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ABSTRACT. – This paper proves some results concerning the polar factorisation
integrable vector-valued functionu into the compositionu = u# ◦ s, whereu# is equal almos
everywhere to the gradient of a convex function, ands is a measure-preserving mapping
is shown that the factorisation is unique (i.e., the measure-preserving mappings is unique)
precisely whenu# is almost injective. Not every integrable function has a polar factorisa
we introduce a class of counterexamples. It is further shown that ifu is square integrable, the
measure-preserving mappingss which satisfyu = u# ◦ s are exactly those, if any, which a
closest tou in theL2-norm.
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L2-projection

RÉSUMÉ. – Cet article prouve des résultats au sujet de la factorisation polaire d’une appl
à valeurs vectorielles sommableu en une compositionu= u#◦ s, oùu# est égal presque partou
la dérivée d’une application convexe ets est une application conservant la mesure. On démo
que la factorisation est unique (c’est à dire l’application conservant la mesures est unique), si e
seulement siu# est presque injectif. Les applications sommables ne possèdent pas toujo
factorisations polaires ; on introduit des contre-examples. On prouve aussi que siu est de carré
sommable, alors les applications conservant la mesure qui satisfontu= u# ◦ s sont précisemen
celles qui sont les plus près deu enL2-norme.
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1. Introduction

A vector-valued function has apolar factorisation if it can be written as the
composition of itsmonotone rearrangement, which is equal almost everywhere to t
gradient of a convex function, with a measure-preserving mapping. This concep
introduced by Brenier [2,3], and may be seen as the extension to vector-valued fun
of an idea of Ryff [12], who showed that any real integrable function on a bou
interval could be written as the composition of its increasing rearrangement w
measure-preserving map.

Brenier proved existence and uniqueness of the monotone rearrangement o
ciently regular domains, and existence and uniqueness of the polar factorisation
to a further “nondegeneracy” restriction on the function. The object of the present
is to investigate the consequences of relaxing his assumptions by studying inte
functions on general sets of finite Lebesgue measure. While the monotone rea
ment continues to exist and be unique, as proved by McCann [9], we give exa
where there is no polar factorisation (and show the general existence result by
thors [5] is in a sense sharp). We also give a class of examples where uniquene
which shows that the sufficient condition for uniqueness given by [5] is in fact nece
Furthermore we show that Brenier’s connection between the polar factorisation ofL2

function u and the measure-preserving maps nearest tou, persists in the more gener
context.

In this paper, given an integrable functionu :X→ R
n, and a setY ⊂ R

n of finite
positive Lebesgue measure, we say thatu has apolar factorisation throughY if
u= u#◦s, whereu# is equal to the gradient of a convex function almost everywhereY ,
ands :X→ Y is a measure-preserving mapping. The restriction onX is not severe; we
only require that(X,µ) is a complete measure space with the same measure-the
structure as an interval of lengthµ(X) equipped with Lebesgue measure. (We g
precise definitions below.) The existing literature proves existence and uniquenesu#

as noted above, but it does not resolve fully the existence and uniqueness ofs. Brenier
[3] proved existence and uniqueness ofs under anondegeneracyhypothesis onu, and
subsequently Burton and Douglas [5] proved existence under a weaker hypoth
countable degeneracy, while giving an example of nonuniqueness. It was further sh
in [5] that if u# is almost injective(meaningu# is injective off a negligible set, whic
would be implied by nondegeneracy ofu), thens exists and is unique, and the conve
result was conjectured. We prove this conjecture in Theorem 1. Our method of pr
to establish that eitheru# is almost injective, or that there exists a nontrivial meas
preserving mappings :Y → Y such thatu# ◦ s = u#. In the latter case, nonuniqueness
the polar factorisation, if one exists, follows easily. The core of our proof is to cons
measure-preserving maps leaving invariant a family of line segments; it is notew
that in our context no Lipschitz condition is required on the directions of the lines
arguments make use of methods developed by Larman [8], in his study of the end
of the line-segments on a convex surface.

We remark that if some rearrangement ofu is almost injective and has a pol
factorisation throughY , then the polar factorisation ofu throughY (exists and) is unique
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as a consequence of Lemma 2. It is not however necessary foru to be almost injective
for u to have a unique polar factorisation.

Having settled the question of uniqueness, we give the first result on nonexiste
polar factorisations. Burton and Douglas [5, Theorem 1.10] proved that if the mon
rearrangementu# is almost injective off its level sets of positive measure, then e
rearrangementu of u# has a polar factorisationu= u# ◦ s for some measure-preservin
mappings. We prove in Theorem 2 that this result is sharp in the sense that ifu# is not
almost injective on the complement of its level sets of positive measure, then there
a rearrangement̂u of u# such thatû has no polar factorisation throughY . This class of
counterexamples has the property that the functionsû are almost injective off their leve
sets of positive measure.

Our third result concerns the connection between polar factorisation of a vector-v
functionu :X→ R

n throughY ⊂ R
n, and theL2-projection (i.e., set of nearest poin

of u on the set of measure-preserving mappings fromX→ Y . Assumingu ∈ Lp and
idY ∈ Lq (wherep,q are conjugate), we prove in Theorem 3 that the set of maxim
for the functional

∫
X u(x) · s(x) among measure-preserving mappingss from X to Y

(which, if p = 2, is equal to the set of minimisers for‖u − s‖2) comprises exactly
thoses (if any) which satisfyu = u# ◦ s. Brenier [3, Theorem 1.2(b)] had obtain
this result in his setting, of a sufficiently regular (e.g., smooth bounded) domainY and
a nondegenerate functionu.

Polar factorisations arise naturally in the Lagrangian formulation of the s
geostrophic equations, a model for weather frontogenesis. At each timet , the geostrophic
transformationX(t, ·), from which information about the physical quantities (vel
ity, temperature and pressure) of the system can be extracted, is equal to the g
of a convex function. Tracking nondifferentiabilities of these convex functions as
evolves is thought of as weather fronts forming and moving. The flow is incompres
therefore the trajectory mapping (of the fluid particles) is measure-preserving. It fo
that at each timet , the Lagrangian variablẽX(t, ·) takes the form of a polar factorisatio
Numerical schemes (for calculating solutions) have exploited the characterisation
trajectory mapping in terms ofL2-projections. (See Benamou [1], Brenier [4].)

1.1. Definitions and notation

DEFINITION. – Let (X,µ) and (Y, ν) be finite positive measure spaces withµ(X)=
ν(Y ). Two vector-valued functionsf ∈ L1(X,µ,Rn) and g ∈ L1(Y, ν,Rn) are re-
arrangementsof each other(or equimeasurable)if

µ
(
f −1(B)

)= ν(g−1(B)
)

for everyB ∈ B
(
R
n
)
,

whereB(Rn) denotes the Borel field ofRn. Equivalent formulations can be found
Douglas[6].

DEFINITIONS. – A measure-preserving mappingfrom a finite positive measure spa
(X,µ) to a positive measure space(Y, ν) with µ(X) = ν(Y ) is a mappings :X→ Y

such that for eachν-measurable setA⊂ Y , µ(s−1(A))= ν(A).
We will be considering the special case of(X,µ) complete,Y ⊂ R

n and ν being
n-dimensional Lebesgue measure. Theν-measurable sets will be the Borel-measura
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sets; the same measure-preserving properties can then be deduced for the Le
measurable sets.

Moreovers :X→ Y is a measure-preserving transformationif
(i) s :X\L → Y\M is a bijection, whereL and M are some sets of ze

(respectively,µ andν) measure; and
(ii) s ands−1 are measure-preserving mappings.

A finite complete measure space(X,µ) is a measure-intervalif there exists a measure
preserving transformation from(X,µ) to [0,µ(X)] with Lebesgue measure(on the
Lebesgue sets). We recall that any complete separable metric space, equipped
a finite nonatomic Borel measure, is a measure interval.

Throughout this paper we will denoten-dimensional Lebesgue measure byλn, and
the extended real numbers, that is the setR ∪ {−∞,∞}, by�R.

DEFINITION. – Let u ∈ L1(X,µ,Rn), where (X,µ) is a measure-interval. Le
Lebesgue measurableY ⊂R

n be such thatλn(Y )=µ(X). Themonotone rearrangeme
of u on Y is the unique functionu# :Y → R

n that is a rearrangement ofu, and satisfies
u# =∇ψ almost everywhere inY for some proper lower semicontinuous convex func
ψ :Rn→�R. (A�R-valued function is calledproperif it is not identically∞, and nowhere
takes the value−∞.)

The existence and uniqueness of the monotone rearrangement follows fro
main result of McCann [9]. It is unique in the sense that ifϕ :Rn → �R is another
convex function, and∇ϕ (as a function defined onY ) is a rearrangement ofu, then
∇ϕ(y)=∇ψ(y) for almost everyy ∈ Y .

DEFINITION. – Let u ∈ L1(X,µ,Rn) where (X,µ) is a measure-interval. Le
Lebesgue measurableY ⊂ R

n be such thatλn(Y ) = µ(X), and let u# denote the
monotone rearrangement ofu on Y . We sayu has apolar factorisation throughY if
there exists a measure-preserving mappings from (X,µ) to (Y, λn) such thatu= u# ◦ s
almost everywhere.

DEFINITION. – A mappings :X→ Y , where(X,µ) is a finite positive measure spac
is almost injectiveif there exists a setX0 ⊂ X such thats restricted toX0 is injective,
andµ(X\X0)= 0.

1.2. Statements of results

Our main results are Theorems 1, 2 and 3 below, whose proofs are given in Sec
3 and 4, respectively.

THEOREM 1. – Suppose thatu ∈ L1(X,µ,Rn) where(X,µ) is a measure-interval
Let Lebesgue measurableY ⊂R

n satisfyλn(Y )= µ(X) and letu# denote the monoton
rearrangement ofu onY . Thenu has a unique polar factorisation throughY if and only
if u# is almost injective.

THEOREM 2. – Let integrableu# :Y → R
n be the restriction of the gradient o

a proper lower semicontinuous convex function to a setY ⊂ R
n of finite positive

Lebesgue measure, and suppose thatu# restricted to the complement of its level s
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of positive measure is not almost injective. Let(X,µ) be a measure-interval satisfyin
µ(X)= λn(Y ). Thenu# has a rearrangementu :X→ R

n which does not have a pola
factorisation throughY .

THEOREM 3. – Let 1 � p,q �∞ be conjugate exponents, let(X,µ) be a measure
interval, let Y ⊂ R

n be a Lebesgue measurable set such thatµ(X) = λn(Y ) (<∞),
and supposeY is bounded ifp = 1, or

∫
Y |y|qdy <∞ if p > 1. Let S denote the se

of all measure-preserving maps fromX to Y . Let u ∈ Lp(X,µ,Rn), and letu# be the
monotone rearrangement ofu onY , and write

I (s) :=
∫
X

u(x) · s(x) dµ(x) for s ∈S,

J (u) :=
∫
Y

u#(y) · y dλn(y).

Then

sup
{
I (s) | s ∈S

}= J (u),
ands ∈S satisfiesI (s)= J (u) if and only ifu= u# ◦ s almost everywhere inX.

The following is an immediate consequence of Theorem 3:

COROLLARY 1. –Let the hypotheses of Theorem3 be satisfied, withp = 2. Then
s ∈S is a nearest point ofS to u, relative to‖ · ‖2 (with the Euclidean norm onRn), if
and only ifu= u# ◦ s almost everywhere inX. In particular, u has a polar factorisation
throughY if and only if there is a nearest point ofS to u.

Brenier introduced the optimisation problems of Theorem 3 and Corollary 1, and
Theorem 1.2] proved their equivalence to the polar factorisation problem assumin
u is nondegenerate (i.e., the inverse image of any set of zero measure has zero m
and thatY is open, connected, and has smooth boundary; these assumptions ens
the polar factorisation exists and is unique.

Corollary 1 implies in particular, that theL2-projection ofu on S is a singleton se
if and only if u# is almost injective. Note that ifu is nondegenerate, thenu# is almost
injective, but the converse is false in general (see Burton and Douglas [5, Lemm
and Section 3]).

2. A nonuniqueness result

Theorem 1 will be proved in this section. The key step is to show that eithe
monotone rearrangementu# is almost injective, or there exists a nontrivial measu
preserving mappings such thatu# ◦ s = u#; we give this result separately as Theorem
Now if u has a polar factorisation andu# is not almost injective, nonuniqueness of
polar factorisation follows easily.

Recall that theeffective domainof a proper functionψ :Rn→�R is the set{x ∈ R
n |

ψ(x) <∞}. We denote the subdifferential ofψ aty by ∂ψ(y).
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THEOREM 4. – Letψ :Rn→ R be a proper lower semicontinuous convex funct
whose effective domain has nonempty interior ⊂ R

n. Let Y ⊂  be a set of positive
Lebesgue measure, and supposeu# :Y → R is Lebesgue measurable and satis
u#(x) ∈ ∂ψ(x) for almost all x ∈ Y . Then eitheru# is almost injective, or ther
exists a nontrivialλn-measure-preserving maps :Y → Y such thatu# ◦ s = u# almost
everywhere inY .

The construction of the nontrivial measure-preserving mapping of Theorem
achieved by using the following lemma to exploit a product structure; we prov
existence of a section-preserving measure-preserving mapping which is almost n
equal to the identity in a compact set, and leaves everything fixed outside this set

LEMMA 1. –Let ! be a finite positive Borel measure on a metric spaceX, let ν be
a Borel measure onX×R

k satisfying

ν(S)=
∫
S

f d(! × λk)

wheref :X×R
k→[0,∞) is a bounded Borel measurable function, and letA⊂X×R

k

be a compact subset withν(A) > 0.
Then there is aν-measure-preserving mapτ :X×R

k→X×R
k such that

(i) τ(x, y) �= (x, y) for almost every(x, y) ∈A,
(ii) τ({x} ×R

k)⊂ {x} ×R
k for all x ∈X, and

(iii) τ(z)= z for all z ∈X×R
k \A.

Proof. –By identifying X × R
k with (X × R

k−1)× R we see that it is sufficient t
consider the casek = 1.

Forx ∈X let

A(x)= {
y ∈R | (x, y) ∈A}

and forx ∈X, y ∈R define

ϕ(x, y)=
y∫

−∞
f (x, z)1A(x)(z) dz.

Then, for x ∈ X, if A(x) �= ∅ then ϕ(x, ·) is a continuous increasing (i.e., no
decreasing) map ofA(x) onto [0, ϕ(x,∞)], and is measure-preserving relative to
measureνx with densityf (x, ·) onA(x), andλ1 on [0, ϕ(x,∞)]. Now for (x, y) ∈A let

s(x, y)=min
{
t ∈A(x) | ϕ(x, t)= ϕ(x,∞)− ϕ(x, y)},

which is well-defined by continuity ofϕ(x, ·) and compactness ofA(x).
For eachx for which A(x) �= ∅, s(x, ·) is a continuous map ofA(x) into A(x);

moreover ifϕ(x,∞) > 0 thens(x, ·) is a νx-preserving map ofA(x) into itself. Also
s(x, ·) fixes only thosey satisfying 2ϕ(x, y) = ϕ(x,∞), which form a set of zeroνx-
measure for!-almost everyx. Defineτ :A→ A by τ(x, y) = (x, s(x, y)). Sinceτ is
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Borel measurable, we can now deduce thatτ :A→A is ν-measure-preserving and fix
!× λ1-almost no points ofA. If we extend the definition by setting

τ(x, y)= (x, y) ∀(x, y) ∈X×R \A
then we obtain the desired mapτ . ✷

We establish some notation before proceeding with the proof of Theorem 4.

Notation. – We denote byHk the k-dimensional Hausdorff measure, on any me
space.∂C and relintC will denote, respectively, the boundary and interior of a fin
dimensional convex setC relative to its affine hull.

We say that a measureµ is absolutely continuous with respect to a measureν, and
writeµ� ν, if µ(E)= 0 for everyν-measurable setE for which ν(E)= 0. We denote
the Radon–Nikodým derivative ofµ with respect toν by dµ/dν.

If K is a nonempty compact convex set inR
n, ϕ is an affine functional onRn that is

nonconstant onK , andε > 0, we write

K(ϕ, ε)=
{
x ∈K | ϕ(x) > sup

K

ϕ − ε
}
,

K(ϕ)=
{
x ∈K | ϕ(x)= sup

K

ϕ
}
;

we callK(ϕ, ε) acaponK .

Proof of Theorem 4. –Let G denote the graph andE the epigraph ofψ , let χ(x) =
(x,ψ(x)) for x ∈  , π(x,α)= x for x ∈  , α ∈ R. We suppose thatu# is not almost
injective, and proceed to construct the required maps :Y → Y . We can choose a bound
open convex set ′ with  ′ ⊂  , such thatλn( ′ ∩ Y ) > 0, and such thatu# is not
almost injective when restricted to ′ ∩ Y . Henceforth we shall assumeY ⊂  ′, since
any measure-preserving map from ′ ∩ Y to itself can be extended to the whole ofY by
defining it to be the identity onY\ ′. By discarding a set of measure zero if necess
we can assumeY is a Borel set and that∂ψ(x) = {u#(x)} for everyx ∈ Y . Notice that
χ : ′ →R

n+1 is Lipschitz, say with constantγ > 0.
We note that, for eachk, the union of the extreme faces ofE having dimension a

leastk, is anFσ -set (i.e., a countable union of closed sets). Ifx, y are two points of
Y for which χ(x),χ(y) lie on the same line segment inG, thenu#(x) = u#(y). If the
images underπ of the line-segments inG coveredλn-almost none ofY , thenu# would
be almost injective. We may therefore assume, replacingY by a Borel subset havin
positive measure if necessary, that every point ofχ(Y ) lies on a line-segment inG.
Applying a result of Larman [8, Theorem 1] to the intersections ofE with large cubes
we can prove that the union of the relative boundaries of all extreme faces ofE of
dimensions 1, . . . , nis a set of zeroHn-measure. Hence, passing to a subset of sm
positiveλn-measure if necessary, we may choosek, 1� k � n, such thatχ(Y ) is covered
by the relative interiors of thek-dimensional extreme faces ofE.

We may now choose an(n− k + 1)-dimensional linear subspace20 of R
n+1 parallel

to thexn+1-axis, and pointsw1, . . . ,wk+1 in general position in2⊥
0 ⊂ R

n × {0}, such
that, writing2i = wi + 20 for i = 1, . . . , k + 1, and writingF for the family of all
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χ( ′), F coversχ(Y ′) for some subsetY ′ ⊂ Y having positiveHn-measure (countabl
many such families of faces coverχ(Y ), so such a choice is possible). We may furt
replaceY ′ by a compact set withλn(Y ′) > 0.

We may assume the origin is located so that the centroid ofw1, . . . ,wk+1 is 0. Let
M = sup ′ ψ and let

E′ = {
(x,α) ∈E | x ∈ ′, α �M + 1

}
which is a convex body inRn+1. Let Ki = E′ ∩ 2i , i = 0,1, . . . , k + 1, and let
X = {F ∩ 20 | F ∈ F}, which is a subset of the extreme points ofK0. For x ∈ X let
F(x) be the unique element ofF that containsx, and letzi(x) = F(x) ∩2i ∈ Ki for
i = 1, . . . , k+ 1. Let

5 = {
λ= (λ1, . . . , λk+1) ∈R

k+1 | λ1 � 0, . . . , λk+1 � 0, λ1+ · · · + λk+1 = 1
}
,

and forx ∈X andλ= (λ1, . . . , λk+1) ∈5 let

T (x,λ)= λ1z1(x)+ · · · + λk+1zk+1(x) ∈ relintF(x).

Since relintF(x) ∩ relintF(y) = ∅ for distinct x, y ∈ X, it follows thatT is injective.
The range ofT is contained inG. Continuity ofT is a consequence of theF(x), x ∈X,
being extreme faces.

Define the measureµ on (Borel subsets of)G′ := χ( ′) by µ(B)= λn(π(B)); then
µ�Hn andHn � µ with γ −n � dµ/dHn � 1 almost everywhere. Let! = !n−k be
the Borel measure on the extreme points ofK0 defined by Larman [8], that is

!(S) := lim
δ↓0

inf{Cj }j

∞∑
j=1

Hn−k(∂Cj )

where the infimum is taken over all countable covers{Cj }∞j=1 of S by caps onK0 having
diameter less thanδ. ClearlyHn−k(S) � !(S); Larman [8, Theorem 2] proved that!
is a finite measure (which is nontrivial, but crucial to our argument). We will s
that the measureν defined byν(B) = µ(T (B)) is absolutely continuous with respe
to the product measure! × λk onX ×5, then apply Lemma 1 to construct a suita
ν-measure-preserving map onX ×5. The proof of absolute continuity is achieved
adapting an argument of Larman [8, Theorem 1].

As a preparatory step, consider a capC onK0, sayC =K0(ϕ, ε) whereϕ :Rn+1 →R

is linear and nonconstant on20, andε > 0, and letU ⊂ 5 be a relatively open subse
If x ∈ C ∩X thenx = (k + 1)−1(z1(x)+ · · · + zk+1(x)), hence

ϕ(x)= (k+ 1)−1(ϕ(
z1(x)

)+ · · · + ϕ(
zk+1(x)

))
,

from which we deduce thatzi(x) ∈ Ci := Ki(ϕ, (k + 1)ε), i = 1, . . . , k + 1. Choose
vi ∈Ki(ϕ). Then, fori = 1, . . . , k+1, we have(k+1)−1(v1+· · ·+vk+1−vi+Ci)⊂ C,
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soCi ⊂ pi+(k+1)C wherepi = vi−(v1+· · ·+vk+1) ∈ vi−20 =2i . So forx ∈C∩X
andλ ∈5 we have

T (x,λ) ∈ λ1C1+ · · · + λk+1Ck+1 ⊂ λ1p1+ · · · + λk+1pk+1+ (k+ 1)C.

ThusT ((C ∩X)× U) ⊂ D + (k + 1)C, whereD = {λ1p1 + · · · + λk+1pk+1 | λ ∈ U }
which lies in an affinek-space skew to20 ⊃ (k+ 1)C.

Now T ((C ∩X)× U)⊂ E′ ∩G. Moreover, a line parallel to thexn+1-axis through
any pointq of T ((C ∩X)× U) must intersectp + (k + 1)∂C for somep ∈D; since
such a line intersectsG in only the pointq, we conclude thatT ((C ∩ X) × U) ⊂
χ(π(D+ (k+ 1)∂C)). The mapχ ◦ π has Lipschitz constantγ , so

Hn
(
T

(
(C ∩X)×U))

� γ nHn
(
D+ (k+ 1)∂C

)
� γ nρnHn

(
D0+ (k + 1)∂C

)
= γ nρn(k+ 1)n−kHk(D0)Hn−k(∂C)
� γ nρnωk(k+ 1)n−kλk(U)Hn−k(∂C)

whereD0 = {λ1w1 + · · · + λk+1wk+1 | λ ∈ U }, ρ is the Lipschitz constant of the ma
λ1w1 + · · · + λk+1wk+1 "→ λ1p1 + · · · + λk+1pk+1 of D0 ontoD; andω is the Lipschitz
constant of the map(λ1, . . . , λk+1) "→ λ1w1+· · ·+λk+1wk+1 of5 into2⊥

0 . In particular,
ρ � R/r wherer is the least distance of anywi from the opposite face ofD0 andR is
the diameter ofE′; it is important to notice thatr ,R andω are independent of the choic
of C.

To proveν� ! × λk , let us first recall that the Carathéodory construction yields

! × λk(S)= inf{Wj×Uj }j

∞∑
j=1

!(Wj)λk(Uj) (1)

where the infimum is taken over all countable covers{Wj ×Uj }∞j=1 of the Borel setS by
measurable rectangles. Consider a rectangleZ×U whereZ ⊂X andU ⊂5 are Borel
sets. Then givenε > 0, for eachδ > 0 we can choose a cover{Ci}∞i=1 of Z by caps on
K0 of diameter less thanδ such that

∞∑
i=1

Hn−k(∂Ci) < !(Z)+ ε;

consequently,

ν(Z×U)=µ(
T (Z×U))

�Hn
(
T (Z ×U))

� (γR/r)nωk(k + 1)n−kλk(U)
∞∑
i=1

Hn−k(∂Ci)

�Lλk(U)
(
!(Z)+ ε)
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whereL= (γR/r)nωk(k + 1)n−k , and therefore

ν(Z ×U)� L!(Z)λk(U).
Applying this result to (1) yields

ν(S)� L(!× λk)(S)
and consequentlyν � ! × λk, with dν/d(! × λk) � L almost everywhere. We ca
assumedν/d(! × λk) is Borel-measurable and bounded.

Lemma 1 now enables us to construct aν-measure-preserving mapτ :X × 5 →
X×5 which satisfies

(i) τ(z) �= z for almost everyz ∈ T −1(χ(Y ′)),
(ii) τ({x} ×5)⊂ {x} ×5 for eachx ∈X, and
(iii) τ(z)= z for all z ∈X×5 \ T −1χ(Y ′).
Define s :Y → Y by s := π ◦ T ◦ τ ◦ T −1 ◦ χ . It is routine to verify thats is λn-

measure-preserving. Moreover it follows from (i) thats is nontrivial. It remains to show
thatu# ◦ s = u#. Notice that, ifx ∈X thens(π(F (x))⊂ π(F(x)) (by (ii)), and since, as
we observed at the beginning of the proof,u# is constant onY ′ ∩ π(F(x)), we deduce
thatu# ◦ s(y) = u#(y) for y ∈ Y ′ ∩ π(F(x)). Now for y ∈ Y ′, there existsx ∈ X such
thaty ∈ π(F(x)). Henceu# ◦ s = u# onY as required. ✷

Proof of Theorem 1. –If u# is almost injective, Burton and Douglas [5, Theorem 1
yields thatu has a unique polar factorisation throughY .

For the converse, suppose thatu ∈ L1(X,µ,Rn) has a polar factorisation throug
Y , u = u# ◦ σ say, whereσ :X→ Y is a measure-preserving mapping, but thatu# is
not almost injective. Theorem 4 yields the existence of a nontrivial measure-pres
mappings :Y → Y with u# ◦ s = u#. Nowu# ◦ s ◦σ (x)= u# ◦σ (x)= u(x) for µ almost
everyx, ands ◦ σ is a measure-preserving mapping which differs fromσ on a set of
positive measure. Thus the polar factorisation ofu throughY is not unique. ✷

3. A nonexistence result

In this section we prove Theorem 2 which demonstrates nonexistence of a
factorisation for a class of functions. Burton and Douglas [5, Theorem 1.10] prove
if u# is a monotone rearrangement which is almost injective on the complement
level sets of positive measure, then for any rearrangementu of u#, a polar factorisation
exists. We show that this is the best general existence result that can be proveu#

does not have the above property, we can find a rearrangementu of u# such that no
measure-preserving mappings such thatu= u# ◦ s exists.

We establish two preliminary results. Firstly we prove that ifu= v ◦s for some almos
injective u and measure-preserving mappings, thenv is almost injective. Our secon
result is that every integrablev has a rearrangementu that is almost injective off its leve
sets of positive measure. Then we apply these results to a monotone rearrangeu#

satisfying the hypotheses of Theorem 2 and show that it has a rearrangementu, almost



G.R. BURTON, R.J. DOUGLAS / Ann. I. H. Poincaré – AN 20 (2003) 405–418 415

ation.
otone

the
wing

ng

t

e

sets

. Let

of
ts).

etely
hic by,
asure-

t

ure-
injective off its level sets of positive measure, which does not have a polar factoris
Note that the two-dimensional example of [5, Section 3], given there as a mon
function which has a nonunique factorisation, fits this framework.

The following lemma is of interest in its own right, as well as being integral to
proof of Theorem 2. It may be applied to polar factorisations to obtain the follo
generalisation of Theorem 1; an integrable functionu has a rearrangementû, whereû
is almost injective and has a polar factorisation throughY , if and only if u has a unique
polar factorisation throughY .

LEMMA 2. –LetX,µ,u,Y be as in Theorem1. Supposeu is almost injective, and
thatu= v ◦s for some integrable functionv :Y →R

n, and measure-preserving mappi
s :X→ Y . Thenv is almost injective.

Proof. –ChooseX0 ⊂ X such thatµ(X\X0)= 0, u(x) = v ◦ s(x) for everyx ∈ X0,
and u restricted toX0 is injective. Now for x, y ∈ X0 such thats(x) = s(y), we
haveu(x) = v ◦ s(x) = v ◦ s(y) = u(y), from which it follows thatx = y. Moreover
[5, Lemma 2.5] yields thatλn(s(X0)) = λn(Y ). Writing Y0 = s(X0), we have tha
s :X0 → Y0 is bijective. Nowv(y) = u ◦ s−1(y) for everyy ∈ Y0; it follows that v is
injective onY0. ✷

LEMMA 3. –Letv :Y →R
n be integrable, whereY ⊂R

n has finite positive Lebesgu
measure. Suppose(X,µ) is a measure-interval satisfyingµ(X) = λn(Y ). Thenv has
a rearrangementu :X→ R

n that is almost injective on the complement of its level
of positive measure.

Proof. –Initially we restrict attention to findinĝu :Y → R
n, a rearrangement ofv

that is almost injective on the complement of its level sets of positive measure
Yi = v−1(αi) for i ∈ I be the level sets ofv that have positive measure, whereI is
a countable index set, and writeY0 = Y\⋃

i∈I Yi . By adding and subtracting sets
measure zero, we can supposeY0 is aGδ-set (i.e., a countable intersection of open se
Define a Borel measureµ on R

n by µ(B) = λn(v−1(B)) for Borel setsB ⊂ R
n. Now

{αi | i ∈ I } is the set of atoms ofµ. Letµ0 be the nonatomic part ofµ. Then(Y0, λn|Y0)

and(Rn\{αi | i ∈ I },µ0) are finite nonatomic Borel measures on separable compl
metrisable spaces with the same total measure; it follows that they are isomorp
for example, [11, p. 164, Proposition 33 and p. 409, Theorem 16]. Choose a me
preserving bijectionu0 :Y0 → R

n\{αi | i ∈ I }. Thenu0 is a rearrangement ofv0 = v|Y0

for if B ⊂R
n is a Borel set then

λn
(
u−1

0 (B)
)= µ0(B)= λn(v−1

0 (B)
)
.

Defineû= u0 onY0 andû= αi onYi for eachi ∈ I . Thenû :Y →R
n is a rearrangemen

of v having the desired properties.
Finally we note that(X,µ) and(Y, λn) are isomorphic, so we can choose a meas

preserving transformationτ :X→ Y . Nowu :X→R
n defined byu= û ◦ τ satisfies the

required conditions. ✷
Proof of Theorem 2. –Write Y0 for the complement (with respect toY ) of the level

sets of positive measure ofu#, and writeu#
0 for u# restricted toY0. Applying Lemma 3
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to u#, we can choose a rearrangementu :X → R
n that is almost injective on th

complement of its level sets of positive measure; denote this setX0, and writeu0 for
u restricted toX0. We note thatu# is the monotone rearrangement ofu on Y , u#

0 the
monotone rearrangement ofu0 on Y0. Suppose thatu has a polar factorisation throug
Y , u = u# ◦ s say, wheres :X→ Y is a measure-preserving mapping. Modifyings on
a set of measure zero if necessary, we haveu0 = u#

0 ◦ s wheres :X0 → Y0 is measure
preserving; notingu0 is almost injective, Lemma 2 yields thatu#

0 is almost injective,
which is a contradiction. ✷

4. The projection problem

Here we give the proof of Theorem 3, which is achieved by means of eleme
convex analysis. We first establish some notation.

Notation. – If ψ :Rn → �R, then ψ∗ :Rn → �R denotes the (Legendre–Fench
conjugate convex functionof ψ , defined by

ψ∗(x)= sup
{
x · y −ψ(y) | y ∈R

n
}
.

Proof of Theorem 3. –Let the proper lower semicontinuous convex functionψ :Rn→
�R be a potential foru#, and letψ∗ be the conjugate ofψ , which is also a prope
lower-semicontinuous convex function. Standard convex analysis (see for examp
Theorem 23.5]) gives

u#(y) · y =ψ∗(u#(y)
)+ψ(y) (2)

for λn-almost everyy ∈ Y . Sinceψ and ψ∗ are proper, lower semicontinuous a
convex, it follows that each is bounded below by an affine functional (see for exa
Ekeland and Temam [7, Proposition 3.1, p. 14]); since

∫
Y |y|dλn(y) < ∞ we now

deduce that
∫
Y ψ dλn and

∫
Y ψ

∗ ◦ u# dλn both exist inR ∪ {∞}. Thus we may integrat
(2) overY to obtain

J (u)=
∫
Y

ψ(y) dy +
∫
Y

ψ∗(u#(y)
)
dy. (3)

SinceJ (u) is finite by Hölder’s inequality, we deduce that both integrals on the ri
hand side of (3) are finite.

Let s ∈S. The inequality betweenI (s) andJ (u), and the condition for equality, ar
obtained by making full use of the standard ideas in the polar factorisation literatu
follows. Sinceψ ◦ s is a rearrangement ofψ |Y , andψ∗ ◦u is a rearrangement ofψ∗ ◦u#,
from (3) we now obtain

J (u)=
∫
ψ

(
s(x)

)
dx +

∫
ψ∗(u(x)) dx. (4)
X X
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We have ∫
X

(
ψ

(
s(x)

)+ψ∗(u(x))− u(x) · s(x)) dx � 0, (5)

because the integrand is everywhere nonnegative. From (4) and (5) we deduceI (s) �
J (u).

An elements ∈ S satisfiesI (s) = J (u) if and only if equality holds in (5), which
occurs if and only ifψ(s(x)) + ψ∗(u(x)) − u(x) · s(x) = 0 for almost everyx ∈ X,
which occurs if and only ifu(x) ∈ ∂ψ(s(x)) for almost everyx ∈X. ThusI (s)= J (u)
if and only if u= u# ◦ s almost everywhere inX.

However in our situation the upper boundJ (u) need not be attained, so it still remai
to prove thatJ (u) is approached arbitrarily closely. Letε > 0, choose a partition
{Zm}∞m=1 of R

n into countably many Borel sets of diameter less thanε, and for each
m ∈ N let Xm = u−1(Zm) and Ym = (u#)−1(Zm). Now choose a measure-preserv
bijection s :X→ Y such thats(Xm)= Ym for eachm ∈ N, which is possible sinceXm
andYm are measure-intervals of equal measure (we allows to remain undefined on an
Xm that have zero measure). Then|u ◦ s−1 − u#| < ε almost everywhere inY , and we
deduce ∫

X

u(x) · s(x) dx =
∫
Y

u ◦ s−1(y) · y dy >
∫
Y

u#(y) · y dy − ε
∫
Y

|y|dy,

that is,I (s) > J (u)− ε‖idY‖1. Hence supI (S)= J (u). ✷
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