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ABSTRACT. - We consider the large time behaviour of solutions ot the
Korteweg-deVries-Burgers system of equations to obtain lower and upper
bounds for the rates of decay of the solution. These decay rates extend the
work of Amick et al. [ 1 ], where the scalar case was considered and that of
Zhang Linghai [8]. An important tool in the analysis is the so called Fourier
Splitting method developed by M. E. Schonbek for obtaining algebraic
upper bounds for the solution to the system of parabolic conservation laws.
This tool was later used to establish algebraic upper and lower bounds
for the Navier Stokes and Magneto Hydrodynamic equations. The lower
bounds show that in the far field the behaviour of the solutions to the KdVB
system and those of the heat system are very different. This behaviour is
believed to be due to the nonlinearity and not to the dispersive nature of
the equation, since such behaviour is also present in non-dispersive systems
like the Navier-Stokes and the Magneto-Hydrodynamic equations.
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RÉSUMÉ. - Dans ce travail nous obtenons des bornes superieures et
inferieures pour le taux de decroissance des solutions du systeme de
Korteweg-deVries-Burger. Ce travail prolonge celui de Amick et al. [1]
dans lequel le cas scalaire est considere, ainsi que le travail de Zhang
Linghai. La technique qui est fondamentale pour les resultats que nous
obtenons est le « Fourier splitting ». Cette methode a ete developpee par
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M. E. Schonbek pour obtenir des bornes superieures algebriques pour un
systeme de lois paraboliques de conservation. Elle a ete utilisee ensuite pour
etablir les bornes algebriques superieures et inferieures pour les solutions
des equations de Navier-Stokes et de Magneto-Hydrodynamique. La borne
inferieure montre que pour t tendant vers l’infini, le comportement des
solutions pour les systemes de Korteweg-deVries-Burger et le comportement
des solutions de 1’ equation de la chaleur sont differents : ce comportement
proviendrait des termes non lineaires et non de la nature dispersive du
systeme car il est aussi present dans des systemes non dispersifs comme les
equations de Navier-Stokes et les equations de Magneto-Hydrodynamique.

1. INTRODUCTION

In this work we study the asymptotic behaviour of solutions to the

Korteweg-deVries-Burgers system (henceforth referred to as the KdVB

system), in n-space dimensions. This equation can be expressed in the form

where x = (xl, x2, ..., (x, t) = (Ul (x, t), ..., Un (x, t)) is
the n-dimensional vector valued function, ~ (U) is a scalar function of the
vector variable U which satisfies certain growth conditions which will be
specified below. The gradient operator with respect to U is denoted by the

n 

ak
symbol "grad", 8k = , 6 = 81 and p, n are integers greater than

i=1 

or equal to 1 and cx > 0, 03B2 are constants and 2 p > n > 1. Note that we
can without loss of generality, choose ,~ equal to zero. This is possible by
a change of coordinates, from a stationary to a moving frame of reference,
which enables us to absorb the term ,~b U into the term Ut . Moreover, we
can for simplicity assume a = 1. Thus we consider the system 1 which
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427SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGER EQUATION

can be rewritten as,

In one dimension, the equation reduces to the generalized KdVB equation.
When the nonlinearity is given by UUx, Amick et al. [1] have obtained
sharp rates of decay for the solutions to the KdVB equation. For the
scalar case, Zhang Linghai has also obtained decay rates in L2 n Loo
for a class of equations more general than the KdVB equation; e.g. the

Benjamin-Ono-Burgers equation.
In higher dimensions, existence results have been obtained by Zhang [8]

following the lines of the proof of [7] for the generalized K-dV equation.
Moreover, he obtains rates of decay for the L2- and L~-norms of the
solution as t --i oo.

In this work, we first obtain decay rates on the H’n-norm and by an
application of standard Sobolev inequalities obtain the L~-decay rate. In
addition, lower bounds on the energy decay rates of the solutions are also
obtained. It is shown that for a certain class of the initial data, the solution
U (x, t) to the KdVB system admits an algebraic lower bound on the
energy decay. Two distinct cases have to be considered. First, when the
average of the initial data is non-zero and second, when the average equals
zero. In the first case, it can be shown that

where a == !!... In the second case, if the average is zero, that is the Fourier
transform at the origin is zero, two cases are considered. If the zero is of
order one, and the data Uo lies in Li as well as in suitably weighted
LS spaces, with s = 1, 2; then the lower bound is of the form

where a 1 = n + 1 and C depends on the initial data and certain initial
parameters. If the zero is of order greater than one, the data lies outside a set
of equidistributed energy and the nonlinear function &#x26; lies in a large class
of polynomias, then the lower bound is again of order al. It is this second
case which is the more subtle one and which shows the differences between
the behaviour of solutions to the KdVB and heat systems in the far field.
This explains our interest in studying the lower bound of rates of decay.

This difference in the behaviour of the KdVB and the heat system shows
that the nonlinear term produces some mixing of the Fourier modes creating
Vol. 12, n° 4-1995.
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long waves even when the initial data is highly oscillaroty. More precisely
if the initial data for the heat system is highly oscillaroty the solution
will have an exponential rate of decay. Moreover, depending on the data
chosen for the heat equation the decay in the energy norm can vary from
order (t + 1 ) - 4 (when no oscillations are present at the origin in Fourier
space), to all possible algebraic orders up to exponential decay, depending
on how oscillatory the data is. We restrict attention to the case where the
nonlinearity is polynomial. By obtaining an algebraic lower bound for the
solutions of the KdVB system we show that long wages are produced
which slow down the decay. We believe that his phenomenon is due to
the nonlinear term and not due to the dispersive term, since this behaviour
is also present in non-dispersive systems like the Navier-Stokes and the
Magneto-Hydrodynamic equations [4], [5].

The method used here is based on the Fourier Splitting technique,
developed by Schonbek [2], to obtain upper bounds for solutions to

the Navier-Stokes equation and parabolic conservation laws as well as

for obtaining lower bounds on the solution to the Navier-Stokes and

Magneto-Hydrodynamics equations.

The paper is organized as follows. In section 2, we briefly review the
notational conventions. Section 3 deals with obtaining the Hm decay rates
of the solution of the KdVB system. By a simple corollary using Sobolev
inequalities the L~ decay rate follows. This rate coincides with the one
obtained by Zhang [8]. For the sake of completeness, we present some
results for the heat equation in section 4. In section 5, upper bounds for
the difference of the solution to the heat system and the KdVB system are

obtained, when both solutions correspond to the same initial data. Finally the
lower bounds for the solution to the KdVB system are derived in section 6.

2. NOTATION

The notation that we use is mostly standard. For the sake of completeness,
it is briefly reviewed here. For 1  p  oo we denote by Lp = Lp (jRn) the
Banach space of measurable real-valued functions defined on I~n which are

pth power Lebesgue integrable. (essentially bounded in the case p = oo ) .
The usual norm on the space is denoted by I . Ip. For non-negative integers
s, Hs = Hs (jRn) is the Sobolev space of functions in L2 whose generalized
derivatives up to order s also belong to L2. The space is equipped with
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the norm,

Of course H° = L2 and the = ~~ ’ ~~o will be denoted by the
symbol I . ~2. We also define a norm on HS, equivalent to the usual one by,

where the are positive constants that depend only on r, s and ,~3.
The space C’’ (Rn, R) is the space of all continuous functions from

R which are r times differentiable with continuous derivatives. In

addition we also define some weighted spaces as follows.

and

The spaces are equipped with the norms

respectively.

The Fourier transform of a function f (x) is denoted by F ( f (~)) and
is given by

The notation D{3 denotes the derivative of order f3 where f3 is a multi-index
i. e. , if

then

Vol. 12, nO 4-1995.
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3. BOUNDS ON THE Hm AND L~-NORM OF THE SOLUTION

Equation (1) has been studied by Zhang [8] to obtain results on the
existence of weak solutions under the hypothesis that the nonlinearity
(defined by ~) satisfies the following growth conditions.

In addition, Zhang uses estimates on the L2- and the Hs-norms of the
solution to show that if Uo E Li n the weak solution is a strong
solution. In the present work, we further restrict ~ to satisfy the condition

where m ~ are real scalars and 3  
4~ 

+ 2 - q, with p > 1. The
n

case when 1~2 = 0, 1, 2 corresponds to the linear equation and will not be
considered for the lower bounds. Hence it also follows that,

for all U E and i, j = 1, 2, ..., n. Zhang has shown (cf Theorem 6
in [8]) that if Uo E Li n ~I~+l; ~ (U) E C3 and satisfies (5), the
following decay properties hold for the solution to the KdVB system:
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Here we first obtain the decay rate for the Hs-norm of the solution. Then,
making use of standard Sobolev inequalities, the decay rate obtained in [8]
for the L~-norm follows.

THEOREM 3.1. - If 03A6 (U) E R) and satisfies equation (5) with
Uo E Ll n (~n), then the solution U to the KdVB system with initial
data Uo is such that,

Moreover, if m > 2 then,

where the constant C depends only on n, m and Uo.

Proof. - To obtain decay rates for the Hs-norm of the solution of
the KdVB system, we use induction. We begin by giving an equivalent
definition for the HS -norm. Define,

where the are positive constants depending on r, s, ,~ and 
which will be determined below. We will show by induction that

and

For I s ] = 0 inequality (8) follows by multiplying the equation by U and
integrating in space and inequality (9) reduces with ko,o = 1 to

Vol. 12, n ° 4-1995.
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a result obtained in [8]. For the sake of completeness, we give a sketch of
the proof here. Multiply equation (2) by U and integrate over space to get,

On simplification, we have,

By Plancherel’s theorem the equality can be rewritten as

Using the Fourier Splitting technique introduced by Schonbek [2], the
Fourier space is divided into two time dependent disjoint sets A (t) and
A (t)‘, where

Inequality (12) can then be rewritten as,

Hence it follows that,

Moreover, it has been shown in [8] that if Uo E Li n then
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Equation (15) together with this time independent bound for the Fourier
transform yields,

where denotes the volume of the n-dimensional unit sphere. Integrating
(17) over the interval [0, t] inequality (10) follows. This proves the estimate
in the case I s ] = 0.

Define,

By the induction hypothesis, it follows that,

and

Hence, for an appropriate choice of constants kr, s, it is necessary to show
that

which would prove the desired result. Multiply equation (2) by D2f3 U and
integrate over space. This yields,

Vol. 12, nO 4-1995.
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Note that the third term on the left-hand side integrates to zero. Using the
definition of 03A6 given by (4) and hence determining the growth condition
on grad the second term on the right-hand side of (19) can be bounded
above by

4p 4~where l~i  - -~ 2 - q. Thus it follows that 2  I~ = 1  - -f- l.n - 

n
Combining this bound with equation ( 19) yields,

In the second step we have made use of Schwartz’s inequality, and in the
last step we use the fact that if s > k we have
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and if s  1~

and that j  s and a, r  s . In addition, by the induction hypothesis,
since derivatives up to order s - 1 are bounded in L2, the last inequality
in (20) follows by using a simple interpolation inequality and Co denotes
a constant depending on 03A6 and the Loo-norms of U and its derivatives up
to order 03B2 - n . Hence inequality (20) yields,

Summing over all ,~ such that ] = s leads to

By the inductive hypothesis,

Vol. 12, n ° 4-1995.
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Let ms-l = C kr, s-1 r  s -1. Choose = ms-1 (2 CS G’1)-1. Adding
together inequalities (23) and (22) times we get,

where KS = and is proportional to Let
= ~r, S-1 /2, = and = This establishes the

inequality

If ] = 0 (24) reduces to obtaining the L2-rate of decay for U, which
has been established in (10). Suppose that the decay rate has been obtained
for /3 with 0  ~ ,~ ~ ]  s. Let ] = s. Taking the Fourier transform of
inequality (24) we obtain,
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Repeating the same argument in (25) as that used in obtaining (17), we have,

where A (t) is as defined earlier in (13). Hence, if KS = max kr, s

By the inductive hypothesis for ]  s,

Using this in (26) we obtain,

Integrating this last expression over the interval [0, t] yields

Vol. 12, nO 4-1995.
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which proves the claim. The bounds for the Loo-norm of U follow from
inequality (27) and Sobolev’s inequality. Hence we obtain,

which in turn yields,

4. PRELIMINARY ESTIMATES

In this section we begin with some preliminary estimates for the heat
system. If V (x, t) is the solution to the homogeneous heat system, i. e.,
V satisfies

Then we have the following

THEOREM 4.1. - Let Uo E Li n L2 (R") n Ral for some 03B1, 81 > 0, where

Then

Proof - See Schonbek [3].
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THEOREM 4.2. - Let V be a solution to the heat system with data Uo.
Suppose that

Then,

Proof. - Let V (t) ~2  C (t + 1)-P then it follows that

PROPOSITION 4.3. - Let Yo E HS n L1. This implies that if V is a solution
to the heat system with data Yo then

Proof - The proof is standard and we inclue it for completeness. The
s-derivatives of the solution to the heat equation can be explictly given by

Vol. 12, nO 4-1995.
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Hence

which completes the proof of the proposition.
COROLLARY 4.4. - C (t + 1)-P, then

5. UPPER BOUNDS FOR THE DIFFERENCE

In this section we discuss bounds for the difference of the solution to the
KdVB system and that of the heat system corresponding to the same initial
data. There are several ways to approach this problem. Our approach, will
be the Fourier splitting method ([3], [4]).
We first consider the case when the average of U is non-zero. That is,

we have Uo 0. Let jRi be a set defined by

This implies that U E RX where is defined by

We now obtain upper bounds for the solution to the KdVB system. But
first, we need the following result.
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THEOREM 5.1. - Let the initial data Uo be such that Uo E Ll n Rl n 
Then there exists an upper bound for the difference between the solutions
to the KdVB system and the heat system, both corresponding to the same
initial data Uo. Thus if p > 1 and if W = U - V where U is the solution to
the KdVB system and V that to the heat system, then W satisfies,

Proof. - We consider the difference W = U - V, where U is the solution
to the KdVB system, and V that of the heat system, both corresponding to
the same initial data Uo. Then W satisfies the equation

Multiply equation (32) by Wand integrate over space. Noting that

J U 882p U = 0 and J U 6 grad I> (U) = 0, we obtain

Using Plancherel’s theorem the above inequality can be written in the form,
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Using the Fourier Splitting method, with

with ’1 sufficiently large, equation (34) can be rewritten as,

Hence, this can be simplified to yield,

Further simplification yields,
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Using the bounds obtained in (30) and (31) for the solution of the heat
equation and the growth condition for 03A6 expressed in (5), we obtain,

supposing first that p > 1 then 03B32 = 1 - (n 2+p+1 2 ). We now
need to estimate ] on the set S (t). Taking the Fourier transform of
(32) we have,

Hence, it follows that

If v denotes the minimum power of Ui in the definition of 03A6 then,

Since | is bounded by a constant depending only on the initial data and

Since I E S (t), |03BE| I  (n (t + 1) J 1 2. Moreover, with p > 1 and n > 2

it follows that

Vol. 12, n° 4-1995.
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Thus,

Substituting (38) into (35) and simplifying the result we obtain

since ~yl > 72. Integrating over the interval [0, t] yields,

or equivalently,

This proves the theorem.

6. LOWER BOUNDS

In obtaining the lower bounds for the solution to the KdVB system, two
cases have to be considered. In the first case the mean of the initial data is

different from zero, that is long waves are present. In this case the lower
bound for the decay rate for the solution to the heat system is (t + 1 ) - 2 .
Hence from the previous section we note that as a consequence of the upper
bounds for the difference of solutions to the heat equation and the KdVB

system, which is of order (t ~--1 ) - ( 2 +1 ) when p > 1, the lower bounds for
the solution to the KdVB system follow easily. That is since

it follows that,
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The second case to be considered is when the mean of the initial data

equals zero. In Fourier space this is equivalent to the statement that the
Fourier transform of the initial data has a zero at the origin. The bounds
that are obtained in this case for the solution to the heat system depend
on the order of the zero. We will show that outside of a class of data to
be defined below the solution to the KdVB system will have a uniform
rate of decay of order n + 1, showing that in the far-field the behaviour
of the solutions to the Heat system and that to the KdVB system are very
different, i.e., long waves can be created for such systems, a phenomenon
which is absent in the Heat system. Before we begin estimates for the
lower bound, some preliminary results are needed. We begin by stating the
following result, proved by Schonbek [4].

THEOREM 6.1. - Let vo E L2 (Rn). Let V be a solution to the heat system
with initial data Vo. Suppose that there exists functions l and h such that the
Fourier transform of ~o admits,  sl with sl > 0 the representation

where I and h satisfy the following conditions:

(i) |h(03BE)| ~ M0 |03BE|2, for some Mo > 0.

(ii) l is homogeneous of degree zero.

-. _ .-

Ml , M2 ) . Then there exist constants Co and Cl such that

where Co and Cl both depend on n, Mo, Ml , bl and |V0| ( 2 and Co also
depends on K and 03B11. Note that condition (iii) is not necessary for the
upper bound of Y (., t) ( 2 .

Proof - See Schonbek [4].
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Let

It the Fourier transform of the initial data has a zero of order one and

Uo E Wl then, this implies that either Uo ¢ MR and Uo ¢ 

THEOREM 6.2. - Let Uo E Wl f1 Ll n Hp+1. Suppose that J Uo dx = 0
and Uo has a zero of order one. Let p > 1 and let U be a solution to the
KdVB system with data Uo. Suppose that

. 

(i) Uo ~ or

(ii) For some l~,

Then there exist constants Cl and C2 such that

for all t > 0 where V is the solution to the heat equation with data Uo and
there exist constants Kl and .K2 such that

where Ci, C2, Ki , K2 depend only on the norms of the data.

Proof. - We first need to explain our hypotheses. They ensure that long
waves persits, i.e., we associate long waves with the terms of order one
in the Fourier expansion. Note that

If we choose data which satisfies A or B below, then the first order terms
in the Taylor expansion of the Fourier transform persits, i. e. , long waves
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will persist. Since the hypotheses are such that !7o (~) has a zero of order
one, we need that

Note that the following conditions on the data and on the function ~ ensure
that (40) holds.

We begin by considering the KsVB system. The nonlinear term

6 grad 03A6 (U) is such that

We introduce the notation

Hence we have

Taking the Fourier transform of the KdVB system we arrive at,

Treating this as an ordinary differential equation for U and writing down
the formal solution we obtain for each component, the equation

where,

This enables us to rewrite it in the form,

Vol. 12, n ° 4-1995.
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which implies that

where

and

By the hypothesis on the form of 8 grad 03A6 it follows that,

Let a? = ai (0, t). Then ai can be represented as

In the appendix (Theorem Al) we show that for ~ ~ ~  !)i

where C (t) denotes a constant independent of ç but which depends on
I 9 z ~ ~ 9 ~ 81 and t. Therefore it is possible to write Hk as

This yields

where
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Hence it follows that

with

and

where

To apply Theorem 6.1 we need a lower bound for ak, for at least one
l~, where

and

Conditions (i), (ii) ensure that there exists a sequence --~ oo such that

(making use of the notation introduced above), for some ço

where Lk (tn) = Re V U (0) + i (Pk - (0)) and for some ço

with a given by a = max ( |Re (0) |, |Pk - Im  (0) |}, that is a
is independent of tn . Moreover, ~o can be chosen to be of the form

for j = k so that (40) holds.

Vol. 12, nO 4-1995.
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A) and B) above show that the class of data producing solutions which
satisfy (42) and (43) is large. Moreover, note that there exists N (ço)
independent of tn such that ~ ~ Lk (t~) > 2 for £ E N (ço) n This

can be shown as follows. First we show that for k - 1 > 2, ILk (t) ]  C,
which follows since,

Let

and it follows that ] £ ( = 1 and ~-~o ~ ]  ~ = 2 n - 1 ~. This implies that

Note that if Re 0 ~ 0 then it follows that

Also note that,

where cvn denotes the volume of the unit sphere. By the above remarks

for T = tn and ~~ L (~, T) ] > Co for all n. Recall that for t > bo, (see
Theorem 6.1) 80 = ( bo ( a 1 ( tn ) ) ) where 8 is defined by the requirement
that 4 03B4 M0 M1 ~ 03B11, since we can clearly choose 81  for all n

by letting 4 bl Mo Mi = p. (see Schonbek [4].) Then V (x, t) the solution
to the heat system with data Uo satisfies

for t > tk, with xP - 03B103C9n e-1 2(n+2) (cf Schonbek [4]), which, by the

computations above is independent of tk.
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Let v be the solution to the heat system with initial data v (x, 0) =
U (x, Ti) such that K ( 1 + Tl ) -e  x’° wo, where K = Ki K2n K3
and xP is as above. The constants K2 and K3 are defined as below.

and wo denotes the surface area of and

Thus by Theorem 6.1 it follows that for t > 81 = 61 (p)

where Ko depends on the L2 norm of Uo and xP depens on ,~ and Co. 80
is independent of Ti since 6 dpends on p by the uniformity condition (44).

Let .

The difference w = v - u is now studied. The decay rates for the KdVB
system will imply that w (~, t) ~  C (t + 1)-~ 2 +1) with C sufficiently
small. W satisfies an inhomogeneous heat system. The Fourier splitting
method will yield

The second and third terms on the right-hand side of the above inequality
will be of higher order and will as such be easily bounded as follows:

Vol. 12, nO 4-1995.
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where 7i = ~ + p + ~ = 72. In obtaining these bounds we make use
of the bounds on the derivatives of the solution to the heat equation and
the L~ and L2 bounds for the solution to the KdVB system. To bound
the first term on the right-hand side of (46) the Fourier transform of the
inhomogeneous heat equation yields

As before, in (37)

Let v = min power of Ui in 03A6 ( U ) . Therefore,
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where 9 = p + n - 1 . Since n > 2 and p > 1 we have
9 > 0. Here we have made use of the fact that the L~-norm of the solution
to the KdVB system decays at the rate of (1 + t) - n 4 .
Thus we have,

where Ci = Ci (Ti) = and C2 = CK*. Note that Ti can

be chosen as large as needed since Xp is independent of Tl. Using the
definition of the set S (t), this implies that

Hence the first term on the right-hand side of (46) can be bounded as
follows.

The last inequality follows from the choice of Ti. Combining this last
estimate with (46) and (47) yields

Integrating over the interval ~61 (p), t] gives

Vol. 12, nO 4-1995.
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Note that

Hence, it follows that

for t large enough, where ~ is defined by

The rest of the terms are of higher order since 2 p > n n ~-1  n -I- p + ~
and n 2 + 1  2 n + 2 p - 1. That is for t > Tl 

’2 2 
p 

2

and T2 is such that

Hence, for t > T3 = Ti + T2

For t  T3 the decay of energy of U yields

and the result follows. This completes the proof.
THEOREM 6.3. - Let Uo E Ll n n MI n Let U be a solution

of the KdVB system with data Uo where Uo is such that J Uo = 0 and
Uo has a zero of order > l. If 0 for some k then, there exists
constants Kl , K2 such that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



455SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGER EQUATION

where Kl , K2 depend only on the norms of the data.

Proof. - The proof is similar to the case when the data is of order one.
Note that if Uo E MI n we only need

Then, 0. As in the proof of Theorem 6.6, there exists a sequence
of tn such that

This implies the uniform condition for the lower bounds,

for some ~o, and the proof now is a repetition of the proof of Theorem 6.2.

7. APPENDIX

THEOREM Al. - Let Uo E n W2. Then if U is the solution to the
KdVB system with data Uo then,

where C (t) depends only on the norm of Uo in the spaces and W2.

Proof. - By definition,

and

We carry out the analysis of one term of the sum. Note that k > 2 since
otherwise the equation is linear. Thus, for k > 2

Vol. 12, nO 4-1995.
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When kj 
_ 

> 2 it suffices to bound J We have,

Note that

and

Hence it follows that
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and we can conclude that

where s, j  2 p + 1. Finally,

Combining these estimates in (48) we obtain

Integrating this with respect to time the desired result follows.
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