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ABSTRACT. — This paper proves some results concerning the polar factorisation of an
integrable vector-valued functianinto the compositiont = u” o s, whereu” is equal almost
everywhere to the gradient of a convex function, anid a measure-preserving mapping. It
is shown that the factorisation is unique (i.e., the measure-preserving mapgsngnique)
precisely when:/# is almost injective. Not every integrable function has a polar factorisation;
we introduce a class of counterexamples. It is further shown thatsifsquare integrable, then
measure-preserving mappingsvhich satisfyu = u* o s are exactly those, if any, which are

closest tas in the L?-norm.
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RESUME. — Cet article prouve des résultats au sujet de la factorisation polaire d’une applicatior
avaleurs vectorielles sommabi@n une composition = u* o s, ollu* est égal presque partout a
la dérivée d’'une application convexesedst une application conservant la mesure. On démontre
gue la factorisation est unique (c’est a dire I'application conservant la messtainique), si et
seulement sii* est presque injectif. Les applications sommables ne possédent pas toujours le
factorisations polaires; on introduit des contre-examples. On prouve aussigestsile carré
sommable, alors les applications conservant la mesure qui satisfent o s sont précisement
celles qui sont les plus prés desn L?-norme.
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1. Introduction

A vector-valued function has @olar factorisation if it can be written as the
composition of itsmonotone rearrangemenivhich is equal almost everywhere to the
gradient of a convex function, with a measure-preserving mapping. This concept wa:
introduced by Brenier [2,3], and may be seen as the extension to vector-valued function
of an idea of Ryff [12], who showed that any real integrable function on a bounded
interval could be written as the composition of its increasing rearrangement with a
measure-preserving map.

Brenier proved existence and uniqueness of the monotone rearrangement on sufi
ciently regular domains, and existence and uniqueness of the polar factorisation subje
to a further “nondegeneracy” restriction on the function. The object of the present pape
is to investigate the consequences of relaxing his assumptions by studying integrabl
functions on general sets of finite Lebesgue measure. While the monotone rearrang
ment continues to exist and be unique, as proved by McCann [9], we give example:
where there is no polar factorisation (and show the general existence result by the at
thors [5] is in a sense sharp). We also give a class of examples where uniqueness falil
which shows that the sufficient condition for uniqueness given by [5] is in fact necessary.
Furthermore we show that Brenier’'s connection between the polar factorisatior.éf an
function u and the measure-preserving maps nearest fgersists in the more general
context.

In this paper, given an integrable functian X — R”, and a setr ¢ R" of finite
positive Lebesgue measure, we say thahas apolar factorisation throughY if
u =u"os, whereu” is equal to the gradient of a convex function almost everywherg in
ands: X — Y is a measure-preserving mapping. The restrictiorXds not severe; we
only require that(X, ) is a complete measure space with the same measure-theoretic
structure as an interval of lengtia(X) equipped with Lebesgue measure. (We give
precise definitions below.) The existing literature proves existence and uniquenéss of
as noted above, but it does not resolve fully the existence and uniquenes3refier
[3] proved existence and uniguenesssafnder anondegenerachypothesis on¢, and
subsequently Burton and Douglas [5] proved existence under a weaker hypothesis ¢
countable degeneragyhile giving an example of nonuniqueness. It was further shown
in [5] that if «* is almost injective(meaningu” is injective off a negligible set, which
would be implied by nondegeneracy 0f, thens exists and is unique, and the converse
result was conjectured. We prove this conjecture in Theorem 1. Our method of proof is
to establish that eithar” is almost injective, or that there exists a nontrivial measure-
preserving mapping:Y — Y such thau* o s = u”. In the latter case, nonuniqueness of
the polar factorisation, if one exists, follows easily. The core of our proof is to construct
measure-preserving maps leaving invariant a family of line segments; it is noteworthy
that in our context no Lipschitz condition is required on the directions of the lines. Our
arguments make use of methods developed by Larman [8], in his study of the endpoint
of the line-segments on a convex surface.

We remark that if some rearrangement wofis almost injective and has a polar
factorisation througly, then the polar factorisation afthroughY (exists and) is unique,
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as a consequence of Lemma 2. It is not however necessamyttobe almost injective
for u to have a unigue polar factorisation.

Having settled the question of uniqueness, we give the first result on nonexistence ¢
polar factorisations. Burton and Douglas [5, Theorem 1.10] proved that if the monotone
rearrangement” is almost injective off its level sets of positive measure, then every
rearrangement of »* has a polar factorisatiom = u* o s for some measure-preserving
mappings. We prove in Theorem 2 that this result is sharp in the sense thétsfnot
almost injective on the complement of its level sets of positive measure, then there exist
a rearrangemernt of »* such thati has no polar factorisation through This class of
counterexamples has the property that the functibase almost injective off their level
sets of positive measure.

Our third result concerns the connection between polar factorisation of a vector-valuec
functionu : X — R” throughY c R”", and theL?-projection (i.e., set of nearest points)
of u on the set of measure-preserving mappings fm> Y. Assumingu € L” and
idy € LY (wherep, g are conjugate), we prove in Theorem 3 that the set of maximisers
for the functional [, u(x) - s(x) among measure-preserving mappingsom X to Y
(which, if p =2, is equal to the set of minimisers fiju — s||,) comprises exactly
thoses (if any) which satisfyu = u* o 5. Brenier [3, Theorem 1.2(b)] had obtained
this result in his setting, of a sufficiently regular (e.g., smooth bounded) dorainrd
a nondegenerate function

Polar factorisations arise naturally in the Lagrangian formulation of the semi-
geostrophic equations, a model for weather frontogenesis. At each, tinesgeostrophic
transformationX(z, -), from which information about the physical quantities (veloc-
ity, temperature and pressure) of the system can be extracted, is equal to the gradie
of a convex function. Tracking nondifferentiabilities of these convex functions as time
evolves is thought of as weather fronts forming and moving. The flow is incompressible,
therefore the trajectory mapping (of the fluid particles) is measure-preserving. It follows
that at each time, the Lagrangian variablg(z, -) takes the form of a polar factorisation.
Numerical schemes (for calculating solutions) have exploited the characterisation of the
trajectory mapping in terms df2-projections. (See Benamou [1], Brenier [4].)

1.1. Definitions and notation

DEFINITION. —Let (X, u) and (Y, v) be finite positive measure spaces wittX) =
v(Y). Two vector-valued functiong € L*(X, u,R") and g € L*(Y,v,R") are re-
arrangementef each othefor equimeasurablédj

n(f1(B)) =v(g *(B)) foreveryB e B(R"),

where B(R") denotes the Borel field &”. Equivalent formulations can be found in
Douglas[6].

DEFINITIONS. — A measure-preserving mappifrgm a finite positive measure space
(X, u) to a positive measure spac&, v) with u(X) =v(Y) is a mappings: X — Y
such that for eaclv-measurable set C Y, u(s~1(A)) = v(A).

We will be considering the special case @, u) complete,Y ¢ R" andv being
n-dimensional Lebesgue measure. Thmeasurable sets will be the Borel-measurable



408 G.R. BURTON, R.J. DOUGLAS / Ann. I. H. Poincaré — AN 20 (2003) 405-418

sets; the same measure-preserving properties can then be deduced for the Lebesg
measurable sets.

Moreovers : X — Y is ameasure-preserving transformatibn

() s:X\L — Y\ M is a bijection, whereL and M are some sets of zero

(respectivelyu andv) measureand

(i) s ands—! are measure-preserving mappings.
A finite complete measure spaC¥g, ) is a measure-intervaf there exists a measure-
preserving transformation froniX, i) to [0, u(X)] with Lebesgue measui@n the
Lebesgue setsWe recall that any complete separable metric space, equipped with
a finite nonatomic Borel measure, is a measure interval.

Throughout this paper we will denotedimensional Lebesgue measure hy and
the extended real numbers, that is the®et {—oo, oo}, by R.

DEFINITION. —Let u € LY(X, u,R"), where (X, 1) is a measure-interval. Let
Lebesgue measurablec R” be such that.,(Y) = u(X). Themonotone rearrangement
of u onY is the unique function”: Y — R” that is a rearrangement of, and satisfies
u* = Vi almost everywhere ifi for some proper lower semicontinuous convex function
¥ :R" — R. (AR-valued function is callegroperif it is not identicallyoco, and nowhere
takes the value-cc0.)

The existence and uniqueness of the monotone rearrangement follows from th
main result of McCann [9]. It is unique in the sense thapifR” — R is another
convex function, andv¢ (as a function defined oif) is a rearrangement of, then
Vo(y) = Vi (y) for almost every € Y.

DEFINITION. —Let u € LY(X, u,R") where (X, ) is a measure-interval. Let
Lebesgue measurablE c R" be such thati,(Y) = w(X), and let u” denote the
monotone rearrangement afon Y. We sayu has apolar factorisation througly if
there exists a measure-preserving mappirigom (X, ) to (¥, A,) such thatu = u* o s
almost everywhere.

DEFINITION. —A mappings : X — Y, where(X, n) is a finite positive measure space,
is almost injectiveif there exists a seXo C X such thats restricted toXy is injective,
and 1 (X\Xo) =0.

1.2. Statements of results

Our main results are Theorems 1, 2 and 3 below, whose proofs are given in Sections :
3 and 4, respectively.

THEOREM 1. — Suppose that € L1(X, i, R") where(X, n) is a measure-interval.
Let Lebesgue measurabifec R” satisfyx, (Y) = u(X) and letu” denote the monotone
rearrangement of on Y. Thenu has a unique polar factorisation throughif and only
if u* is almost injective.

THEOREM 2. — Let integrableu”:Y — R" be the restriction of the gradient of
a proper lower semicontinuous convex function to a Bet R" of finite positive
Lebesgue measure, and suppose tiatestricted to the complement of its level sets
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of positive measure is not almost injective. [ &t 1) be a measure-interval satisfying
w(X) = A, (Y). Thenu* has a rearrangement : X — R” which does not have a polar
factorisation throughv'.

THEOREM 3. — Letl < p, g < oo be conjugate exponents, IeX, 1) be a measure
interval, letY c R" be a Lebesgue measurable set such fhaX) = A,(Y) (< 00),
and suppos€’ is bounded ifp =1, or [, |y|?dy < oo if p > 1. Let& denote the set
of all measure-preserving maps fromto Y. Letu € L?(X, u, R"), and letu” be the
monotone rearrangement afon Y, and write

I(s):= /u(x) s(x)du(x) forse@,

X

() = / W (y) - ydi,(y).

Y
Then

sup{1(s) |s € S} =J ),
ands e G satisfiesl (s) = J (u) if and only ifu = u” o s almost everywhere iX.
The following is an immediate consequence of Theorem 3:

COROLLARY 1.-Let the hypotheses of Theoré&rbe satisfied, withp = 2. Then
s € G is a nearest point o6 to u, relative to| - || (with the Euclidean norm oR"), if
and only ifu = u¥ o s almost everywhere iX. In particular, u has a polar factorisation
throughY if and only if there is a nearest point Gf to u.

Brenier introduced the optimisation problems of Theorem 3 and Corollary 1, and in [3,
Theorem 1.2] proved their equivalence to the polar factorisation problem assuming tha
u is nondegenerate (i.e., the inverse image of any set of zero measure has zero measul
and thatY is open, connected, and has smooth boundary; these assumptions ensure tt

the polar factorisation exists and is unique.
Corollary 1 implies in particular, that the?-projection ofu on & is a singleton set
if and only if «* is almost injective. Note that if is nondegenerate, therf is almost

injective, but the converse is false in general (see Burton and Douglas [5, Lemma 2.-

and Section 3]).

2. A nonuniquenessresult

Theorem 1 will be proved in this section. The key step is to show that either the

monotone rearrangement is almost injective, or there exists a nontrivial measure-
preserving mapping such that:* o s = u*; we give this result separately as Theorem 4.
Now if u has a polar factorisation and is not almost injective, nonuniqueness of the
polar factorisation follows easily.

Recall that thesffective domaimf a proper functiony : R" — R is the set{x € R" |
¥ (x) < oo}. We denote the subdifferential ¢f aty by av(y).
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THEOREM 4. — Lety :R" — R be a proper lower semicontinuous convex function
whose effective domain has nonempty intefibc R”". LetY C Q be a set of positive
Lebesgue measure, and suppageY — R is Lebesgue measurable and satisfies
u*(x) € 9y (x) for almost all x € Y. Then eitheru” is almost injective, or there
exists a nontriviali,-measure-preserving mag ¥ — Y such thatu” o s = u* almost
everywhere irt.

The construction of the nontrivial measure-preserving mapping of Theorem 4 is
achieved by using the following lemma to exploit a product structure; we prove the
existence of a section-preserving measure-preserving mapping which is almost nowhe
equal to the identity in a compact set, and leaves everything fixed outside this set.

LEMMA 1.-—LetT be a finite positive Borel measure on a metric spacdet v be
a Borel measure o x R satisfying

v(S)=/fd(F X )
S

wheref : X x RF — [0, co) is a bounded Borel measurable function, anddet X x R*
be a compact subset withA) > 0.
Then there is a-measure-preserving map. X x R¥ — X x R* such that
(i) T(x,y)# (x,y) for almost everyx, y) € A,
(i) T({x} xR*) C {x} x R¥forall x € X, and
(i) T(z)=zforall ze X x R\ A.

Proof. —By identifying X x R* with (X x R¥1) x R we see that it is sufficient to
consider the case= 1.
Forx € X let

Ax)={yeR|(x,y) €A}

and forx € X, y € R define

y
(p(xvy):/f(va)lA(x)(Z)dZ.

Then, forx € X, if A(x) # 0 then ¢(x,-) is a continuous increasing (i.e., non-
decreasing) map afi(x) onto [0, ¢(x, co)], and is measure-preserving relative to the
measure, with density f (x, -) on A(x), andi; on[0, ¢(x, o0)]. Now for (x, y) € A let

s(x,y) =min{r € A(x) | g(x,1) = p(x, 00) — p(x, y) },

which is well-defined by continuity ap(x, -) and compactness dof(x).

For eachx for which A(x) # @, s(x,-) is a continuous map ofi(x) into A(x);
moreover ifp(x, co) > 0 thens(x, -) is av,-preserving map ofd(x) into itself. Also
s(x, -) fixes only thosey satisfying 2(x, y) = ¢(x, o0), which form a set of zero,-
measure fol"-almost everyx. Definet: A — A by t(x, y) = (x, s(x, y)). Sincer is
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Borel measurable, we can now deduce thatt — A is v-measure-preserving and fixes
" x A;-almost no points oft. If we extend the definition by setting

T(x,y)=(@x,y) V(x,y)eXxR\A

then we obtain the desired map O
We establish some notation before proceeding with the proof of Theorem 4.

Notation — We denote byH* the k-dimensional Hausdorff measure, on any metric
space.dC and relintC will denote, respectively, the boundary and interior of a finite-
dimensional convex s&l relative to its affine hull.

We say that a measuge is absolutely continuous with respect to a measyrand
write u < v, if w(E) = 0 for everyv-measurable sdf for which v(E) = 0. We denote
the Radon—Nikodym derivative @f with respect ta by du/dv.

If K is a nonempty compact convex setRA, ¢ is an affine functional ofR” that is
nonconstant oK, ande > 0, we write

K(p,¢) = {x €K | ¢(x) > supg — e},
K

K@)={xeK|pw) =slgpw};

we call K (¢, ¢) acapon K.

Proof of Theorem 4. et G denote the graph an# the epigraph of}, let x (x) =
(x, ¥ (x)) for x € Q, m(x,a) = x for x € Q, « € R. We suppose that” is not almost
injective, and proceed to construct the required map— Y. We can choose a bounded
open convex se®’ with Q' C Q, such thati,(Q' N Y) > 0, and such that” is not
almost injective when restricted @' N Y. Henceforth we shall assunec </, since
any measure-preserving map fr&aN Y to itself can be extended to the wholeloby
defining it to be the identity oir\ Q'. By discarding a set of measure zero if necessary,
we can assum# is a Borel set and thaty (x) = {u”(x)} for everyx € Y. Notice that
x : Q' — R"1is Lipschitz, say with constant > 0.

We note that, for each, the union of the extreme faces @f having dimension at
leastk, is an F,-set (i.e., a countable union of closed sets) |y are two points of
Y for which x (x), x () lie on the same line segment @&, thenu®(x) = u”(y). If the
images underr of the line-segments iF covered,,-almost none of’, thenu* would
be almost injective. We may therefore assume, repla&ifgy a Borel subset having
positive measure if necessary, that every poin6f) lies on a line-segment .
Applying a result of Larman [8, Theorem 1] to the intersection&ofith large cubes,
we can prove that the union of the relative boundaries of all extreme facé&s abf
dimensions 1, ..., s a set of zerd{"-measure. Hence, passing to a subset of smaller
positivei,-measure if necessary, we may chobsé < k < n, such thaty (Y) is covered
by the relative interiors of the-dimensional extreme faces éf.

We may now choose am — k + 1)-dimensional linear subspace, of R"** parallel
to the x,,1-axis, and pointsuy, ..., w1 in general position iy C R” x {0}, such
that, writing A; = w; + Ap for i =1,...,k + 1, and writing F for the family of all
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extremek-faces of E whose relative interiors intersect all of;, ..., Ay 1 at points of
x (), F coversy (Y’) for some subset’ C Y having positiveH"-measure (countably
many such families of faces covgK(Y), so such a choice is possible). We may further
replaceY’ by a compact set with,(Y’) > 0.

We may assume the origin is located so that the centroid0f. ., w,,1 is 0. Let
M =sup, ¥ and let

E={x,0)€E|xeQ, a<M+1}

which is a convex body iR*™*!. Let K; = E'NA;, i =0,1,...,k + 1, and let
X ={FNAg| F € F}, which is a subset of the extreme pointsk§. Forx € X let
F(x) be the unique element ¢F that containsx, and letz;(x) = F(x) N A; € K; for
i=1,...,k+ 1. Let

E :{)‘:(A‘lv7)"k+l)€Rk+1|)\'l>ov7)\']<+l>0v)"l++)\'k+l:1}v
and forx €e X andA = (A1, ..., Ary1) € T let
T(x,X) =Xr1z2(x) + -+ + Agqaze41(x) € relint F(x).

Since relintF (x) Nrelint F (y) = @ for distinctx, y € X, it follows that T is injective.
The range off" is contained inG. Continuity of 7 is a consequence of thé(x), x € X,
being extreme faces.

Define the measurg on (Borel subsets offy’ := x (") by u(B) = A,,(;r(B)); then
w <K H" and’H" « p with y ™ < du/dH" < 1 almost everywhere. Ldt = I'"* be
the Borel measure on the extreme pointKgfdefined by Larman [8], that is

S :=lim inf Y H"*@OC;
(S) m{c_/}j; 3C;)

where the infimum is taken over all countable coVigrs}?Z, of S by caps onk having
diameter less thad. Clearly H"~*(S) < I'(S); Larman [8, Theorem 2] proved that
is a finite measure (which is nontrivial, but crucial to our argument). We will show
that the measure defined byv(B) = u (T (B)) is absolutely continuous with respect
to the product measure x A, on X x %, then apply Lemma 1 to construct a suitable
v-measure-preserving map ohx X. The proof of absolute continuity is achieved by
adapting an argument of Larman [8, Theorem 1].

As a preparatory step, consider a @pn Ko, sayC = Ko(p, ¢) wherep : R+ — R
is linear and nonconstant aky, ande > 0, and letU C T be a relatively open subset.
If x e CNXthenx = (k+1)"2(ze(x) + - - - + zx+1(x)), hence

() = (k+ 1 Ho(z2(x) + -+ @(zr1(x))),

from which we deduce that;(x) € C; .= K; (¢, (k+ De¢), i =1,...,k + 1. Choose
v; € Ki(p). Then, fori =1,...,k+1,we havgk+1)"*(v1+-- -+ g1 —v; +C;) C C,
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sSoC; C p;+(k+1)C wherep; = v; — (v1+---+wvp1) € v —Ag= A;. Soforx e CNX
and\ € X we have

T(x,A) €lCr+ -+ Aq1Chy1 CA1pr+ - + Agpaprs1r + (kK + DC.

ThusT(CNX)x U)C D+ (k+1)C,whereD ={Aip1+ -+ lyipis1 | A € U}
which lies in an affiné-space skew ta\¢ O (kK + 1)C.

Now T((C N X) x U) C E' N G. Moreover, a line parallel to the,,;-axis through
any pointg of T((C N X) x U) must intersecp + (k + 1)aC for somep € D; since
such a line intersects; in only the pointg, we conclude tha?' (C N X) x U) C
x (@ (D + (k+1)9C)). The mapy o has Lipschitz constant, so

H"(T((CNX) xU))<y"H" (D + (k+1)3C)
<y"p"H" (Do + (k +1)dC)
=y"p"(k + 1" *H (DoyH"*(3C)
<y"p "ok (k + )" Fa(UYH(C)

where Dg = {Aqw1 + -+ + Aawya | A € U}, p is the Lipschitz constant of the map
AW+ -+ AppaWiar > Apr + - -+ + Mg pra1 Of Dg onto D; andw is the Lipschitz
constant of the maQhy, ..., Ag1) > Aqwi+- - -+ Agp1wi1 Of T into Ag . In particular,
o < R/r wherer is the least distance of any; from the opposite face aby andR is
the diameter of’; it is important to notice that, R andw are independent of the choice
of C.

To provev < T" x A, let us first recall that the Carathéodory construction yields

Cxa(S)= inf > TWpa(U)) 6
JREIT i

where the infimum is taken over all countable cové¥s x U;}5, of the Borel setS by
measurable rectangles. Consider a rectadgleU whereZ ¢ X andU C X are Borel
sets. Then giverm > 0, for eachs > 0 we can choose a cové€;}°; of Z by caps on
K, of diameter less thafisuch that

[e.0]

Y H'THOC) <T(2) +&;
i=1

consequently,
VW(Z x U)=p(T(Z xU))
<SH'(T(Z x U))

SR/ (k+D" M (U)Y_H'*OC)
i=1

<L (U)(T(Z2) +¢)
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whereL = (yR/r)"o*(k + 1)"*, and therefore
v(Z xU) < LT (Z2) . (U).
Applying this result to (1) yields
v(8) < LI X A)(S)

and consequently < I x A, with dv/d(I" x A;) < L almost everywhere. We can
assumelv/d(T" x X;) is Borel-measurable and bounded.

Lemma 1 now enables us to construcv-aneasure-preserving map: X x ¥ —
X x X which satisfies

(i) (z) # z for almost every € T~1(x (Y")),

(i) t({x} x ¥) C {x} x = for eachx € X, and

(i) t(x)=zforallzeX x T\ T 1xY).

Defines:Y — Y by s:=moT ot o T~ 10 x. It is routine to verify thats is A,,-
measure-preserving. Moreover it follows from (i) thas nontrivial. It remains to show
thatu” o s = u®. Notice that, ifx € X thens(w (F(x)) C 7(F(x)) (by (i), and since, as
we observed at the beginning of the progf,is constant or¥’ N 7 (F(x)), we deduce
thatu” o s(y) = u®(y) for y € Y’ N (F(x)). Now for y € Y’, there existst € X such
thaty € 7 (F(x)). Henceu” o s = u” onY as required. O

Proof of Theorem 1. ¥ u* is almost injective, Burton and Douglas [5, Theorem 1.8]
yields thaty has a unique polar factorisation through

For the converse, suppose that L1(X, u, R") has a polar factorisation through
Y, u =u" oo say, whereos : X — Y is a measure-preserving mapping, but théis
not almost injective. Theorem 4 yields the existence of a nontrivial measure-preserving
mappings : Y — Y with u¥ o s = u”. Nowu*# o s 0o (x) = u* 0 o (x) = u(x) for u almost
everyx, ands o o IS a measure-preserving mapping which differs frenon a set of
positive measure. Thus the polar factorisatiom ¢firoughY is not unique. O

3. A nonexistence result

In this section we prove Theorem 2 which demonstrates nonexistence of a pola
factorisation for a class of functions. Burton and Douglas [5, Theorem 1.10] proved that
if u* is a monotone rearrangement which is almost injective on the complement of its
level sets of positive measure, then for any rearrangement”, a polar factorisation
exists. We show that this is the best general existence result that can be praveéd; if
does not have the above property, we can find a rearrangemeht* such that no
measure-preserving mappinguch that: = u* o s exists.

We establish two preliminary results. Firstly we prove that# v os for some almost
injective u and measure-preserving mappinghenwv is almost injective. Our second
result is that every integrablehas a rearrangemennthat is almost injective off its level
sets of positive measure. Then we apply these results to a monotone rearrangément
satisfying the hypotheses of Theorem 2 and show that it has a rearrangenaémbst
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injective off its level sets of positive measure, which does not have a polar factorisation.
Note that the two-dimensional example of [5, Section 3], given there as a monotone
function which has a nonunique factorisation, fits this framework.

The following lemma is of interest in its own right, as well as being integral to the
proof of Theorem 2. It may be applied to polar factorisations to obtain the following
generalisation of Theorem 1; an integrable functiohas a rearrangemeit wheres
is almost injective and has a polar factorisation throtglif and only if « has a unique
polar factorisation througli .

LEMMA 2.-Let X, u,u,Y be as in Theorem.. Suppose: is almost injective, and
thatu = vos for some integrable function: Y — R”, and measure-preserving mapping
s:X — Y. Thenv is almost injective.

Proof. —ChooseXy ¢ X such thatu(X\ Xg) =0, u(x) = v o s(x) for everyx € X,
and u restricted toXg is injective. Now forx,y € X such thats(x) = s(y), we
haveu(x) = v o s(x) = v o s(y) = u(y), from which it follows thatx = y. Moreover
[5, Lemma 2.5] yields thah, (s(Xg)) = A,(Y). Writing Yo = s(Xo), we have that
s Xo — Yy is bijective. Nowv(y) = u o s~1(y) for everyy e Yy; it follows that v is
injective onYy. O

LEMMA 3.-—Letv:Y — R”" be integrable, wher& c R" has finite positive Lebesgue
measure. Suppose&, u) is a measure-interval satisfying(X) = A,,(Y). Thenv has
a rearrangement: : X — R” that is almost injective on the complement of its level sets
of positive measure.

Proof. —Initially we restrict attention to finding:: Y — R”, a rearrangement af
that is almost injective on the complement of its level sets of positive measure. Let
Y; = v 1(a;) for i € I be the level sets o that have positive measure, whekds
a countable index set, and wril® = Y\ J,,; Y;. By adding and subtracting sets of
measure zero, we can suppasgds aG;-set (i.e., a countable intersection of open sets).
Define a Borel measurg on R" by u(B) = A,(v=1(B)) for Borel setsB ¢ R”. Now
{a; |1 € I} is the set of atoms qf. Let uo be the nonatomic part @f. Then(Yo, A,1y,)
and(R™\ {«; | i € I}, uo) are finite nonatomic Borel measures on separable completely
metrisable spaces with the same total measure; it follows that they are isomorphic by
for example, [11, p. 164, Proposition 33 and p. 409, Theorem 16]. Choose a measure
preserving bijectionig: Yo — R"\{e; | i € I}. Thenug is a rearrangement af = vly,
forif B C R" is a Borel set then

don (5 (B)) = po(B) = hn (v (B)).

Defineit = ugonYgandu = o; onY; foreachi € I. Theni : Y — R” is a rearrangement
of v having the desired properties.

Finally we note thatX, ©) and(Y, A,,) are isomorphic, so we can choose a measure-
preserving transformation: X — Y. Nowu : X — R” defined byu = i o 7 satisfies the
required conditions. O

Proof of Theorem 2. Write Y for the complement (with respect 1) of the level
sets of positive measure of, and writeu}, for u* restricted toY,. Applying Lemma 3
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to u*, we can choose a rearrangementX — R” that is almost injective on the
complement of its level sets of positive measure; denote thiXgeand writeuq for

u restricted toXo. We note that* is the monotone rearrangement:obn Y, ug the
monotone rearrangement @f on Y. Suppose that has a polar factorisation through
Y, u =u"os say, wheres: X — Y is a measure-preserving mapping. Modifyingn

a set of measure zero if necessary, we haye- u} o s wheres : Xo — Y, is measure-
preserving; notingso is almost injective, Lemma 2 yields thaf is almost injective,
which is a contradiction. O

4. Theprojection problem

Here we give the proof of Theorem 3, which is achieved by means of elementary
convex analysis. We first establish some notation.

Notation —If y:R" — R, then y*:R" — R denotes the (Legendre—Fenchel)
conjugate convex functioof v, defined by

Y () =sup{x-y -y () |yeR"}.

Proof of Theorem 3. et the proper lower semicontinuous convex functipnR” —
R be a potential fons”, and lety* be the conjugate ofy, which is also a proper
lower-semicontinuous convex function. Standard convex analysis (see for example [1C
Theorem 23.5]) gives

W (y) -y =9 (W) + ¥ () @)

for X,-almost everyy € Y. Sincey and y* are proper, lower semicontinuous and
convey, it follows that each is bounded below by an affine functional (see for example
Ekeland and Temam [7, Proposition 3.1, p. 14]); siff¢ey|di,(y) < co we now
deduce thatf, ¥ dx, and [, ¥* o u” dx, both exist inR U {co}. Thus we may integrate

(2) overY to obtain

() = / V() dy + / v (ut () dy. 3)
Y Y

Since J (u) is finite by Holder's inequality, we deduce that both integrals on the right-
hand side of (3) are finite.

Lets € G. The inequality betweefi(s) and J(x), and the condition for equality, are
obtained by making full use of the standard ideas in the polar factorisation literature, a
follows. Sincey o s is a rearrangement @f|y, andy* o u is a rearrangement @f* o
from (3) we now obtain

J(u):/W(s(x))dx—i—/l//*(u(x))dx. 4)
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We have

[ (560) + 9 @) ) -5(0) dx >0, (5)
X
because the integrand is everywhere nonnegative. From (4) and (5) we ddgduce
J(u).

An elements € G satisfies] (s) = J(u) if and only if equality holds in (5), which
occurs if and only ifyr(s(x)) + ¥*(u(x)) — u(x) - s(x) = 0 for almost everyx € X,
which occurs if and only ift(x) € 91 (s(x)) for almost everyc € X. ThusI(s) = J(u)
if and only if u = u¥ o s almost everywhere iX.

However in our situation the upper bouric) need not be attained, so it still remains
to prove thatJ(u) is approached arbitrarily closely. Let> 0, choose a patrtition
{Z,,};°_, of R" into countably many Borel sets of diameter less thamand for each
meN let X,, =u"%(Z,) and¥,, = (u¥)~1(Z,). Now choose a measure-preserving
bijections : X — Y such thats(X,,) = Y,, for eachm € N, which is possible sincg,,
andY,, are measure-intervals of equal measure (we afldavremain undefined on any
X,, that have zero measure). Theno s~ — u#| < ¢ almost everywhere iy, and we
deduce

Juw - swax= [uos ) ydy > [w'o)-ydy e [1vldy.
Y

X Y Y
thatis,I(s) > J(u) — ¢|lidy||;. Hence sug (&) = J(u). O
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