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ABSTRACT. - In this paper we study the global existence and asymptotic
behavior of solutions for the Cauchy problem of the Klein-Gordon-Zakharov
equations in three space dimensions. We prove that for small initial data,
there exist the unique global solutions of the Klein-Gordon-Zakharov

equations. We also show that these solutions approach asymptotically the
free solutions as t -~ oo. Our proof is based on the method of normal
forms introduced by Shatah [ 12], which transforms the original system with
quadratic nonlinearity into a new system with cubic nonlinearity.

Dans cet article, nous etudions l’existence globale et le

comportement asymptotique de solutions pour le probleme de Cauchy des
equations de Klein-Gordon-Zakharov en trois dimensions. Nous montrons
que pour des petites donnees initiales, il existe les solutions globales
uniques des equations de Klein-Gordon-Zakharov. Nous montrons aussi
que ces solutions approchent des solutions libres asymptotiquement lorsque
t ~ oo. Notre preuve est basee sur la methode de formes normales introduite

par Shatah [12], qui transforme le systeme original avec non-linearite

quadratique en un systeme neuf avec non-linearite cubique.
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1. INTRODUCTION AND MAIN RESULTS

In the present paper we consider the Cauchy problem of the Klein-
Gordon-Zakharov equations in three space dimensions:

where at = and u(t, x) and n(t, x) are functions from R+ x R3 to C3
and from R+ x R3 to R, respectively. The system (1.1)-(1.2) describes the
propagation of strong turbulence of the Langmuir wave in a high frequency
plasma (see [15]). The usual Zakharov system

is derived from ( 1.1 )-( 1.2) through the physical approximation procedure.
In the present paper we consider solving ( 1.1 )-( 1.3) around the zero

solutions. There are many papers concerning the global existence of small
solutions for the coupled systems of the Klein-Gordon and wave equations
with quadratic nonlinearity (see, e.g., [1], [5]-[7], [9], [10], [12] and [13]).
The methods to solve those systems can be classified into two groups (for
a good review of this matter, see Strauss [14]). One is to use the Sobolev

space with weight related to the generators of the Lorentz group. This was

developed by Klainerman [9] and [10]. The combination of this method
and the null condition technique has produced several nice applications
to the hyperbolic systems of physical importance (see, e.g., Bachelot [1] ]
and Georgiev [6]). However, this method does not seem to be directly
applicable to ( 1.1 )-( 1.3). In fact, since the system ( 1.1 )-( 1.2) consists of
the Klein-Gordon and wave equations with quadratic nonlinearity in three

space dimensions, we need to use not only the Sobolev norms with weights
related to the generators of the Lorentz group but also the null condition

technique (see, e.g., Georgiev [5] and [6]). But the nonlinear terms in (1.1)
and (1.2) do not seem to satisfy the null condition as they are. Another
method is based on the theory of normal forms introduced by Shatah [12],
which is an extension of Poincare’s theory of normal forms to the partial
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differential equations. See also [16] and its references. In this paper we
apply the argument of normal form to ( 1.1 )-( 1.2) and prove the global
existence of solutions to ( 1.1 )-( 1.3) for small initial data. We also show
that these global solutions to ( 1.1 )-( 1.3) with small initial data approach the
free solutions asymptotically as t -~ +0oo.

Before we state the main results in this paper, we give several notations.
For 1  p  oo and a nonnegative integer m, let LP and denote the

standard LP and Sobolev spaces on R3, respectively. We put Hm = 
For a positive integer m, we denote the dual space of H’n by H-m. For
s E R and 1  p  oo, we let be the completion of all functions v E S
with 0 ft supp v with respect to the semi-norm - 

where S is the Schwartz space on R~ and v denotes the Fourier transform
of v. We write H~ = iIs,2. We put w = (1 - Q)1~2 and wo = (-Q)1~2.
We have the following theorem concerning the global existence and

asymptotic behavior of solutions to ( 1.1 )-( 1.3) for small initial data.

THEOREM 1.1. - Let 0  ~  10-2. Assume that uo E H52 n W29,6/(5-~2E)~
2~1 E H51 n W28~6~~5+2~~, no E H51 n ~.28,220/217 ~ and nl E
H50 n W27,220/217 n ~-2. Then, there exists a b > 0 such that if

(1.1)-(1.3) have the unique global solutions (u, n) satisfying

Vol. 12, nO 4-1995.
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where b depends only on ~. Furthermore, the above solutions (u, n) of
( 1.1 )-( 1.3) have the free profiles u+o E H~2, u+1 E n+o E H51 and

n+1 E H5° such that

where

Remark 1.1. - (1) For sl > s2 > 0, LP i and

C H-s~ ~p. In three space dimensions, S C but S ~ 
where S is the Schwartz space on R~. For the details of the homogeneous
Sobolev space see [2, ~6.3 in Chapter 6]. But note that the definition
of in the present paper is slightly different from the one in [2, §6.3],
where Hs’p is defined as the set of all tempered distributions v such
that ( - 0 ) S~ 2 v E LP. In the general N space dimension case, if we take
v E modulo monomials of degree larger than [s - N/p] in the
definition of [2, §6.3], then the definition in [2, §6.3] is identical to that

in the present paper (see [2, Excercise 12 in §6.8]). Here [s - N/p] is the
largest integer that is not larger than s - N/ p and if [s - N/p] is negative,
we take zero as a monomial of order [s - N/p].

(2) u+ (t) and n+ (t) are the solutions of the free Klein-Gordon equation
and the free wave equation with the initial conditions (u+ (0), c~tu+ (0~) _
(u+o, and (n+ (0), c~tn+ (0)) _ (n+o, n~l ), respectively. The relation
(1.11) implies that the solutions of (1.1)-(1.3) given by Theorem 1.1 behave
like the free solutions as t --~ oo.

(3) In fact, our proof of Theorem 1.1 (or Corollary 1.2 below) will work
well, even if we do not assume that no and ni are real-valued. However,
this assumption will be often used in the proof, because it will make

the proof slightly simpler. If no and nl are real-valued, then n(t, x) is a

real-valued function. This fact follows immediately from the uniqueness
of solutions of (1.1)-(1.3).

(4) In connection with the usual Zakharov system (1.4)-(1.5) for three

space dimensions, it is conjectured that if the initial data are large, the
solutions of ( 1.1 )-( 1.3) may not necessarily exist globally in time.
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(5) In the case of one or two space dimensions, the global existence
result for small initial data can be proved more easily than the case of three
space dimensions. We do not need the time decay estimates to show the
global existence of solutions in the one and two dimensional cases. For the
details, see Theorem 2.7 in Section 2.
The following corollary is an immediate consequence of Theorem 1.1.

COROLLARY 1.2. - Let 0  6- ~ 10-2 and let m be a positive integer with
m > 52. Assume that Uo E n W29,6/(5+2~), u1 ~ Hm-1 ~ W28,6/(5+2~),
no E n W 28,220/217 n ~-1~ nl E n ~T27,220/217 n and

(uo, satisfy (1.6). Then, the solutions (u, n) given by Theorem l.l
satisfy

In addition, if uo, u1, no, nl E then we have

The unique existence and the regularity of local solutions for ( 1.1 )-( 1.3)
follows from the standard iteration argument. The crucial part of proofs
of Theorem 1.1 and Corollary 1.2 is to establish the a priori estimates of
the solutions for ( 1.1 )-( 1.3) in order to extend the local solutions globally
in time. The global behavior of local solutions for ( 1.1 )-( 1.3) can not
be controlled directly, since the quadratic nonlinear term in (1.1) does
not provide a sufficient decay property for the three dimensional case.
Here we use the argument of normal forms of Shatah [12] to transform
the quadratic nonlinearity into the cubic one. However, in our problem
the transformed cubic nonlinearity is represented in terms of the integral
operator with singular kernel. The singularity of the integral kernel makes
it difficult to solve ( 1.1 )-( 1.3). This is different from the case of the system
containing only the Klein-Gordon equations, where the integral kernels of
the resulting integral operators are regular (see [12]). Therefore, our main
task in the proof of Theorem 1.1 is to evaluate the singularity of the integral
kernel of the transformed cubic nonlinearity. This enables us to apply the
usual LP - Lq estimate to the transformed system, which provides us with
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the sufficient decay properties of solutions to ( 1.1 )-( 1.3) for the proof of
Theorem 1.1.

Our plan in the present paper is as follows. In Section 2 we prepare
several preliminary results needed for the proofs of Theorem 1.1 and

Corollary 1.2. We also state the global existence results for the cases of
one and two space dimensions at the end of Section 2. In Section 3 we
describe the proofs of Theorem 1.1 and Corollary 1.2.
We conclude this section by giving several notations. For s E R and

1  p  oo, we define by (1 - 0)~s~2~~°. For p, q E RN,
N

we put p . q For f E S(RN), we define the Fourier transform
j=i

f and the inverse Fourier transform / of f by

We also denote the Fourier transform and the inverse Fourier transform of

f by .~(f~(~) and respectively. We put (p) _ (1 + ~p~2)1~2 for
p E RN. For s E R, let [s] be the largest integer that is not larger than s.
For a multi-index a = (al, ~ ~ ~ , aN), we put

For z E C, we denote the complex conjugate of z by z. For u, v E S(R3)
and K(x, y) E ~S’(R3 x R3), we put

In the course of calculations below, the various constants are simply denoted
by C.

2. PRELIMINARY RESULTS

In this section we describe the preliminary results needed for the proofs
of Theorem 1.1 and Corollary 1.2.

We first begin with the following lemma concerning the LP - Lq estimates
of the linear Klein-Gordon and wave equations.
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LEMMA 2.1. - Let N be the arbitrary space dimensions and let p and q
be two positive numbers such that 2   oo and  + 1 = 1.p 

_ q
. N-1+e ~v+1+e

(i) Let 0  9  1. We put 03B3 = 
2 

- 

p 
. Then, we have

for j = 0,1, where

and C depends only on N, p and 8.

for j = 0,1, where C depends only on N and p.
Lemma 2.1 is well known. See, e.g., [8, Lemma 2.1] and [11, part b)

of Theorem 0] for Lemma 2.1 (i) and [11, part a) of Theorem 0] for
Lemma 2.1 (ii).
We next state the lemma concerning the estimate of the integral kernel,

which will be useful in evaluating the cubic nonlinearity of the transformed
equations.

LEMMA 2.2. - Assume 0   1 Let K ~ x = 1 , 2, be the tem p ered
distributions on R3 x R3 such that

for p, q E R3. Then,

Proof. - We first show K2(x, y) E x R3). We easily see that
K2 (p, q) E L2 (R3 x R3 ) and so K2(x, y) E L2 (R3 x R3 ) . By Schwarz’s
Vol. 12, nO 4-1995.
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inequality and Parseval’s identity, we have

where Ap and Aq are the Laplace operators with respect to the variables
p and q, respectively. We have only to show that the integral at the right
hand side of (2.1) is finite. We put

A simple calculation gives us

We note that for some positive constant M,
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(see, e.g., [2, Exercise 7 in Section 6.8]). Therefore, it is sufficient to prove

By (2.2) we have

Vol. 12, n ° 4-1995.
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for 1  j  3. We concentrate upon the estimate of the sixth term at the

right hand side of (2.5), since the rest terms of (2.2), (2.5) and (2.6) are
easier to treat.

By Ij (p, q) we denote the sixth term at the right hand side of (2.5) for
1  j  3. We show that

for 1  j  3. We divide the integral region of (2.7) into four parts:

We show (2.7) for each integral region Dj.
(Estimate on Di). Since (p)-2 E we may evaluate ij(p, q) ==

instead of Ij (p, q) in this case. We put

Then, we have

We first evaluate A~. Since ~h~  ~ ~p~, we have
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On the other hand, noting f (p, q) > 0, we have

At the last inequality we have used the fact that ]a# - 
C]a - b|(1+~)/2 for a, b > 0. Moreover, we easily see that for ] h] 

Accordingly, (2.10)-(2.12) yield

Vol. 12, n ° 4-1995.
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for Ihl  2 ~p~. By (2.9) and (2.13) we obtain

 2~p~.
We next evaluate B~. A direct calculation yields

for By (2.15) we obtain

 2 ~°~ ~ °
Therefore, we obtain by (2.8), (2.14) and (2.16)

for (p, h) E D1. Inequality (2.17) gives us
, n n

Annates ae t Institut Henri Poincaré - Analyse non linéaire
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Since 0  77  1/2, (2.18) shows that the right hand side of (2.18)
belongs to Since (p)-2 E coo(R3) and 
we conclude that

(Estimate on D2). We may evaluate I~ (p, q) _ q) instead of
Ij(p, q) for the same reason as the case of Di.
We have

By the change of variables p’ = p + h, we obtain

At the second inequality of (2.21) we have used the following relation:

We can similarly obtain

Therefore, (2.20), (2.21) and (2.23) yield

Vol. 12, n ° 4-1995.
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for 1  j  3. Since (p)-2 E C°°(R3) and I~(p,q~ _ we

conclude that

for 1  j  3.
(Estimate on D3). Since Ij(p, q), 1  j  3 have no singularity for
> 2, it easily follows that for 1  j  3,

We omit the proof of (2.26).
(Estimate on D4). Since by (2.22) we have

By the change of variables p’ = p + h and (2.27), we obtain

At the last inequality we have used the assumption that 0  r~  1/2.
Accordingly, (2.28) gives us
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for 1  j  3.
Thus, (2.19), (2.25), (2.26) and (2.29) show (2.7). Since the other terms of

(2.2), (2.5) and (2.6) can be evaluated more easily, we obtain Lemma 2.2
for K2(x, y).

In the same way as above we can prove Lemma 2.2 for

Kl (x, y). (Q.E.D.)

Remark 2.1. - We note that HS (R6), j = l, 2 for s > 3, because
the singularity of Kj(p, q) near p = 0 is too strong. Therefore, for example,
Lemma 6.1.5 in Chapter 6 of [2], which is well known, can not be applied
to Ki and K2 . The Fourier multiplier theorem of the Mihlin type can not
be applied to I~1 and K2, either (see, e.g., [2, Theorem 6.1.6 in Chapter 6]).
This is because the set of singular points of I~1 and K2 is not one point
but the region ~ ( p, q ) E R3 x R3 ; p = 0 ~ .
The following corollary follows immediately from the proof of

Lemma 2.2.

COROLLARY 2.3. - Assume 0  1/2. Let Jj(p, q), j = 1, 2 be the
tempered distributions on R3 x R3 such that

for p, q E R3. Then,

Proof - We use the change of variables r = 1 2(p + q) and

~ = /~~~’ ~~° Then, have 

vi

Since the above change of variables is a unitary transform from R6 to

R6 and 1 2s>-1 ~ W4,~(R3), the proof of Lemma 2.2 implies that
J2(x, y) ~ L1(R3  R3).
Vol. 12,n° 4-1995.
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Noting (P ~ q - 1)/((p)(q)) E W4~°°(R6), we can show e

L1(R6) in the same way as .l2(~,y). (Q.E.D.)
We next state an elementary lemma concerning the properties of the

integral operators appearing in the normal form of (1.1)-(1.2) (see, e.g.,
(3.14) and (3.15)).

LEMMA 2.4. - (i) Assulne K(~, y) e L1(R3 x R3). Let p, q and r be three
numbers such that 1  p, q, r G oo and 1 - 1 ~- l. Then,_ - 

r p ~

(ii) Let K(x, y) be a tempered distribution on R3 x R3 and let a > 0. We
put _ ~ l~~p + Then,

Proof. - Part (i) follows immediately from Holder’s inequality.
We show (ii). By the change of variables § = x - y and z = x - z, we have
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On the other hand, we note that

The above two identities yield

which implies that (ii) holds. (Q.E.D.)

We now describe the lemma concerning the L2 estimate of quadratic
term, which will be useful for the evaluation of the nonlinear term of (1.1).

LEMMA 2.5. - Assume that the spatial dimensions are three. Let

0  c  10-2. Then,

where C depends only on ~, and

Furthermore, the following relation holds

Proof. - We first evaluate the L2 norm of the 51st derivatives of vw.
We have

Vol. 12, n ° 4-1995.
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We note that if 26   50, then  25. Therefore, we have by
the Sobolev imbedding theorem

We next note that if = 51, then ~a2~ = 0. Hence, we have by the
Sobolev imbedding theorem

Moreover, we have by Holder’ s inequality

Let 03B2 be a multi-index such that = |03B12| - 25 and 03B2i  a2i, 1  i  3,
where {3 = and a2 = (a21, a23). The application of the
Gagliardo-Nirenberg inequality yields

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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where

(for the Gagliardo-Nirenberg inequality, see, e.g., [4]). For the proof of
(2.36), we need the following relation

which follows from the facts that ~a2~ - = 25 and that 0  e  10-Z.
Since = !o;2! - 25  26, we have by (2.35) and (2.36)

Inequalities (2.33), (2.34) and (2.37) give us

On the other hand, we easily see by the Sobolev imbedding theorem that

Since we have by interpolation

for 1  50, we obtain by (2.38) and (2.39)

which shows (2.30).

Vol. 12, n° 4-1995.
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Finally, the relation (2.31) is equivalent to

This relation holds if 0  ~  10-2. Thus, the proof of Lemma 2.5 is

completed. (Q.E.D.)

Concerning the unique local solvability of (1.1)-(1.3), we have the

following lemma.

LEMMA 2.6. - Let N be the spatial dimensions.
(i) Assume N = l. Let uo E H1(R), ul E no E and

nl E H-1(R). Then, there exists a T > 0 depending only on 
i such that (1.1)-(1.3) have the unique local

solutions (u(t), n(t)) on ~O,T~ satisfying

In addition, if uo E ul E no E and

n1 E n H! 1 (R) for an integer m with 2, then the above
solutions (u, n) satisfy

(ii) Assume N = 2, 3. Let uo E H2(RN), ul E H1(RN), no E H1(RN)
and nl E L2 (RN ) n Then, there exsits a T > 0 depending only

i i such that (1.1)-(1.3) have
the unique local solutions (u(t), n(t)) on ~0, T] satisfying
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In addition, if ~o E ul E no E and

nl E Hm-2(RN)~H-1(RN) for an integer m with m ~ 3, then the above
solutions (u, n) satisfy

(iii) Assume N = 3. In addition to the assumptions in (ii), if no E H-1
and nl E then the solution n for the wave equation part of ( 1.1 )-( 1.3)
given by (i) and (ii) satisfy

Lemma 2.6 follows from the standard iteration argument. We note that

H1(R) ~ L°°(R) for N = 1 and Hz(R~’) ~ for N = 2,3.
We leave the proof of Lemma 2.6 to the reader.

Remark 2.2. - In Lemma 2.6, we need not assume that (uo, ul) are

real-valued. It follows from the uniqueness of solutions that if no and ni
are real-valued, n(t, x) is a real-valued function.

If no and ni are real-valued, then the solutions (u, n) of (1.1)-(1.3)
formally satisfy the following energy identity:

where

Vol. 12, n° 4-1995.
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The global existence theorem for small initial data follows easily from
Lemma 2.6 and (2.54), when N = 1, 2.

THEOREM 2.7. - Let N be the spatial dimensions. Assume that (uo, ul ) and
(no, nl ) are complex-valued and real-valued functions on RN, respectively.

(i) Assume N = 1. Let uo E H1 (R), ul E L2 (R), no E L2 (R) and
nl E H-1 (R). Then, there exists a b > 0 such that if

(l.l)-(1.3) have the unique global solutions (u, n) satisfying (2.40)-(2.43)
with the existence time interval (O,Tj replaced by ~0, oo). In addition, if uo E

ul E H’~-1(R), no E and nl E n 

for an integer ~rc with 2, then the above global solutions (u, n) satisfy
(2.44) and (2.45) with the existence time interval ~O,T~ replaced by (0, oo).

(ii) Assume N = 2. Let uo E ul E no E and
nl E n H-1(RZ). Then, there exists a 6 > 0 such that if

(l.1)-(1.3) have the unique global solutions (u, n) satisfying (2.46)-
(2.49) with the existence time interval [0, T ] replaced by [0, oo ). In

addition, if uo E ~cl E no E and
nl E H’n-2 (R2 ) n H-1 (R2 ) for an integer m with 3, then the
above global solutions (u, n) satisfy (2.50) and (2.51) with the existence
time interval ~0, T] ] replaced by [0, oo ) .

Part (i) of Theorem 2.7 follows immediately from Lemma 2.6 (i) and
(2.54). In the proof of Theorem 2.7 (ii), we need to use the logarithmic
Sobolev inequality for N = 2, together with Lemma 2.6 (ii) and (2.54)
(see [3]).

Remark 2.3. - When N = 2 or 3, by (2.54) and the Galerkin method
we obtain the weak global solutions (u, n) E Loo(O,00; H1(RN)) ®
Loo(O, oo; L2 (RN ) ) for any small initial data (uo, u1, no, nl ) E H1(RN) ®
L2(RN) ® L2 (RN ) ® H-1 (RN ). However, the uniqueness of the above
solutions in the energy class is not yet known.

3. PROOFS OF MAIN RESULTS

In this section we describe the proofs of Theorem 1.1 and Corollary 1.2.
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We first find the transformation which transforms (1.1)-(1.2) into a new
system with cubic nonlinearity. Following Shatah [12], we introduce the
new unknown functions and m(t,x):

where Gi and Hi, i = 1,2 are the kernel distributions to be determined
later. Here and hereafter the time variable t is omitted when this causes no
confusion. A simple calculation gives us

where

Moreover, we have

Vol. 12, n ° 4-1995.
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Therefore, by (3.3), (3.6) and (1.2) we obtain

Since Fi is cubic and F2 is quartic, Fi and F2 cause no trouble as long as
we consider solving ( 1.1 )-( 1.3) around zero. It is the quadratic terms that
cause trouble. Accordingly, we choose the kernel distributions Gi and G2
so that all quadratic terms in (3.7) cancel out:

We can write

where 8 is the Dirac delta function on R~. Therefore, we take the Fourier
transform of (3.8) to obtain

In order that (3.9) holds for all ic, and the kernel distributions
Gi and G2 must satisfy
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which imply

The same procedure as above yields

Formally, the functions v and m given by the transformation (3.1)-(3.2)
with (3.10)-(3.13) satisfy the following new system with the nonlinearity
higher than quadratic:

where Fi and F2 are defined in (3.4) and (3.5), respectively, and

However, G1 (p, q) and G2 (p, q) have the singularity near p = 0. In addition,
Hl (p, q) and q) are not regular near p = -q, although they are locally
bounded near p = - q. These singularities make our problem difficult. In

Vol. 12, n° 4-1995.
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order to overcome this difficulty, we use Lemma 2.2, Corollary 2.3 and the
special property of the system ( 1.1 )-( 1.2).
We show the following lemma, which will be useful in deriving the

decay estimates of v and m.

LEMMA 3.1. - (i) Let k be an arbitrary nonnegative integer and let
0  ~  1/2. We put j = max(k + 9 - j,10 - j) for j = 1 , 2. Then,

for j = 1, 2, where C depends only on k and ~.
(ii) Let k be an arbitrary nonnegative integer, and let 0  ~  10-2

and 0  r~  1/2. Then

for j = 1, 2, where C depends only on k, e and ~.
(iii) Let k be an arbitrary nonnegative integer and let 0  ~  1/2. Then,

for j = 0,1, where C depends only on ~ and k.

Proof. - (i) We first show (i). Suppose 1~ > 1. Let y), j = 1, 2 be
the kernel distributions on R~ x R~ such that

for j = 1, 2, and let a be any multi-index with 101 = k. We have by
Lemmas 2.2 and 2.4 (i)
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for j = 1, 2 .
Since H1~2-~ ~ L3/(1+e) and L3~(1+~) for 0  e  1/2, we have

On the other hand, since H1~2-~,3/(2-~) ~ L2 and L3/(1+e) for
0  ~  1/2, we have
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Accordingly, (3.18)-(3.20) show Lemma 3.1 (i) for k > 1. If k = 0, Ii
vanishes and I2 alone appears at the right hand side of (3.18). Therefore,
Lemma 3.1 (i) also holds for k = 0.

(ii) We next prove (ii). Let = 1,2 be the kernel distributions
on R3 x R3 such that

for j = 1, 2. By Corollary 2.3 and Lemma 2.4 (i), (ii) we have
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At the third inequality of (3.21) we have used the following relation:

(see, e.g., [2, Theorem 6.2.3 in Chapter 6]). Since L660/(211-220e)
for 0  c  10-2, by (3.21) we obtain Lemma 3.1 (ii) for [uv,Hj,w]. The
proof for [w, Hj, uv] is the same as above.

(iii) We show (iii). By Lemma 2.1 (ii) we have

We prove (iii) only for j = 0, because the proof for j = 1 is the same.
We first note that

For (3.24), see, e.g., [2, Theorems 6.2.3 and 6.3.2 in Chapter 6]. By (3.23)
Vol. 12, nO 4-1995.
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and (3.24) we have

This shows Lemma 3.1 (iii) for j = 0. The proof for the case of j = 1 is
the same as above. (Q.E.D.)

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. - For the proof of Theorem 1.1, we need derive
the decay estimate and the energy estimate of solutions to (1.1)-(1.3). Let
(u, n) be the local solutions of (!.!)-(1.3) given by Lemma 2.6 (ii), (iii) and
let (v, m) be the functions given by the transformation (3.1)-(3.2). We put

for t > 0. Let 8 be a positive constant satisfying the relation (1.6), which
will be determined later.

We begin with the lemma concerning the decay estimate of the solutions.
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LEMMA 3.2. - Let 0  e  10-z. Then, the solutions (u, n) of (1.1 )-(1.3)
satisfy

as long as the solutions (u, n) exist. Here, C does not depend on b and t.

Proof - We rewrite (3.14) and (3.15) as the following integral equations:

where Fi, F2, F3 and F4 are defined in (3.4), (3.5), (3.16) and (3.17),
respectively, and

We first show the decay estimate of u. For that purpose, we evaluate v by
using (3.25). By Lemma 2.1 (i), (3.22) and the assumption 0  e  10-2,
Vol. 12, nO 4-1995.
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we have

for j = 0,1, where

and C does not depend on t.

We take the W2s,s~(1-2~) norm of (3.25) to obtain by (3.32) and the
Sobolev imbedding theorem

In the same way as (3.18) and (3.19), we have by Lemmas 2.2, 2.4 (i), the
Sobolev imbedding theorem and (3.27)-(3.28)
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where C does not depend on 8.

We next evaluate the t~27,e/(5+2~) norm of Fl. By (3.4) we have

We evaluate only the second and fourth terms at the right hand side of

(3.35), since the rest terms of (3.35) can be similarily estimated.
We first note that

By (3.36), (3.22)-(3.24), Lemmas 2.2, 2.4 (i), 3.1 (iii) and the Sobolev

imbedding theorem, we have
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where Ki is defined as in Lemma 2.2 with q = 2~/3. At the last inequality
but one we have used the fact that ~I2~10?-f-2~,3/(1-f-e) ~ L321/(105-107~) for
0  ~  10-2. The standard interpolation theorem yields

(see, e.g., [2, Theorem 6.4.5 (7) in Chapter 6]). A direct calculation and
the Sobolev imbedding theorem give us
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By (3.37)-(3.39) we obtain

We next evaluate the fourth term at the right hand side of (3.35). By
Lemma 3.1 (i) we have

Since the other terms at the right hand side of (3.35) can be similarily
evaluated, we obtain by (3.35), (3.40), (3.41) and (3.32)

where C does not depend on 8 and t.
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In the same way as the case of Fi, we obtain

where C does not depend on 8 and t.

Therefore, (3.33), (3.34), (3.42) and (3.43) yield

where C does not depend on 8 and t. Since the W 25, 6/ ( 1- 2~) norm of 0tv
can be similarily evaluated, we obtain

as long as the solutions (u, n) of ( 1.1 )-( 1.3) exist, where C does not
depend on 8 and t.

It remains to evaluate the second and third terms at the right hand side
of (3.1) in order to obtain the decay estimate of u.
By (3.36) and Lemmas 2.1, 2.4 (i) we have
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where Ki is defined as in Lemma 2.1 with q _ ~ / 2. At the last inequality
of (3.45) we have used the fact that H1+~/2’3/(1+~) ~ By (3.23), the
Sobolev imbedding theorem and the interpolation, we have

where C does not depend on 6 and t. Furthermore, Lemma 3.1 (iii), (3.22)
and (3.24) yield

On the other hand, (3.22) and the Gagliardo-Nirenberg inequality give us
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where

For the proof of (3.48), we need the following relation:

which is satisfied for c > 0. If 0  ~  10-2, then we have

which is equivalent to 2 -f- ~2 > 153~. Therefore, by (3.48) we have

By (3.45)-(3.49) we obtain

where C does not depend on 8 and t. In the same way as above, we obtain

where C does not depend on 8 and t.

Accordingly, (3.1), (3.44), (3.50) and (3.51) yield
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where C does not depend on 8 and t. Since the derivatives in t of the

second and third terms at the right hand side of (3.1) can be similarily
evaluated, we finally obtain

as long as the solutions (u, n) of ( 1.1 )-( 1.3) exist, where C does not

depend on 8 and t.

We next derive the decay estimate of n. For that purpose, we first evaluate
m by using (3.26). By Lemma 2.1 (ii), (3.22) and (3.24) we have

We take the W25,220/3 norm of (3.26) to obtain by (3.53) and the
Sobolev imbedding theorem

By (3.16) and Lemma 3.1 (ii) with q = 4 , we have
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Since F4 is quartic, F4 is easier to treat than F3. Therefore, in the same
way we obtain

By the definition of 6 we have

Accordingly, (3.54)-(3.57) yield

where C does not depend on 8 and t. Since the W24,220/3 norm of atm
can be similarily evaluated, we obtain

as long as the solutions (u, n) of ( 1.1 )-( 1.3) exist, where C does not depend
on 03B4 and t.

In order to derive the decay estimate of n(t), it remains to evaluate the
second and third terms at the right hand side of (3.2).
We (101 - 220~)/220. We first note that H~~2+’~~3~C2-~) ~

L22o~3 and 0  r~  1/2 for 0  c  10-2. Therefore, by Corollary 2.3,
Lemma 2.4 (i), (ii) and (3.24), we have
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where Jj, j = 0,1 are defined as in Corollary 2.3 and C does not depend
on 8 and t.

By (3.2), (3.58) and (3.59), we obtain

where C does not depend on 8 and t. Since the derivatives in t of the

second and third terms at the right hand side of (3.2) can be similarily
evaluated, we finally obtain

as long as the solutions (u, n) of ( 1.1 )-( 1.3) exist, where C does not

depend on 8 and t.

Estimates (3.52) and (3.60) complete the proof of Lemma 3.2. (Q.E.D.)

We next prove the energy estimate of the solutions (u, n) to (1.1)-(1.3).
LEMMA 3.3. - Let 0  ~  10-2. Then, the solutions (u, n) of ( 1.1 )-( 1.3)

satisfy
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as long as the solutions (u, n) exist. Here, C does not depend on S and t.
Proof. - We first derive the energy estimate of u. We rewrite ( 1.1 ) as

the following integral equation:

We take the H52 norm of (3.61) to obtain by (2.30) and (2.31)

where a = (5289 - 220e)/(5500 - 220e), and C does not depend on 6 and
t. Since the H51 norm of atu can be similarily evaluated, we obtain

as long as the solutions (u, n) of ( 1.1 )-( 1.3) exist, where C does not
depend on 8 and t.

The estimates of the H51 norm of n and the ~f~~ norm of atn are
standard ones. (3.36) and a simple calculation give us
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as long as the solutions (u, n) of ( 1.1 )-( 1.3) exist, where C does not

depend on 8 and t.

It remains only to evaluate n in and atn in H-2. We apply 03C9-10
to (3.36) and take the L2 norm of the resulting equation to obtain by the
Sobolev imbedding theorem

By differentiating (3.36) in t, we have

We apply cvo 2 to (3.66) and take the L2 norm of the resulting equation to
obtain by the Sobolev imbedding theorem
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Therefore, (3.65) and (3.67) imply that

as long as the solutions (u, n) of ( 1.1 )-( 1.3) exist, where C does not
depend on 8 and t.

Accordingly, (3.63), (3.64) and (3.68) show that Lemma 3.1 holds.

(Q.E.D.)

We can now easily prove Theorem 1.1 by using Lemmas 3.2 and 3.3.
Lemmas 3.2 and 3.3 yield

as long as the solutions (u, n) of (1.1)-(13) exist. Here C does not

depend on 6 and t. Inequality (3.69) implies that if we choose 6 > 0

sufficiently small, then there exists an M > 0 such that

Lemma 2.6 (ii), (iii) and (3.70) show the first claim of Theorem 1.1, that
is, the unique global existence of the solutions (u, n) satisfying ( 1.7)-( 1.10)
for ( 1.1 )-( 1.3).

For the proof of (1.11), it is sufficient to show that

Now that we have (3.70), this is essentially proved in the proof of
Lemma 3.3 (see, e.g., (3.62)). We omit the proof of (1.11). (Q.E.D.)

We finally state the proof of Corollary 1.2. Corollary 1.2 is an immediate
consequence of Theorem 1.1 and Lemma 2.6 (ii).

Concluding remark. - Recently, Sideris [13] and Georgiev [7] have

proved the good decay estimates of solution for the inhomogeneous linear
Klein-Gordon equation by using the fundamental solution of the linear
Klein-Gordon equation and the generators of the Lorentz group. However,
the authors do not know whether one can prove Theorem 1.1 by using the
decay estimates in [13] and [7] instead of the method of normal form.
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