B=j‘1<—@ +w>+v (2.1.3)

_( Douy
Cu= (—D1u1> .

is defined as



426 V.S. BUSLAEY, C. SULEM/ Ann. I. H. Poincaré — AN 20 (2003) 419-475

We assume that the spectrum@®thas the structure described in Assumption (SP). We
denote byX, the invariant space associatedite= 0, andX; and X,, the eigenspaces
associated té. = +iu, and the continuous spectrum respectively. It is also useful to
denoteX, = Xo+ X1. Note that, ifC* is the adjoint operator af , we haveC*j = — j C,

while —Co3 = 03C, whereos = (é _01) .

Defineyo = j¢. We haveC xo = 0. In addition,x; = % = ¢, satisfiesC y1 = xo. The
invariant spacey associated ta = 0 is spanned byg and x;. The spectral projection
P of a vector valued functiorf on Xg is defined by

Pof =

s JPw)J , ) - 2.1.4
<¢,¢w><<f J®u)id+ (fr d)bw) (2.1.4)

Letu = (Z;) be the eigenvector af associated tou. We have
ipuy = Dousy, and iuug = —Diu;. (215)

This implies thatD,D1uq = ?u;. SinceD,D; is a real operator, it is possible to choose
the functionu, (x) real. From (2.1.5), we see that is then purely imaginary. This will be
our choice throughout this paper. We denota:by= <_Mu12 , the eigenvector associated
to —iu. The spectral projectiot?; of an arbitrary vector-valued functiofion X is

pop o L) L (2.1.6)

(u, ju) (u*, ju*)

Finally, the spectral projectioR. on X, is P.=1— P; =1 — Py — P;. Itis easy to see
that the projection operators satisfy the property

jPo=Plj,  jPi=Pfj,  jP.=P}j (2.1.7)

c

Denote byu(i2) andu*(i)) the solutions of
Cu=ilu, Cu* = —iiu*, (2.1.8)

wherei > w. For f € X, we have the spectral representation

o]

f= / A1 (0= (f, jula))ulir) +0- () f. ju*(1))u*(ih)). (2.1.9)

By orthogonality
04 (W) {(u(in), juir)) =80 — 1),
O_ (W) {u* (@A), ju*(ir)) =8 — 1) (2.1.10)
and 6, (1) = 6_(1). In the limit |x| — oo, up to terms exponentially decreasing at
infinity, we have, forx > w,

u1(ir) ~ N(A) cogv/A — w x| — 9(%)) (2.1.11)
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where N(A) is a real normalization constant, ant{A) a phase factor. For large
x, u(ir) ~ iur(ir). The smallest exponential ratg| of the decaying remainders
exp(—|B]|x]) is equal to(2w)*/2.

Calculating the improper scalar prodyeiiA), ju(iA)) in this limit, one gets

1 _ 1
a4m:4u@):?mm, MmQOJZZnNamvT:Z’ (2.1.12)
and the spectral decomposition (2.1.9) rewrites
1 o0
fo:;:/QOJdA«ﬁquA»uUA)+<ﬁju%ﬁJﬁﬁaA». (2.1.13)

Denoting by P, and P_ the projection operators on the spectral space associated to
the positive and negative part of the continuous spectrum respectively, we have:

PROPOSITION 2.1 [3]. — For f € X,

[A+x)(Pj f —i(Py = PO )|, <K@ fl,s (2.1.14)

wherep (x) = (1+ x?)~%, « > 0 arbitrary, and K is a constant depending an

In Appendix A, we recall several properties of the spectral resolution (2.1.13) and give
some remarks on the above proposition.

2.2. Thedynamical equations

We look for a solution in the form

W(x, 1) = &S o0 ds Oy gy (2.2.1)
with
U=¢+x. (2.2.2)
In (2.2.2),¢ = (¢, 0), with ¢ solution of
d2
(——2 +a)(t)><p+F(<p2)g0:0, (2.2.3)
dx

andy = w(x,t) + f(x,t) wherew = z(t)u + z(t)u* € X; and f € X.. Notice thatu
andu* depend onw and thus on. Substituting (2.2.2) into (1.0.1), one gets

—yW + j¥ =By + E[x], (2.2.4)

whereB is the linearized operator defined in (2.1.2) dg ] contains all the remainder
terms which are at least quadratic. Defini@fy 1= j*E[x], (2.2.4) is rewritten

yjv+ ¥ =Cx+ Qlxl. (2.2.5)
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We now apply the spectral projectiory, P, and P. to (2.2.5) and get a system of
coupled equations fan (¢), v (¢), z(¢) and f (x, ¢) in the form

PrROPOSITION 2.2. —The functionsv (¢), v (¢), z(¢t) and f (x, t) satisfy the system
(PoQ, V)

®= , (2.2.6)
(¢ — Powx), V)
)-/= <]P0(¢w_POwX)aPOQ>’ (227)
(90 — Powx), ¥)
(M, ]M)(Z - ll’LZ) = (Q7 _]I/l) - <ww - lef7 _]I/l)d) - <X7 M))}, (228)
f=Cf+ P.QIX]+ &P x — 7 Pe(i X)- (2.2.9)
Proof. —Taking the scalar product of (2.2.5) withj ¥ leads to
YW, PEW) + (W, PEW) = (PyQ, ). (2.2.10)
Since
(jW, PEW) = (jW, P32W) = (Poj W, P§W) = (j Py, P§W) =0, (2.2.11)
we have,
(PoW, W) = (PyQ, ¥). (2.2.12)
Notice also thatl = ¢ + x and thatPyx = 0. Therefore,
Pox +wPo,x =0, (2.2.13)
and
PoW = (¢, — Powx)o. (2.2.14)
This immediately implies (2.2.6). )
Taking the scalar product of (2.2.5) witPoW, we get
(¥, PoW) =(Q, j PoW). (2.2.15)
Substituting (2.2.14) in the above equation leads to (2.2.7).
Applying P; to (2.2.5) gives
PV + Pi(j¥)y = Cw + P1Q[x] (2.2.16)
with P1(j W) = P1(jx) and P& = Py + P, f. SincePyw = w, we have
w = Py,ow + Piw. (2.2.17)

Using thatP? = Py, we havePy,w = 0, thusw = Pjw. From Py f = 0, we get that

Pif =—Py,fo=—PiP, fo. (2.2.18)
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Finally, (2.2.16) is rewritten in the form
Py — PiPy,fo+yPijx =Cw+ P1Qlx]. (2.2.19)

Using thatw = zu + zu*, and thatu and u* depend or¢ through w, we can write
w = w; + ow,. EQ. (2.2.16) becomes

w; + @P1(wey — P1o, /) + Y Pi(jx) = Cw + P1O[x]. (2.2.20)

Using thatw, = zu + zu* andCw = i u(zu — zZu*) in (2.2.20), we get, after taking the
scalar product of this equation wiftu,

(, ju)(z —ipz) =(Q, ju) — (Wy — P f, juyo — (x, u)y. (2.2.21)

Finally, when the projectiorP. is applied to (2.2.5), one gets

yP.(jW)+ P.W =Cf + P.Q. (2.2.22)
Notice thatP,j¢ = 0 andP.¢ = P.¢,» = 0. Therefore

yP(x)+Px=Cf+ PQ. (2.2.23)
FurthermoreP.w = — Poyw, P. f = f — Po féo, andP. x = f — P, x . Substituting
P.x in (2.2.22) by the above expression, we get (2.2.9).

3. Leadingtermsand remainders
3.1. Preliminaries
This section is devoted to some preliminary useful estimates. We start with a bounc

for the denominatot Py (¢, — Ponx), V) that appears in the equations of motion (2.2.6)—
(2.2.9). We have

Poo ,
(Po(go = Pou). W) = (990 (1- LB D) (3.1.1)
(0> D)
with
M —_ _ﬁlxl )
(b0 &) _R(w)(k”/e | f ()| dx (3.1.2)

whereR (w) is a general notation for functions which remain boundedig close tawy.
It could be unbounded and even infinitewifis outside some vicinity abg. The formula
f =TRg implies that| f| < Rg. We have

(1 0w X > d))
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wherep (x) = (14 x?)™*, « arbitrary. Forx > 1/4, I fll, <Cllflls,and

<POwX7 ¢)
—— =R 00)- 3.14
G B) (@) Izl + 11 fllos) ( )

In the following, we will always assume > 1/4 in the definition ofp. We also need
to expand the nonlinear terd(|y|%)y near the solitary wave. The Taylor expansion of

F (v >y nearg is
F(ly1®)y = F(I91?) ¢ + F(191°) x +2F'(1¢1%) (x. $)¢ + Elx]. (3.1.5)

where E[x] contains all the higher order terms which are at least quadratjc, i&s
x — 0. Recalling that is the order of the zero df'(s) ats = 0, we expand[x] in the
form

Elx1=Es+ -+ Ea + Eg (3.1.6)

whereE; is of orderj in x and E the remainder. Fof < 2r, all the termsE; contain
powers ofp (which decreases exponentially fast), thus

E; =R, 0)lxl, (3.1.7)
whereR (x, w) denotes functions that satisfy the estimate
IR(x, 0)| < R(w)e Ve, (3.1.8)
However forEg, we have only

|Erl =R (w, |x))Ix1* T =R(w, |z + I flleo) Ix ¥ (3.1.9)

The notationnR when’R depends on several variables has the same meaning as when i
depends on one variable only.
More explicitly, the quadratic terms have the form

Eaolx, x1=F'(1¢19)1x1°¢ + 2F"(191?) (¢, x)?¢ +2F (I91*) (¢, x)x  (3.1.10)
and the cubic terms
4
Eslx, x, x1= §F’”(|¢|2) (@, )30 +2F" (161%) (¢, x)*x + F'(191%) 1 x*x

+2F"(161°) (¢, )1 x %6 (3.1.11)
It is also useful to defin&,[ 1, x2] as a symmetric quadratic form

1
Eolx1, xol = éF’(|</>|2) (O, x2) + (x2s x0)) @ + 2F" (1817) (9, x1) (9, x2)¢

+ F'(191%) ((¢. x2) 1+ (@, X1 x2)- (3.1.12)
Notice thatE, satisfies the following property

(Eo[X, Y], Z) = (X, Eo[Y*, Z]) (3.1.13)
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whereX, Y, Z are complex valued vector functions akidd = (X1, X»).
3.2. Leadingtermsand remaindersfor y,  and z

Using the calculations of the previous section, we can now rewrite EQs. (2.2.6)—(2.2.8
describing the time evolution of, w andz and separate leading terms and remainders.
We get

_(Eo[w, w]+ 2E>[w, [, ¢o)

(@, bo)
— (. b)) 2[({Ealw, w, w], ¢,) — (Ealw, w], Popyw)) (9, o)
+<E2[w7w]a¢w>((P0ww’¢> - (w’(bw))] +FR7 (321)
where
Tr=R(w, |z + | flloo) (122 + 11 £1,)°. (3.2.2)

In the above equationR (w, |z| + || flls) IS @ quantity that remains boundedifis in
the vicinity of wg and if |z] + || f ||« IS bounded. Similarly, Eq. (2.2.6) fas is rewritten

_ (Ex[w, w]+ 2E2[w, f1, j¢)

(@, bo)
+ (0, ¢0) 2 [((Eslw, w, wl, jo) + (E2lw, w], Pojx))($, ¢o)
+ (Eo[w, wl, j¢) ({Poww, §) — (¢, w))] + Q. (3.2.3)
where
Qr =R (o, 1z + | flloo) (22 + 11 1,)°. (3.2.4)

It is useful to notice that

(Eslw, w), j¢) = 2%(Ealu, ul, j¢) + 22(Ealu®, u*], j¢) + 222(Eolu, u*], j¢).
(3.2.5)
Using the definition off,, and thats = (14, uy) with u4 real andu, pure imaginary, we
have that

(Eolu,u*], j¢) =0. (3.2.6)
Thus,
(Exlw, wl, jo) = (2% — 29)(E2lu, ul, j¢) (3.2.7)
and
(Ealu.ul j#) = =2 / F/(1812) (. $) (. jb) dx (3.2.8)

is purely imaginary.
Finally, we rewrite (2.2.8) in the form:
(Eolw, w]+ 2E>[w, f1+ Eslw, w, w], u)
(u, ju)
_ {we, ju)(Ea[w, w], j@) — (w, u)(Ea[w, w], ¢u)
(D, bo)(u, ju)

7—ipnz=—

+Zz, (3.2.9)
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where
Zr =R (. 121 + 1 fll) (122 + 1 £1,)°. (3.2.10)
PrROPOSITION 3.1. —(u, ju) =i8, with § > 0.
Proof. —Indeed,

(u, ju) =/u1(u2—u§)dx:2/u1u2dx. (3.2.11)
R R

Using (2.1.5),

2 2 d?
(u, ju) = .—/uzpzugdx = .—/u2<—— +w+ F(|¢|2)>u2dx. (3212)
in in dx?

Sinceu; is purely imaginary ang is the only eigenfunction of the operaterdd% +w+
F(|¢|?) corresponding to the minimal spectral point 0, the integral is strictly negative
and the result follows. O

Remark— It is shown in [2] that under Assumption (SR, ¢,,) > 0 for w = wg and
consequently fot close towy.

3.3. Leadingtermsand remainders for f

We now turn to Eq. (2.2.9) fof that we rewrite in the form
f=Cf —P.jEsw, wl+yi(Py — P_)f + Fg (3.3.1)
where the remaindefy is

Fr=—P.j(E[x]— E2[w, w]) — @Pyox + Y Pej tw+y(Pj ' —i(Py — P)) f.
(3.3.2)
As we have seen before,

P.Qlx]1=—P.jElx] (3.3.3)
and
Elx]= Eslw, w] + R(x; @, |z + || flloo) (1212 + 12l FI + £ %)
+R(w, |zl 4+ I flloo) Ix[* . (3.3.9)
DenotingEg = R(w, |z| + || flloo) | x 1?1 we have

P.jER =jERr — PyjER (3.3.5)
with

PijEr=R(x; 0, |zl + I flloo) (127 + U AIZHAIZ). (3.3.6)
We rewrite the remaindef; as
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Fr=—P.j(Elx]— Ealw,w]) — dPyyx + ¥ Pej 'w
+y(Pj i —i(Py = P))f. (33.7)
To estimateFy, we separate it in several parts as follows:
Fr=F1+F,+F3+ F4+ Fs (338)
with
Fi=—=P.j(Eax]+ -+ Ex[x] — E2[w, w]), (3.3.9)
Fy=—P.jER, (3.3.10)
Fs=wP.,x =—wP,x, (3.3.11)
Fr=yP.jw=yjw—yP;jw, (3.3.12)
Fs=y[P.j ' —i(Py — P)]f. (3.3.13)
It is convenient to separat® in two parts,
F,=F,+F) (3.3.14)
with
Fy=—jEg, (3.3.15)
F) = P;jEg. (3.3.16)

PropPoOSITION 3.2. —We have the following estimates
[+ x*) Fufl, =R(w. [zl + 1 flloo) (1212 + 2l £ll, + I fllscll £1lp). (3-3.17)

[+ x*) F [, = R(@, 1z + | flloo) (1217 4+ 1 F I 1 £ 1l) (3.3.18)
[+ F3]l, = [R@) 1ol (Iz] + 1 £ o) (3.3.19)
|(L+x*) Fall, = R(@)I7llz], (3.3.20)
[(L+ %) Fsll, = R@)y 11 £1,- (3.3.21)

Proof. —Estimates forFy, F;, F3, F4, are straightforward. Inequality (3.3.21) fég
is a consequence of Proposition 2.10

PropPoOsITION 3.3. —The termF; is estimated as follows
1F5l2 = R(w, |zl 4+ 1 f o) (1217 + 1 £ 1), (3.3.22)
, 2r—1
A+ 52 Fylly =R (@, |z + [ fllo) A+ D) (12l + I flloo)” - (3.3.23)
Proof. —First considet| F;||,. We have

I F5l5=R(w,|z| + ||f||00)/|X|2(2r+1)dx

SR(w, 1z + 11 flloo) (I2] + IIflloo)4rIIX||§- (3.3.24)
Using the conservation of thie,-norm of r, we have

Ixll2 < C+R(w). (3.3.25)
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After substitution in the estimate fqiF;|», we get (3.3.22). To obtain (3.3.23), we use
the classical estimate on the weighteginorm of the solution [6]

1/2
(/(1+x2>|vf|2dx) < C(IWoll ) X+ X+ 1xD Vo, (3.3.26)
It follows that

(L4 xD) FS|l = R(w, 2]+ I fllee) A+ D) (1] + | fllo) (3.3.27)

These estimates are sufficient to boupf| ., but not | f|,, », y andz. For the
latter, we need to consider the leading terms more carefully. This is done in the nex
section. O

We conclude by summarizing the results of this section. Let us reWgite F, + F,
with

F :F1+F2//+F3+F4+F5, and Fj :Fz/. (3328)
ProPOSITION 3.4. —The evolution equation fof is

f=C()f — P.jExw,w]+iy(Py — P_)f + Fg (3.3.29)

with a remainderFy = F| + F, satisfying

[+ x*)F[,=R(@, 1zl + | fllo) (121° + Uzl + 1 £ o) £ 1) (3.3.30)
IFullz+ L+ x) Fi |, = R, [zl + | flloe) A+ D (12l + [ Flloc)* - (3.3.31)

4. Transformation of the evolution equations

Our goal is to transform the evolution equations fqrw, z and f to a more simple,
canonical form. We will use the idea of normal coordinates, trying to keep unchangec
the estimates for the remainders.

4.1. Equation for @

Eq. (3.2.3) can be represented in the form

@ = Qoo() 22 + Q11(0)27 + L02A@) 7% + QL30(0) 2> + Qa1(w) 72
+ Qua(w) 222+ Qo3 + 2{f, Qo) + 2(f, ) + Q. (4.1.1)

Notice thatQ;; = Q;;. Furthermore,

- (Eolu, ul, jo) 2 , 5 )
20 02 @ bu) <¢’¢w>/ x F'(191°) (¢, u)(u, jo) ( )
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is purely imaginary and2;; = —W =0 (see (3.2.6)). Using the property

(3.1.13), we find that the coefficient®,;, and <2, are given by

Eu”, j¢]

Qo= Q=2 vy (4.1.3)
Let us now consider the equation farlt has the form
t=i(uz+ Zooz? + 21127 + Z02Z? + Z302® + Z212%7 + Z1227% + Z03Z°)
+2(f, Zio) + S, Zon) + Zk. (4.1.4)
We have
ZzoZM, ZH:M, Zozzw’
(u, ju) (u, ju) (u, ju)
Zjp= gl Zyy = ol ul (4.1.5)
(u, ju) (u, ju)

PrRoOPOSITION 4.1. —There exist coefficients;; (), 0 < i, j < 3, and vector-func-
tionsb;j (x, ), such that the new functian, defined as
1= + bao(0) 2% + boa()7% + bao(@)z2 + bor(w)z°Z 4 b1227?
+ boaz’ + z{ f. bo) + Z( f. byy) (4.1.6)
obeys the differential equation
o= Qg (4.1.7)
and Q; satisfies the same estimg82.4)as ;.

Proof. —The calculation follows the classical method of normal coordinates. Substi-
tuting , z, z, and f from (4.1.1), (4.1.4), (3.3.29) into the equation foy, we get
1= (14 b2002% + bo2a?? + b3owz® + b21,2°7 + b12,27° + boaZ®
+ 20, Phoy) + Z(fs bo1,)) @ + (20202 + 3b30z” + 2b212Z + b12Z° + (f, b)) 2
+ (2b0oZ + b212% + 2b122Z + 3bosz? + (f, b))z + 2(f , bio) + Z(f, bpy)
= Qp0z% + Q027 + Q302> + Q212°7 + Q12772 + Q03Z3 + 2( f, Qo)
+ Z(f, Q1) + Qg + 2b20z (i 7 + i Z202? +iZ1127 + i Z0277)
+ (3b30z? + 2b2127 + b127? + ( f, b)) (i j12)
+ 2boo7 (—iuZ — i Zoo7? — i Z1177 — i Z022°)
+ (b212% + 2b1p27 + 3bosz” + ( f, byy) ) (—i pu2)
+2(Cf +iy(Py = P2) [ + Fa02® + F11zZ + FopZ” + Fr, b)
+Z(Cf +iy(Py = P_) f + Fa02® + FuuzZ + FoaZ” + Fr, bgy)
+ R (@, |zl + 11 lloo) (12 + 12121 £11,)
= Q. (4.1.8)
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Comparison of the coefficients ef, z2, z3, 2%z, zz%, 23, zf andz f, leads to a system
of equations for the coefficients; andb;. In particular,

bao = iﬁzo, boz = —ZI—MQoz, (4.1.9)
Q30+ 2i Zaohzo + 3i o + (Foz, bl) = 0, (4.1.10)
Qo1+ 2i Z11boo + i b1 — 2i Zogboo + (F11, byg) + (Foo, byg) =0, (4.1.11)
Qo — ipiby+ C*bly =0 (4.1.12)
and thus,
bio=—(C* — i) Q. (4.1.13)

The coefficient2’, € X. and we can require thaf, belongs toX..
Equations forbzy and b1 can be solved oncéy, and b}, have been calculated. It
follows that

Qr=Qr +R(w, 1zl + I Flloo) (12I* + 121711 £1I,,)

=R(w, 12+ 1 £l) (2P + 1 £11,)% O (4.1.14)

Remark— If we apply the same method to the equationfdgsee (4.1.4)), a change
of variables similar to (4.1.9)—(4.1.12) leads to a system of equations for the coefficient:
c;; of z. The analogous equation of (4.1.13) for the coefficiegihas now the form

(C* + 2ip)chy = —i Z}, (4.1.15)

Note that—2iu is a point in the continuous spectrum ©f, thus the functiorry; does
not vanish at infinity. This implies that in the expression for the new variahlie term
Z(f, cp1) can have a complicated structure. The functyoitself does not decrease well
enough at infinity. To proceed with the equation fome have to analyze carefully the
behavior off.

4.2. Transformation of the equation for f

4.2.1. Decomposition of f

In Section 3.3, we transformed the evolution equation (2.2.9¥foto (3.3.29) with
estimates on the remainder. The difficulty however is thas not a constant (it is a
function ofz) andC (w) and P..j are not in simple relation. For this reason, let us come
back to (2.2.9) rewritten in the form

f=C@)f+yPjtf — P.jEsw, w)+ Fg, (4.2.1)

whereF = F, + F andF, = F; + Fj + F3+ F,. Let us fix a time interva0, T] and
decomposgf into

f=g+h (4.2.2)

with ¢ € X¢ andh € X5, where X¢ = P{X is the spectral space associated to the
discrete spectrum at tim& and X{ = PrX the spectral space associated to the
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continuous spectrum at timg, Pr = P.(w(T)) and P{ = I — Pr. In the following,
we denotav; = o (T) andCr = C(wr). Notice thatg,—r = 0.
One has

Py(w) f =0, (4.2.3)
which implies that
g+ (Pi—P)g+ (Ps— P{)h=0. (4.2.9)

This will be used to estimatg in terms of#, sinceP, — P is a ‘small’ operator in any
reasonable norm.
Introducing the notatioR1(w) = R(|lw — wollcio.77), We have

PROPOSITION 4.2. — The functiong is estimated in terms df as follows

llgll, =Ri(w)lwr — |||k, (4.2.5)
llgllo = Ri(w)|wr — ||kl ,. (4.2.6)

Notice that
Ill, =1Prfll,=|(1— Py‘f)fH,, =Ri(o) fll,- (4.2.7)

Applying the projectionP; to (4.2.1), we get
h=Crh+0o(t)Prj*h — PrjEsw, w]+ Hp (4.2.8)
witho () =w — wr + y, and
Hp=Pr[Fr+o(t)j g+ (V= V(o) f+ (Pi— P)j(Eadw, wl+ 7y f)]. (4.2.9)

Recall thatV is the potential defined in (2.1.3). The remaindgy can be rewritten as
Hjp = H| + Fy, with
H/=—P{F+ H,— P{H; and
Hi=F +o(t)j"g
+ (V= V(wr)) f+ (Ps — P8 j(Ezlw, wl+ 7 f). (4.2.10)
LEMMA 4.1. —For any functiono such that||(1+ x?)a|» < oo, we have that

(1 + x?) Pya |, = R(@) || (1 + x%)et] |- (4.2.11)

PrROPOSITION 4.3. —The remainder; satisfies
[+ x*) Ha|, =Ra(w. [zl + [ flloo) (1231 + 11Uzl + £ lloo))
+ (lor — ol + (2l + 1F 1)) (122 + 1 11,)- (4.2.12)
Proof. —Considering the different terms i, we have
[+ xP)Fll,=R(w, |zl + £ lleo) (122 + L £ L, (2] + 1 £lls))
|+ x%)0 () jgll, = o O +x%)j P{ fl,=Ra(w, [zl + Il fllee) [0 O] £ 11
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[+ x5 (V = V(o) f]l, = Ra(w, Izl + | f o) lor — ol | £ I,
X+ x?)(Ps — P jEolw, wl||, = Ra(o, Izl + | o) lor — 0|I2],
|@+x*) (P = PF)jf ;= R(@. Izl + 1| fllo) lor = @lll £,
lo()| < lor —ol+ (2l +1I£1,)°.  © (4.2.13)
PROPOSITION 4.4. —The remaindetH, satisfies
1@+ H ||, =Ra(e, 2]+ | flloo) (1221 + 1 £ 11, (121 + 11 f 1))
+ (lor — ol + (2l + 171, 2P+ 1£1,).  (4.2.14)
Proof. —Notice first that the estimate (4.2.14) is also valid 8§, and due to
Lemma 4.1 forP¢ H;. From Section 3, we have

X+ x®PLF |, =R(w, 1zl + | flloo) (2P T+ T AIZN £ ) (4.2.15)

Combining these estimates, we get the propositian.

Coming back to Eq. (4.2.8) far, we replace it by

h = Cyh — PrjEs[w, w]+ Hyg (4.2.16)
where
Cu=Cy(t)=Cr+io@t)(Pf - Py), (4.2.17)
Hp = F, + H, and
H=H +o@)[Prjt—i(Pf — P;)]h. (4.2.18)

PrOPOSITION 4.5. —In the remainderH, = H, + F,, the termH, satisfies the same
estimatg(4.2.14)as H/, that is

1@+ 22 |, = Ra(w. Izl + 11 Fllse) (1212 + (121 + 11 £ 1) 1 £l

+ (Jo(T) — | + (121 + I 1,)2) (122 + 1 F1L,)). - (4.2.19)
For the proof, notice that

[X+x*)(Prj~t = i(Pf = P))h|l,= R(@r) k], = Ra(@) | £, (4.2.20)

4.2.2. Further decomposition
We rewrite (4.2.16) in a more detailed form as

]:l =Cyh +H2022+H11Z2+H0222+HR. (4221)
Here, the coefficient#/;; are defined by

Hyo= —PrjE>[u, ul, Hy1=—2PrjEo[u, u], Hopy= —PrjEs[u*, u”].
(4.2.22)
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We now introduce a new functioly defined by

h=hi+k+k (4.2.23)
where
k = ap02® + a1127 + a7’ ko = kji=o, (4.2.24)
t
ky = — exp( / Cu(7) dr)ko (4.2.25)
0

with someg;; = g;;(w, x) satisfyinga;; = a;;. The purpose here is to extract frofn
the contribution which is quadratic in Note thathig = h1(t = 0) = ho. We look for
coefficientsg;; such that the resulting equation floy has the form

hi= Cy(t)h1 + Hg (4.2.26)

with an appropriate estimate féi.
Substituting (4.2.24) into (4.2.21), we get
h1=h — (a20052” + 01127 + A0247°) & — (20202 + a117)Z — (a112 + 20a022)7 — ka1
= [Cr +io(Pf — Py)]h+ Hoz? + H112Z + HopZ” + Hg
— (a2002% + 11027 + a02,2°) R (o, z] + 1 £ 1) (I2] + IIfIIp)2
— Qazoz + ani?) iz + R(w, 2+ 1£1,) (121 + 1£11,)%)
— (@112 + 2a027) (—ipZ + R(w, |z + 1 f 1) (12| + ||f||,0)2> — Cuky
=[Cr +io(t)(P; — P;)](h —k — k1) + Hp, (4.2.27)

where we have used that= R(w, |z| + || flleo) (|2 + || f1I ,)? @ndz — i uz = R(w, |z| +
I £lla)(z] + £ 1) It is convenient to replace in (4.2.27)(w) by pur = u(w(T))
and include the correction in the remainder. This will avoid later the differentiation of
(Cy — 2iur)~t with respect ta.
Equating the coefficients of the quadratic powers,ofie get

Hoo— 2ipuraz = —Craxo,

Hyy=—Crany,

Hoy+ 2ipuragy = —Cragp (4.2.28)
and
Hg = Hg + Hiy (4.2.29)

whereH, is defined as

Hi =Y ayoR@)zlP(zl + 1 £1,)° + > aR@)lzl (12l + 1 £1,)?
+> ayR(@)|zPlur — pul —io (P — Pp)k. (4.2.30)



440 V.S. BUSLAEY, C. SULEM/ Ann. I. H. Poincaré — AN 20 (2003) 419-475

The dependency in appears here through the coefficiemts= a;; (w, x). Notice that
H;; € X{ are smooth, exponentially vanishing functions at infinity. Let us solvefor
as

all = —C;lHll. (4.2.31)

The functionay; is also smooth and exponentially decreasing at infinity. Furthermore,
we have to invertCr + 2i u, with both pointst2iy in the continuous spectrum ¢6f;.
It implies that, in general, the functions

azo=—(Cr — 2ipy) “Hpo, and agy=dpo=—(Cr+2ipur) ‘Hoz  (4.2.32)

do not decrease at infinity. They behave like solutions of the homogeneous equatio
(C —2inr)a =0, and thus oscillate at infinity. Nevertheless, there exists a special choice
for these inverse operators that leads to preferable propertigs ©his choice is

ao=—(Cr — 2i,bLT — 0)_1H20, agpp=axp=—(Cr + 2iMT - 0)_1H02' (4233)

The property is reflected in Lemma 5.2 that claims that fer0,
€ (Cr £ 2y — 0) P R|,
<c@+07¥2(||hllz + || 1+ x2)%n]|,). (4.2.34)

It corresponds to the classical fact thiat — 0)~1€* — 0 ast — oo, in the sense of
distributions. The weighp (x) = (1 + x?)~* here must satisfy the stronger condition
a > 2 (see Lemmab.2).

The remaindei,; can be written as

Hi=Y ajuR@)z2(1zl + 11 £1l,)°
+ ZauR(w)IZI [(lzl + IIfIIp)2 + |zllor — ol]. (4.2.35)
More explicitly, it takes the form

HII = Z(CT - ZlMTm - 0)_1P7r"l-’4mn (4236)

with m € {—1,0, 1} andn € {+, —}.
PrRoPOSITION 4.6. —The coefficientst,,, that appear in(4.2.36)satisfy the estimate
Amnllz + || (L4 x2)¥2 A, = R(w, |2 + 1 f1I,) 2] (1] lor — ol
+ (Il +1£1,)%). (4.2.37)
4.3. Transformation of the equation for z

Finally, let us consider Eg. (3.2.9) far We first replace the terms containirfgby
their local leading order wher¢ is replaced by. Indeed,k is also the leading order
compared td;. This follows from (4.2.34) that claims that, for exampleZig(p),

lkell, < clzol? (4.3.1)

(1+41)%2
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On the other hand is of order|z|2. We will see later that if we assume thag| = /2,
then|z|? = ﬁ;. We will see that a relatively weak smallnesskgfcompared ta will

be sufficient to neglect it in the leading terms of the equatiory for

£ £ 1
kill, < < :
Ikall, “A+032 S Trer Jit1

We write (3.2.9) in the form

(4.3.2)

2 =i(uz+ Z20z? + 21127 + Z02Z? + Z302® + Z212%7 + Z1227° + Z03Z°)
i (252 + 2277 + Zo 27+ Zp7d) + Zg (4.3.3)

where the coefficientg;; are defined given in (4.1.5) are real. We have

i Z3y= (a0, Z1), i Zy = (a11, Z) + (az0. Zpy),
iZo3 = (ao2, Zgy), iZ1,=(a02, Z10) + (a11, Zy). (4.3.4)
We are specially interested in the coefficiefit, which is given by the formula
~ - : Eolu*, u]
i 2, = —<C 2P jEolu, u*], 27,>
2 ! (u, ju)

- <(CT iy — 0Py jEalu, ul, 2

EZ[”’”]> (4.3.5)

(u, ju)
PROPOSITION 4.7. — Suppose that the non-degeneracy conditipiE,[u, u],
u(2ip))|? # 0is satisfied, then
ReiZ,, <O. (4.3.6)

Proof. —We first notice that the coeﬁicie«lC;lPTjEz[u, u*], E[u, u*]) that appears
in the expression (4.3.5) foZ,, is real. Indeed, it is easy to check thdu, u*] is real,
and all the operators in the above scalar product are also real. Recall also that fror
Proposition 4.Xu, ju) =i8, with § > 0. It follows that Re Z;, reduces to
((Cr — 2ipr —0) 2Py j Eolu, ul, Eolu, ul)
(u, ju)

2
=3 Im{(Cy — 2ipuy —0) L PrjEalu, ul, Eolu, ul). (4.3.7)

Using that P, commutes withC;*, we haveC;*Pr = PrC;1Pr. We have also that
P = j~1Prj. It follows that

2
Rei Zy, = -3 Im{(Cy —2iur —0)a, ja) (4.3.8)

with « = Prj Eolu, u].
From the spectral representation (2.1.9), we haverferX,

((Cr —2ip—0)ta, ja)
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_ %/‘”m) dk(<u<ix>,ja><u<ix>,ja> . <u*(ix>,ja><u*(ix>,ja>>

ir—2iu—0 —iAr—2ipu—0
7 (u(ir), ja)(u(ir), ja) (u*(ik),ja)(u*(ik),ja))
= A) dA — . (4.3.
/9( ) ( A—2u+1i0 A+42u—i0 (4.3.9)
Using that
1 1 .
Ei0- p.v.i —im8(A) (4.3.10)

where p.v. is the Cauchy principal value ahthe Dirac distribution, we have
((Cr—2ip—0"a, jo)
:_/Q(A)d)((u(l)»),ja)(u(zk),]a) W*@r), ja)(u WO,]“))

A—2u A42u

+imOQu)(u@2u), jo){u(i2um), jo). (4.3.11)
The integral term in (4.3.11) is real. Thus,

2

IM{(Cr —2ip — 0) o, ja) = Im(ix6(2w)) [(u(2iw), jo)|, (4.3.12)
with
0(2u) = ! (4.3.13)
W= 2210 — wN2(21) o

Assuming the non-degeneracy condition th#b[u, u], u(2iu))|? # 0, we get
ReiZ}, = —§n0(2,u)|<E2[u, ul.u@ip))fP<0. o (4.3.14)
We now need an estimate on the remainﬁvgr
PROPOSITION 4.8. —The remaindeéVR has the form
Zr = Zg + |2[R1() (lo(T) — wlllhll, + [Ih1],) (4.3.15)

whereZ satisfies estimat¢3.2.10)

Proof. —The remaindeiy, is given by
Zr=Zr+z2(f —k, Zig) +Z2(f — k., Z{y). (4.3.16)

Sincef — k=g + k1 + hy, we have
[(f —k, Zy0)| < R@)(lIgll, + llkall, + hall,)
<SRa() (|or — olllhll, + Ikall, + I2all,)- (4.3.17)
Therefore
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Zr=Zr + R1(0)z| llor — olll7]l, + llkill, 4 5all,]
=Ra(o. 1zl + 1 f o) [(1217 + ||f||p)2+ |zl|wr
—ollhll, + lzlllkall, + |zlll2all,]. O (4.3.18)
We can apply now the method of normal coordinates to (4.3.3).

PROPOSITION 4.9. —There exist coefficients; such that the new functian defined
by

21 =2+ 2022 + €112Z + €027% + €302° + 12272 + 032>, (4.3.19)

satisfies an equation of the form
G=ip(@)z1+iK (@)|z1°21 + Zg (4.3.20)
whereZ; satisfies estimates of the same typévasand
ReiK =ReiZj, <O0. (4.3.21)
Proof. —Substitutingz; in Eq. (3.2.9) forz, we get
21 = (€2002% + C11027 + C0207° + C3002° + 12027 + C0307°) @

+ (14 2¢007 + €117 + 3c302? + €1272) 2 + (c112 + 2c007 + 2¢1227 + €037°)2
=R(@. 12|+ £ lloe) (121 + 1£11,)° + i (12 + Zooz? + Z112% + ZooZ? + Zaoz®

+ 701227 4 Z1027% + Z03Z° + Zp12%7 4 20272 + Zhot® + ZpaZ + Z)

+ (20202 + €12)i (U2 + Z2oz? + Z1127 + Zo2Z? + R(w)|z|° + Z&)

+ (33022 + €127 (ipz + R(w)|z|? + Zg)

+ (112 + 20022) (=) (UZ + Z202% + Z112Z7 + Z022° + R(w)|z* + Z&)

+ (3c0az? + c212%) (—i) (uz + R(w)]z|* + ER)
=ip(z+ 202 + c112F€027% + c307° + c1227% + c0323)

+ K722+ R(w)|z|* + Zg. (4.3.22)

Equating the coefficients, we get

Co0= ——Zo, c11=—211, co2= =—Zo2,
2 2 3u

iZo+ iZ/Zl +ic11Zog+ 2icp0Z11 — ic11211 - 2iC02202 =iK. (4.3.23)

The remaindeZ, is defined by

Zr=R(w. |2+ [ flloo) 1z12(1zl + 1 £11,)° + Z&

=Ra(o. [zl + 1 Flloo) [(122+ 1£11,)° + Izlleor
—olllhll, + Izl (lkall, + llhall,,)]. O (4.3.24)
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DenotingKr = K (wr), the equation foe; is rewritten as

Zr=ipzy+iKr|zaPza+ Zg, (4.3.25)
where

Zr=Zr+Ra(o, 2]+ | f o) 12|07 — |

=Ra(w, 12|+ I flloo) [(1212 + 1L£11,) + 121 (1Kall,, + l172]l,,)
+ lzllor — ol (12> + [121l,)].- (4.3.26)

It is easier to deal witly = |z1|? rather that; becausey decreases at infinity whilg
is oscillating. The equation satisfied byis simply obtained by multiplying (4.3.20) by
71 and taking the real part:

v =Re(iK7)y? + Yi, (4.3.27)
where

Yi=Ra(w, 12|+ I flloo) 12 [(122 4+ 1 £11,)% + 121 (1kall, + l1Ball,)
+Izllor — (121> + I11,)]- (4.3.28)

4.4, Summary of transformed equations

We summarize the main formulas of Sections 4.1-4.3. The first equation is the
evolution ofw; given in Proposition 4.1:

1= Qp, (4.4.1)

where
Qg =R(w. Izl + I fllso) (1212 + 1 £1,)". (4.4.2)
andw; andw are related by (see (4.1.6))

w1 — o =R(w)|z|(lz] + I fll,,)- (4.4.3)
The second equation describes the evolutiop, ¢bee (4.3.20))
é = i@z +iKrlzal? + Zn, (4.4.4)
with estimate (4.3.26) foﬁi. From (4.3.19)z andz; are related by that
71— z2="R(w)|z| (4.4.5)
The third equation is the evolution of= |z,

y=Re(iK7)y?+ Yg, (4.4.6)
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where

el < |21l| Z&l. (4.4.7)

The negativity of Re(i ¥) is a key point in the analysis and was proved in Proposi-
tion 4.7. As for the initial data, we will discuss them in Section 4.5.3.
We need also two additional equations foand’;. We recall that

f=g+h, g=P{f, h=Prf, (4.4.8)

andh is decomposed into
h=k+ki+hq (4.4.9)

wherek andh; are defined in (4.2.24)—(4.2.25). The equations satisfied d&iyd/, are
respectively (see (4.2.21) and (4.2.26))

h=Cy(t)h — PrjEs[w, w] + Hp, (4.4.10)
hy= Cy(t)h1 + Hg. (4.4.11)

The operatorCy, is defined in (4.2.17)Hx = H, + F, and Hg = Hy + H,. The
remaindersF;, and H, are estimated in (3.3.31) and (4.2.19) respectively, &hdjs
estimated in (4.2.36) and (4.2.37).

4.5. Estimates of remainders and initial conditions

In the next parts, we will study majorants for four functions (see SectiondsL) w|,
Iz, | flloo, @and|lA1 ]| ,. For this purpose we need to estimate these quantities in terms of
w1, 71, h andh;. Also, we need to estimate the remainders in the transformed equations
interms ofjwr — wl, |zl, | fllo, @nd||a1]| ,. This is the purpose of this section. This will
allow us to obtain later a closed system of equations for the majorants. We will also stat
the hypothesis on initial conditions, and control the initial conditions fol. and#;.

4.5.1. Boundsfor |wr — |, lIkll,, I fll, and |z|
We have

lwr — o] < |wir — w1] + |w1r — or| + w1 — o]
T

</|0')1|df +R(a)Tv|ZT|+||fT||oo)(|ZT|2+|ZT|||fT||,o)

t

+ R(w, 1zl + I flloo) (Izl2 + 1zl f1l,)
rQ%R(w, 1zl 4+ 11 f lloo)

N

0
T

) U<IZ|2+ 1 1,)2dT + (zrl+ 1L frll,) 2+ (2 + 1 F1,)° . (45.1)

t

Assuming thatyy is fixed and using that

lw| < |wol| + |wo — wr| + | — wr (4.5.2)
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we Ilave
max R(w, |z| + 00) =R( Max |w —wr|, max(|z] + ))- 4.5.3

Such quantities will be denoted by the symBl(w, |z| + || f1ls0)- Using this notation,

T

lwr — | = Ra(o, |z|+||f||oo>[/(|z|2+||f||,,>2dr+(|zT|+||fT||p>2+(|z|+||f||p>2 :

t

Turning to the functionf, we have

£, =Ra(w, 1zl + 1l flloo) 12l (4.5.4)

Also, from (4.2.23) = k + k1 + h4, therefore

1211, = R(@) (Ilkall , + 1z1? + llAll,)- (4.5.5)
It implies that
I fll, =Ra(w, lzI + | fllso) (Ikall, + |22 + IA1ll,) (4.5.6)
and also that
2P+ 11, =Ra(w. |zl + 1l fllso) (Ikall, + 1217 + I 2all,). (4.5.7)
and
Izl + 11 £, =Ra(w, 1zl + 11 f lloo) (Ikall, + 2] + all)- (4.5.8)
It is obvious also that
llgllc = Ri(w)|wr — wlllh]l, (4.5.9)
and
| flloo < lI7lloo + Ri(w)|wr — l|lh]l,
<o + Ri(@)|wr — ol (kall, + |22+ Ih1ll,)- (4.5.10)
We will use these estimates to evaluate the right-hand side of (4.5.1) vi®@have
2l <lzal + R(w, 121z, 2P <y + R(w, Iz])Iz]%,
y <lzalP + R(w, Iz]) Izl (4.5.11)

4.5.2. Remainders
Consider the remaindefy in Eq. (4.3.25) forz;. It satisfies

1Zal = Ra(. 12|+ 11 flloo) [(122 4+ 1£1,)2
Y12kl + all, + lor — ol (12 + I171,))]
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=Ra(o. 12|+ 1 flloo) [(Ikall,, + 1217 + ||h1||p)2
+ 1zl (Ikallp + lhellp + lwr — @l (Ilkall, + 1217 + 12all,))]
=Ra(w. 1zl + | f lleo) [(Ikall p + 121* + [l )
x (Ikall, + 1212+ hallp + lzllor — o) + |zl (Ikall, + Ilh1ll,)]. (4.5.12)
In Eq. (4.4.6) fory, the remaindel’y satisfies
Yl =Ra(w, [zl + | flloo) 2l [(Ikall,, + 1217 + [lA2ll )
x (Ikallp + 1212+ lhell, + zlwr — wl) + 12| (Ilkall, + 124]l,)]. (4.5.13)

Consider now the remaindef in Eq. (4.4.10) forh. We recall thatH, = H, + F
where H, and F;, are given and estimated in (3.3.31) and (4.2.19). The estimatg, for
has already its final form

2r—1

IFull2 + [|(L 4+ *?) Fu |y = Ra(e, lz] + 11 £ lloo) (X4 1) (2] + 11 f llo0) (4.5.14)

For H,, we have
A+ 2 Hi|l, = Ra(w, 1zl + 11 flloo) [1212 + (121 + I £ L) I £ 11

(

+ (Jor — ol + (21 + 1 £1,)%) (1212 4+ 1£1,)]
Ra(w, 12|+ 11 fllse) (22 4+ 11 £1,)
[
(
(

21+ 1 flloo + lor = @] + (121 + [1£115)°]
2(@. 12 + 11 flloo) (1212 + 1L£ 1) (121 + 1 flloo + |7 — w])
2@, 12] 4+ 11 £ lloo) (lkell, + 1217 + [l )
(Il + 11 flloo + |07 — @]). (4.5.15)
The last remainder to estimatefi& = F + H, + H,. We have

X
R
R

X

HII = Z(CT - ZlMTm - 0)_1P7r"l-’4mn (4516)

and
1 Amallz 4 || L+ 22 ¥2 A0y = Ra(, 121+ | flloo) 21 [12] lor — @ + (121 + 11 £11,)°]
=Ra(w. |zl + | f o) 121 Izl |07 — 0]
+ (Ikally + 121+ 1hall,) ). (4.5.17)

4.5.3. Initial conditions
We suppose that at= 0,

20 =2z0, |zl =¢"% (4.5.18)
f(x,0) = folx), N = |l foll g2 + || (L + x2) fol|, < ce¥2. (4.5.19)
Since|z1)? < |z|2+ R(w, 2)|z|3, we have also, denoting = z1(0),

yo = lz10/* < & + R(w, |zol)e*¥?. (4.5.20)
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From the formulah = P; f = f + (P, — P{) f, we see that

ol gt < |l follgr + Ra(w)|lwr — ol foll . (4.5.21)
H(1+ X )ho||2 ||(1+x )foH2 + Ri(w)|wr — ol foll,- (4.5.22)

Therefore,
70l g1 + || (L + xDho||, < ce¥? + Ry(w)lor — ol foll - (4.5.23)

Finally, atz =0, 21 (x, 0) = h1g(x) = ho(x).

5. Mgjorants

5.1. Majorants and remainders

5.1.1. Definition
We define the quantities

-1

Mo(T) = iu\p |a)T—a)(t)](1+gt) , (5.1.1)
-1/2

Ml(T)_ongka(m(l-i-st) , (5.1.2)

¢ ~1/2
M,(T) = sup ||f(z)]|oo<l ) log~1(2 + ¢1), (5.1.3)

0<t<T + et

e —3/2

M) = sup a0, <—8t> log (2 + 1), (5.1.4)

referred to as ‘majorants’, and dendi& the 4-dimensional vectaiMy, ..., Mz). The
goal of this section is to prove that if is sufficiently small, all these quantities are
bounded uniformly ir".

5.1.2. Estimates of remaindersin terms of majorants
PrROPOSITION 5.1. — The majorantMy(7T') satisfies

Mo(T) = R(e¥*M) [(1 + M)? + eV/2(1 + M?)¥2]. (5.1.5)

Proof. —To estimatdw; — w ()|, we need first to evaluate| + || f||, and|z |2+ || I,
(see (4.5.1). Starting with estimates (4.5.7)—(4.5.8), we obtain:

2l + 1 Fllp =Ra(@, Izl + | Flloo) (I1Kall, + I2] + [lA4ll )

1/2 3/2
—R 1/2M< ¢ ( ° ) M <L> log(2 tM)
(¢ ) (1+t)3/2+ 1o et 1+ 1o g2+ er)M3

1/2
R(gl/zM)<_i ) (M + ¥2(1 + M), (5.1.6)
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and similarly
Izl +||f||p—R(el/2M> (1+M2+81/2M) (5.1.7)
Therefore
or —0(0)] = R M) T — [(1+MF + eV2M)? + (M4 + e¥2(1 + My))?]
_R(el/zM) [(1+M) +e21+MAH¥F. O (5.1.8)

PrROPOSITION 5.2. —=The remalndelYR defined in(4.3.28)satisfies the estimate
85/2
(14 et)2 /et

Proof. —The remaindel’r is bounded as follows:

1/2
Ye|=R 1/2M< ¢ ) M K ¢ M2
| Rl (8 ) 1+ ot 1 (1+[)3/2+1+8t 1

|Yr| =R("/*M) log(2 + &) (1 + M?)%2, (5.1.9)

& e 2
< ) I09(2+8t)M3) ((1+t)3/2 + 1+gtMl

e \32
< ) Iog(2+ et)M + <1+ ) MoMl)

e \32
<l—|—et> <(l+t)3/2+(1+8t) |09(2+8t)M3>}

2 1/2
= R(eY*M ( ) M [( ) 1+ M? + e¥°M
(e ) 1+ et ! 1+ et (1+Mi+e 3)

x (1+ M7+ &2(M3 + MoMy))

1/2
(7=t () lowe+ennas oo
£?log(2 + et)
YA+ en2 et [
+ (14 M2 + eV/2M3) (14 M3 + eV/2(M3 + MoMy))]
£5/2

Let us turn now to remaindets; = F + H, andHg = F + H, + H, in Egs. (4.4.10)
and (4.4.11) forr andh, respectively. We combine these results in

= R(eY’M)M My (1 + Ms)

=R (¢Y/*M) log2+et)(L+M?)¥2. O (5.1.10)

PrRoOPOSITION 5.3. —The remainders, and H, satisfy the upper bounds

3/2
&
IFullz + |1+ x%) Fu ||, = R(Y/*M) (ﬂ) (M2 + M3)3 (5.1.11)
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and

3/2
I+l =R () log@-+en

x (L+M9H(M; +My) + Y21+ M?%?).  (5.1.12)
Proof. —It follows from (3.3.23) that

2r—1
IFul2 + |X+x?) Fu |y =Ra(w, 1zl + | flloo) X+ ) (Iz] + 11 fll )
3/2
—R(YM <L> M2 + M2)3 5.1.13
() M+ MDY, (5.1.13)
For H,, see (4.2.19), we have

X+ x® Hi|, = Ra(llkall, + 1212+ Nhall,) (12 + 11 £ llo + lor — @)

3/2
—R 1/2M( i Y (L) log(2 tM)
(e7 W) 1032 T 1xer 2T 15 e 92+ enMs

. 1/2 . 1/2 .
M — log(2 4+ et)My, + ——M
X<<l+et> 1+(1+8t) 9@+et) 2+l+s O)

e 3/2
_R(gl/ZM)( Tos ) log(2 + &1)

x (14 M3)(M; + My) + e¥2(1 + M?)¥/?). O

The right-hand side of EqQ. (4.4.10) farcontains alse- Pr j E>[w, w] whose bound
can be given as follows

PROPOSITION 5.4, —

. &
(1 + x?) Prj Eo[w, w]||, = R(el/zM)mMi. (5.1.14)

The last remainder to examineﬁsg = F, + H, + H),,. We have already estimate
and H, and need only to considé{f;,, which is given represented in (4.5.16).

PROPOSITION 5.5. —

A ll2 + | (L + x5¥2 A, |, = R(el/sz(lj t)3/2M1(M%+el/2(1+M2>).
(5.1.15)
Proof. —Estimate (4.5.17) shows that
| Amnllz + | (L4 x5¥2 A4
= Ralzl[lzllor — @l + (Ikall, + 12| + [1A1ll,)]

o e A\ 12 NI
= R(Y2M M MM
e )(1+ t) l[<1+et> o

e e 1/2 e 3/2 2
M — log(2 HM
+((1+I)3/2+<1+8t> 1+<1+8t> 9(2+ et) 3)]
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3/2
=R(81/ZM)<ﬁ> M (M3 4 e¥/2(1+ M?)). O (5.1.16)

We have completed the estimations of the remainders in terms of majorants. We nov
write similar estimates for initial data. Coming back to formulas of Section 4.5.3, we
have

Yo = Ym0 = & + R(e*M)e¥? = g (1 + R(Y/°M)e"?) (5.1.17)
Ioll g1 + || (L + xPho||, < N + Ra(w)|or — olll foll , < coe¥? + R(e™*M)e?M
x (14 M2 4 ?Ms). (5.1.18)

5.2. Estimatesfor solutions of the canonical system

5.2.1. Canonical equations
This section is devoted to the study the system

{=2Rei K7)0? + L(1), (5.2.1)
@ =Cya+ A(x, 1), (5.2.2)
B=Cup+ B(x.1), (5.2.3)
where
Cy=Cr+ioc@) (P —Py), (5.2.4)

and under some assumptions on initial data and the source terms. We assume tf
Re(iKr) < 0 is a given constant. The operait®y = C(wy) does not depend onand
the structure of its spectrum is known. The functioiis a smooth, real-valued function
of z.
We suppose that the initial conditions satisfy

2(0) = ¢|€o| > O, (5.2.5)
()| 1 + [[(L+ xD (0) ||, < eY?|agl, (5.2.6)
1BO)|| 1+ |1+ x*BO)], < e¥2|ol. (5.2.7)
As for the source terms, we assume that
£5/2
and thatA = A; + A, with the following hypothesis:
3/2

/ " €

(X +x*Aq]], < AL —— 1+ — + A7) (ﬂ) log(2 + &t), (5.2.9)
3/2

A2l + |2+ 3 Ac], < 1421 (1 ) (52,10

andB = By + B, + B3 satisfies
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|(X+x? By, < Bl (ﬁ)s/zlog(Z-k et), (5.2.11)
e 3/2
1Ballz+ || 1+ ) Bal|, < |le<1+8t> , (5.2.12)
B3=) (Cr—2iprk—0)"'P;By with (5.2.13)
kl i oo
I Biall2 + || (L + x®) By||, < |Bkl|(1+8t) : (5.2.14)

where all the quantities| are supposed to be given constants. All these assumptions
are motivated by the estimates of the remainders (see Section 5.1) and by the fin
estimates we intend to prove @n z, f andh;. The evolution equation (5.2.1) fdr
corresponds to Eq. (4.4.6) for and the assumption (5.2.8) on the source term has
the form of estimate (5.1.9) for the remaindgg. Similarly, (5.2.2) corresponds to
Eq. (4.4.10) fork and assumptions (5.2.9)—(5.2.10) on the source tdrinave the
form of estimates (5.1.11)—(5.1.14) for the remaindgr= F, + H, — PrjE>[w, w].
Finally, Eqg. (5.2.3) corresponds to Eq. (4.4.11) igrand assumptions (5.2.11)—(5.2.14)

to inequality (5.1.15).

5.2.2. A Ricatti equation
Eg. (5.2.1) for¢ is of Ricatti type. Introducing the new variable= 2Im K¢, and

denotingg(s) = ﬁﬁ([), it becomes
¢ 2
& 24 g(s) (5.2.15)
ds

with the assumption oag that
£5/2

1
2ImKy (L+81)2 /et

lq(s)| < IL] log(2 + &t). (5.2.16)

PrROPOSITION 5.6. —The solution of(5.2.1) with an initial condition and a source
term satisfying5.2.5)and (5.2.8)respectively is bounded as follows

Balqil (
T 1—e32 Al \ 1+ ello|s

’ el€ol

32
— log(2 L . 5.2.17
1+ eltos ) 9(2+¢l€ols) ( )

Proof. —Define a new functiow by £ = u’/u, with 4’ = %. The equation for is

u" =qu. (5.2.18)
Assuming thatu|,_o = 1, the initial condition on¢ implies thatu'|,—g = £|€o|. The

functionu satisfies the integral equation

u(s) =1+ ¢llols + /(s — 51)q (s1)u(sy) dsy. (5.2.19)
0
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It is convenient to introduce = 1+ ¢|£g|s. Then,

o

u@) =0 +e2 [ (0 — ondloutoy doy (5.2.20)
1
where
1 -1
q < Ty T/ - L.
1)) < laol == loa 2+ = ). (5.2.21)

wherem = min{1, (2|¢| Im K7)?} < 1 and

|€ol?(2Im K7)¥?

Iq0l < |L] (5.2.22)
We now rewrite the integral equation (5.2.20) in the form
u=uo+e"?Au, ug=o. (5.2.23)

Consider the space of continuous functionssoa [1, co) equipped with the norm

Jull = max 4@ (5.2.24)
o
In this spaceA is a bounded operator, whose norm is bounded by
Al < Bolqal (5.2.25)

where|q1| = |qollog(1 + %), and y is a constant. Therefore, for sufficiently sma]l
there exists a solutiom such that
o

u| < T/ZHA” (5.2.26)

To get an estimate ofy we need both an estimate @sandu’. For this purpose, we write
(5.2.20) in the form

u= Do + "% (5.2.27)
where
D=1+ sl/z/dolc}(al)u(al) —1+6Y2D,, (5.2.28)
1
v=—o/dolé(01)u(01) — /dalalé(al)u(al). (5229)
o 1

Itis clear that

v = —/dolc}(al)u(ol). (5.2.30)
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Notice that
Bolqal
D < ——"~FF—. 5.2.31
| D] 1= 2| A] ( )
We have
, Balqal ~1/2
< —FT log(1l , 5.2.32
WIS T aag® ) legd+o) ( )
B2lqal 1/2
< —F log(1l , 5.2.33
WIS T aagae g+ o) ( )
whereg; is a constant. Coming back o we have
Ug Ug 8|E0| ( Sl/z(vo - U/O))
(=" —glp— = 1 . 5.2.34
A o + D+ Y%y /o ( )
It follows that ¢ satisfies the estimate
elol| _ %% Balgal
L — < log(1 . O 5.2.35
‘ o 0‘3/21—83/2||A|| g( +6) ( )

5.2.3. Egs. (5.2.6)«5.2.7) for « and B

The projectionsP. (w) are bounded operators irf, uniformly in e for @ in a compact
interval where Assumptions (SP) and (SL) hold.

Define the weighted norms

Iallw, = |1+ xDh|,  and (A, = [[(1+x2)h]), (5.2.36)
LEMMA 5.1.—
1€ Prrat|, < c(wp)lle 2, (5.2.37)
-1/2
Cri prall < 2 (llellz + llerllw) 5
o el < con { (g B Lo ) (52:39)

where||A ||y stands for eithef|A ||y, or ||k]lw,, and the constant(wr) depends orCr
and thus onwy.
We have also

€7 PR, < c(wr) X+ [|Ikll2+ IIAllw], (5.2.39)

wherep(x) = (1+x2)79, g > 2.
LEMMA 5.2.—
|67 C7 PER]|, < (L4072 (L4 x|, (5.2.40)
17 (Cr £ 2 = O PER|, < c(@+0"¥[lIRlla+ |1+ 2%¥R]],  (5.2.41)

wherep(x) = (1+x2)79, g > 2.
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Proofs of Lemmas 5.1 and 5.2 can be found in [2]. Some additional comments are
given in Appendix A.

LEMMA 5.3. — We have the upper bounds for the following integrals

f 1/2
ds e 14 / 1
O/(I—S)1/2<l+es> <C<l+gt> ¢ fory > 1, (5.2.42)

/ ds e\’ e \¥? 32
< v fory > 3/2, 5.2.43
0/(1+I—S)3/2<1+8S> C(l—l—et) § v =3/ ( )

| ds £ £ 12
<c| — log(2 + ¢t), 5.2.44
O/(I—s)l/zl—l—es C(l—{—et) 92+ e1) ( )

t ds e 3/2 e 3/2
< . . .
0/(1+t—s)3/2<1+8t> Iog(2+8s)\c<1+8t> log(2+ ¢1). (5.2.45)

We give the details of the proof only for inequalities (5.2.44) and (5.2.43). The other
upper bounds are obtained in a similar way.
Let us denote

t
1 e
i :0/ T R O (5.2.46)
If ez <1, we immediately get
I < Cs'/?, (5.2.47)
Whene: >> 1, we separaté into I = I+ J, into I; = [,/* andJ = [1s- Then
1\ 12 c 1/2
L<e {zl/z — (r — g) } < c(1+8t> (5.2.48)
and
/ d
~1/2 o
< o (5.2.49)
1/et
leading to

1/2 1/2
&€ &€
1< 141 <C(——) log2+er). 2.
C(1+ez> (1+ log(et)) C(1+ez> 0g(2 + &t) O (5.2.50)

Denote

t
ds e Y
I = . 5.2.51
0/(1+t—s)3/2<1+8s> ( )
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If er <1,

t
ds 1
Iggy/WZCEV |:1— \/1_H:| <C8V (5252)
0

Whenet > 1, we separate agaihinto I = I, + J, with I; = fol/g andJ = fl’/g

1 1

h=¢ - <Ce Tt ——. 5253
P [«/l-l—t «/1+t—1/g} ¢ (1+1)3/2 ( )
On the other hand, we rewritein the form ¢ =to)
J_/l tl_y do
) A4+t -0))%¥207
1/et
1/2 1 1
7 do’ tl—y do_ Sy_l 1
=€ A+0%%7 | At1(d—0)) SCgp +C- (5259
1/81‘ 1/2
Thus,
y—1 1 y
r<c - (5.2.55)

=432 + P S C(gt)3/2'
Estimate (5.2.43) follows. O

PROPOSITION 5.7. —The functiorx (x, ¢) solution of (5.2.2)is expressed as
1 ! 1
o = eCriti foa(zl)dzl(P;—P;)ao+ /ecT(z—s)JrifS a(zl)dzl(P;—P;)A(s) ds (5.2.56)
0

and satisfies

1/2
& / 1
letloo < c(w7) (ﬂ) log(2+ 1) (lao| + |A] + 81/2(|A1| +1A42])). (5.2.57)

Proof. —In the integral representation (5.2.56), we have first to estimate
g J o =Pr) Notice first that, denoting = [! o (t1) dty, we have

g’ = p. g’ + P_, (5.2.58)
g P+=P) — (p.d" + P)(P_e "+ P,)=P,€" + P_e", (5.2.59)

and
efo Cu(t)dn _ (eivp; + e—i“PT_>eCTt. (5.2.60)

Sinceo is a real function, both exponentials are bounded. Using Lemmas 5.1 and 5.2 ol
the linear evolution, we get
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()
o 1+1¢ ) (t —5)12\"" V14 es

e 3/2 e 3/2
Al —— ) log2 Aol —— . (5.2.61
+ | 1|<1+8s> 092+ &s) + | 2|(1+8s> )ds] ( )

Computing the integrals with the help of Lemma 5.3, we get

1/2 ¢ 1/2
Ayl —— log(2 + et
i) o

¢ 1/2 » ¢ 1/2 >
Al —— A . 5.2.62
=+ | 1|(1+8t) e+ 2|<1+8t> € ] ( )

We finally obtain that

lall oo < c(r)

o <
floe]| c(wr) [I%I(H_gt

1/2
8 /
||a||m<c(wT><m) 1092+ &) [Jaol + |4} + £¥2(1A] + 142)]. O
(5.2.63)

PropPoOsSITION 5.8. —The functiong solution of (5.2.3) has the integral representa-
tion
t
g =T rant—F g | / Ut [0 P P gy 45 (5.2.64)

and satisfies

3/2
181, < cton) (o2 ) 100@+en|1fol + Bl + 1B+ X 1Bunl]. (5269

Proof. —From the integral representation, we have

3/2

3/2 ¢
1B, < c(wr) [lﬁ()'(l-i-t) +/(1+ RETE (I 1I(1+ ) log(2 + &s)

¢ 3/2 ¢ 3/2
Bo|| ——— B, . 5.2.66
+ 2|<1+8s) +Z| l(l—i—ss) )] ( )

As above, we get

e \32 e \32
||ﬂ||p<c(wT)[|ﬁ0|(m> +|Bll(1—+t> log(2 + &1)

e 3/2
+ (182l + 3" 1Bl (Hm) ] (5.2.67)

and thus (5.2.65). O
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5.3. Egtimates for majorants
In this section, we establish inequalities for fHe. The equation satisfied lay, is
1= QR (5.3.1)
and the estimate favl, was obtained in Proposition 5.1
Mo(T) < R(eY*M) [(1 + M5)? + eV/2(1 + M?)¥2]. (5.3.2)
The equation satisfied byis
v =ReiKr)y* + Y (5.3.3)

and the remaindel; satisfies the inequality (5.1.9). which is exactly the condition
(5.2.8) assumed on the source term of the model Ricatti equation (5.2.1) Ayith
R(eY2M) (1 4+ M?)%2, Using (5.2.35) as well as (5.1.17) to bound the initial condition
Yo, it follows that

e+ &3/?
1+ et

3/2
y < R(el/ZM){ + ( ) log(2 + 1) (1 + M2)5/2}. (5.3.4)
1+ st

Using that|z]? < y + R(w, |z])|z|®, we get

> < reevann] 4 () g e+ vt
<R 0 t
|z (¢ ){ Trer +<1+8t> 9(2+et)(1+ M) }
1/2 5 &%
R MM ——— 5.35
+RETM) L(1+er)32 (5.3.5)
which yields
PROPOSITION 5.9. —~We have

M2 < R(eY2M) (1 + Y2 Fs(M)) (5.3.6)

whereF, (r) = (1 + r?)*/?.
We now turn to|| f || «. From (4.5.10), we have
I flloo < 1]l + Relwr — ol (lkall, + 121° + [121l,)

< |k Rl/ZMME[g M2
Iloo + 728 ) 01+ e 1-i-tJr Y146t

e 3/2
+ M3<1+ 8t> log(2 + SI)]

1/2
<||h||m+el/2R(el/2M)(ﬁ) M (14 M2 4 e¥/2M3).  (5.3.7)

To bound||2||«, We apply the result of Proposition 5.8. Indeed, Eq. (4.4.10kfoas
the form (5.2.2) withA = — Py j E>[w, w] + H, + F,. More precisely,Pr Eo[w, w], H,
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and F, satisfy the hypothesis (5.2.9)-(5.2.10) @i, A7 and A, respectively. Indeed,
using (5.1.11)—(5.1.14), we have

| A}l = R(e"/*M)ME, (5.3.8)
| A7l =R(">M) (1 + M) (M + Mp) + e/2(1+ M?¥?), (5.3.9)
| Azl =R (VM) (M + M3)°. (5.3.10)

As for the initial condition, we have from (5.1.18)
o < coe + R(eY*M)e¥2M (1 + M2 + e¥/2(1 + M?)V/?). (5.3.11)

It follows that
. 1/2
||h||oo—R(sl/2M>( — ) 092+ 60 (M2 + e¥2) FM)].  (5.3.12)

PrROPOSITION 5.10. —The quantityM, satisfies
M = R(e¥/2M) (M2 + e¥/2 F3(M)). (5.3.13)
Let us consider at lask; solution of (4.4.11). It has the form of (5.2.3) with

B = FI; = H + F, + H,, whereH,, F, and H, identify respectively toB;, B, Bs.
More precisely, using (5.1.11), (5.1.12) and (5.1.15), we have

| B1| = R(eY*M) (1 + M2)(M + M) + e2(1+ M?)%/?), (5.3.14)
|Bo| = R(e"/°M) (M + My)®, (5.3.15)
| Bun| = R(eY*M)My (M + £Y2(1 4 M?)). (5.3.16)

Concerning the initial conditions, we know thiaty = /. Thus
|Bol = co+ R(eY*M)e'/?Mp (1 + M3 + eV/3(1 + M?)?). (5.3.17)

Applying Proposition 5.8, we have

3/2
h||l, = R(eY°M <L> log(2 + &t
IAll, =R(e™*M) e g2+ et)
x [(14 M3) (M 4+ M) 4+ (M2 4+ M3)® 4 £V/2(1 + M?)%/?]. (5.3.18)
PropPosITION 5.11. —The function; satisfies the estimate
= R(eY*M)[1+ (M3 + M3)3 + 2 F3(M)]. (5.3.19)
5.4. Uniform boundsfor M

The aim of this section is to prove thatifs sufficiently small, all théVl; are bounded
uniformly in T ande.

We now have the system (5.1.5),(5.3.6), (5.3.13) and (5.3.19) fovithe=0, 1, 2, 3,
rewritten in the form
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Mo = R(e¥*M) [(1 + M$)? + /2 F3(M)], (5.4.1)
M2 = R(eY/2M) [1 4 /2 Fs(M)], (5.4.2)
My = R(eY/2M) [M7 + 2 F3(M)], (5.4.3)
Mz = R(e¥/2M) [1 4 (M7 + M3)* + /2 F3(M)]. (5.4.4)

PrROPOSITION 5.12. —For ¢ sufficiently small, there exists a constaditindependent
of T andeg, such that,

IM(T)| < M. (5.4.5)
Proof. —Combining the inequalities for thel;, one get a estimate of the form

M? < R(e¥*M) [(1 + M7 + M3)° + /2 F3(M)]. (5.4.6)

ReplacingM3 in the right-hand side of (5.4.6), by its bound (5.4.3) in term&/&f and
againM; by its upper bound (5.4.2), we get an inequality in the form

M? < R(eY*M) (1 + &2 F (M), (5.4.7)

where F(r) is a function with finite power growth. From this inequality, it follows,
that M is either bounded independently efor M belongs to a set separated from
the origin [M| > k(g), with k(¢) — oo ase — 0. Indeed, suppose thdf(T) is such
thate/2M(T) — 0 ase — 0. Then, from inequality (5.4.7), we see thdi(T) < K,
independently of and 7. On the other hand, ¥/2M(T') does not tend to 0 as— 0,
then MI(T') is outside a large ball centered at the origin. However, -at0, M(0) is
bounded independently af This would lead to a discontinuity @l as a function of
time. We conclude that estimate (5.4.5) istrue forall< 7. O

PrROPOSITION 5.13. —The functionw (¢) has a limitw, ast — oo. Furthermore, we
have the estimates for all> 0,

lwr —o@)| gMOl-ﬁ-st’ (5.4.8)
1/2
2(1)| < Ml(H gt) , (5.4.9)
1/2
1F ol < M2<1+€l) log(2+ &1), (5.4.10)
3/2
[Ra(®)]], <M3(1+ez) log(2 + e1). (5.4.11)

In particular, |or — @ (#)] < l—iet and thuswr — w(¢)| is a decreasing function of
Applying this result tojw (1) — w(z2)|, we see that (¢) is a Cauchy sequence. It thus
has a limit, denoted_ . We denote byM; the limiting valueM; (T) asT — oo.

Notice that in decomposition (4.4.9)=g +h = g+ hy + k + k1, afixed timeT has
been chosen, and all the components depend@h. From the above proposition, we
know thatw (¢) has a limitw, ast — oco. So we can reformulate the decomposition by

choosingT = oo and have the dependency of the various componenfsafw, . Let
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us denoteP., = P.(w;) and P = I — P,,. We definef = g + h whereg = P¢ f and
h = P f. We also decompoge=k + k; + hy asin (4.4.9)

k = axz® + a112Z + aoz?, ko= ky—o, (5.4.12)
t

ky=— exp(/C+(r) dr) ko, (5.4.13)
0

where a;; = a;;(w4,x) and C; = C(w;) + i((t) — oy + y)(PL — PL). All the
estimates previously obtained in Sections 4 and 5 under the hypothesis ihatfixed
finite time can be carried out without modificationTo= co andwr = w, .

We now state the main result of this paper:

THEOREM 1. —Consider the nonlinear Schrédinger equatidn0.1)
(i) Assume that the nonlinearity satisfies Assumpt{diis) and (SL) and that there
exist solutions in the form of solitary wave's®’ ¢ (wg).
(i) Denoting B the linearized operator near the solitary wave, assume that
j 1B satisfies the conditioSP) describing the structure of its spectrum.
(iif) Assume the non-degeneracy conditi@a[u, u], u(2iug)) # 0.
(iv) Take an initial condition/q in the form of a perturbation of the solitary wave

Vo=@ (x, wo) + (zou(x, wo) + Zou™ (x, o)) + folx) (5.4.14)

satisfying|zo| =2 and N = || foll g2 + |(1 4 x?) foll2 < ce%/2.
For & small enough, one can write the solution in the form

Vi(x, 1) = e“f'w(s)d”ﬂ’))((/;(x, w) +z(Ou(x, o) + 2(Ou*(x, w) + f(x,1)) (5.4.15)

with the following properties. There exists a constantsuch thatw, = lim;_, , w(¢).
In addition, for all7 > O, there exit constantdA,, ..., M3 such that

&

_ < 4.
|a)+ w(t)’\Mol—i—st’ (5.4.16)
1/2
< , 5.4.17
20| Ml(lw) (5.4.17)
1/2
< log(2 . 41
I f Ol M2<1+8t> 09(2+ &1) (5.4.18)

Furthermore, we decomposg = g + h, whereg = PL f, h = P f = k + k1 + hy,
k = azz® + a112Z + aoaz?, ko = k=0, and ky = —exp( [y C4(v) d1)ko. In the above
equations,q;; = a;j (w4, x) are defined in(4.2.31)and (4.2.33) and C, = C(w4) +
i@y —w(t) +y)(PE — PY).

The functioni; satisfies the estimate

3/2
[r®], < Mg( ) log(2 + &1). (5.4.19)

1+ st
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6. Asymptotic behavior of the solution for large time
6.1. Longtime behavior of z(¢) and o (¢)

We start with Eq. (4.3.20) far; that we rewrite
fr=ipza+iK |zl + Zg (6.1.1)

with K, = K (w.), andZy satisfies the estimate

1Zrl=Ra(o, |z + | f o)
 [(Ikall, + 12124 Whall,) (Ikall, + 1212+ Ikl + Izl lor — o))
+ Izl (Ikall, + I1hall)]

e2log(2 + &t) ce?log(2 + et)

=REY M) ———— 1+ MHy < —————_ . 6.1.2
M e e UM S ey (6.1.2)
On the other hand, we have, from (5.2.17) and (5.1.17),
3/2
Yo €
— < log(2 + ¢t 6.1.3
Y 14+2ImK yot C<1+st> 9@+en) ( )
with |yp — &] < ce¥/2.
With estimate (5.4.17) folz| and obviously the same one fiax |, we have
21=i/,LZ1+iK+$Z1+Z1 (6.1.4)
with
2log(2 + st
e7l0g(2 + ¢1) (6.1.5)

| <ce———mMm—.
|Z4] C(1+81‘)3/2\/§

Sinceyy = ¢ + O(¢%?), we have that the coefficient 2 Ik, yo = k,.¢. We also denote

§= Fn?—ﬁ. The solutionz; of (6.1.4) is written in the form

o Jontwdn

T At kpeniz i

t
[Zl(m + [ ke V215 ds
0

g Jo ndn

= Zoo 55 + 2k 6.1.6
ka2 K (6.1.6

where

200 =21(0) + / e Jormdn 4 g o0\ Y23 7, (5) ds (6.1.7)
0
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and

14k 1/2—i5
/ f M(tl)dfl(lik+i‘;> Z1(s) ds. (6.1.8)
+

For simplicity, we have denoted(s;) = u(w(#1)) in the above formulas.
It follows from the bound (6.1.5) o, that

elog(2+ et)
<ce———. A
lzrl < ¢ (1+ 1) (6 9)

Thereforez,(¢) satisfies the estimate

20(0) = 2o exp(i fo u(n)dt) O<1 €

1tk gt)%—” p log(2 + 8t)> . (6.1.10)
+

Herezo = 21(0) + O(e), z = 21 + O(15;), and|z(0)| = e¥/2 Thus|zs| = &*/2 + O(e).
Consequently, the functiog(r) satisfies the estimate

7(t) = 70

e [ u(t)dn O(

Atk t)l—ia |Og(2+et)>. (6.1.11)
+€1)2

1+ et

From the formulas for, we can easily deduce the asymptotic behaviowofndeed,
from (4.1.14) and (5.1.6),

2

—_ &
Qrl < . 6.1.12
@l <o) (6112
Eg. (5.4.16) shows that
&
= O . 6.1.13
w1(f) = w1(00) + <l+et> ( )
It follows from (4.1.6) that
= O . 6.1.14
o) =0, +0( ) (6.1.14)

In fact, one could develop a change of variables more precise than (4.1.6) and show th:

3/2
&

o =wy — byo(wy)z? — boa(wi)7? + o( ( 1 ) ) (6.1.15)
+ ¢t

which leads to

3/2
a):a)+—Za(a)+)(z _7 )+o<(1jw) ) (6.1.16)

wherea(w) = Q50(w) is given in (3.2.3) and is purely imaginary. More precisely,
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i a(wy)

w=wy — —
* M+l+k+8t

.t . 3/2
x Re[z2 & Jo " g jog(1 + k, e1)] +o<( ) ) (6.1.17)

1+ et
In the integralfé u(t) dry, we replaceu(ty) = u(w () by

M(a’(ll)) =y + u'(wy) (w(ll) - a)+) + e (6.1.18)

whereu, = u(w,). We then see that the integral of the correction converges, although
not absolutely. Therefore the dependencwafpons becomes more explicit.

PrROPOSITION 6.1. —Under the hypothesis of Theoremthe functionw () has the
following asymptotic behavior as— oo

b+8

———coS(2ut + bilog(l+ koet) + bs), 6.1.19
1+ ket 2wt + brlog(l+ kyet) + by) ( )

w~ wy+

whereb, , b, and b, are some constants.

PrROPOSITION 6.2. —Under the hypothesis of Theorelnthe functionz(z) has the
asymptotic behavior as— oo

g+t

+

2(t) ~ ¢, 82

6.2. Asymptotic behavior of y

Until now, the functiony did not play any essential role in our computations.
However, it enters in the main formula fgr (see (5.4.15)) and therefore, we have to
find its asymptotic behavior. In fact, we can repeat the calculation performed ifor
Section 4.1. The starting point for the representatiop &f equation (3.2.1) that we can
rewrite

¥ =20(®)z” + T11(0)2Z + Loa(@) 2% + Ta0(@)2° + T21(0)2°Z 4 T12(@)22” + ToaZ’
+2(f, T10) +2(f, To1) + Tk (6.2.1)
and I'y satisfies estimate (3.2.2), which is the same as the on&forThe only
difference between the equations far and y is that, in general the coefficient

I'1(w) # 0. We can nevertheless perform the same change of variables asdiod
get

PROPOSITION 6.3. —There exist coefficients;; (w), 0 < i, j < 3, and vector func-
tionsd{j (x, w) such that the new functiop, defined as

yi=y+ dzoZ2 + dozzz + d3023 + d21222 + d12Z22 + d0323
+2(f. dio) + Z(f. dpy) (6.2.2)
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with d;; = d; is solution of the differential equation
1= T11(w)zZ + Tg (6.2.3)

and Ty satisfies the same estimg82.2)asT'.

Notice that
2E5[u, u*]
MNi=—— 6.2.4
. (6. 6u) .24
is real. From (6.2.3), it follows that
11 = Tog(on) |24 +o<< e >2> 6.25)
N 1tet) ) -
and
r
y(t) ~ yy + % log(1 + k. et). (6.2.6)
+

Coming back to the original variable, we get the asymptotic behavipr(of

PrROPOSITION 6.4. —The long time behavior of the phase faciai) is given by

y)=vyi+ct Iog(1+k+et)+0( ) (6.2.7)

1+ et
6.3. Asymptotic behavior of f

We finally turn to the functiory. We know from (5.4.18) and (5.4.19) that in the norms
-1, and| - |«, f tends to O as — oco. However, this radiative part carries non-zero
energy and other integrals of motion, and from this point of view it is not negligible. To
control the contribution off to the integrals of motion, we have to study its asymptotic
behavior in the usual? norm. We recall the representation

f=g+h, g=PFPioy)f, h=P(wi)f (6.3.1)

Proceeding in the same way as in (4.2.5), we have

2

=)
1+et)’

lgllz < Ru(@)|ws — ollh]l, <c( (6.3.2)

and therefore,

1fllo= ||h||2+o<<lj8t>2). (6.3.3)

The function is solution of

h=C.h— P.(w;)jEs[w, w]+ Hpg. (6.3.4)
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Therefore, from

h=elo g po L h ) Ag+ A, (6.3.5)
where
hy = —/ds e Jo C+®dnp () B w, wl, (6.3.6)
0

By = / dse Jo Cravdngy (o (6.3.7)
0

m=/“€f“m“nm9ﬂmeL (6.3.8)
t

Ay =— / dse ), Crovding o (6.3.9)

t

From (5.1.11) and (5.1.12), we know that

3/2
|Hgll2 < c( ) l0g(2 + &1). (6.3.10)

1+ et

This implies that the integrals (6.3.7) and (6.3.9) converge and, in addition

& 1/2

The integrals in (6.3.6) and (6.3.8) also converge and define elements afthough
they do not converge absolutely. Similarly to Lemma 5.2, one can prove

PROPOSITION 6.5. —~We havei, € L? and

£
A>=0 . 6.3.12
, (1+w) (6.3.12)

Comments on this proposition are given in Appendix A.
Finally, we turn to

' 1/2
() — elo x| p 4 +O<(%) Iog(2+et))]. (6.3.13)
&

The leading term here can be treated by the methods of scattering theory. Recall th:
from (5.2.60)

oo Crtman _ (€' P} +e " Py )et @, (6.3.14)
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From (6.1.19), we see that the integrgfl’(w — wy)dt; converges (not absolutely).
Therefore, ag — oo,

(t) ~/(w—a)+)dzl+y(t) —y(0). (6.3.15)
0

Without loss of generality, we can suppose th&0) = 0. The operatoiC(w,) is not
anti-selfadjoint, since”(w,) =iD and D # D*, because the potentidd is complex.
Therefore, €+ is not a unitary group. Nevertheless,

2

o2

Clwy) = j—1< + a)+> + V(wy, x) (6.3.16)

and V is exponentially decreasing at infinity. Thus we can apply standard results of
spectral theory to€“+)h, whereh = hqo + hy + hoo.

PROPOSITION 6.6. —We have the asymptotic formula
@ =efo'p . 4+ 0(1) (6.3.17)

ast — oo, whereh , = Wh and W is a bounded operator if?(R), that can be seen as
a wave operatar W is the strong limit inL? of e~ €o'ef @+’ and

2

The proof of this result is standard. We write that

o]

SO F(x) = % /(<f, w(ir))u(x, ir)e

+ (fou*(@i2))u* (x,ir)) e Mo dh. (6.3.19)

As t — oo, the asymptotic behavior of the above integrallifiis determined by the
asymptotic behavior ofi(x,i1) asx — oo (see (A.4) of Appendix A). The long time
behavior is the same as for the grouip &+<+)",

PROPOSITION 6.7. —We have
f=e e, + o). (6.3.20)
Proof. —SinceW satisfies the standard property
Wo(Clw1)) =¢(CoW, (6.3.21)
we have that

(€VPL + e PL)ef @ = (VP + e Py )€ h, + o(D). (6.3.22)
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In the above equationpP;” are the projection operators onto the positive/negative
imaginary parts of the continuous spectrungf It is obvious that

e V=d"Pf+evpy, (6.3.23)
therefore,
(€' P} + e PL)eC @ = e h, o). O (6.3.24)

Combining the asymptotic formulas far, y,z, and f, we get

THEOREM 2. —Suppose that the hypothesis of Theorerare satisfied. Then for
¢ small enough the solution of the nonlinear Schrédinger equatiof.5) have the
following behavior ag — oo

Y(x, 1) =0 (v ) + 24 (Dulx, op) + 24 (Du*(x, wg)]

+e “h+ +0(1) (6.3.25)
in Lo, where
o0 82
/ 0(t) — i) d + Ve,  L=———. (6.3.26)
) 0x2

The operatot. is self-adjoint inL? with its usual domain.
This result can be rewritten in terms of the original complex notatiory. Asco, the
solution of the nonlinear Schrédinger equation behaves as follows

Y =T O o (x @) + 24 (Dvy (X, 0p) + 74 (Dv_(x, @)
e “h, +0o(1) (6.3.27)

with v (x, ) = u1(x, ) £iux(x, w) andhy = (hy)1 +i(hy)o.

In conclusion, let us compute the classical integrals of motion for the nonlinear
Schrodinger equation in terms of the limiting parametetsand ... We will restrict
the calculation to the conservation of thé-norm. The conservation of the energy is
treated similarly. We have

o2 = ||, D2 = |, @) + w1, 0) + £, D|5 (6.3.28)

with w(x, t, w) = z(H)u(x, w) + zZ(H)u*(x, w). We compute the limit of the right-hand
side as — oo. We can replace (-, w) by ¢ (-, w,), w(-, t, w) by w(-, ¢, w,) and f by
g/ (@stHritsgi L@y |t is clear that

16 ¢ 00 + w10 + £

= o153+ lwliz + I £115+2(¢, f) + 2(p, w) + 2w, f). (6.3.29)

Whent — oo, |wllz — 0, and| £ 13 = ||h.]|3. Also,

(P, w)| < lI@ll2llwll2. @, Y <o ¢l fll, = O,

l(w, A< e w2l £ll, < clzl]| o~ ul, o), fll, = 0. (6.3.30)
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Therefore,|¢ +w + fl13— 9, wy)ll2 + A4 (13, and finally,

[ 0la= [y O = ||l¢C 0|5+ 1hy 112 (6.3.31)
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Appendix A. Properties of eigenfunctions u(x, A)

In this appendix, we recall some analytical properties of the spectral resolution
(2.1.13). Some of these properties were described in detail in [2] where this decompo
sition was justified, some of them were discussed in [3]. Here, we give some additiona
comments, and for this purpose, it is necessary to state more precisely the properties

u(x, A). The results in [2] were obtained in terms of an operdforelated toC by the
similarity C = iU HU ! whereU is a constant X 2 matrix. They were developed in a
more general context where the authors did not rediritct even functions. In that case,
the dimension of the invariant subspace corresponding=c0 is, at least, 4, and the
multiplicity of the continuous spectrum is equal to 2.

Due to the exponential decay of the potentialat infinity, the properties of the

eigenfunctions ofC are very close to the properties of simple exponentials and the

resolution is similar to the Fourier transform.
First, the solutions of the unperturbed equation

Cou=itu, Co=j '(—dux+w), (A.1)
are
fr=e"%yy, fo=e"yy,
g1= eikzxvz’ g = e_ikle)z,

wherek; = VA —w, kp = iv/A+w, v1 = (ll) vy = (fl) In this case, (2.1.13) is
nothing else but the classical cos-Fourier transform for even funcfiofis— C2.
The basis inC? is chosen from the eigenvectors pf

u(x, ) =cogkix)vy andjv1 =—ivq,
u(x, ) =cogkox)vy, andjv,=iv;. (A.2)

In [2], it was shown (it is a general fact) that the perturbed equation

Cu=iiu, C=Co+V, [[Vx,0)|<k@e, y=2J/wr, (A.3)
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has a solutiong; (x, ;) that is uniquely defined on the s@&xD where D =
{k1: | Im(k1)| < 31}, y1 < v by the asymptotic condition

gf ~ g1, x— +oo. (A.4)

This solution is also an analytic function ofincluding the point. = w. More precisely,
g1 is analytic on a suitable parabolic vicinity of the semi-axis w.

The second solutiorf;" is rapidly decreasing as— +oo (modulo the solutiorg;")
if Im k1 > 0. It is also defined o® as an analytic function of and can be written

fi(x, k) = €5 vy + Ryl + Ry, (A.5)
with uniform estimates on any sgt, co) x D, a is fixed, in the form:
IRy <cons{l+ ki) e, Ryl < cons(l+ |ky|) e, (A.6)

In general, this solution is not analytic at= », and is analytic on a double-sheet
Riemann surface of the functiofy = «/A — w. It is convenient to see the semi-axis
as the cut on this surface.

Finally, there exists an analogous solutigji(x, k1) = f;" (x, —k1) that satisfies a
similar estimate:

f35(x ky) = € " [vg + R3] + Ry, (A7)
again onfa, co) x D, with

|R3| < cons{1+ |k1|)_1e"”‘, |R4| < cons{1+ |k1|)_1|e""2"|. (A.8)

As already mentionedf;" is defined modulg; . In general, the solutiorf;” grows
whenx — —oo like g;. But there exists a choice g¢f" such that, fon. > w, it remains
bounded as — —o0. Such a solution is defined uniquely and was referred to in [2] as
thesolution of the scattering problerhet us denote it by (x, k7). It is easy to see that

%*(xv _ki) = 033(xv kl)v 03 = (é _01> ’ (Ag)

wherex denotes the complex conjugation.
For x > a, this solution has the same properties as the general fungfiodefined
in (A.5):

F(x.2) =€ [v1+ Ri] + R, (A.10)
As for x < a, its behavior is a little more complicated:
F(x, A) = €5 [b(ky)vy + Rs] + €™ [c(ky)vy + Re] + Ry, (A.11)
with uniform estimates on any sét oo, a] x D:
|Rs| <cons(1+ [ky]) 'e”*,  |Re| < cons{l+ [ky|) e,
|R7| < cons(L+ [ky|) e k2], (A.12)
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The coefficientd andc satisfies the equalitigsk) = b*(—k73), c(k) = ¢*(—k7), and for
largek:, have the asymptotic expansions:

b
kl kl

We connect nowg with « from (2.1.12). The potentidl is even and we can consider
an even solution with respect toandk,

uo=3§(x, k1) +F(—x, k1) (A.14)

of (A.3). It is bounded for allx € R if A > w. As x — +o00, up to exponentially
decreasing terms

uo ~ (€M (L + c(ky)) + € " b(ky) ] vy. (A.15)
From this asymptotic behavior it follows, in particular, that

o= (1+ clkn)) fi (x, ka) + b(ka) f1 (x, —k1). (A.16)
The first vector component of this solution is asymptotically
(uo)1 ~ €M% (1 + ¢) + e f*p, (A.17)

Up to a constant factotug), must be real, thereford + c| = |b|. If the semi-axis. > w
does not contain embedded points of the point spectrum, dfienb (k1) # 0 for such
A [2]. This function can have roots i with Im(k;) < 0, but their number if finite.
Therefore, there exists such a stfipthat is free of roots ob.

Now for u(-, 1), one can take the function:

u(x, k) = [b(+ )] Puo= M ky) i (x. ke) + M(ky) f5 (x, —ky),

b 1/2
M= <1+C> . M(—kp) = M*(kD). (A.18)

Notice thatu(x, A) andu(x, k1) are the same objects seen as functions of different but
related variables.
Itis clear that| M| = 1, thereforeM (k{)M (—k1) = 1, and

u(x, k) = M(—ky) i (x, k1) + M (ka) f1" (x, —k1). (A.19)
Its first component has the asymptotic behavior
ug ~ €M (—ky) + €M M(ky) = 2 cogkix — ), (A.20)

where for reak,, M = €. Whenk; — oo, M (k1) — 1.

Up to exponentially decreasing terms, we have that, asoo, ju ~ —iu. Similarly,
ju* ~iu*.

Let us emphasize three important properties of the solutidit) the representations
(A.9) and (A.10) are satisfied for compléx in the domainD; (2) these representations
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can be differentiated with respect to both variablesind k; any number of times;
(3) sinceAr = w is not a virtual level (i.e., there are no solutions bounded with respect
to x at this point)u(x, 0) = 0. In particular,® (0) = = (mod 2r).

Coming back to the expansion formula (2.1.13), consider the first term of the
expansion

Pef(0) = — / uCx ) f. juC k) 5= F (A.21)
Due to (A.19), this obviously can be transformed into
1 +00
Pf) = [ Mk k) (F uC, k) di. (A.22)

Analogous formulas can be obtained f@r . Notice that they are quite convenient
for the representation d?, f and P_ f for positivex. It is sufficient for our purposes.

We conclude the appendix with some additional remarks on Proposition 2.1 and
Lemmas 5.1 and 5.2.

A.1l. Commentson Proposition 2.1

From (2.1.13), we have

o0

1
P =i (P = PO f = [ i) (Gt i i0)

Fut G f JGut = i), i0))]6 () dA. (A.23)
Let us recall that on some strip around the real &xis

lju+iul <cons(l+ [ki|) e,y =0, (A.24)

and a similar bound forju* — iu*. Therefore, the second entries in the Fourier
coefficients(f, -) are exponentially decreasing and the coefficients can be analytically
continued, their analytic continuation remaining bounded on this strip by @omst
lk1)) 7| £1l, with any weight functiono = (1 + x2)~%, « > 0.

Consider, for example, the first term in the right-hand-side of (A.23). We transform
it to a form similar to (A.22) and shift the contour of integration to the straight line
Im(k1) = «, taking ¥ positive small. The functionf,” for x > 0 contains, on the
contour of integration, a main term and a remainder uniformly exponentially decreasing
for large x and decreasing a* for large k1, see (A.5)—(A.6). The contribution of
the remainder as a function of can be estimated i?-norm with any growing
power weight. The contribution of the main term is completely similar to the standard
Fourier integral along the same straight line. In particular, it contains the exponentially
decreasing at-oco in x factor, and up to this factor is the standard Fourier-transform on
the real axis. Using that the Fourier coefficients Afefunctions ofk;, we immediately
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estimate thd.2-norm of this contribution with any growing power weight. It is enough
to have the estimates for positive The second term in the right-hand-side of (A.23) is
treated similarly.

A.2. Commentson Lemma 5.2

The proof of (5.2.40) is a simple modification of that of Lemma 5.1. Indeed, when
using spectral resolutions, the operaofq,‘r1 contributes to integral (2.1.12) as a factor
A2~ which is not singular on the contour of integration.

Notice that we will use this estimate for functiomghat are exponentially decreasing
at infinity. Therefore, when expressing the left side of (5.2.41), we can use the spectre
representation and the analyticity of Fourier coefficients. Due to the analyticity, we can
shift the part of the contour of integration close to the singular point from the real axis to
the corresponding semi-plane as a semi-circle whéfere> 0, remains bounded, and
avoid singularities at = +iu. We can then easily repeat the proof of Lemma 5.1.

In the case of a general function we have to complement the previous analysis with
some additional technique. The conditipfl + x2)%?«/||; < oo implies, that the Fourier
coefficients ofw, for examplea (iA) = («, ju(-,i1)) have, as in the case of Lemma 5.1
additional continuous derivatives with respeci.taConsider the function

17, 1
€T(Cr+2ip—0)Pfa=" /e‘k’%&(i)\)u(x, iNO)dr.  (A.25)
i ir—2ip—0

Tt

We restrict to functions satisfying the condition?; @ = «. The caseP; « = « can be
treated similarly. Lety (1) be a cut-off function with support in a neighborhood of 0,
which is analytic near 0. We writ@(i1) = a1(iA) + a2(iA) with

ar(ir) = (@@r) —a(2ip)) x (A — 2u), a(ir) =adip)x (A —2n).  (A.26)

The contribution ofe;(iA) to the integral (A.25) is not singular and can be estimated
with the help of (5.2.39). To avoid the singularity in the contributiorgfi1), we again
deform the contour of integration in a small vicinity of= 2., keeping &’ bounded for

t > 0. This completes the comments on Lemma 5.2.

A.3. Commentson Proposition 6.5

In Proposition 6.5, we deal with two integrals
hy = — / dse Jo C+x®dnp (o \iE[w, w] (A.27)
0

and

Ar=-— / dse I (0,) ] Epw, w]. (A.28)
t
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The proof of this proposition is close to that of Lemma 5.2. Recall first that
Eolw, w) = 22Ealu, ul + 222 Eolu, u*] + 22 Eo[u*, u*]. (A.29)

To find the leading order df, andA,, it is enough to replaceby its leading asymptotic
term (6.1.20). The correction terms to (6.1.20) lead to corrections terms ford A».
After substitution of (A.29) into (A.27), the contribution pfi2 has the form

T ; elz, |2
WD~ — [ase o @m L p o) j ol '
" 1+ es

el

o0
2
~— / ds (WPl + eV p_)eC@ns 1 i*g's P.(wy)jEs[u, u*]. (A.30)
0

Integration by parts gives
h ~ =€ OPL + €O PL)e|0s PCTHwL) Pelwy) j Ealu, u”]

o0
- / ds ]2, 20wy )e €@
0

J —iv iV _ 1 .
X a{(e (O)P;:—i—e‘ (O)Pw)—l—i—es Po(w.) j Eolu, u™). (A.31)

The projectionsPZ are bounded inZ?, and C~1(w,) is bounded inP.(w,)L>.
Therefore the first term dfs-" belongs tal.2. The second term ihS"" is an absolutely

converging integral inL?-norm since e¢“+* is uniformly bounded ins € R (see
Lemma5.1). Thug$t? e L2,

The contributions:>"® andh® coming from the terms? andz2 of E;[w, w, ] can
be treated similarly with some additions used in Lemma 5.2. Consider, for example,

x ) 221 14s
20 ~[Pciapdn €104 €& .
]’l2 —O/dse fo * Wpc(w—i-)]EZ[u, u]

~ —(e_iv(o) Pl + eiv(o)Po;)gé'f(C(a)Jr) —2ipy — O)_lpc(w+)jE2[M, u]

- /ds 8;3_ (C(a)+) —_ 2l'u/+ — 0)_1e—(C(w+)—2iuT)s
0

3 : .
X — {(e—’”@ P+ Op P.(wy)jEo[u,ul. (A.32)

s =) 1+ kyes)t-2%
The necessary estimate fiof"® follows from the fact that
(C(@s) = 2ipty — 0) e C@I2UDP (0.) j Eplu, u]

belongs toL? and is estimated uniformly for > 0. For the latter result, we apply the
spectral resolution, and using the propertiePgto. ) j E,[u, u], deform the contour of
integration as it is done for the proof of Lemma 5.2.
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As for the integral appearing in,, it is treated similarly. After integration by parts,
we get representations similar to (A.31) and (A.32). More precisely, the first term in
formulas for A, analogous to (A.31) and (A.32) will contain the decreasing weight
(1+k,1)~* and the second term (which is an integral) will have the weiht k., s) 2,
leading to absolutely convergent integrals. This ends the comments on Proposition 6.5
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