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ABSTRACT. — We study the homogenization of a Mullins—Sekerka free boundary problem
which serves as a model for coarsening of nuclei in a first order phase transformation. We
consider a regime where the volume fraction of the nuclei is small but screening effects are no
negligible. The limit equation was recently derived in [12]. We improve this convergence result
by constructing correctors and providing error estimates in terms of the volume fraction. This
yields in particular an asymptotic expansion for the growth rate of the nuclei.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On étudie 'homogénéisation d’un probléme de frontiere libre de Mullins—Sekerka,
qui sert de modele pour le “coarsening” des noyaux dans une transformation de phase du premi
ordre. On considére un régime ou la fraction de volume des noyaux est petite mais ou le
effets de criblage ne sont pas négligeables. L'équation limite a récemment été dérivée dar
[12]. Nous améliorons ce résultat de convergence en construisant des correcteurs et fourniss:
des evaluations d’erreur en termes de la fraction de volume. Ceci conduit en particulier & un
expansion asymptotique pour le taux de croissance des noyaux.
© 2002 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

The Mullins—Sekerka model describes the last stage of a first order phase transitior
For example, consider an initially homogeneous two-component mixture which is
guenched to sufficiently low temperatures such that the components want to separat
After an initial stage, two phases form. In each of the phases, the relative concentratio
has reached its respective bulk equilibrium value while the phases are separated by a th
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interfacial layer. Once, the sharp interface regime has emerged, the system is driven t
reduction of surface energy and limited by diffusion. Since diffusion is fast compared
to the velocity of the interface, one assumes that the diffusion field, here given by the
chemical potential, is in quasi-steady equilibrium. This gives in dimensionless variables
that the normal velocity of the interface is given by

V=[Vu-il, 1)

where the chemical potential solves
—Apn=0 ineach phase (2)
uw=«x ontheinterface 3)

Heren denotes the normal to the phase bound@ry, - 7] the jump of V. - n across the
interface andc the mean curvature of the interface. Eq. (3) is the well-known Gibbs—
Thomson law for local equilibrium at the interface. The Mullins—Sekerka evolution
preserves the volume fraction of the phases and decreases the surface area. Lo
existence results for smooth solutions were obtained in [4,6], global existence of weal
solutions in [3].

In the following we are interested in the regime when the volume fraction of one
phase is very small. Then this phase consists of many disconnected components, in tl
following called nuclei or particles, which quickly become radially symmetric and do
essentially not move in space. In order to reduce the surface energy, large particles gro
at the expense of small particles which eventually vanish — a phenomenon known a
Ostwald ripening. We use the fact that particles are almost spherical to simplify the
model by averaging (1) for each partidke such that

Vi i= f 1V @

P;

Then each particle is represented by its radtug), the curvature is given by 1/Rnd

the normal velocity byR; (r). Formal asymptotics in [16] and a stability analysis in [1,2]
justify this simplification in the regime of small volume fraction. Note that the chemical
potential inside the balls is now given by=1/R; and (4) becomes

VPI‘ = ][ V- ﬁ7
P;

wheren denotes the outer normal to the particle and - n is taken from outside the
particle. Since the system is now completely determined by the{Rdione would like

to derive an evolution law foR; at least in the regime of a large numbeof particles

with very small volume fractiorp, i.e., in the sense of homogenization. For that, one
has to understand the range of particle interactions which are limited by screening: on
particle is screened from particles far away by particles in the neighbourhood. It is founc
(cf. [12]) that screening effects are relevantife 1/¢%2, which is equivalent to the
particles having capacity density of order 1. In this regime the homogenization limit as
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¢ — 0 was identified in [12]. One introduces the particle size distributiomhich is
defined such thaf,, [; v(z, dx, dF) gives the fraction of existing particles at timevith
center inD and radius smaller than It is shown in [12] that in the homogenization
limit the particle size distribution solves

;v + 0, (riz(ru(t,x) — 1)1)) =0, (5)

where the limit of the chemical potential — now denoted:by satifies

—Au+4n<u/rvdr—/vdr>=0. (6)

This system is an extension of the classical theory for Ostwald Ripening by Lifshitz,
Slyozov and Wagner (“LSW”) [10,18] where space dependence is neglected and
is determined by conservation of total volume fraction. The LSW model is derived
rigorously in [11] by homogenization in the reginme< 1/¢%? which leads to the
mathematical setting of particles with vanishing capacity density.

While the work [12] identifies the limit equation, it does not provide any further
qualitative description of the solution. Thus, it is the aim of this paper to find under
the same assumptions on the system as in [12] correctors and provide error-estimate
This will also put future numerical experiments on a more solid basis.

The outline of the paper is as follows. We indicate the scaling in Section 2.1,
introduce some notation in Section 2.2 and present the precise setting for our analysis |
Section 2.3. The homogenization limit was identifed in [12] and we summarize the main
results in Theorem 2.1 in Section 2.4. Guided by the form of the limit equation for the
chemical potential we construct a corrector in Section 3. In Section 4 (cf. Theorem 4.1
we prove an error estimate for the difference between the chemical potential and thi
corrector. The proof extends ideas of [5,8] to our time dependent, nonperiodic setting
Finally, in Section 5 we prove an asymptotic expansion for the evolution of the radii
(Theorem 5.1). The proof relies on the corrector result Theorem 4.1 and a local uniforrr
estimate away from the particles which is given in Lemma 5.2.

Finally, let us briely mention another issue in the LSW-theory. By an asymptotic
analysis LSW predict that all solutions exhibit a universal long-time behavior. However,
the mathematical paper [13] shows, that, contrary to the predictions, the large time
asymptotics depend sensitively on the data, more precisely on the behavior of the initic
distribution at the end of the support. Naturally, one might ask, what the selection
criterion for the long-time asymptotics of (5), (6) is. However, it seems quite difficult
to provide a rigorous mathematical analysis and we plan to investigate this issue b
careful simulations.

For more information on the theory of Ostwald Ripening and the physical background
we refer to [12] and the references therein.
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2. Thesetting and preliminaries
2.1. Thescaling

In this section we recall the appropriate scaling, which is derived in [12, Ch. 3]. We
consider a finite or periodic box iR® of length L filled with n particles with mean
radius R which have small volume fractiop. The average distancg is given by
d =R /¢Y? and itis found by formal considerations (cf. [9,12]) that the range of particle
interactions, the screening lengthis given by

R
f=—1s.
@12

In the regimep « 1 we find £> d > R, hence one has a nice separation of length
scales. It is natural to rescale the space with respecatal we assume in the following
that the size of the box is of the order of the screening length, for simplicityé. We
introduce the rescaled variablést, 1?,- andu via

x=£&Xx,
t=R%,
R =RR:,

1 .
wu(t, x) = ﬁu(m%).

The scaling of the chemical potential is motivated by the Gibbs—Thomson condition on
the phase boundary, whereas the time scale is such that the limit evolution is nontrivial

2.2. Notation
From now on we drop the hats and introduce for a simpler notation the parametel
e :=¢%®. The scaling in Section 2.1 implies that we work in the unit cge= (0, 1)°,
that the particles have mean distarscand the number of particles is bounded by3L
The patrticle centers will be denoted By and the particles themselves by
B;(t) := B(X;,&3R;(t)) with R;(¢) € [0, 00).
Note, thatX;, R, and B; depend orz, but for an easier reading we will in the following
neglect this, since the indéxalready indicates the dependencesoliVe have to assume
that particle centerX; are well separated in the sense that there exists & such that
{B(X;,re)}, are disjoint for alle > 0. 7)

We denote for any € [0, co)

m =\ |J B®.

i: Ri(t)>0
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Furthermore we define the joint distributiofi of particle centers and radii at a given
timer by

/;dvf =33 ¢ (Xi, Rit)) for¢ec?, ®)

where [ := [5, 0.o0) 2N

Cl:={c=t¢(x,r)|¢ e CO(R®x (0,00)), ¢(-,r) is Q-periodic ¢(x,-) € CI((0,0))}.

Note that since (x, 0) = 0 for all ¢ € C2 the sum in (8) effectively only extends over
the ‘active’ particles, i.e., thesuch thatr; (r) > 0. In the following we will always use
the notation

Y= ¥

i i:X;e, R,‘(l‘)>0

Trivially, with this notation we have for all timesthat
/dvf=8321<1. 9)
Our scaling is also such that for the initial radiiy
&3 R = / P =1 (10)

In addition the appropriate space for the chemical potential will be
Hi(Q) := {u € HL (R?) | u is Q-periodic}.
2.3. Theproblem

With the scaling introduced in Section 2.1 and the notation from Section 2.2 our
precise mathematical problem takes the following form. We are looking for a solution

: 1 .
R;(t) = W/Vu -naslong ak;(¢) > 0,
9B, (11)
R;(0) = Rio,
whereu® (¢, -) € H}(Q) is determined via
—Aut =0 in Q°(1),
(12)

1
l/tg = in Bi if Ri(t) > 0.
Ri(?)
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2.4. Well-posedness, a priori estimates and the limit equation
It is not difficult to prove existence of a smooth solution locally in time for (11), (12)
(cf. [11] and the references therein) and one can extend the solution up to a time wher

either two balls touch or some balls shrink to a point. Our evolution conserves the volume
fraction of particles, i.e.,

&3 R3(1) = / P = / Pdvg @1 (13)

for all ¢+ > 0, which follows by integrating (12) and using (11). Note that from (9)
and (13) it follows by Hélder’s inequality that

&S RY(r) :/r"‘ df <1 foralla e[0,3. (14)

Furthermore the surface area decreases, i.e., foeal it holds

t
& 1 82 &
/rzdvt —|—Z/Q/|Vu | :/rzdvoél. (15)
0

To see (15) one multiplies (12) with®, integrates by parts and uses the boundary
conditions forR; andu®. Return to the problem that two balls might touch. Volume
conservation (13) implies that

: (16)

™|

SUPR; (1) <

Hence, the maximal radius of a ball & which is smaller thare for sufficiently
small ¢ > 0 and thus balls cannot touch. The second possibility, that existence of a
smooth solution breaks down, occurs at times when a particle shrinks to a point gt time
Then we update the initial data and start again with data ). Proceeding in this way
we obtain a continuous piecewise smooth solufirof (11).

In the following we investigate the limit— 0. To ensure that the scaling remains the
right one, we have to make the additional assumption that initially not too much of the
volume is taken by few very large particles, i.e., we assume that

/ Pdvg— 0 asM — oo uniformly in ¢. 17)
r>mM

In a slightly different setting the limit foe — O is identified in [12]. We state a
theorem below which is adapted to our setting and can be proved in exactly the sam
way as Theorem 3.1 in [12].

THEOREM 2.1 ([12], Theorem 3.1). There exists a subsequence, again denoted by
e — 0, such that
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/;dvf — /; dv, locally uniformly inz € [0, oo) for all ¢ € C2, (18)

u® —u weakly inLZ ([0, 00); Hi (). (19)

loc

The limitsv, andu are weak solutions of Eqéb) and (6) respectively, i.e.,

d 1
E/{dv,:/argr—z(ru(t)—l)dv,

holds inD’((0, o0)) for all ¢ € C3 with 8,¢ € C2, and

/Vu(t)-V(pdx—|—4rr/<pu(t)rdvt:471/g0dvt
Q

forall ¢ = ¢(x) € H}(Q) and a.ez € (0, 00).

We remark that we need (17) to obtain a nontrivial limit; indeed it holds
/r3du, — /r3dv0 —1 forallz € [0, c0).

Furthermore, by assumption (7) one can show that the marginal wir.t. x has a
Lebesgue density, that is there exists a congtastich that

/godv, < C/(pdx for all integrablep = ¢(x) andr € [0, 00). (20)
Q

3. Construction of a corrector

The procedure in [12] identifies the limit equation of the homogenization of (11), (12),
but does not give any qualitative estimates. It is the aim of this paper to provide a bette
gualitative description of the function®; andu® in form of corrector estimates fart
from which an asymptotic expansion f&f follows.

To simplify the presentation we will in the following assume that the particle centers
X; sit on a lattice of spacing such that (7) holds with = 1/2. Furthermore we will
not explicitly state in each single statement that the assertion holds for sufficiently smal
¢ and that the constants depend®@nlin addition, we will always consider a sequence
¢ — 0 such that the convergence stated in Theorem 2.1 holds.

First we have to introduce some auxiliary functions. We denot&@py= (X; — 5,

X, + %)3 the cube with centek; and side lengtla. The characteristic function ap; is
denoted byy,, and we introduce the step functions

RE(t,x):=> xo, ()R (1) and x°(t,x):=)  xg,(x).

Note thatR*(-, x) is continuous for allk €  and by (13) it is uniformly bounded in
L>®((0, 00); L3(R2)). The functiony® is just the characteristic function of the union of
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all cubes which contain a particle of positive volumyé(-, x) is right continuous for all
x e Qand0< x¢ <1.

Denote byR andy the weak limits ofR® and x¢. Then it follows with the notation in
Section 2 from (9), (13) and (18) that for all continuotsperiodic functionsy = ¢(x)

/(pRde — /(pr dv, = /@F(t,x)dx (21)
and
Joxtde— [pdn = [xt.0ax (22)
locally uniformly in¢ € [0, oo). With this notation we can rewrite (6) as
—Au+47(Ru—x)=0 inQ. (23)

Now we introduce an appropriate approximationuodn thee-level. For eachr we
denote by:“(z, -) the solution of the following elliptic problem

~AZf +47(R°z° — ) =0 InQ, z°(t,-) € HX(Q). (24)

With (23) we see — at least formally — thet should be a good approximation of
Indeed, we will prove in Lemma 3.3 that for almost all tim€<onverges strongly to

in Whr(Q) for all p < co. The following lemma gives a general existence result for the
type of elliptic equation (23) and (24).

LEMMA 3.1. — Consider the equation
—Autgu=f InNQ, uecHI(Q), (25)

whereg, f € L3(Q), lgllLe@) + I fllL3 < C1andg > 0 such thatf, g > ¢, > 0.
There exists a unique solutione H;($2) N W23(Q) such that

lullwzsq) < C(Cy, c2).

Proof. —Arguing by contradiction one finds that there exists a constant(c,, Cy)
such that

cllulfysgay < [ 1Val? + glul*d (26)
Q

holds for allu € H*(2). Then the lemma follows by a standard application of the Lax—
Milgram lemma and regularity results for elliptic equations (see, e.g., [7, Ch. 4]).

COROLLARY 3.2.— For any t € (0,00) there exists a unique solutiogf (z, -) €
H}(Q) N W23(Q) to (24) such that for anyl" < oo

te(0,T)
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This implies, with the embedding theorem from Sobolev into Holder spacesg: that
is Holder-continuous for ang < 1 and thatz? (¢, -) € W7 (Q) for all p < oo with

S(léjFT))HZ @ )Hcoa(sz>+ >p 1@ Il < Cler p. 1) 27)
t

Proof. —We know from (21) that

/Rg(t,x)dx—>/rdvt
Q

locally uniformly in ¢ € [0, c0). Sincefr3dv, =1 for all + > 0O, it must hold that
Jrdv, >0 forall > 0. Hence, we conclude that for dll < co there exists a constant
cr > 0 such that for sufficiently smadl

/Rg(t,x)dx >cr > 0.

Since 0< x¢ < 1 andR¢ is uniformly bounded ir.>((0, oo); L3(2)) by (13) the result
follows from Lemma 3.1.

LEMMA 3.3.— For almost allz € (0, co) it holds
2t ) = u(t,) in WhP(Q) forall p < oo. (28)

Proof. —~We takez® — u as a test function in the difference of (24) and (23). We fix
T < oo and use (26) to obtain for almost al& (0, 7')

crl|z @, ) —u@, ')Hizl(m S 4n’/(X8 —X) (2 —u).) dx‘

+4n‘/ E-ueod] @)
We find with Holder’s inequality, (27) and the propertiesydfand R* that

sup ||z°(t, -) — u(t, )HHl(Q) Cr.
+e(0,T)

Now we fix ¢t € (0, T) such thatu(z, -) is defined. There exists a subsequenees(r)
such thatz® (¢, -) — u(z, -) converges strongly i2(Q) to some limit. It follows from
(21), (22) and (29) that for this subsequence

|2, ) =t )|y = O. (30)

Sinceu(t, -) is uniquely determined by Lemma 3.1 we conclude that (30) holds for the
whole sequence. With Corollary 3.2 and the Sobolev embedding we find (28).
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With the help ofz® we are going to construct a corrector f@f. For that we use
similarly as in [5,8] the capacity potential & in

This is given as the solution of the equation

_Aw, =0 inT\B,
w; =0 in B;, (31)

w; =1 o0onadT;.

To be precise, with this definition 4 w; is the capacity potential aB; with respect to
T;. One easily computes that
1 1
x—X;| - ﬁ _ 1 (1_ gsRi
%—ﬁ 1—282Rl' |)C—Xl'|

w;(t,x) =

) nT\B. (32

We extendw; by 1 to @\ |J; 7; and by 0 to B and define

w(t, x) == Z Xo, (X)w; (t, x) (33)
and
. . 1—w;(,x)
g (1, x) == Z X0, () =g (34)

Notice thatg® is harmonic inT; \ B;, g¢ = 1/R; ond B; andg® = 0 ondT;. Our candidate
for a corrector is

vei=7"w® + g% (35)

In the rest of this paper we are going to show the following error estimates (cf.
Theorems 4.1 and 5.1).

sup ||V (u® —v°)(t, )| foq S C(T) e (36)
te(0,7)
and
sup |RiR? — (R;iz°(X;) — 1)| < C(T)R; e¥2. (37)
te(0,7)

A future aim will be to transform these results into error estimates for the particle size
distribution. It seems natural that for this aim one should use a corrector of the form
uw® + g°. Indeed we find that® — (uw?® + g°) converges strongly to zero () (cf.
Corollary 4.2). However, to obtain an error estimate like in (36), we have to start from
an error estimate for the data, and carry this over to the solution at a given time. This



A. GARRONI, B. NIETHAMMER / Ann. |. H. Poincaré — AN 19 (2002) 371-393 381

seems feasible if one assumes strong convergen@e ©f -), an assumption which is

not satisfying from the point of view of applications. The crucial point will be to find
the right metric to deal with the weak convergences. So far a related problem has bee
only attacked for the limit problem in the space independent case in [14]. There well-
posedness is shown with respect to fif8-Wasserstein distance for the particle size
distributions.

4, Anerror estimate for u® — v¢

The aim of this section is to prove an error estimateufor v* in the spirit of [8],
which treats a time-independent setting where all particles are equal.

THEOREM 4.1. — Letu® be the solution t¢12) andv® be defined as i{35). For any
T < oo we have

sup ||V (u* —v*) (1, )| 2y < C(T)e. (38)
te(0,7)

Proof. —We first collect several facts which we will need in the forthcoming proof.
e Poincaré inequality orQ,. For anyy® € H(Q;) such thaty* =0 in B; it holds

C
HySHLZ(Q,») S R,l/ZHVngLZ(Q,-)' (39)
1

The inequality follows, e.g., from [19, Corollary 4.5.2] and scaling, but one can also
easily verify it by hand.
In addition we will need a Poincaré inequality on the whole domain:
e Poincaré inequality or®2. We show that for any e (0, 7) and anyy® € H(Q) with
y*=0in{J; B; it holds
HngLz(gz) < C(T)Hvyg”LZ(sz)' (40)

For that we will show that

C
> E3(Ri(1)Y/?

2 2
Hy8||L2(s2) < ( )szngH(Q)' (41)

Similary as in the proof of Corollary 3.2 we conclude that

Su —SC
o S SRz ST

and (40) follows. To prove (41) we use again Corollary 4.5.2 from [19] which gives for
ye HY(Q),y=0in{J, B;, that

2 C 2 C 2
!m < = Q)Q/|Vy| <mg/|w|. (42)
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Thus, we have to show that

cap(| JBi: @) (Z 3R} 2) (43)
Let ¢° be the capacity potential ¢f; B; in 2, that is,
—Ap*=0 inQ\| B,

(06:1 inB,’,
*=0 o0nog.

By (39) we have for ali such thatr; > 0 that

H l||L2(Q) ||V¢’ ||L2(Q)
With
S:={i: R, > 0and|¢* - 1||i2(Q[) > 163}

we obtain by summing overe S that

N R <CY Vet |2a0) < ClIVE 200 (44)
ieS i
If i ¢ S we have|g®|?, 3 and thus, by the ordinary Poincaré inequality,
12(0)) 7
2
<Z 83Rl-l/2> <C (Z 83/2Ri1/2||(,06 Hﬁ@))
i¢S i¢S
2
C(ZSBRI'> (ZH@sHLZ(Q,-))
i¢S i
(14)
< C||ve? HLZ(Q) (45)

We notice that(Y; 3R7%)2 < 3, ¢3R; which yields with (44) and (45) the desired
inequality (43).
e For anyg® € H*(Q;) with [, ¢° =0 it holds

1/2
frees(fre

with T; = B(X;, ¢/2). This follows by the Poincaré inequality for functions with mean
value zero, the embedding*(Q;) into L1(37;) and a simple scaling argument.
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e Properties ofw; and w®. The functionsw; and w® as defined in (32) and (33)
respectively satisfy

CR;
||1 — W; ”LI’(Qi) < m82+3/17 for pE [1, 3), (47)
5 C 2
Hl—w (t, ')”LP(Q)<WS for p €[1,3), (48)
IVw; 12,y < C(Rig%)2, (49)
. 4¢eR;
Vw,wn:ﬁ OI’IBT,-, (51)
1 N 47TRl
7 [ Vo= 52
aT; !
One notes that
1 , . (16)

and the rest follows easily by direct computation using (14).
We commence the proof of Theorem 4.1. We first observe that

—A(u® —v°) = —Au® +div(wVz® + 'V’ + Vg°) in Q°(1).
We test this equation with® — v* and by the fact that® — v* =0 in B; we find

/’V(us )= _/wsw V(= o) +/st Vot (4 — o)
Q Q

Q

—Z{/ (u _”)vw"'ﬁ_/%(”s_v)vw’ } (54)

oT;

Let us rewrite the first two summands as

—/wEVzg-V(u —v° +/Vz Vw® (u® —v°)
=—2/w Vz© - V(u —vg)—/wEAzs(us—vg)
_/Az u® —° +2/1 w’ V(u®—v%) + /(1—w£)Azs(u8—v8).

(59)

We proceed as follows:
e Step 1 We are going to show for the last two summands in (55) that
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‘/lw (u—v+/1wAz(u—v)

< CMN)E|V (u° = v°)]| 1200 (56)
e Step 2 The second step is more tedious. We are going to show that

’/Azg(ug_vs)_z,-:{/_zg(“g_vs)vw"'ﬁ_/Rii(ug—vg)Vwi-ﬁH

oT;

< C(T)e||V (u® —v°) ||L2(Q). (57)

In the upcoming estimates we will often use the uniform bound (14), which we will not
mention explicitly anymore.

Let us start to prove Step 1. By Sobolev’'s embedding theorem and the Poincare
inequality (40) we find

[ = 0% oy < CDV (4 =) [ 12

Since Az® € L®((0, T); L3(2)) by Corollary 3.2 we obtain with (48) and Hdélder's
inequality

/ (1 w) AZ* (u = v°) < CDIE||V (1" = %) 20 (58)
Q
Using (27) and again (48) we have
2 / 1= 0 V2 V(1 = 0°) < CIL= 0 sy [ 92 s |9 0" = ) 20

< C(T)e?||V (uf

which finishes the proof of Step 1.
Now we proceed to prove Step 2. We compute

/Azs(us—v Z/ u® —v°)Vuw; - n—{—Z/ (u® —v°)Vuw; -1
Q

Y Y

(24)2{4 R/ ut —v°) — /zg(ug—vs)vwi’ﬁ}

oT;

] 3t —ervu i o)
= 11+12. ’ (59)

The terms/; and I, will both be estimated in a similar fashion. We start with
Using the abbreviation® := z°(u® — v°) we have

1 =1 e
I = Z4nR /y —/;[/Vwi-n}y
Qi oT;

l

- v8>HL2(52)
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1 - .
+Z/E[/Vwi-n]y8—/y8Vw,--n

Qi aT; aTi
= Ila + Ilb'

We are going to show that

|11 < C(T)E?||V (uf — v°) (60)

||L2(Q)
which is easy. The main part will be to show that
[11p] < C(T)sHV(uS —v°) HLZ(Q). (61)

To prove (60) we use (52) and find

1 £
1- 1—282Ri|/|y |
Qi

63 5 2 2 2.3/2 2 b2
Se YR [l et SRR [ )
i _ i

i i

[Ial <> 4R

(39)

< C[2| o8 D R 2V V (1 =) | 12,
i

@7
< C(M)E?Y " RV (uf = vf) Iz20,
i

14 2 e &
< C(Te HV(” -V )HLZ(Q)'

Now we prove (61). For that we define the functighin Q; as a solution of

Ag = TR 0Ty uT
q - 1—282Ri 1 1 13

[Vg®-ii] = —Vw; - 0onaT;,
(62)

Vq¢°-n=0 onoQ;,
0;

By (52) this problem is well-posed and there exists a solujfoa H($2) with Jo, 4 =

0 and it holds
1 - -
/Vqs-Vys :/[—3/Vw,- -n}ys — /yEVwi - n. (63)
£
(o]}

Qi oT; oT;

Furthermore, sincg,, ¢° =0 andAg® = constin Q;,
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/!Vq! /q [Vg* -]

oT;

(51) ER
S 1o 282R / 9°]

oT;

46) eRi 4 N\ 2
L /2 5
S C1 22" (/'V‘”)
Qi

1/2
(53)
< Ce%2R, (/|vq€|2)

HVQSHLZ(QZ») < CRie™2
Using this estimate ity we obtain

which gives

1l €S [190° 95 < 190 D195z

o

64)
< Ce Y Re>?||Vy7| 20,
i

<Ce Z Ries/z(HZS||L°O(Q)Hv(“28 —v°) HLZ(Q;) + HVZ8HL3(Q;)HM8
i

< C‘QHZSHLW(Q)HV(US - US)HLZ(Q) + C‘EHVZEHN(Q)HMS -

(27 )(40)
< Ce||V(uf )HLZ(Q)

which finishes the proof of (61).

Now we consider ternd, in (59) which we write as follows.

12:Z{/L%/R%Vwi-ﬁ](us—vg)—4n/(u8—u8)}
e { [ R ven [[3 [ Zowiw -}

=: I, + I5.
Analogously to the proof of (60) and (61) one shows

|2, < CSZZR,-/WS—US
{ 0;
(39)
< CSZZR}/ZES/ZHV(MS
i

v
< Cef||V(u — v8>||L2(Q)

(64)

= 0% 1s(on)
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and, usingu® — v®)/R; as test function in (62),

1
[I2] < ZE/WQS'V(”E_USM
i lQi

1
< Z E_HV‘]EHLZ(Q,-)HV(”E - v8> HLZ(Q,-)
l
(64)
< Ce 283/2HV(”8 —v) HLZ(Q,-)
i

< C‘EHV(L‘E - US)HLZ(Q)'

This finishes the proof of Step 2 and thus concludes the proof of Theorem 4.1.

COROLLARY 4.2. - For almost allt € (0, co) it holds

Juf (2, ) = (uw® +g°) (@, )| 1) = O
Proof. —We know from Lemma 3.3 that for almost alkE (0, 0o)
() — ut,r) inwWhP(Q)forall p < co.
For these we have
HV(us(t, ) — (”wg + gg)(t’ ')) HLZ(SZ) < HV(us - vg)(t’ ')HLZ(Q)

+ HV [(Zg - “)ws(t’ ')] HLZ(Q)

(38)
< Cee + |lwi(, ')||L°°(S2)||V(Z€ —u)(t, ')HLZ(Q)

+ [ Vu'a, ‘)HLZ(Q)H (zF —u)(, ')HLW(Q)'

Since|w?| < 1 and Ww¢ is bounded inL?(Q) according to (50) we find with (28) and
(40) the convergence as claimed.

5. Asymptotic expansion for theradii evolution

The corrector result proved in the previous section allows us to give an error estimatt
for an asymptotic expansion & in terms ofz®.

THEOREM 5.1. — Let {R;}; be the solution tq11) and z* the solution to(24). For
anyT < oo there exists a constaiit = C(7T') such that

esssup _ e®|R:R? — (Riz*(X;) — 1)| < Ce (65)
te(0,7) i
and
|R;R? — (Riz°(X;) — 1)| < CR;e"? (66)

holds for almost alk € (0, T') as long asr; (t) > 0.
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To prove this result we need a local estimate for the differarice z°. With the
following lemma we shall give a uniform error estimate uof — z° away from the
particles B;. For that we denote the domain where we cut out the balls of r@a’us

by

-I>IH

o =q\ |J B(X

i: Ri>0

and a slightly smaller domain by

CDICA)

Q =0\ |J B(X

i: Ri>0

&)

LEMMA 5.2.—ForanyT > Othere exists a constaiit = C(7) such that
1" = 2°) @) ey < CEV2 (67)

Proof. —To prove this estimate we need three preliminary steps.
e Step 1:

/ luf — 22 < Ce2. (68)
e Step 2:
/]V(us — )P < e (69)
Qe
e Step 3:
[ID%w - <c. (70)
O

To prove the first step we write
/]ug—z€|2<2/]us —v8|2+2/]z€ —°

By (40) and Theorem 4.1 we get
/]us — v£|2 < C/|V(u8 — vg)]2 < Cs2.
o

Moreover we have

/]ZS / [(1— w2 +¢°°
Qe

01\B(X;. 5¢)
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5 1 2
< (12w + D (1 ) f12 - wi

(47)
C(|’58|’Lw(9) +1) 287(14' Rzz)

(27)
< Ce?

which, together with the previous estimate, concludes the proof of Step 1.
Let us prove Step 2. Using Theorem 4.1 we find

A/!W —2) < 2]|v<u6 —v8>|2+2]|v<v6 — )]

(38) )
< Cé? +2/|V(zs(1—w5)+g8)]

QS
< st 4| [V P [[vurflef+ [|ver]

2
< Ce? + 41— w6||L5/2(Q)||VZS||L10(Q)

& 2 82 82
F A ey [ IV0e 4 1967

Using the explicit form of the functions; we compute

8/2
/wa ? <4JTZ€6R2/ C285R2
Qg L 6/4

and similarly

/yvg| —Z / Rzyw, <CcY eS<ce

TA\B(X:.5) ’

Together with (27) and (48) we obtain (69).
To prove Step 3 recall that if2°

—A(uf —7°) =47 (R°z° — x°) =: f* e L3(Q).
Differentiating the equation we have fgre {1, 2, 3} that
—AY;(uf — ) =19, f* e HX(Q). (71)

Let n € Cgo(ﬁ*f) be a cut off function such thaj =1 in QF, IVl < C/e and
| D2yl < C/e?. Takingd; (u® — z°)n? as a test function in (71) we get
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[V =) = (a7 e )

QS

— 2/V8j(u5 —2°) - Vo, (u® —z%)n
S
=:1+Il. (72)
With Young's inequality and (69) we obtain
< %/nﬂvaj(ug - ZS)|2+C/]Vn|2]V(u8 )
Qe Qe
1 2 & NG
<3 [V - ) +c. (73)
o
Furthermore

|H<ﬂﬁ%W@W—fm
Zﬂau—ZWFMWM+/W3u—ZWfM

/u##+ﬂVu—zrwm

+4/Uﬂ Z/ﬁﬂvmws—fﬂz

(69) 1

<4/ 2va, (u* — )P+ C. (74)
QS

Thus we find in (72)

190 =)< [ o9, - )P < €
Q Qe

which concludes the proof of Step 3. The conclusion will follow by an interpolation

argument. By Steps 1 and 2 we obtain with Sobolev’'s embedding theorem that

[u = ZSHLG&S) s Ce. (75)

The Gagliardo—Nirenberg inequality [15] gives

)l

enl/2
L2(§25 H

Hus - ZEHL°°(§8) < CHDZ( L8(5¢)

+ CH”8 - ZSHLG@S)'

With (70) and (75) we find (67).
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We are now in the position to prove Theorem 5.1.
Proof of Theorem 5.1. Recall thatw; = 0 ona B;. Hence

2@ 1 -
dB;

1 - 1 .
= 47[83/Vvs-n—{—m/(l—wi)V(u‘?—vs)-n
dB; 0B;

@ 1 1 .1
B 47183,/ (ZS - E‘)vwi e 4y &3 / V(' =) -V

9B;i Ti\B;

1
= /(l—w,-)Av‘9 (76)

Ti\B;

_.l_

and we find

RiR? — (Riz°(X;) — 1)

1
:<4HE3HZszln—z(X)R> ( 483/val )

i

/ u® —v%) - Vuw,. (77)
T\B; Ti\B;
Since
\Y% 7 ! ! onoB
Wi N=—Z > i
SsRi 1- 282Ri
andz® e C%Y2(Q) we find with (53) that
1 - 2
‘m /ngwi -n — ZS(X,')RI' < 48 RiHZSHLOO(Q) =+ Ri
dB; JdB;
2 & 3 12 ¢
< 4eRi|z ||L°°(Q)+Ri(8 Ri)"" (2 cose
(16) .
C([|z*]| corz) e Ri. (78)
Again with (53) we have
1 1 -
‘1— /—Vw,- il < 46?R,. (79)
Are3 | R;
JdB;

Furthermore, with (24), (35), (47), (49) and the fact that @; < 1 we have

i (Az‘gwi + 2VZ8 . le>

NAVE =
)Av Z

T\B; T\B;
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- Rizf — 1) +2Vz - Vuy,
47'[83 /( ¢ =1)+2vz wi)
T\B;
1 &
< m((RiHZ HLOO(Q)"'J-)Hl_wiHLl(Q,»)

+ 11— will 120, | V2* || L1z VWi ll 22c)))

< (12 lyaze D) (Rie® + Re(Rie™?)*")

(16)
< C(HZSHWZG(Q)'*']-)RI"ESM' (80)

We use (78), (79) and (80) in (77) and obtain

|RiR? = (Riz* (X)) = 1)| < C([|z" [ oz +1) R8+

/Vu—v -Vw;|. (81)

To prove (65) we multiply the last equation with, sum overi and use Corollary 3.2,
(38) and (50) to find

ZSBIRiRiZ — (Riz" (X)) — 1)| <Cle+ HVU)SHLZ(Q)HV(”s —vf) HLZ(Q))
< Ce.

Finally, integrating by parts and taking into account thlat= z° on d7; we obtain with
(51) that

1 1 -
i / V(u® —v°) - Vw; = i /(us —z°)Vw; -n
T\B; oTi
< H”s - ZSHLOO(@T,»)CRI'
(6< CR; g1/?

which together with (81) finishes the proof of Theorem 5.1
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