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ABSTRACT. — We discuss in the context of nearly integrable Hamiltonian systems a functional
analysis approach to the “splitting of separatrices” and to the “shadowing problem”. As an
application we apply our method to the problem of Arnold Diffusion for nearly integrable
partially isochronous systems improving known results.
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RESUME. — Nous discutons dans le contexte des systemes hamiltoniens presque intégrabls
une approche basée sur I'analyse fonctionnelle des problemes de “splitting” des séparatrices
de “shadowing”. Nous appliquons notre méthode au probléme de la diffusion d’Arnold pour des
systemes presque intégrables partiellement isochrones, améliorant des résultats connus.
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1. Introduction

Topological instability of action variables in multidimensional nearly integrable
Hamiltonian systems is known as Arnold Diffusion. This terminology was introduced
by Chirikov in [17], years after Arnold discovered this phenomenon in his famous paper
[3]. For autonomous Hamiltonian systems with two degrees of freedom KAM theory
generically implies topological stability of the action variables (i.e. the time-evolution
of the action variables for the perturbed system stay close to their initial values for all
times). On the contrary, for systems with more than two degrees of freedom, outside
a wide range of initial conditions (the so-called “Kolmogorov set” provided by KAM
theory), the action variables may undergo a drift of order one in a very long, but finite
time called the “diffusion time”.
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After thirty years from Arnold’s seminal work [3], attention to Arnold diffusion
has been renewed by [15], followed by several papers (see, e.g., [8,14,24,28,45] ar
references therein).

The Hamiltonian models which are usually studied (as suggested by normal formr
theory near simple resonances) have the form

1 1
H(l,¢,p,q)= 5112 to- L+ Epz +e(cosg — 1) +euf(l, ¢, p,q), (1.1

wheree andu are small parameters (the “natural” order fobeinge¢ for some positive
d); (I, I, p) and (¢, q) are standard symplectic action-angle variablése(R",
ny+ny=n, 9= (1,92 €T", (p,q) € R x T, T being the standard toriR/27Z).

In Arnold’s modell;, I, e R, w =1, f(I, ¢, p,q) = (C0Sq — 1)(Sing; + coSp,) and in

[3] diffusion is proved foru exponentially small w.r.t,/s. Physically (1.1) describes a
system ofn; “rotators” andn, harmonic oscillators weakly coupled with a pendulum
through a perturbation term.

The existence of Arnold diffusion is usually proved following the mechanism
proposed in [3]. Fopr = 0, HamiltonianH admits a continuous family af-dimensional
partially hyperbolic invariant tor¥; possessing stable and unstable manifo¥g$7;) =
W{(Tp), called “whiskers” by Arnold. Arnold’s mechanism is then based on the
following three main steps.

(i) Foru # 0 small enough, the perturbed stable and unstable whiﬂgga@’f/‘) and
W, (7;") split and intersect transversally (“splitting of the whiskers”);

(i) Prove the existence of a chain of “transition” tori connected by heteroclinic orbits
(“transition chain”);

(iii) Prove the existence of an orbit, “shadowing” the transition chain, for which the
action variables/ undergo a variation of @) in a certain timeT, called the
diffusion time

The shadowing problem (iii) has been extensively studied in the last years by
geometrical (see, e.g., [15,18-20,24,37]) and by variational methods (see, e.g., [8,9,1
12]). More rich and older literature is available on the splitting problem see, e.g., [34,33,
23,15,29,21,25,26,30,43,41,42,31,36,38,39] and references therein.

The aim of this paper is to provide a functional analysis approach apt to deal with
Arnold diffusion, especially with “splitting” (i) and “shadowing” (iii) problems.

Rather than formulating our results in an abstract setting we shall illustrate the
method (in a complete and self-contained way) on a relatively simple class of models
namely harmonic oscillators weakly coupled with a pendulum through purely spatial
perturbations.

In this context defining a transition chain (ii) is a straighforward consequence of
the “splitting of the whiskers” (i) sincall the invariant tori are preserved by the
perturbation, being just slightly deformed. This also happens, for the peculiar choice
of the perturbation, in the non-isochronous system considered in [3]. Obviously this is
not the case for general non-isochronous systems where the surviving perturbed tori a
separated by the gaps appearing in KAM constructions, making the existence of chain
of tori a more difficult matter, see [15]. We also refer to [45] for a somewhat different
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mechanism of diffusion where step (ii) is bypassed for systems with three degrees o
freedom using Mather theory.

We now give a rough description of tineain resultof this paper. We consider nearly
integrable partiallysochronousHamiltonian systems given by

2
Hu=w-1+5 + (cosg =+ uf (9. 9). (1.2)

where (¢, q) € T" x T := (R"/27Z") x (R/2nZ) are the angle variables/, p)

R"” x R! are the action variables and> 0 is a small real parameter. When= 0 the
energyw; I; of each oscillator is a constant of the motion. The unperturbed Hamitonian
possesses-dimensional invariant torf;, = {(¢, I,q,p) e T" x R" x T' x R | I =

Iy, ¢ = p = 0} with stable and unstable manifold®’ (7;,) = W"(7;,) ={(¢,I,q. p) €
T"xR"x T x RY| I =1y, p?/2+ (cosg — 1) = 0}. The problem ofArnold diffusion

in this context is whether, for # 0, there exist motions whose net effect is to transfer
O(1)-energy from one oscillator to the others. In order to exclude trivial drifts of the
actions due to resonance phenomena, it is standard to assume a diophantine condition
the frequency vectow. Precisely we will always suppose thatis (y, t)-diophantine,

ie.

dy >0, >n—1suchthatw k| > y/|k|*, Vke Z", k #£0. (H1)

In the present paper we first prove general shadowing theorems (Theorems 2.3 ar
3.2) which improve -for isochronous systems- known estimates on the diffusion time.
Secondly we discuss a new method for the splitting of the whiskers, providing genera
estimates on the Fourier coefficients of some “splitting function” (see Theorem 4.2). As
applications we consider the following two cases
(a) the frequencies of the harmonic oscillators form a diophantine vectdrorder
1 (“a priori-unstable case”);
(b) the frequencies of the harmonic oscillators form a diophantine vegctos
(1/4/5, Be) with a > 0, ue~¥? small and the perturbatiorf (¢, q) = (1 —
cosq) f () (“three-time-scales problem” with perturbations preserving all the
unperturbed invariant tori). This corresponds, after a time rescalingy 1o
(1, Be“/e) in (1.1).
Case (a) highlights the improvement of our estimates on diffusion times. In this case
it is easy to show, using the classical Poincaré—Melnikov function

M(A) = /[f(a)t +A,0) — f(wt + A, qo(1))] dr,
R

qo(t) = 4arctariexpr) being the unperturbed separatrix of the pendulum, that the
splitting of the whiskers is Qu). Then our shadowing method yields (see for a more
precise statement Theorems 2.4 and 3.3)

THEOREM 1.1. — Assumé H 1) and letM possess a proper minimufor maximum)
Aop. Then, foru small enough, there exist orbits whose action variables undergo a drift
of order one, with diffusion tim&, = O((1/x) log(1/w)).
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Theorem 1.1 answers a question raised in [35] (Section 7) proving that, at least fo
isochronous systems, it is possible to reach the maximal speed of diffugidog i|;
for related results compare also with [20] and [44]. We recall that the estimate on the
diffusion time obtained in [15] ig, > O(exp(1/w)) and that in [24] it is improved
to be T, = O(exp(1/u)); recently in [9], by means of Mather theory, the estimate on
the diffusion time has been improved to Big= O(1/1%**1); in [19] it is obtained via
geometric methods thady, = O(1/x**1). It is worth pointing out that the estimates given
in [9] and [19], while providing a diffusion time polynomial in the splitting, depend on
the diophantine exponemtand hence on the number of rotatardnstead our estimate
(as well as that discussed in [20]) does not depend upon the number of degrees «
freedom.

The three-time-scales system illustrates an application of our estimate of the splitting
(Theorem 5.1), which, together with our general shadowing Theorem 2.3, yields Arnold
diffusion in casgb). Roughly (see Theorem 5.2 for a precise statement) we get

THEOREM 1.2. — Under a suitable non degeneracy condition g¢gn for all ¢
small such thatw, is (y., ) diophantine, forue=%? small enough, stable and
unstable manifolds split and there exist orbits whose action variables undergo a
drift of order one with diffusion tim&} = O((/&/u)€" @ [(y,)~1(/c€/ Vo) +
[log u]]).

The choice of three time scales frequencies enables to derive lower estimates for tt
splitting relatively easily. Incidentally we mention that Theorem 5.1 improves the main
Theorem | in [38] which holds fop = 7, p > 2+ a; w.r.t. [25] (which deals with more
general systems) we remark that our results hold in any dimension, while the result
of [25], based on tree techniques and cancellations, are provedf@.

We also mention that, for > 3, with a more careful shadowing analysis (exploiting
the anisotropy of this splitting) we can prove that, along special directions, Arnold
diffusion takes place in polynomial time w.r.fd (see [7] and Remark 5.2).

Furthermore we also remark that our proof of Theorem 3.2 is completely self-
contained in the sense that, unlike the known approaches (excepted [45]), we do N
make use of any KAM-type result for proving, under assumptifii), the persistence
of invariant tori, see Theorem 3.1.

The results of this paper have been announced in [6].

We now describe th&unctional analysis approacteveloped in this paper to prove
both the results on the shadowing theorem and on the “splitting of the whiskers”. It
is based on a finite dimensional reduction of Lyapunov—Schmidt type, variational in
nature, introduced in [2] and in [1], and later extended in [4,5] in order to construct
shadowing orbits. For simplicity we describe our approach when the perturbation terr
f(p,q) = (1—cosq) f(¢) so that the tori/;, are still invariant forw # 0. The equations
of motion derived by Hamiltoniaft/,, are

¢=w, I=-pl-cosg)Vf(p), G=p. p=sing—pusingf(e). (1.4)
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The dynamics on the anglesis given byp (1) = wr + A so that (1.4) are reduced to the
guasi-periodically forced pendulum equation

—g +sing = usingf (wt + A), (1.5)

corresponding to the Lagrangian

-2
Lua(qg,g.0) = "3 + (1—cosg) + u(cosqg — 1) f (er + A). (1.6)

For each solutiorg(¢) of (1.5) one recovers the dynamics of the actiaig) by
quadratures in (1.4).

For « = 0 Eq. (1.5) is autonomous and possesses the one parameter family
of homoclinic solutions (mod. 2)r ¢,(t) = 4arctartexp(t — 0)), 6 € R. Consider
the Lagrangian action functionab, 4:qo + H'(R) — R associated to the quasi-
periodically forced pendulum (1.5)

0 4(q) = / Lon(q(). 4(0). 1) . (1.7)
R

®,, 4 is smooth ongo + H(R) and critical pointsy of ®, 4 are homoclinic solutions
to 0, mod. Zr, of (1.5). These critical pointg are in fact smooth functions of the tinne
and are exponentially decaying to 0, mod., as|t| — +o0.
The unperturbed functionafby := ¥y 4 does not depend om and possesses
the 1-dimensional manifold of critical pointg := {¢gy] 6 € R} with tangent space
at go spanned bygy. All the unperturbed critical pointg, are degenerate since
d?®o(gs)[gs] = 0. Howeverg, are non-degenerate critical points of the restrictigy,
for any subspaceé, supplementary tdqs). It is then possible to apply a Lyapunov—
Schmidt type reduction, based on the Implicit Function Theorem, to find gqaedor
w small, critical pointsg’y , of @, 4 restricted toE,; more precisely’y ; = go + w' 4
with wl , € Eg, |w'y ol = O() and d®, a(qy o)1, = 0. We will call the functionsy); ,
“1-bump pseudo-homoclinic solutions” of the quasi-periodically forced pendulum (1.5).
It turns out that the 1-dimensional manifold, = {q;;ﬂ | 6 € R} is a “natural
constraint” for the action functionab, 4, namely any critical point ofd, 4z, is a
critical point of®,, 4, and hence a true solution of (1.5) homoclinic to 0 (mad).2
Through this paper we will perform the above finite dimensional reduction using
two different supplementary spaces {): one is better suited for the shadowing
arguments, the other is better suited for studying the splitting problem in presence o
“high frequencies”.

Shadowing. In Sections 2 and 3, dealing with the shadowing theorem, we choose
Ey={w:R— R|w() =0} (1.8)

Ey and (g,) are supplementary spaces singg€0) # 0. The corresponding “reduced
action functional’F,, (A, 6) := ®,, a(q} »), See (2.1), turns out to have a neat geometric
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meaning, see Remark 2.1, related to the generating functions of the exact Lagrangis
stable and unstable manifoldg*“ (7;,) .

From a geometrical point of view, the choice of the supplementary space defined by
(1.8) means considering/* (7;,) and W*(7},) at the fixed Poincaré sectidg = '},
sinceq 4(0) = g9 () + wls 4(6) = qo(0) = 7.

The supplementary spadg is very well suited to perform the shadowing theorem
because the “1-bump pseudo solutiorg’,(r) are true solutions of (1.5) except at
the instantr = 6 where g ,(r) may have a jump, see Lemma 2.1. Following [4,5]
we will generalize in Section 2.2 the above finite dimensional reduction, finding a
natural constraint for¥-bump pseudo homoclinic solutions” turnirkgtimes near the
unperturbed separatrices of the pendulum, see Lemma 2.4.

In this way under a suitable “splitting condition”, satisfied for instancé j{(A) :=
F,(A,0Q) possesses a proper minimum (see Condition 2.1), we can prove a genere
shadowing theorem with explicit estimates on the diffusion tifpesee Theorem 2.3.
This estimate (see expression (2.21)), is roughly the followifygis estimated by the
product of the number of heteroclinic transitiohs(= number of tori forming the
transition chain = heteroclinic jump/splitting) and of the tirfierequired for a single
transition, namelyT, = kT,. The time for a single transitiof; is bounded by the
maximum time between the “ergodization time” of the toftisrun by the linear flow
wt, and the time needed to “shadow” homoclinic orbits for the quasi-periodically forced
pendulum.

Theorem 1.1 (for a priori unstable systems) is a straightforward consequence of th
general shadowing theorem, noting that, by the classical Poincaré—Melnikov theory, th
splitting of the whiskers is Q). The main reason for which Theorem 1.1 improves the
polynomial estimated; = O(1/u?*1) and 7, = O(1/u"*), obtained respectively in
[9] and [19], is that our shadowing orbit can be chosen, at each transition, to approacl
the homoclinic point only up to a distancgX) and not Qu) like in [9] and [19]. This
implies that the time spent by our diffusion orbit at each transitich is O(log(1/w)).

Since the number of tori forming the transition chain is equal tb/Splitting) = O(1/u)
the diffusion time is finally estimated i, = O((1/u) log(1/w)).

As well, Theorem 1.2 (and Theorem 5.2) for three-time-scales systems, is a
consequence of the general shadowing Theorem 2.3, but in this situation the splittin
is by far less easy to measure, because it is exponentially small.

As mentioned above variational methods in the context of Arnold diffusion have been
already used in [8], see Remark 2.2 for comments on that. One possible advantage
our approach is that it may be used to consider more general critical points of the
reduced functional, not only minima. Another advantage is that the same shadowing
arguments can be used also when the hyperbolic part is a general Hamiltonian i
R?", m > 1, possessing one hyperbolic equilibrium and a transversal homoclinic orbit.
Nevertheless we have developed all the details when the hyperbolic part is the standal
one-dimensional pendulum because it is the model equation to study Arnold diffusionr
near a simple-resonance.

Splitting. Detecting and measuring the splitting of the whiskers is a difficult
problem when the frequency vectar= w, depends on some small parameteand
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contains some “fast frequencies; = O(1/s”), b > 0. Indeed, in this case, the variations
of the Melnikov function along some directions turn out to be exponentially small with
respect tee and then the naive Poincaré—Melnikov expansion provides a valid measure
of the splitting only foru exponentially small with respect to some powet of

The typical argument to estimate exponentially small splittings, used virtually in all
papers dealing with this problem, goes back to Arnold himself and is based on Fourie
analysis on complex domains.

For this reason we would like to extend analytically the “reduced action functional”
Fu(A,0) = ®, (g} ) in a complex strip sufficiently wide in the variable. However
F, (A, 0) can not be easily analytically extended. Indeedgfoomplex, the supplemen-
tary spacef, = {w:R — C| w(Ref) = 0}, appearing naturally when we try to extend
the definition ofg/; , to 6 € C, does not depend analytically en This breakdown of
analyticity, arising when measuring the “splitting of the whiskers” at the fixed Poincaré
section{g = r}, is a well known difficulty and has been compensated in [15,25,26] via
the introduction of tree techniques which enable to prove cancellations in the powel
series expansions.

Our method to overcome this “loss of analyticity” is different and relies on the
introduction of another supplementary spdtg which depends analytically ofr. It
is defined by

Ey= {w:R—> R ‘ /%(z)w(z)dz =o}
R

where () = cost(¢)/(1 + coshr)3. E, and (o) are supplementary spaces since
Jr Yo(t)godr # 0 (see Remark 4.1 for the choice 9§ ). The corresponding reduced
functional F,, (A, 0) := @, (0% »), defined in (4.4), wher@', , are the corresponding
“1-bump pseudo-homoclinics solutions”, can be analytically extended in a sufficiently
large complex strip. This enables to find easily the exponentially small bounds on
the Fourier coefficients for the splitting, thanks to the important invariance property
F,(A,0+n)=F,(A+wn, 0),which is a consequence of the autonomy of Hamiltonian
'H,.. This type of Lyapunov—-Schmidt reduction was used in [2] to study the exponentially
small splitting in rapidly periodically forced systems.

The crucial point is now to observe that “reduced action functionals” corresponding to
different choices of the supplementary space are equivalent: it turns out (Theorem 4.1
that the reduced functionals, and F,, are simply the same up to a change of variables
close to the identity,

F,.(A,0) = ﬁM(A, 0+h,(A,0)), h,=0(w).

This fact enables to transpose the informationsfgmo F,, and viceversa. We point out
that the proof of Theorem 4.1 relies only on the standard Implicit Function Theorem.
The introduction ofF,, may be interpreted simply as measuring the splitting with a non
constant Poincaré section.

A different approach for establishing exponentially small splittings for a rapidly
forced pendulum has been used by [23] and recently extended to the setting consider
here in [21] and [38,39] by the mean of normal form theory. For the more difficult case
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of the standard map, where the Melnikov method fails to give the correct prediction for
the splitting, we refer to the pioneering paper [34] and to [30].

We also mention that the recent papers [43] and [36], even though quite different in
spirit from ours, have also several technical similarities with our method (the use of
generating functions, nonfixed Poincaré section). We add that these papers deal also
with non-isochronous systems.

The paper is organized as follows: in Section 2 we prove the shadowing theorem whe
the perturbation term ig (¢, ¢) = (1 — cosq) f (¢). In Section 3 we show how to prove
the shadowing theorem for general perturbation tefiys, ¢). In Section 4 we provide
the theorem on the Fourier coefficients of the splitting and in Section 5 we consider
three-time-scales systems.

2. Theshadowing theorem
2.1. 1-bump homoclinic and heteroclinic solutions

Using the Implicit Function Theorem we now prove that, near the unperturbed
homoclinic solutiongy, (¢), there exist, fopx small enough’; 1-bump pseudo-homoclinic
solutions” ¢4 ,(t) of Eq. (1.5).¢} ,(r) are true solutions of (1.5) if—oo, ) and
(0, +00); at time t = 6 such pseudo-solutions are glued with continuity at value
gy 4(0) = and fort — +oo are asymptotic to the equilibrium 0 modr2The ¢ ,
are critical points ford,, 4 restricted tagy + Ey (Es is defined in (1.8)).

LEMMA 2.1.-There exisfig, Co > 0such thatvO < u < ug, Vo € R", V60 € R, there
exists a unique functioqnj(ﬂ(t) :R — R, smooth in(A, ), such that

0) qﬁ,e(t)is a solution of(1.5) in each interval(—oo, 8) and (6, +o0) and

gl o(0) =;

. . t—6
@t (0 — do(0)]) < Cont exp(—%), vieR:

@iy max(|g) o (1) — qo(r)

(i) qho() =qhiro0p®), VkeZ

(iv) qﬁ“,@ﬂ (1) = qz—&-wn,e t—mn), VYO,neR;

V) max(|dagis o ()|, |8ad’ o (1) @944} (1))

[t — 6]
< Con exp| — 5 )

Proof. —In Appendix A. O

, W - 0aqly (1)

’ k)

We can then define the functiofi,:T" x R — R as the action functional of
Lagrangian (1.6) evaluated on the 1-dimensional manitjd:= {¢ , | 6 € R} of
“1-bump pseudo-homoclinic solutions”, namely

F (A,0)=®, 4(q% )
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0 +0o0
= [ Lualaho@dho@. 00+ [ Lualaho.dio0.0)d @)
—00 )

and the*homoclinic function” G, : T" — R as
G, (A)=F,(A,0). (2.2)

Since g)y 4(1) converges exponentially fast to 0, mod ,2the integrals in (2.1) are
convergent.
By property (iv) of Lemma 2.1 the following invariance property holds

F (A, 0+n)=F,(A+wn,0), VY9,neR, (2.3)

and in particular
F.(A,0)=G,(A+wb), VoeR. (2.4)

Remark2.1. — The homoclinic functiod , is the difference between the generating
functionsSj,,O(A, qo) of the stable and the unstable manifoWg“(T,o) (which in this

case arexactLagrangian manifolds) at sectigg = =, namelyG ,(A) =S, ; (A, ) —
S;,O(A, ). Indeed it can be easily verified that

S;]O(A7 C]O)
G o 0)?
=Ty A— / SR+ (1= €08q) 4y (1) + 1(COS (1) = 1 f (@t + A) b,
0

where ¢l , (1) is the unique solution of (1.5) neaf(r) with ¢4, (0) = g0 and
lim;_ o0 ¢4 ,,(t) = 2. Analogously

SI:JO(A’ C]O)
P (@ (1)
=1y - A+ / A"’# + (1 —cosqly ,, (1)) + 11(COSqly ,o(1) — 1) f (wt + A)

where ¢}y ,.(1) is the unique solution of (1.5) neay(r) with ¢4, (0) = go and
lim; . o g} ,, (1) =0.
There holds

LEMMA 2.2. - F,:T" x R— Ris smooth and

0aF,(A,0) = /M(COSqf{ﬂ(t) —1)9, f(wt + A)dt, (2.5)
R

(G40)°07)  (Gh0)%0")
2 2

0Fu(A.0) = [ flwr+A)sings o (0 (0 = . (26)
R
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Proof. —Sinceq), , depends smoothly oA so doesF, (A, §) and there holds

+o0
dnF. (A, 0) = / 0 o (4G (1) + SING". 5 (1Baql (1)

— usingy o (1) f (wt + A)daqly o (1) + pu(cosgly »(1) — 1)d, f (wt + A) dr.
Integrating by parts and using that lim.. ¢ ,(1) = 0 andd.qy 4(6) = 0, we get
0

+00 +o0
/c‘;j,‘ﬁ(t)aAc}’Af,e(t)dt: / ...+/é§,e(t)8Ac}’Af,9(t)dz
5 0

—00

0 ~+00
—— [ itswondh s d = [ @005 0.
—00 2]

Hence, since;ﬁﬂ(t) solves (1.5) on each intervét-oo, 6) and (@, +00),

“+o00

aF,.(A,0) = / w(cosgly 4 (1) —1)d, f(wt + A) dr 2.7)

—00

and (2.5) is proved.
4y ¢ is not defined inW™>°(R) becauseg’; , may have a jump at= 6. However,
by the invariance property (2.3),, (A, 0) is smooth also i# and we have that

9 F, (A, 0)=w-0,F,(A,0)

d
= MR/(COSQZ“,@(I) —-1) af(a)t + A)dt

=1t [ singl, (03 o0 f @1 + Ay,
R

by an integration by parts. Now sing§ , () solves (1.5) in#, +o0)

+o00 +oo
[ singl o fwr + Aydr= [ =i ity + singl 03 o0
% %
M 29+
:(CIA,G)Z( )—{—COSqﬁ’g(Q).

In the same way

_(ap)*07)

> — €0sgly 4(6).

]
/ psing” (1)t o (0) f (@t + A) dr =

This proves the lemma. O
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It follows that Z,, := {¢}s 4 | 6 € R} is a “natural constraint” fod, 4. Indeed, by
(2.6) and Lemma 2.1(ii), ifly F. (A, 0) = 0 thengy 4 (1) is a true homoclinic (mod:2)
solution of (1.5). Then, for each € R",

(@t + A, Li(1), gy (1), G} 4 (1)) (2.8)
where
t
L(t)y=Ip—pn / (1- COSqf:,@ (5)) 3, f(ws + A) ds (2.9)
is a solution of H, emanating at = —oo from torus 7;,. Since g}, converges

exponentially fast to the equilibrium, the “jump” in the action variablg&+oo) — Ip is
finite. We shall speak of homoclinic orbit to the torfig when the jump is zero, and of
heteroclinic orbit fronZ;, to 7;, (.~ when the jump is not zero. As a direct consequence
of (2.5) we have that such a jump is given &yF,, (A, 6):

LEMMA 2.3.-LetdyF,(A,0) =0thenl,(¢) given in(2.9) satisfies
+00
31 F, (A, 0) = / [,(t)dt = 1,,(+00) — Ip e R". (2.10)

In particular if (A, 0) is a critical point of F, (A, 6) then(2.8)defines a homoclinic orbit
to torus7y,.

By the invariance property (2.4) B is a critical point of the homoclinic function
G, then, for all(A, 6) such thatA + w6 = B, (2.8) provides, for eacly, a homoclinic
solution to the torug;,. These homoclinic orbits are not geometrically distinct since, by
the autonomy oft{,,, they are all obtained by time translation of the same homoclinic
orbit. By the Ljusternik—Schnirelman category theory, sinceléat n + 1, the function
G, :T" — R has at least + 1 distinct critical points. This proves (see also [36])

THEOREM 2.1. —Let0 < u < uo. VIp € R" there exist at least + 1 geometrically
distinct homoclinic orbits ta7,.

From the conservation of energy a heteroclinic orbit betvﬁgand?’,é, if any, must
satisfy the energy relation

w-Ip=w- I (2.11)

By Lemma 2.3 a critical point oFM,,OQ,é(A, 0), defined byFM,,o,,é(A, 0)=F,(A,0)—
(Ip—1o) - A= G,(A+wb) — (Ig— Ip) - A, gives rise to a heteroclinic solution joining
the tori7;, and7;,. If the energy condition (2.11) holds then the functiBn,, ;. (A, 6)
satisfies the invariance property

Fuipp(A,0)=Gu(A+wd) —(Ig— 1) (A+00) =G, n(A+08), (2.12)

where
GM,,OJ(/)(B) =G, (B)— (I(’) —1Ip) - B. (2.13)
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Note thatG,, ;, 1 is not 2rZ"-periodic, and it might possess no critical point even for
|15 — Io| small. However near a homoclinic orbit B, satisfying some “transversality
condition” there exist heteroclinic solutions connecting nearbyZpriAs an example,
the following theorem holds, wher,(Aq) denotes the open ball of radigscentered
at Ag in R" (covering space of ).

THEOREM 2.2. —Assume that there existg € T", § > 0 and p > 0 such that
infyp, a0 G = INfp, a0 G, + 6. Then for all Io, Iy € R" satisfying (lo — Ip) - @ =0
and |l — Iy| < 8/(2p) there exists a heteroclinic solution Bf, connectingZ;, to Ty

Proof. —Let us considel, (A) := G, (A) — (Iy — Ip) - (A — Ap) which differs from
G015 defined in(2.13), only by a constan{ attains an absolute minimum 8y, (Ao)
at some pointA. The theorem is proved if we show thdte B,(Ap). Arguing by
contradiction we assume thate 3 B,(Ao). Denote byA e B,(Ap) a minimum point for
G, ThenG, (A) = G, (A) — |I§— Iolp > Ming (40 G, +68/2= G, (A)+5/2. However
G.(A) < G, (A) + 8/2 and we get a contradiction.0o

2.2. The k-bump pseudo-homoclinic solutions

We prove in the next lemma the existence bffump pseudo-homaclinic solutions”
qﬁﬂ(t) of the quasi-periodically forced pendulum (1.5) which thtmmes along the sep-
aratrices and are asymptotic to the equilibrium#fes +oo. Such pseudo-homoclinics
qgﬂm are found, via the Contraction Mapping Theorem, as small perturbations of a
chain of “1-bump pseudo-homoclinic solutions” obtained in Lemma 2.1.

LEMMA 2.4.— There existCy, L, > 0 such thatVw € R”, VO < u < g, Vk € N,
VL > L1, Y8 = (04, ..., 6) € R¥ such thatmin; (0,11 — 6;) > L, there exists a unique
pseudo-homoclinic solutioy}ﬁ,@(t) :R — R, smoothin(A, 8, «) which is a true solution
of (1.5)in each interval(—oo, 6,), (6;,0;31) (i =1,...,k — 1), (6;, +00) and

() qse0) =72 —1),q4,() =g} o,(t) in(—00,61)
andgk o(t) =2m(k — 1) + gl . (1) in (6, +00);
(i) lako—ahollwie) < CreXA=C1L),
whereJ; = (6;, (6; + 6:41)/2),¥Vi=1, ...,k —1;
(iii) H‘Ll&,e - ‘IX,Q,-HH wioo(J!) < Ciexp(=C1L),
whereJ! = ((6; +6,41)/2,6i41), Vi=1,... k=1,
(V) g5 (1) =i 1pon (), VhkeZ™;
V) G5 i D =k ot =1, VneR,6eRK, wheree,=(1,...,1) e R,

Proof. —In Appendix A. O

Remark2.2. — The %-bump pseudo-homoclinic solutiong’ , of Lemma 2.4 could
also be obtained minimizing the Lagrangian action functlonal with fixed end-points
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as in [8] using the directs method of the calculus of variations. For general systems
where the homoclinic is not a minimum for the action functional, as for the Duffing
equation, this approach cannot be applied. Moreover we prefer to use the Contractio
Mapping Theorem since it also provides immediately the approximation estimates of
Lemma 2.4(ii)—(iii).

We consider the Lagrangian action functional evaluated on the pseudo-homoclinic
solutionquﬂ given by lemma 2.4 depending an+ k variables

01
F/I;(Ala B An7017 .. '79/{) = / L:M,A(q,ﬁﬂ(t)a q.f&,@(t)a t) dt
—00

k—1 9i+1 +oo

+y / Loa(qh o). q% (). 1) db + / Lo(gh (). 4% o). 1) dr.
i=1 o O

By Lemma 2.4(v) the following invariance property holds
Fi(A,0+ne)=Fi(A+nw.0), VneR, 6eR. (2.14)
Let }-ﬁ :T" x R¥ = R be the k-bump heteroclinic function” defined by
Fi(A,0):=F(A,0) — (I, — Ip) - A. (2.15)

It turns out that th&-dimensional manifoldz; := {qjﬂ | 6 € R¥} of “k-bump pseudo-
homoclinic solutions” of (1.5) is a natural constraint fdy, 4, see [4]. Arguing as in
Lemma 2.2 we have

LEMMA 2.5.-VIy, Ij e R", if (A, ) is a critical point of}‘ﬁ(A, 0), then(wr + A,

L), g5 (1), 4% o (1)) wherel, (1) = Io — u [T (1 — cosqk , ()3, f(ws + A)ds is a
heteroclinic solution connecting, to 7;,.

By Lemma 2.5 we need to find critical pointsﬁ,’i(A, 0). When min(6;,1 — 6;) —
+o0 the “k-bump homoclinic function”Fl’j(A, ) is well approximated simply by the
sum of F, (A, 6;) according to the following lemma. We s&t= —oc and6;.1 = +00.

LEMMA 2.6.— There existC,, L, > 0 such thatvw € R", VO < u < g, VL > L,
Y6y < --- < 6 withmin; (6;.1 — 6;) > L

k k
Fi(A,01,....00=> Fu(A0)+> Ri(u, A, 01,6, 041), (2.16)
i=1 i=1

with
|Ri(i, A, 0;-1,6;,6i11)| < Coexp(—CaL).

Proof. —We can write
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Fi(A,61,....00
(01+62)/2

01

=< / Loalgh o), d5,).1) + / ﬁu,A(qj,g(n,q'ﬁ,@(t),t))
—00 91
k=1 6; (0;+6;11)/2

+Z< / Loa(gy o), d5 o)1) + / EM,A(qﬁ,g(t),c}ﬁ,g(t),t)>

=2 N Or_146)/2 o;

o

(Or—1+6k)/2

~+00
Loualgh o), d5,).1) + / La(qho®),dk @), z)) :
Ok

We define
R (, A, 0,_1,0;)
0; 0;
= / Loua(qko(0). 45 o), 1) dt — / L.a(qh 6 1), ¢4 4 @), 1) dt,
(0;—1+6;)/2 —00

Rl_‘_(/“l’v Av 91'7 9i+l)

O +6i11)/2 +o0
= [ Lualabo0.dk 0.0 = [ Lunlal o @.dhe @0,
0; 0;

i

whereq’Af,ei is the 1-bump pseudo-homoclinic solution obtained in Lemma 2.1. Recalling
the Definition 2.1 ofF, (A, 8) we have

Fi(A, 61, ....00) = Fu(A,61) + Rf (11, A, 61, 65)
k—1

+ ZFM(A, 0:) + (R (1, A, 6;_1,6;) + R (i, A, 0;,6;11)
i—2

+ Fu (A, 00) + R (0, A, 6r—_1, 6).

Setting Ry = RY, R, =R + R (i =2,...,k — 1) and R, = R, we derive the
expression (2.16). In order to complete the proof, we have to show the existence o
C,, L, > 0 such thatvw € R”, for all 0 < u < o, VL > L,, V6, < --- < 6 with
min;(0;,1 —6;) > L,foralli =1,...,k

[RE(1t, A, 6;,0:40)| < C2eXp(—CoL). (2.17)

We write the proof forR;". We have

Rl_‘_(/“l’v Av 91'7 9i+l)
(Oi+0i+1)/2

= / (Lua(qxo@.dqx o)1) = Ly aldh g 1). dh g (), 1)) dr
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+oo
— [ fualaha@.dh, 0.0 dr (2.18)
(0i+6i11)/2
By Lemma 2.1(ii) the homoclinic orbit satisfies @y, , (1), ¢4 (1)) <
Cexp(—|t —6;1/2). Hence L, a(qi 4, (1), 44 q,(1), 1) = O(€Xp(—|t — 6;])) and for all
91 << Qk W|th mini(9i+l - 91) > L,

+oo

Loa(qlh 6,0, G4 o). 1) dt| = O(eH/2). (2.19)

(6i+6i+1)/2

From Lemma 2.4(ii) we also deduce that

(Oi+6i4+1)/2
( / EM,A(‘IAT,G(I)"LI&G(I)J) — Ly a(qh6,(1)s G5, (1), 1) dt) :O(e_CL)
0;
(2.20)
for some constant’ > 0. From (2.18), (2.19) and (2.20) we deduce (2.17)

2.3. Thediffusion orbit

We now give an example of condition @, which implies the existence of diffusion
orbits. B, (Ag) C R" denotes the open ball centereddgte R" and of radiusx.

Condition 2.1 (‘Splitting condition”). — There existAg € T", « > 0, a bounded open
setU c R" (the covering space of") such thatB,(Ag) C U and a positive constant
8 > 0 such that

i infG, >infG, +8;

. 5 .
(i sup G, < - +infG;
Ba(Ag) P4 vt

(i) d ({A€UIG.(A)<8/2+infG.} {A€UIG.(A)>35/4+infG,}) > 2.

Remark2.3. — If G, possesses a non-degenerate minimumAgnthe “Splitting
condition” 2.1 is satisfied, for example, choosiig = B,(Ap) with p = mina;/
Bsup,cr ID3G,]), & = 4minx)p?/9 and o = p((v/6 — +/5)/2/10
J(min; 1;)/(max x;) wherex,; are the (positive) eigenvalues DPG*(Ay). Details are
given in Appendix A.

The following shadowing type theorem holds, where
py := diam(T1,,(U))

andIl, :R" — R" denotes the orthogonal projection owio.

THEOREM 2.3. — AssumgH1) and the “Splitting condition”2.1. Thenv Iy, 1 with
w - Io=w - Iy, there is a heteroclinic orbit connecting the invariant tafj, and 7;,.
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Moreover there exist€; > 0 such thatvyn > 0 small enough the “diffusion timeT,
needed to go from a-neighbourhood of, to an-neighbourhood of}; is bounded by

|lo — Iy
)

1
T, < Cs oy max(| logs|, —) + Csllogn)]. (2.21)

yar

Remark?2.4. — The meaning of (2.21) is the following: the diffusion tirdig is
estimated by the product of the number of heteroclinic transitioas ( heteroclinic
jump / splitting )= |15 — Iol/8, and of the timeT; required for a single transition, that
is T, = k - T,. The time for a single transitioff; is bounded by the maximum time
between the “ergodization tim&’l/ya®), i.e. the time needed for the flow to make
ana-net of the torus, and the tirmdogd| needed to “shadow” homoclinic orbits for the
forced pendulum equation. We use here that these homoclinic orbits are exponentiall
asymptotic to the equilibrium.

Proof. —Assume with no loss of generality thday = 0 and inf, G, (A) =0. Let us
choose the number of bumpsas

_[24pu-1lg— Il

k
8

41 (2.22)

By Lemma 2.4(i) and Lemma 2.1(ii), the trajecth"yﬁ converges exponentially fast to
71 (resp.T,(/)) ast — —oo (resp.+oc) from 6, (resp.6;). Therefore it is enough to prove

the existence of a critical poiti#, ) € T x R* of thek-bump heteroclinic functiod®,
defined in (2.15), such that for some positive cons#ént

|10 — Iy
)

_ 1
|6y — 01| < Kq -pU-max(l Iog8|,—>. (2.23)
yor

More precisely we shall enforce
_ _ 1 _
Ksllogd| < 10;41 —0;] < K3max(| log$é|, —) Vi=1,...,k—1, (2.24)
yar

for some positive constant&,,K3. Let (R4, ..., 2,) be an orthonormal basis &"
where

1, — I

Q @ and
1= 2= .
|Io — Iol

||

We recall thatw - (I; — Ip) = 0. In order to find a critical point oﬂ-‘l’j we introduce
suitable coordinateus, . .., a,, s1, ..., 5;) € R" x (—=diamU, diamU )* defined by

_Mitsi—ag

Vi=1,... .k,
|l

A:Zanj, 9,'
j=1
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where n; are constants to be chosen later. In these new coordinates the heteroclini
function defined in (2.15) is given by

?’;(al,az,...,an,sl,...,sk)

- mtsi—a Nk + Sk —a (2.25)
:F§<Zaj9j, o e >—|1g,—10|a2.

j=1

Using the invariance property (2.14) we see thgtdoes not depend on the new variable
aj .

n
= N+ 51 Nk + Sk
f’;(al,az,...,an,sl,...,sk)=Fl’i<Zanj, g ey >—|Ié—10|a2

= || ||
:?ﬁ(ov a2v MR anv slv ] S]()'
For simplicity we will still use the notation ?ﬁ(az, ey, S1, ..., 8;) for
F(0,az,...,a,, 51, ..., 5). We now choose the constants Let
24C .
D:M Iog( 2)‘ + 2diamU, (2.26)
C, )

where C, is the constant appearing in Lemma 2.6. We shall use the following fact
(see [13]): there i€ > 0 such that, for all intervald c R of length greater or equal
to C/(ya"), there is9 € J such that

d(fw,2nZ") <a. (2.27)

By (2.27) there ign;, ..., ;) € R such that

n; 21 = ¥, mod 2z Z", |xi| <« and Xxi - 21 =0, i.e.Xi:ZXi’ij, (228)
j=2

C
m=0, D<nyi—n< (D + la)l). (2.29)

yor

By (2.26), (2.29), since; € (—diamU, diamU) we have thab; 1 —6; > & | log(%2)|;
hence, by Lemma 2.6, setting

Fi :Ei(a2v ey anv si—lv sl'v si+l)
n
Si—1+Mni-1 Si+n Siti+nia
=Ri{m, ) a;Q;, , ,
'( ; T ol |l |l
we get

_ )
|Ri(a27 "'7an7si—lasi7si+l)’ < (230)

ﬂ.
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By Lemma 2.6, the invariance property (2.14), (2.28) and siigdas 27 Z"-periodic,
we have
?k(az,...,an,sl,...,sk)
k

Z (Zaj J’nlw >+E—|16—10|a2

i=1

k
ZFM<Zanj + xi +5iQ1, 0) +R; — |I{ — Iolaz

1 j=2

k n
Gﬂ<2(a,- + X)) +sl-szl> +R; — 1) — Iolaz
1

i j=2

= |l

Gu(az+ Xi2, - an + Xins $i) + Ri — |1y — Iolaz, (2.31)

[y

where G (az, ..., a,,5) = G, (X]_pa;Q; + sQ1). By (2.31), settingX; := (xi2,
.., Xin) €ER"1anda = (ay, ..., a,), we get

k

7ﬁ(a2, ey Gy ST, ey SE) = Zﬁu(a +X:»8i) + R — |I§ — Dolax. (2.32)
i=1

Since the basig4, ..., 2,) is orthonormal the functiorﬁu satisfies the same
properties ag;,, i.e.

supG, < é injﬁu >6
B4(0) 3
andd({x € U | G,(x) <8/2).{x € U | G,(x) > 38/4}) > 2a, whereU = {(az. ...,
ay,s) € R | ijzajszj + 5Q1 € U}. Note that dian/ = diamU. In particular, since
(0,0) € U, for all (a,s) € U, s € (—diamU, diamU). Moreover, for all(a,s) € U,
lal =T, pa,; 2 +sQ1)| < pu.

We shall find a critical point ofF %, in

W=1{(as)eR" xR |(a+7%;,s) €U, Vi=1,...,k}.

As W is bounded,ﬁ_fft attains its minimum oveW at some pointa, 5). Notice that by
(2.32) and (2.30)

k
= 5
FLsFu0.0=>3 GuX;,0 +kg,.
i=1

Hence, sincéy,;| <« foralli=1,...,kand SUR, (o) Eu < 48/4, we have

=

inf
W

mffﬁ\k —|—k2—4—k2—4 (2.33)
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The theorem is proved if we show th@t, 5) € W. Arguing by contradiction we assume
that(a,s) € 9W. Then there is somee (1, ..., k} such that(@ + ;. 5;) € 9U, so that
G, (@+%x;,5) = 8. We now prove thaf(a + ;. t); t € (—diamU, diamU)}NU C Z :=
(xeU| G, (x) = 38/4}. Indeed, if not, by (2.30), for somes (—diamU, diamU) such
that@+%,.1) € U,

Fo@. 51,511, 0,541, -, 50) S F @ 5) + (Gu@+ x5 1) = Gu@+ %1, 51)
+ |Ri-1(a,51-2, 511, 8) — Ri—1(@,51-2,51-1, 1) |
+ |Ri(@, 51-1,1,5) — R/(@,51-1, 51, 5141 |

+ |Ri41(@, 51,5141, 1) — R141(a, 51, 5141, 5142) |

— 5 68 —,
<fﬁ(a7s)_ Z"l_ﬂ:fﬁ(aas)y
which is wrong sincéa, 5) is the minimum o?ﬁ over W. We deduce in particular that,

for all 7,

@+7%,5)eZuU" (2.34)
We now prove that for all,

— )

Gu@+x;,si) > > (2.35)

Indeed, assume thél, (@ + ¥;,57) < 8/2. SinceG,, > 35/4 in a neighbourhood dfU,
d(x,U° > 2a for all x € U such thatﬁu(x) < §/2, so our splitting condition implies
that

d(ZUU (x eU| G (x) <8/2)) = 2a.

Therefore we get, recalling (2.34), tha@ + x,,5:) — (@ + X;,5)| = 1%, — %l = 2.
This contradictsy; |, |;| <« in (2.28).

By (2.32), (2.35), (2.30), and noting that, by (2.22), — Iollaz| < |15 — Iolpy <
(k8)/24, we deduce that

_ s s s 108 75
@) ke — ke k2 — g s k02
Fu@ ) ks —kog —koa=k%g > ko

contradicting (2.33). The proof of the theorem is complete.

Remark2.5. — The latter proof works iiG, possesses a local maximum which
satisfies a non-degeneracy type condition like the “splitting condition” 2.1, while in
the approaches developed in [9] and [45], based on Mather’s theory, diffusion orbits
are always built from local minima ot;,. The proof of the shadowing theorem
when the homoclimic pointg is a saddle point requires slightly different arguments
involving the topological degree. For example it holds assuming as in [24] the condition
D?G,(Ao)w - # 0. This condition enables to prove that §eg |, (a, s), W, 0) # O for
a suitablew.

When the frequency vecto® is considered as a constant, independent of any
parameter (“a priori-unstable case”) it is easy to justify the splitting condition 2.1 using
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the first-order approximation given by the Poincaré—Melnikov primitive. With a Taylor
expansion inu we can easily prove that for small enough

G,.(B)=b+ul'(B)+0(u?), VBeT",

whereb = ®y(go) andl' : T" — R is nothing but the Poincaré—Melnikov primitive

I'(B)= /(COSqo(t) —1) f(wr + B) dr. (2.36)
R

Hence, ifT" possesses a proper minimum (resp. maximumigre R”, i.e. if 3r > 0

such that infp, 4y I' > I'(Ao) (resp. supp 4, I' < I'(Ao)) then, foru small enough,
the “splitting” condition 2.1 holds wittU = B,(Ag), py = O(1), § = cp anda = ¢’

for some positive constantsand¢’ depending or". We remark thatB, (Ag) could be
replaced by a bounded open subSevf R". Applying Theorem 2.3 we deduce

THEOREM 2.4. — AssumgH1) and letI" possess a proper minimufor maximum)
Ap, i.e. suppose tha8r > 0 such thatinfyz 4" > I'(Ag). Then, for x small
enough, the same statement as in Theo®1holds with a diffusion timer; =

O((1/w) log(1/p)).
3. Moregeneral perturbation terms

In this section we show how to adapt the arguments of the previous section in order t«
deal with a more general perturbation tefity, ¢). Regarding regularity it is sufficient
to have finite large enough smoothness far The equation of motion derived by
Hamiltonian’,, are

g=0, I=—ud,flp.q)., G=p. p=sing—ud,f(p.q),  (3.1)
corresponding to the quasi-periodically forced pendulum
—G +sing = pd, f(wt + A, q). 3.2)
3.1. Invariant tori in the perturbed system

The first step is to prove the persistence of invariant torigfg£ 0 small enough. It
appears that no more than the standard Implicit Function Theorem is required to prov
the following well known result (see for example [32] for a different proof)

THEOREM 3.1. — Letw satisfy(H1). For u small enough an&/, € R" systenf,
possesses-dimensional invariant toriZ;; ~ 7;, of the form

Tiy={I=I+d"@), p=P'W),o=v, ¢=0"W), veT"}, (3.3

with Q* (), P*(yr) = O(n), a* () = O(u). Moreover the dynamics orT,g‘ is
conjugated to the rotation of speadfor .
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We first determine the function@”, P* in (3.3). Using the standard Implicit Function
Theorem we prove that there exists a unique quasi-periodic solgtfon for the
quasi-periodically forced pendulum equation (3.2) which bifurcates from the hyperbolic
equilibrium 0.

LEMMA 3.1.—Let f e C/(T" x T), 1 > 2. For i small enough there exists a unique
quasi-periodic solutiong’ (r) of (3.2) with (¢’ (1), ¢’y (1)) = (¢’ (t), p'i(t)) = O(w),
C'~1-smooth inA. More precisely there exist functio®*, P*:T" — R of classC/ %,
such that(g'y (1), ps (1)) = (Q*(wt + A), P*(wt + A)).

Proof. —Let L be the Green operator of the differential operator> —D?%h +
h with Dirichlet boundary conditions attoco. L is explicitely given by L(f) =
Jre "I f(s)ds/2. It results that. is a continuous linear operator in the Banach space
of the continuous bounded functions frdito R endowed with the sup-norm, which
we shall denote b¥. We consider the non-linear operatOrR x T" x E — E

S(u. A, q) :==q — L(g —sing) — uL (0, f (wt + A, q)).

S is of classC!~. We are looking for a solutiog’y of S(1, A, ¢) = 0. SinceS(0, A, 0) =
0 and9,S(0, A,0) = Id, by the Implicit Function Theorem there exists, foersmall
enough, a unique solutiogy = O(w). By (3.2) ¢y € C'*1(R); moreover it isC'~2-
smooth inA. We define theC'~t-mapsQ*(-), P*(-): T" — R by

0"(A) := ¢4 (0), P! (A) = ¢4 (0).
By uniqueness we deduce thgl(s + 1) = gly,,, (1), Vs, € R. Fors = 0 this yields
qh () =gl s (0) := 0" (A+ws) and pi(s) = pl.,,(0) := P*(A+ws), VseR,

proving the lemma. O

We now define the functiong” (v) of (3.3). We impose thatwr + A, Iy + a* (wt +
A), O*(wt + A), P*(wt + A)) satisfy the equations of motions (3.1); hence the functions
a* (y) must satisfy the following system of equations

(@-V)a'(y) = pgh(¥), wheregh(y) := —(Vy f) (v, 0" (¥)). (3.4)

In order to solve (3.4) we expand in Fourier series the functiditg) = >, ae*v,
g () = 1oz gx€%Y . Each Fourier coefficient, must then satisfy

ik-w)a, =g, VYkeZ'. (3.5)

It is necessary for the existence of a solution gt [;. g () dy = 0. This property
can be checked directly, that is

LEMMA 3.2. —We have

/ (Vy 1) (. 0"(¥)) dyr = 0. (3.6)

Tn
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Proof. —For a proof see [16] or Appendix A12 of [15].0
Sincew satisfies( H1), if f is smooth enough, then the functiefi defined by

= Y gk, 3.7)

kezmigo ! (K- @)

which formally solves Eq. (3.5), is well defined and smooth. Indeed sjfnheeC’ the
function g defined in (3.4) isC'~! and there exist3/ > 0 such thatg,| < M/|k|'1,
Vk e Z", k #0. By (H1) it follows that |a;| < M/|k|'"Y|w - k| < M|k|*/(y|k|'~1). The
proof of Theorem 3.1 is complete.

3.2. The new symplectic coordinates

In order to reduce to the previous case we want to put theZiprat the origin by
a symplectic change of variables. Recalling that thengriareisotropic submanifolds,
i.e. that the symplectic 2 form d& dys +dp A dg vanishes on each tangent spacér,go
(or equivalently d* () A dy +dP*(y) A dQ* () = 0), we can prove the following
lemma

LEMMmA 3.3. —The transformation of coordinated, v, v, u) — (1, p, ¢, q) defined
on the spac®” x R x T" x R by

I =a" () +udy PH(Y) —vdy Q" (Y) +J, p=P'WY)+v, ¢=1,
q=0"(¥)+u (3.8)
is symplectic.

Proof. —Since the toriZ;' are isotropic the 1-form ofi” 1 =", a4/ dy; + P* dQ*
is closed. Therefore there exists a unigueR" and there exists* : T" — R such that
A=Y"_;c; dp; + db*. Then transformation (3.8) has the generating function

O, v,90,9)=( +0)-¢+vq+b"(p) — PX(p) 0" () +qP"(p) —v0"(p)

and hence is symplectic.O

In the new coordinates each invariant toffj$ is simply described byJ = Io, ¢ €
T",u = v = 0} and the new Hamiltonian writes

2
/CM=EM+a)-J+%+(COSM—1)+PO(M,M,W), (K,0)

where
Po(i, u, ¥) = (cog Q" + u) — cosQ” + (sinQ*)u + 1 — cosu)

+u(f (b, Q" +u) = f(¥. Q") = 0y f (¥, Q")u)
and E, is the energy of the perturbed invariant tor@g = {(a"(¥), ¥, Q*(¥),

PH()); ¥ € T"}. To Hamiltonian () is associated the quasi-periodically forced
pendulum equation

—ii +sinu =9, Po(it, u, wt + A) (3.9)
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of Lagrangian

I:tz
LM:E

Since the HamiltonialC,, is no more periodic in the variablewe can not directly apply
Theorem 2.3 and the arguments of the previous sections require some modification:
Arguing as in Lemma 2.1 we deduce that, there existsyfemall enough, a unique 1-
bump pseudo-homoclinic SO|utiOIﬁ,9(t), true solution of (3.9) i(—o0, 0), (8, +00),
satisfying all the properties of Lemma 2.1. Then we define the fundfjormT” x R — R

as

+ (1 —cosu) — Py(p, u, wt + A). (3.10)

o .
(ux,e)z

]:M(A,G):/

+ (1—cosuly y) — Po(p, u'y 4, 0t + A) dr

+oo
(ui,e)z

+ (1—cosuly 4) — Pr(p, uy 4, 0t + A) dr + 274} (6),

where, g’ (t) = Q" (wt + A) andVi € Z, we have set
P;(, u, ot + A) = (coqy (1) + u) — cosqly (t) + singly (t)(u — 2mi) + 1 — cosu)
+u(f(or + A, gh (D) +u) — f(wr + A, g4 (1))
— (0 ) (wt + A, gh (@) (u — 27n')).

Sinceu!; , converges exponentially fast to 0 for> —oc and to Zr for t — +oc the
above integrals are convergent. We define"tt@moclinic function” G, : T" — R as

Gu(A)=Fu(A0). (3.11)

There holds alsaF,(A,0) = G,(A + »b),V8 € R. Arguing as in Lemma 2.4 we
can prove the existence @fbump pseudo-homoclinic solutions, ,, which are true
solutions of (3.9) in each interval-oo, 61), (6;,60;41) (i =1,...,k — 1), (6, +00),
and satisfy all the properties of Lemma 2.4. Then we define tHeutmp heteroclinic
function”

Fr(A, 01, ....00

01
(i} o) .
= / AZ’(’ + (1 —cosuby ;) — Po(u, ul o, 0t + A) dt + 274 (61)

k—1 0i+1 2
(i ) .
+Z/ B0l L (1—cosub ) = Pi(pouk . ot + A) df + 276" (0r11)
i= 19

[k )2
+/ Aée -+ (L= cosug o) = Py g, ot + A) dt — (Ig— Io) - A.

If 05, FF(A, 61, ....60) = (i »)?67)/2 — (5 )?(6;)/2 =0 thenuk , is a true
solution of the quasi-periodically forced pendulum equation (3.9). As in the previous
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section the variation in the action variables is given by the partial derivative with respect
to A, that is

400
LA = [ —r(@uf (0 + A g0 +uf )
— 8, f (@t + A, g (1)) dt — (I — Io). (3.12)

LEMMA 3.4.— Let (A, 0) be a critical point offﬁ. Then there exists a heteroclinic
orbit connecting the tor7;; and 7,

Proof. —By (3.12) it is easy to verify that the solution of (3.1),(7), wt + A, g +
wh g g+ ik ), With 1,(1) = C — 1 [3 8, f (w5 + A, ¢ (s) + 5 4(s)) ds andC =I5 +
a, (A) + 1 Jo7 8, f (ot + A, g (1) +uky (1)) — 8, f (wt + A, ¢ (1)) dt, is a heteroclinic
solution connecting;; and7,;. O

Finally, arguing as in the proof of Theorem 2.3, we obtain

THEOREM 3.2. — AssumgH 1) and letG,, satisfy the “splitting condition"2.1. Then
Vo, Iy With w - Iy = w - I, there is a heteroclinic orbit connecting the invariant td’qﬁ
and Tl’g. The same estimate on the diffusion time as in The@&molds.

A Taylor expansion inu gives

LEMMA 3.5. — For u small enough
G.(A)=b+uM(A)+0(u?), VAeT", (3.13)

whereb = ®y(q0) and M (A) is the Poincaré—Melnikov primitivae (A) = [g[ f (wt +
A,0) — f(wt + A, qo(1))] dr.

Proof. —We develop inu the Lagrangiar , ; = it?/2+ (1—cosu) — P; (i, u, t + A)
fori =0, 1.

2

L= ”7 + (1 — cosu) — pu((u — 2i — sinu)y + f(wt + A, u) — f (ot + A, 0)

— 0y f(wt +A,0)(u — 2i)) + Ri(w, u, 1),
wherey (1) == 8, ,_oq’ (1) and |R (i, u, 1)| = O(u?(u — 2i)?). HenceG, (A) = b +
wM*(A) + O(u?) where
0

M*(A) = — / (qo(t) —singo(1))y (1) + f (wt + A, qo(t)) — f(wt + A, 0)
. -
— 9, f (! + A, O)go(r) dr — / (g0(t) — 2 — singo(1)) y (1)
0
+ f(wt + A, qo(t)) — f(wt + A, 0)dr
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“+00
+ / 8, f (@t + A, 0)(qo(t) — 27) dt + 2777(0). (3.14)
0
The lemma is proved if we show that*(A) = M(A). Integrating by parts, since
Singo(t) = go(t) and—y + y =9, f (wt + A, 0), we have

0 0
/(qO(t)—Sian(t))V(t)= /CIo(t)aqf(wt+A,0)dt—6]0(0)1/(0)4-77)?(0) (3.15)

and
+o00
/ (qo(t) — 2 —singo(1)) y (1)
0 (3.16)

+00

— / (do(t) — 27)3, f (@i + A, 0)dt + Go(0)y (0) + 77 (0).
0

Finally we deduce from (3.14), (3.15) and (3.16) tdt(A) = M(A) = Jg[f(wt +
A,0) — f(wt+ A,go(®)]dt. O

THEOREM 3.3. — Assumd H1) and letM possess a proper minimufor maximum)
Ao, i.e. F > 0 such thatinfyp, 4 M > M(Ao). Then, forp small enough, the same
statement as in Theore&?2 holds where the diffusion time % = O((1/u) log(1/w)).

Remark3.1. — By Theorems 3.1-3.2 we obtain that, for a priori-stable, isochronous,
degenerate systems considered in [9] (see also [10])

2
H8=8a)-1+%+8d(005q—1)+,uf((p,q) with 1 <d <2,

for u = 8¢, § being a small constant, the diffusion time is bounded oy O(C (8)/e%).
This improves the result of [9], which holds fpr= O(¢?), d’ > d /2 + 3, and provides
the upper bound on the diffusion tinfg = O(1/¢€ 2t +D2'-1-d/2)) ' heing a suitable
positive constant.

4. Splitting of whiskers

If the frequency vectow = w, contains some “fast frequenciess; = O(1/¢?),
b > 0, ¢ being a small parameter, and if the perturbation is analytic, the oscillations
of the Melnikov function along some directions turn out to be exponentially small
with respect toe. Hence the development (3.13) will provide a valid measure of
the splitting only foru exponentially small with respect to. In order to justify the
dominance of the Poincaré—Melnikov function wher= O(¢?) we need more refined
estimates for the error. However it turns out that the functigiA, #) can not be
easily analytically extended in a sufficiently wide complex strip (roughly speaking,
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the conditiongy ,(Red) = = appearing naturally when we try to extend the definition
of ¢ to 6 € C breaks analyticity). We bypass this problem considering the action
functional evaluated on different “1-bump pseudo-homoclinic solutiofg’,. This

new “reduced action functionalﬁM(A, 0) = éM(A + wh) has the advantage to have
an analytic extension iA, 6) in a wide complex strip. Moreover we will show that
the homoclinic functions,,, G, corresponding to both reductions are the same up to
a change of variables of the torus close to the identity. This enables to recover enoug
information on the homoclinic functio&, to construct diffusion orbits.

We assume thaf (¢.q) = (1 — €0S9) (), f(9) = Stz fr €XNlik - @) and that
there are; > 0 such that

Dy "
Vs eN,3D, >0 suchthat |f;] < |k|‘f exp( — Zrilki|>, Yk eZ", (4.2)
i=1

Condition (4.1) means that has aC* extension defined in

D= (R+il=ry,rl) x -+ x (R+i[=ry, 1a]),

which is holomorphic w.r.t. the variables for whigh> 0in (R+il;) x --- x (R+1i1,),
wherel, = {0} if r; =0, I = (—r;, r;) if r; > 0. We denote the supremum |gf| over D
as

I £1I := supl f(A)I. (4.2)
AeD

Note that we can take in (4.1)o = sup,t. | f(@)| < || f]I. It will be used starting from
Section 4.2.

4.1. Thechange of coordinates

In order to obtain an analytic “reduced functional” we perform a Lyapunov—Schmidt
reduction with a supplementary spakg to (g,) which depends analytically ah We
definey: R — R by (1) = costf 1 /(1+ coshr)3 and sety, (r) = ¥ (r — 0). Note that,
since,

[ woiot dr =K %0, 4.3)
R

Ey:= {w e HY(R) ‘ /wg(t)w(t)dt = 0}
R

is a supplementary space{® ).

Remark4.1. — We could use any functiofr decaying at infinity, analytic in the
complex stripS := {6 € C | [Im8| < = /2} such that (4.3) holds. We use the function
Yo(z) instead of the more naturgh(¢) because the closest singularities to the real line
of ¥o(z) are located in the complex plain #&is, while the closest singularities g§(¢)
are located atti(r/2). Hence near the boundary of the complex sffiphe analytic
function g is regular and this improves the bounds of Lemmas 4.6 and 4.7.
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Arguing as in Lemma 2.1 we can prove, foismall, the existence of “1 bump pseudo-
homoclinics” Q% , € g9 + Eo which is neaig,.

LEMMA 4.1.— There existu; > 0 (independent ofv) and C4 > 0 such that for all
O0<p < pu,forall e R, forall A € R" there exists a unique functia®’, ,(1) :R — R,
and a constan&ﬁﬂ smooth in(4, 9, 1), such that

(i) =04 (1) +SINQY o(1) = usinQ o (1) f(wt + A) + aly g1 (1);
(i) / (% (1) — o)) Yo (1) it = O;

R
u “u . [t —0|
(i) max(|Q o) — o), Q% 4(1) — Go()|) < CapeXp -~ )
(iv) max(
. 0
0040440 < c4uexp(—%),

V) Qe =0l%i2r6(), YkeZ"and Q) ., (1) = Qi ot — 1), V0, n€R.

We define the functionﬁM(A,e):T” x R — R as the action functional of La-
grangian 1.6 evaluated on the “1-bump pseudo-homoclinic solutio¥{s;(r) obtained
in Lemma 4.1, namely

F,(A,0):=®,,(04,) :/[fu,A(QZ,e(t)’ Ol 4(0), 1) ot (4.4)
R

andG,(A):T" - R asG,(A) = F,(A,0). By Lemma (4.1)(v) the following invari-
ance property holds), (A, 6 +n) = F,(A+on,0), Y0, € R; in particularF, (A, §) =
G (A+ wb), V0 eR.

Lemma 4.1(i)—(ii) suggests thaQ', ,|0 € R} is “natural constraint” ford, 4. For
completeness we prove it in detalil (it is the analogue of (2.6)), together with useful
bounds of the derivatives cﬂ’ (andG ) Up to order 2.

LEMMA 4.2.— Let 0 < u < min{us, (K/8C4)}, where K is defined in(4.3). If
d F.(A,0) =0thenQY , is atrue solution of1.5). More precisely

2
ool < el Fu(4. 0)] (4.5)

Moreover we also have
|VSG,(A)| =0(), |V'F.(A,0)=0), s=12 (4.6)
Proof. —We have

80 F, (A, 0) = / 0" (1, 0% (1)
R
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+ (SinQY 4(1) — usinQY () f (wt + A)) 3y QY4 » (1) dr.
Integrating by parts and using also th@{ ,(r) solves (i) in Lemma 4.1 we obtain

I Fu(A,0) =[50 o() 0% (0] 7 + / 9 Q") o (Day oW (1) . @7
R

By Lemma 4.1(iii)—(iv) the boundary term in (4.7) vanishes. Moreover, deriving w.r.t.
the second equality in lemma 4.1(v), we get

3 Q' g(1) = w-3,0% (1) — O 4 (1). (4.8)

Since, by Lemma 4.1(ii)fz Q4 4¥e dt = [g go dt isindependent ofl, [ 94 Q' oo (1)
= 0. Hence

3eﬁu(A,9)=aﬁ,e/(w'3AQ’X,9(t) — 0l o () (1) it

R
=ty / Ql4 o () (1) it
R
=y (K4 [ (500 - ) pact). @9)
R
By Lemma 4.1(iii), noting thafy| < 1, we have

[0~ o) v | < cun. (4.10)
R

Finally by (4.10) and (4.9), if 6< u4C4 < |K|/2, then
|00 Flu (A, 0)] > |k o| (1K | — 41uCa) = |l 4]1K1/2,

namely (4.5).
The proof of (4.6) can be performed with similar computations. Let us for instance
justify thatdz F, (A, 6) = O(u). We have

09 F,(A.0) = —a', / 0% (s (1) dt
R
= [ 040040~ SINQY Ol + f @t + A)sinQ, O
R

—u / (ot + A)sinQ"t , 0% , dr. (4.11)
R
Hence

BFu(A,0) =t [ (c0SQ! 40404 Ol o +SINQ 3 O ) f (@1 + Ak
R
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The bound ofangﬂ(A, 0) (independent ob) is then a straightforward consequence of
(4.8) and Lemma 4.1(i)—(iii)—(iv). O

The relation between the two reduced action functiongl$A, 0) = @, (g} ¢)

and ﬁM(A,e) = @, (0 ») is given below: they are the same “up to a change of
variables near the identity”. The next theorem is formulated to handle also non-analytic
perturbationsf.

THEOREM 4.1.— Assume thatf is smooth. There exist, > 0 and Cs > 0
(independent ab) such that, fol0 < u < u, there exist a Lipschitz continuous function
hy:T" x R— R, with |, (A, 0)] < Csp, [hu(A',0) — hu(A,0)] < Cspu(|A" — Al +
10" —61), h, (A, 60 +n) =h,(A+nw, ), such that

F,(A,0)=F,(A,0+h,(A,0)). (4.12)

In particular, settingg, (A) =h,(A,0), ¥, : T" — T" defined by, (A) = A+ g, (A)w
is a homeomorphism provided th@tu < 1/2 and satisfies

Gu=éMOWM-

The inverse of/, writeswgl(A) = A+k, (A)w wherek, is 2Csu-Lipschitz continuous.
Moreover, if f is analytic and satisfieg4.1) with r;, > O for all i = 1, ..., n, then the
homeomorphisny, is a real analytic diffeomorphism.

In order to prove Theorem 4.1 we need the next two lemmas, proved in Appendix A.
The next lemma states th@t, , belongs to the supplementary spagg;, (4.0, for some
[, (A,0) =0(u).

LEMMA 4.3.— For pu small enough(independently ofv) there exists a smooth
function 7, (A, 8) with 1,(A,0) = O(u), VI, (A,0) = O(u), 1, (A,0 + 1) =1, (A +
nw, 0) such thatQ’y ,(6 +1,(A,0)) = .

DefineV, (A, 0) := F, (A, 0 + 1, (A, 0) = @, a(d 41,0

LEMMA 4.4.— There exists a positive constafi such that, for all(A,0) e T" x R,
there holds

|F(A,0) — V,(A,0)| < Ce|dgFu (A, 0)|°. (4.13)
In particular if 3, F, (A, 6) = 0then F, (A, 6) = V,,(A, ). In addition
IVE,(A,0) — VV,(A,0)| < Cou|dp Fu(A, 0)]. (4.14)
. Proof of Theore[n 4.1.By Lemmg 4.3, there is_a smooth functiép such that
[,(A,0) =0, VI, (A,0) =0, 1,(A,0 +n) =1,(A+nw,0) and F,(A,0) =

V.(A,0+1,(A,0)).1,(A,0) is the unique solution of the equatian= —1,(A, 6 + x).
It is enough to find, for alb, y = EM(A, 0) such that

V,(A,0)=F,(A,0+y). (4.15)
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Indeed, then
Fu(A,0) =V, (A0 +1,(A,0)) =F,(A, O +1,(A,0) +7,(A,0+1,(4,0))
andh, (A, 0) will be defined by
hu(A,0)=1,(A,0)+h, (A 60+1,(A,0)). (4.16)

Note that if ang(A,Q) = 0 then, by Lemma 4.4, Eq. (4.15) is solved by= 0. In

general we look fo of the formy = 9, F,, (A, 6)z. Then we can write

Fu(A,0+y)=Fu(A,0) + 0 F,(A,0)y + Ryu(A, 0, y)y® (4.17)
= F,(A,0) + (39 F, (A, 0))°2+ R, (A0, 3 F, (A, 0)z2) (3 Fu (A, 0)) 22

where

1 -~ ~ ~
R,(A,0,y)= F [Fu(A,0+y)— F,(A,0)—F,(A,0)y]

is smooth and, by the estimates (4.6) on the derivativeEguofsatisfiesRM(A, 0,y) =
O(n), 0yR,(A,0,y) =0(u/lyl). By (4.17) Eq. (4.15) is then equivalent to

V,(A,0)— F A, 0 F
1 ( ~) u ) =z+Ru(A,9,30Fu(A’9)Z)Z2'
(39 F, (A, 0))2

We haveRr,, (A, 6, 3, F,, (A, 0)z2)z2 = O(1uz?) andd, (R, (A, 6, 83 F,,(A, 0)2)z%) = O(u12).
By the contraction mapping theorem, far small enough, for alk € R such that
lu| < 2Cs, there exists a unique solutian= ¢ (i, A, 6, u) of the equation

u=2z+R,(A,0,%F, (A, 0)z)z> (4.18)

such thatjz| < 3Cs. Moreover, the functiop defined in this way is smooth and is real
analytic if F,, is real analytic. Setting

V,(A,0) — F,(A,0)
(3 F (A, 6))2

(A, 0) :z(p(u,A,Q, )agﬁﬂ(A,e) (4.19)

if 35 F,(A,0)#0andh,(A,60)=0if 3 F,(A,0) =0, we get a continuous functidn,
which satisfies (4.15) anth, (A, 8)| < 3Cs|ds F,,(A, 0)|, which implies|i,| = O(u).
Moreovernh,, is the unique function that enjoys these properties. By (4.19) the restriction
of i, to

U,:={(A,0) e T" x R: 9 F,(A,0) #0}
is smooth. Deriving the identity, (A, 6) = ﬁM(A, 6 + EM(A, 0)) we obtain

(3 F) (A, 0+, (A,60)) Vi, (A,0) =VV,(A,0) —VE,(A,0+Nh,(A,0))



M. BERTI, P. BOLLE / Ann. I. H. Poincaré — AN 19 (2002) 395-450 425

for (A,0) e U,. By (4.6)
VE, (A6 +N,(A, 0)=VF,(A,0)+O0(ulh,(A,0)|)
=VF,(A,0)+0(uldsFu(A,0)]).
Hence, ifdy F,, (A, 0) # 0 then, by (4.14),

Vi — VV,.(A,0) —VE,(A,0) 4+ O(uldgF,(A,0)])
g 9 F, (A, 0)(L4O(1))

= O(u)

uniformly in U,,. Sinceh,, is continuous and, (A, ) =0, if (A, 0) ¢ U,,, the Lipschitz
continuity ofh,, follows.

Regarding the properties bf,, we observe that, (A, 6 +n) = h, (A + nw, 8), which
iS a consequence of uniqueness.

Hence, by (4.16) and sindg(A,0 + n) =1,(A + nw,0), h,(A,0 +n) = h, (A +
nw, 6). Moreover, sincgVi,(A,0)| = O(n), by the Lipschitz continuity of:,,, there
is a constanCs such thatlz, (A, 6)| < Csu andh,, is Lipschitz continuous with ratio
Csut.

To complete the proof, we remark that for a givéne T", the equation inx,
¥, (A +xw) = A is equivalent to

x=—gu(A+wx)=—h,(A, x), (4.20)

where#n,, is Csu-Lipschitz continuous. By the contracting mapping theoren@sjt <
1/2 then (4.20) has a unique soluti@n(A) € R. Moreover, one can prove without
much effort that|k,(A)| < Csu andk,, is Lipschitz continuous of ratio @su. As a
consequence), is a homeomorphism and its inverse is defined@yl(A) =A+
k (A)ow.

The proof of the analyticity ofy,, when f is analytic, is given in the next Remark 4.2
and in Appendix A. O

By Theorem 4.1 we deduce the following lemma which enables us to apply the
shadowing Theorem 2.3 once a “splitting condition” @y, is verified.

LEMMA 4.5.— Assume thatéM satisfies the “splitting condition”2.1 for some
bounded open séf, Ap € U, with constants$ andc. Then, foru|w|Cs < 1/2, G, too
satisfies the “splitting condition” withAj = v,/ *(Ao), U’ = ¥, *(U) and the constants
=8§anda’ = a/2.

Proof. —In Appendix A. O

Remark4.2. — Assume that; > O for all i (i.e. that the perturbatiorf is analytic).
Then we can prove, using the arguments of the next subsection, that the homoclini
function G,(-) = F,(-,0) can be extended to a complex analytic function over the
interior of D. HenceF, (A, 0) = G, (A + wb) can be defined in an open neighbourhood
of T" x R in (T" + iR") x C, so that the extension is analytic. One could check
that /, and V,, defined in Lemma 4.3 have analytic extensions too, and that the
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inequality of Lemma 4.4 still holds in the new set of definition. Moreover in the
next Lemma 4.6 it is proved thak, is analytic w.r.t.(A,0). As a consequence,
(V.(A,0) — F,(A,0))/ (0 F,.(A, 0))% is real analytic, and so is the functién defined

in the proof of Theorem 4.1. Thereforerif> O for all i, then the homeomorphism,,
defined in Theorem 4.1 is a real analytic diffeomorphism. For completeness, the proo
of the claims included in this remark is spelled out in Appendix A.

4.2. Analytic extension

The unpertubed homoclinigy(r) = 4arctan & can be extended to a holomorphic
function over the strig§ := R + i(—n/2, 7/2). Moreover Eq. (1.5) may be considered
also for complex values af and, foru = 0, ¢, is a solution of (1.5) for alb € S. The
unperturbed manifold of critical point8 = {g, | 6 € S} can be seen as a holomorphic
curve in the complex affine spagge + H*(R, C).

We want to perform the Lyapunov—Schmidt reduction on the complex strip

. T T
So' .=R+|<—<§—O'>,§—O'>,

foro € (0, 7/2). We have

) _ . o . sinh(z — 9)
qo(z) = costz =)’ Go(z) =SINge(z2) = 27cosr?(z ~ 9
2
(1 — COSqy (Z)) = m
Assume thab € S,,, Re(9) = 0. The following estimates hold, where R
FAAGIES i o) T exp(—|t]); (4.21)
Isingy (1)] < min((7| < o)2 1) exp(—|t]); (4.22)
C
| COsgq (1)| < S TESERTE (4.23)
; < Cexp(|t]) min{(|t| + o), 1}. (4.24)
|G (7)1

In what follows we consider the Banach spaces

X={weC*R,C)| SltheXp(Itl/Z)(lw(t)I + [ ()] + [W(0)]) < +oo}

and
X ={weX|w) =0}

endowed with norm

Il = SUp((®)] + 1) + o) exp( '3 )
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wol o)
+ ﬁ‘i‘f(m o i+ o)

Note that the functionjy() can be extended to a holomorphic function Rn+
i(—m, ). With the definition for|| f|| given in (4.2), we have

HBO ).

LEMMA 4.6. — There exist positive constanits C; such that for allo € (0, 7 /2),
VYO < < (na®)/|If|, for all w, for all A e D, for all 6 € S, there exist a unique
Q') »:R — Cand a uniquex); , € C such that

e Oly= Qosv, + wh o, wherev , € C, w € X and ||w)y yll2.0 + [V o] + oy | <

Copll fll/o%; _ _

o —04 (1) +sinQY ,(t) =psinQl , (1) f (ot + A) + oy oo (1);

o Jr(QUo(t) —qo(1)Yu(r)dr =0.

MoreoverQ’, , andey 4, depend analytically oA and on theA; for whichr; > 0.

Proof. — 1st steplLet us consider the Banach space

t
Y= {v e C(R,C) |suplv()| exp(%) < +oo}
t
endowed with normjv|| 1., = SUp,.1 [v(?)] exp('Lz,‘)+suq,|<1(|t| +0o)lv()]. Letd € S,
be given once for all. We may assume without loss of generalityRa&l) = 0.
For¢’ € S, such thatd’—6| < o/2 we introduce the linear operatbp : X xC — Y
defined by

Lo (w,®) = —w + (COSqe )W — ay.

Using thatgy is a solution of—3 + cosge y = 0 and thatj,, does not vanish anywhere,
we can compute the inverse bf,. It is given bng/l(g) = (w, a) with

Jr () gy (1) dt

T : 4.25
Jr Yo (t)qer (1) dt ( )

r ! 1 s
w (1) = g (1) /—m</(g(0)+m/fe(0))ée/(o)d0> dS] (4.26)
Ly 9\ \ L

r ! +oo

1
— o (1) / %< / (g(o>+aw9<o>)qe/<o>do> ds]. (4.27)
|/ J

Note that sincgd — 6’| < o/2, Re(8’) < o/2. Therefore estimates (4.21)—(4.24) hold
as well (with perhaps different constants) whetis replaced by’. We derive from
(4.25)—(4.27) that

C
ol + llwllz.e < —llgll-10- (4.28)

2nd step. We shall searah as Q = gy, + w With |v] < 0/2, w € X. Let B denote
the open ball of radius /2 in C centered at 0. Lef,, : B x X x C— Y x C be defined

by
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Ju (v, w, @) = (—qm 0 SNy + W) — 1 SINGorn + w) f (@) — @i,
[ o0 =it (t)).
R

From now we shall use the normigv, w, a)||2 = [v| + |w|l2.0 + le] oOn B x X x C and
g, B)ll-1=lgll-1.0 + Bl OnY x C. J, is of classC* and

DJ,(v,w, )z, W,al]

= <_Z .q.0+v _W + Cqu@—&-v + w)(Zéle+u + W)
— B0+ ) @y + W) (@) — Vi, [ el + W) (r)).
R

We shall prove that, provided|(v, w,a)|lz/c and w| f||/o® are small enough
DJ,(v,w,a) is invertible. We first consider the case when=0 and . = 0. Let

T, = DJp(v, 0, ) (independent ofr). Observing that- é@rv +¢0S8(¢11)Gs4v =0, we
obtain

Tz, W,a]l= (—W + Cosgg v W — aty, /(2510+v + W)‘/fe(f))-
R

Using the first step we derive thdt, is invertible and that, for a suitable positive
constantC,

C
17, . B, < pul (R (4.29)
Now we estimate| (D J, (v, w,«) — T,)[z, W, al||—1. We have
(DJ, (v, w, ) —T,)[z, W,a] = ((cOLgg4» + w) — (COSGy11))(2Go+v + W)
— uCogo1v + W) (zgo+v + W) f(9), 0).
We easily get
H(DJM(U, w, 0() - Tv)[Z, W, a]H—l
wl

o2

< Cllwlze (IWll2e + 121) +

IS
< C(llwllz,a +=3 )u(z, W, a)ll2.

2l + [l W 2.6

As a consequence, by (4.29), /il f1l/0° < Ko and ||w||2,/0 < Ko, for Ko small
enough, therDJ,, (., w, «) is invertible and

- K
1D 0w, 00) <

for a suitable positive constaikt; .
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3rd step.We now prove the existence of a const&ntsuch that0, 0, 0) is the unique
solution of the equatioy(v, w, «) = 0 in B(K.0), ball centered at the origin and of

radiusK,o for the norm||||.. First we observe that, sinég,, = sin(gy..), there holds

Jov,w,a) =T,[v, w, a] + (Sin(619+u +w) — sin(gso1,) — COSqy4) W,
/(610+v —qo — W)ew)%)-
R
Moreover, by the analyticity ofo, go, ¥ overs,

/ (go+v (1) — qo (1) — Vo (1)) Y (1) dr = / (g () — qo(t) — v, (1)) Yo(r) dr.

R R

Hence there is a consta@t such that

H <sin(q9+,, + w) — SiN(gg+v) — COYGy4) W, /(%+v —qy — W}e+v)1ﬂe> ‘
-1
R

<C'(Jwl3, + vI?).
So, if Jo(v, w, o) =0 then, by (4.29)

(v, w, )2

= H —-T,! <3in(619+u + w) — sin(gg4,) — COLgp1+v) W, /(610+v —qo — W)ew)%)
2
R

/

2
< (v, w, )5

Let K, < 1/(CC’). By the latter inequality, if/o(v, w, o) =0 and |(v, w, a)||» < K»0,
theny =0, w=0,a =0.

4th stepBy the previous steps we know that there exist positive constént&’; and
K> such that

i (Jw,w,a)=0 and ||(v,w, )2 <Kw)&Sv=w=a=0;
(i) If v] <o/2 lwlze < Koo, 1|l f1l < Koo® thenD J, (v, w, @)
is invertible and|(D J,, (v, w, @) || < K1/o.
Moreover there exists a constakit > 0 such that

i)y 118, J, (v, w, @)1 = [[(SIN(Go+y + w) f (@), 0| ; <[ flI Ks/0.

We say that (i), (ii), (i) imply that there is; such that, for all O< u < no3/| £,
the equation/,, (v, w, ) = 0 has a unique solution such thewv, w, @)|l2 < K20/2. In
addition || (v, w, a)||2 = O (| f1l/o?). To prove existence, we can proceed as follows.
Let S denote the set of allt € [0, Koo3/|| £I] such that there exists @* function



430 M. BERTI, P. BOLLE / Ann. I. H. Poincaré — AN 19 (2002) 395-450

S0, ] = {(v, w, o) [|(v, w, &)l < Kp0/2} such thatS, (0) =0, J;(S,(t)) =0 for
allz € [0, u]. S is abounded interval. Let us cailits supremum. By (ii) and the Implicit
Function Theoremjy > 0. In addition, foru € S, there is a unique functio§i, with the
required properties. As a consequence, fer @ < ', S, = S,/10,,; @and we can define
aCtfunctionS:[0, %) — {(v, w, a): ||(v, w, @)|l2 < K»0/2} such thatS(r) = S, () for
all u € (0, 7). By (ii) and (iii), we can write, for alk € (0, @),

- KK
IIS’(t)||z=H[DJt(S(z))]1( S())H LU

Hence

ISz <

Now, sinceS’(r) is boundedS(r) converges to somg& ast — 7. Eithert = Koo 3/|| f ||

or ||S]2 = K»0/2 (if not, by the Implicit Function Theorem, we could extend the solution
S to an intervall0, & + &), & > 0, contradicting the definition gf). In the latter case,
by (4.30),

(4.30)

— KzO’ K1K3_
ISllz=—~< EILA-

So the existence assertion holds for<0u < a3/l fll, where n = min(Ko,
K2/(2K1K3)).

In order to prove uniqueness, we assume that therk abg such that|b; ||, < K»0/2,

J,(b;) = 0. Then, by the same argument as previously, we can prove the existenc
of two functions of clasC! Sy, S»:[0, u] — {b: ||bll2 < K20} such thatS; () = b;,
J:(S;()) = 0. Moreover, by (i) and the Implicit Function Theorer (1) # S2(it)
implies thatSy(z) # S2(¢) for all ¢ € [0, u], which contradicts (i), proving uniqueness.

The bound of|w; 4ll2,- + [V} 4| + |y 4| given in the statement is a direct consequence
of (4.30).

To complete the proof, we point out thdf, is complex differentiable w.r.t all its
variables. Therefore, as a consequence of the Implicit Function Theorem (see fo
example [2]), Q% y = go4vi(a.0) + w" (A, 6) depends analytically o and onA4; if
r,>0. O

We now consider the analytic extension of the functﬁ,)rdefined for(A,0) e Dx S,
by
ﬁu (A’ 9) = (DM»A(QZ,G)
_ / % + (1= cosQ% , (1)) + 11(coSQ" (1) — 1) f (@t + A) dkr.
Let us consider also the analytic extension(fér ) € D x S, of the Melnikov function

M(A,0) =/(COSq9(t) —1) f(wt + A)dr.

R

We haveM (A, 0) =T (A + w6), whererl is defined in (2.36). We now prove
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LEMMA 4.7.—For || f|lo—2 small enough, we have

M2||f||2>

F (A, 0)=b+ uM(A,0) +o< 3 (4.31)

uniformly for (A, 0) € D x S, whereb = ®q(qo).

Proof. —~We haveQ’; ; = gy, +wi , Which we denote for brevit@); , = go-, + w.
F.(A,0)

. N2
= / w + (1~ codgprv +w)) + 1 (COLgo 1y +w) — 1) f(wt + A) dt
R
. 1.,
=b+ / [—49+uw + Ew + (COS%—H) — COSqp4v + w)>
R

+ n(cogoty) — 1) f(wt + A) + pn(CoSgo4y + w) — COSGpy ) f(wt + A) | dr

1 .
=b4+uM@ +v,A)+ / sz + (—c0S(g+, + w) + €OSgg1y — SiNgyy,w) dr
R

+ 1 [ (COSgos +w) — COSgo1) f 0t + A) .
R

By the estimatéjw/||2., < Cul f|/o?, it follows easily

lelfllz)‘

fM(A,e):b+MM(A,9+u)+o( 4

For example we can get thfit COSgs, —COS(g 4, +w) — (SiNgg1,)w = O(u?|| £1|12/0%)

by writing cosgs ., — COS(gg4 + W) — (SINGg, ) w = w? fol(l— 5) c0Sgg+, +sw)ds and
using (4.22)—(4.23) together withw||2., < ul f /o 2. Moreover

M(A,0 +v) — M(A,0)| =0 P Zo
’ ’ 2
o

u||f||>’

0—4
which completes the proof of the lemman

The Fourier coefficients of the Melnikov functiof(A) = >, Ty exp(ikA) are
explicitely given by

M= 21 (k - )

“sinh((k - @) %) (k#0), T'o=4fo. (4.32)

SinceF, (A, 0) = G, (A + wf) and M (A, 0) = T'(A + wh), we obtain, via a standard
argument on Fourier coefficients of analytic functions, the following result
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THEOREM 4.2. — There exists a positive constafi§ such that, ifi| f||o~2 is small
enough, thevk € 2"\ {0}, for all o € (0, %), for all ,

_ C 2 2 n T
|Gi — uTul < waillfn exr>< -> jr,-|k,-|> exp(—|k o] (5 - a)) (4.33)
i=1

Proof. F,(A,0) —b— uM(A,8) = G, (A + wb) — b — uT'(A + ) is analytic in
D x S, and, by (4.31), its modulus is bounded @yu.?/ (|| f ||?c*) whereCg is a positive
contant. By Lemma 3 in [21], (4.33) follows.O

Remark4.3. — Compare with Theorem 3.4.5 in [36] which gives the exponentially
small estimate of the Fourier coefficients.

5. Threetime scales

We consider in this section three-time-scales systems, introduced and investigated |
connection with the problem of Arnold Diffusion in [15] (see also [25] and [38]), as

2

I
H=715'1‘8”,3'12+%+(00361—1)+M(1—00361)f(<ﬂ1,</>2), £>0,a>0

withn >2,0,€TY 0, e T I e RY, I, e R"2, B e R"! ande is a positive small
parameter. The frequency vectoris= (1/./s, £*8), wherep = (82, ..., B,) e R" tis
fixed.

We assume through this section thatf || ~%/? ande are small.

Given kp = (ka, ..., k,) € Z""1 |, we shall use the notatior; := (|ka|, ..., |k.|).
Moreover we shall use the abbreviatipp:= (r, ..., r,), SO thatky - pp := Y1, rilki|.
We recall that, .. ., r, are defined in formula (4.1). Writing

f@ne) = Y. fuexpitker +K2-02),

(k1,k2)€ZxZn-1

we assume thaf is analytic w.r.tp,. More precisely foi > 2, r; > 0, whereasg; may
be zeroin (4.1). Itu = 0, we impose in addition thaf > |B;|7/2 fori > 2.
We shall use (4.33) in order to give an expansion for the “homaoclinic function”

Gu(A)= Y Groexp(itkiAr+kz-A2)) = > g, (A2) eXplikiAy),
(k1,k2)eZxZn—1 k1€Z

where
L E
8k, (A2) = Z/Gu(AL Ap)exp(—ikiA) dAr = > Gy, eXplinz - A2).
0 KkpeZn—1

We start with
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LEMMA 5.1. — There exists a positive constadiy such that, foru|| f||s=%/? small
enough,

> 8 (Az) explikiAr)| <

[k1]>2

Y IGuwl<C “\”/J_C” p( \7/75) (5.1)

K2€Z" 1 k1| >2

Proof. —Choosingo = /¢ and recalling that by (4.1)/;| < ||f||e‘“2+"’2, we get from
(4.32) and (4.33) that

|Gk1 K2| erkl K2| + |Gk1 K2 Mrkl,Kzl

k1
<Cullflles '”2<
f

+C_||f||2 K2 pze |f+K2ﬁ8 |(7T/2 [)

+ Ko - Be

)e Lty e /2

Slncel =+ k- pet| = | = — |k2 - Be”| we get,
|Gk1,K2|
< PN ) 4 heghyersi vasiemoemiog 2
\/_

+ C_”f”2 K2 -p2+|Kk2-Blet () 2— \/—) |kl|(2ﬂ_ﬁ_l)

pll £l - a
C7(|k1| + |K2|)eXp< - z:: |kjl(rj —1Bjle 77/2)> eXp(—Ikll (7 — 1))

We have used in the last line that| f||/¢%? = O(1). Now r; — |B,|e“w/2 > O for ¢
small enough both if = 0 or if > 0. Summing ink,| > 2 and in » € Z"~* we obtain
(5.1). O

The Poincaré—Melnikov primitive defined in (2.36) can be written as

T, A= Y Tueexp(ikiAr+kz-A) =Y Ty (e, A2) explikiAy).
(k1,k2)€ZxZn—1 kieZ

LEMMA 5.2.— Define
Ro(e, p, A2) = go(A2) — b — ulo(e, A2)

and

Ri(e, b, A2) = g+1(A2) — ul11(e, A2).
The following estimates hold

211 112
Ro(e, jt, A2) =O(p?|| f1I) and Ri(e, p, Ap) = O(% eXp<—2ﬂ?)>~
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Proof. —~We get immediately the estimate f®(e, 1, A,) by taking the mean value
w.r.t. Ay € T in formula (4.31) wheré =0, A, € T" "1 ando = /4.

We now prove the estimate f@ (¢, 1, A,). By (4.33) (where we choose= /¢ and
ky = +1), we can obtain as in the proof of Lemma 5.1

1811(A2) — ul1a(e, Ad)|

1 2 - a il
<ct _ kl(r: —18; 2 —(=-1) ).
<CSIfI Kzg;lexp< ;I l(rj—1Bjle“m/ )) exP( (&/5 ))

w? 2.~ 5=
<cGigre. o

Sincel“(é) andG ,(A) are real valued functions we have tlgat (A,) = 21(A2) and
I'_1(A2) =T1(A3), wherez denotes the complex conjugate of the complex number
We deduce from the previous two lemmas the following result.

THEOREM 5.1. — For u|| f||e~%/? small there holds

Gu(A1, A2) = 20(A2) + 2ReE[Z1(A)€M] + D~ 2, (A2) expliki A1)
[k11>2
=b+ (ulo(e, A2) + Ro(e, i, Az))

+ 2Re[(uT1(e, A2) + Rui(e, p, A2)) €]

+0(e 27 exp(—%)),

where

R A2 =02 f1?) and R Az = o IS a
o(e, i, A2) =O(u?ll %) an 1(&, u, Ap) = ( o2 exp<—ﬁ>>.

Remark5.1. — (i) This improves the results in [38] which require= ¢? with
p>2+a.

(i) Theorem 5.1 certainly holds in any dimension, while the results of [25], which
hold for more general systems, are proved for 2 rotators only.

(iii) In order to prove a splitting condition using Theorem 5.1 it is necessary,
accordingly with [25] and [38], thaBm,[ € Z"~! such that fo;, f1., # 0. If not,
recalling (4.32), there results thab(e, A2) = >, ,czn-1 Fo, €XPka- A2 = 0 and also
I'i(e, Ap) = Zkzez,ﬁl Fl,,(z exp iK2 cAy = 0.

Theorem 5.1 enables us to provide conditions implying the existence of diffusion
orbits. For instance we obtain the following result.

LEMMA 5.3. — Assume that there ard, € R*~! and dy, ¢ > 0 such that, for all
smalle > 0O,

(i) ITae, Al > (co/v/E)E™ P, VA, e R such thal A, — A < do;

(i) Tole, Ap) > To(e, Az) + co, VA, eR"™ L suchthaiA, — Ayl = do.
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Then there isv(co,do) > 0 and a constantk > 0 such that, for alle, u with
g, il flle =32 < v(co, do), condition2.1is satisfied byG, for some bounded open set
U eR" ands = (cou/2/€)e ™/ Vo) o = Kcoe™™/ V9 2. /¢, py < 3dy .

Proof. —First we can derive from (4.32) and (4.33) in the same way as in the proof of
Lemmas 5.1 and 5.2 that

N _ ~ IUFN L oue
121(A2)| + Vg1 (A< D (1+|Kz|>|Gl,K2|<K07’;e /%) (5.2)

kpeZn—1

for some constank. By the bounds oRg andR; in Theorem 5.1, foe and || f||e~%/2
small enough, we have

@ g1(A2)| = (uT1+ R1)(AD)| > (uco/(24/e)e™*VO VA, € By,

(b)  go(A2) = (1To+ Ro)(A2) > (Lo + Ro)(A2) + (uco) /2 YAz € 3By,

whereB,, is the open ball centered ab of radiusdo.

So we can writeg1(A,) = |g1(A2)|€242 | whereg is a smooth real function defined
in By,: (5.2) and the previous lower bound Rfi(A2)| provide a bound oVe¢(Ayz).
Precisely,

Ve (Ag)| < VE1ADL 2||f||f—§. (5.3)

1g1(A2)]
For A, € B;,, by Theorem 5.1 we have

éM(Al, Ap)=b+ (uTo+ Ro)(e, 1, A2) + 2|(uT'1 + R1) (e, 1, A2)| COY A1+ ¢ (A2))

+0(ue 211 exp(—%)).

T
U = {(Al’ A2) R % R"—l | A2€ Bdo, |A1+¢)(A2) —JTl < E}

Let

We now prove thaG , satisfies point (i) of condition 2.1, with= coue /% /2,/¢ and
Ag = (A1, Ap) = (T — ¢p(A2), Ap). ASsume tha’(Al, Aj) € 0U. Either A, € BBdO and
then

G (A1, A2) — G, (m — ¢ (A2), Ap) > % + O(Me_l/zllfll exp(—zlﬁ)), (5.4)

or|A; + ¢(Ay) — | = /2 and then
G (A1, A2) — G, (T — (A7), A2)

= 2|(uT'1 + R1)(A2)| + O<M8_1/2||f|| exp(—%))

> %e—ﬂ/@@ + o(us—l/znfn exp(—%))- (5-5)
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Hence, by (5.4) and (5.5), farand | f |l %2 small enough,

cope/2VE

2,/¢

Thus (G, U) satisfies point(i) of condition 2.1, withs = coue™/?V%/2,/e. Now
|VG | = O(M) hence there exists a positive const&ntsuch that, for allA, B € R",
|G, (A) — G, (B)| < Kiu|A — B|. Leta = K8/ = Kcoe /Y /2, /e, where K =
1/8K;. Then

mfG |nf G + (5.6)

V(A,B)eR"xR" |A—B|<2a=|G,(A)—Gu(B)| < 8 (5.7)

Let A° = (A, A9) € U be such that inf G, = G,(A%. Then by (5.7) and (5.6),
SUPg, (40 G, <infy G, + 8/4, and the balB, (A°) is included inU. So (ii) is satisfied
with the above ch0|ce af.

That (iii) is satisfied is a straightforward consequence of (5.7).

To complete the proof, we observe that, by (513)A2) — ¢ (A2)| < 2doKol f1l/co
for all A; € B,,. Hence anyA € U can be written as

A= (m—¢(A2), A2) + (1. Ip), |hl<m

l2] < do.

Now, since(ly, [y) = /elyw + (0, [, — 47211 B),
T, (I, )| = [T, (0,12 — e* Y211 B) | < |1 — Y211 B| < do + O(Ve).

Hencepy < 2dy + O({/¢), and fore small enoughpy < 3dp. O

The condition given in the previous lemma is not easily handable. We now want
to provide simpler conditions, involving properties of the perturbatfonFor A =
(A1, Ap) e TE x T 71, let

F(ALAD = Y fueexp(itkaAr+kz- A7) = fi, (A7) explikiAg).

(k1,k2)€Z xZn—1 k1€eZ

Sincef is analytic W.r.tAz, fi,(A2) = (1/27) 2" f (o, A)e %1 do depends analyt-
ically of A,.

THEOREM 5.2. — Assume thay satisfies one of the following conditions

(i) a > 0, fo(A») admits a strict local minimum at the poidt and f1(A,) # 0.

(i) a =0, fo(Ao) admits a strict local minimum at the poimt, and fi(As +
i(r/2)B) # 0.

Then, for all smalk such thatw, = (1/./¢, B&?) satisfies

Ve

~—— VkeZ"k#0
|k[*
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for all Io, 15 with w, - Ip = w, - 1}, for all u| flle=*2 small enough, there is a
heteroclinic orbit of the perturbed three-time-scales system, connecting the invariant
tori 7;, and T,/ In addition, for all > 0 small enough the “diffusion time'T,
needed to go from 8-neighbourhood of7;, to a n-neighbourhood off,/ is O(| Iy —

I(Ve/ e Ao (y,) L (e€™/ @VD)T + [log ] + [log(n))).

Proof. —It is enough to prove that, if (i) or (ii) is satisfied, then the condition given
in Lemma 5.3 holds for som®), dy > 0 . The statement is then a direct consequence of
Theorem 2.3 and Lemma 4.5.

We first assume that condition (i) is satisfied. In what follows, the notatienO(v)
means thatu| < C|v|, whereC is a universal constant. We have

27'[/(2 : ,38”
To(e. Ag) = :
oe, A2) Kzezz;_l Sinh(k, - fe</2)

= > (4+0(e™|k2l?)) fo.,€ 2 "2

fO,ngiKz'A2

K2€Z"71
=454 +0( T e¥lealei )
K2€Z”—1
=4fp(A2) + O(%).
Moreover
27 (e V2 + iy - Be®) .
Ti(e, Ag) = : Rt
1(8 2) KZ;_:L S|nh((7T/2)(8_l/2 + K2 . ﬂg”)) fl, 2
Z 4 —(77/2)(8 Y2y . ﬂaa)(l + O((ll(zl + 1)8a+(l/2)))f el/cz A2
K€L~ 1 f

Since, by (4.1)] f1.,,| = O(e‘K2+‘p2), we have

4T _1/2
(e, A2)=$e (/267 [fl(Az)

O( Z e_’(2+'»02 <|e—(ﬂ/2)/<2'ﬁ6” _ 1’ + (k2| + 1)8a+(1/2)é/<2ﬂ|8“)>]

K2€Z”71

4 —12
N /25 f1(A2)

0( S (ol + De exp<—§;|kj|<rj - (n/Z)Iﬁjls")))]
=

kpezZn—1
4 _
— %e—(ﬂ/Z)S 172 [fl(A2) + O(Sa)] ’
provided thats is small enough. Now, sincgi(A,) # 0 and £ admits a strict local
minimum atA,, by the continuity offy, there isdy > 0 such that f1(A2)| > | f1(A2)|/2
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for all |A, — Ay| < do and A(dp) := inf . 7,_q, fo(A2) — fo(A2) > 0. Hence, fore
small enough, the assumptions of lemma 5.3 hold wjth min(r | f1(A5)|, 2A(dp)).
We now assume that condition (ii) is satisfied. As previously, we have

4

Fl(é‘, AZ) — Z ﬁe—(ﬂ/Z)(g—l/Z—‘er-ﬁ) (1 + O((|K2| + 1)81/2))fl,K2eiK2'A2

KkpezZn-1
4 —1/2 .

= %e‘“’”’g | f(A+ (e /2)B)
+ o( > (kal + De*? exp( =Y lkjl(r; — (W@Iﬂﬂ)))]

kpezZn-1 j=2

= M w2 (A i /2)B) + O(VE))

NG .

We observe also that, & = 0, thenTg(e, A2) = 4fo(Ay) is independent ok. It
follows easily that condition (ii) as well implies that the assumption of lemma 5.3 holds
true. O

Remark5.2. — In the time estimate obtained in Theorem 5.2s the exponent of
an exponetially large number, since, in order to apply the shadowing Theorem 2.3
which relies on condition 2.1, the diffusion orbit must approach to the homoclinic point
at an exponentially small distance (namely= O(exp—(r/2./¢)). This result can be
improved via a shadowing theorem suited to the case when the splitting is exponentially
small in one direction only. This allows to find diffusion orbits which approach to the
homoclinic point just at a polynomially small distance in the orthogonal directions to
w. This is proved in [7]. Moreover, for this reason, we are able to obtain diffusion
orbits which drift in polynomial time w.r.t Ae along the fast direction€l, ..., I,)) (no
diffusion in I), see [7].
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Appendix A

In the proof of the following lemmas we will closely follow the arguments developed
in the papers [4,5] to which we refer for further details. In the sequel the notation
u = O(v) (resp.u = o(v)) will mean that there is a constaiit (resp. a function
¢(v)) independent of anything except such thatju| < C|v| (resp.|u| < e(v)|v| and
lim,_qe(v) =0).

Proof of Lemma 2.1. We first assume thal = 0 and give the existence proof in
[0, +00). We are looking for a solution of (1.5) in the form @f= gg + w with w(0) =0
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and lim_, , ., w(¢) = 0. The functionw must satisfy the equation
—W + w = —(sin(go + w) — singo — w) + wsin(go + w) f (wt + A).

Let

X = {w(-) € W(10, +00)) | s := supmax(ju(0)], [i:0)]) exp(%) < +oo}

and
X/ — {w(.) € L™([0, +00)) | lwllo:= suRp|w(t)| exp(%) < —i—oo}.

X andX’, endowed respectively with nornfig; and||||o, are Banach spaces. L&g be
the linear operator which assignsit& X’ the unique solutiom = Lgh of the problem:

—i+u=h
u(0) =0, lim,_ o u()=0.

An explicit computation shows that, fore [0, +00),

+

o0

u(t) = (Loh)(t) = (eI — e ) h(s) ds. (A.1)

NI -
o—_

As an easy consequengg sendsX’ into X continuously.
We define the non-linear operatéf: R x R” x X — X by

H(u, A, w) :=w—Lo(—(siN(go+w) —singo— w) + x sin(go+w) f (wr + A)). (A.2)

H is smooth, 2 Z"-periodic w.r.t.A and we haved (0, A, 0) = 0. The unknowrw must
solve the equatiorH (u, A, w) = 0. We can apply the Implicit Function Theorem. In
fact, let us check that

d,H(0,A,00: W — W — Lo[(1— cosqo) W]

is invertible. Since lim., o, (1 — cosqo(2)) =0, 3, H(0, A, 0) is of the type “Identity+
Compact” and therefore it is sufficient to show that it is injecti4éis in the kernel of
9,H (0, A, 0) iff W(0) =0 and W satisfies ii0, +o00) the equation

—W +cosgoW =0. (A.3)

Multiplying by 4o in (A.3) and integrating ovej0, +o00) by parts twice we obtain that
W (0)go(0) = 0. Sincego(0) # 0 we get alsoW (0) = 0 and as a consequendé = 0.
Thus the kernel ob,, H(O, A, 0) is reduced to 0, and this operator is invertible. We
derive by the Implicit Function Theorem that there age- 0 andu > 0 such that, for
all || < o, for all A € R", the equationd (i, A, w) = 0 has a unique solutiom’; in

X such that|w’|| < po.
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Note thatug and pg may be chosen independent af (and of w too) because
0,H (0, A,0) is independent ofA and w, 9,H (0, A,0) is uniformly bounded, and
dwH(u, A, w) (resp.d, H(u, A, w)) tend to d,,H (0, A,0) (resp.d,H(0,A,0) as
(u, w) — (0, 0) uniformly in (A, w).

SinceH is smoothw/, depends smoothly om andA andw’; , ,., = w'; by the 272"-
periodicity of H w.r.t. A. By the properties o, H mentioned above|w |1 = O(1).

In a similar way we can prove the existence and uniqueness’of(—oo, 0] - R
which satisfies analogous properties over the intefvako, 0]. We can definey) by
g o(t) = qo(t) + wi(0) if t >0, g} o = qo(t) + w"y (1) if 1 < 0. This is the unique
function for which (i), (ii) (withé = 0) hold.

If 6 # 0, we observe thaj satisfies (i) iff

{ —(T_pq)" + SiN(T_pq) = nSIN(T_pq) f (w1 + A + wb),
(T-9q)(0) =,

whereT_4q(1) = q(t+6). Hence there is a uniqug , which satisfies (i), (ii), defined by
Ao =Tol 10900 1-€-44 o(t) =)y 1090t —6); (iii) and (iv) clearly hold. The regularity
of ¢4 y W.r.t. A, uu is a consequence of the regularitywf andw’y w.r.t. A andu. (v)
follows from

Oawy = = [0, H (. A, )] @aH) (. A, )

provided we can justify that(9, H) (i, A, wi)ll1=O(w), llw-daH (1, A, w1 =
O(u). The second bound (uniform in) is less obvious. We just point out that

. d
w- . H (1, A, wh) = —,Co<,u8|n(qo + wﬁ)af(a)t + A))

and that we can use the “regularizing” propertieef O

Proof of Lemma 2.4. We give the proof in the intervdld, 6,]. We may assume
without loss of generality that; = 0 since, by the remark at the end of the proof of
Lemma 2.1, a translation of the time byy; amounts to adding6, to A. For simplicity
of notations, we shall writé, = 9.

We are looking for a solutiog = g¢ 4, + w of (1.5) over[0, 8] with w(0) = w(0) =0,
wheregg 4 is the following smooth “approximate solution”

g o(?) if 1€(0,6/2—1),
do0(t) = {rg(t) ifre[0/2—1,0/2+1],
21 + gl o (1) ifre6/2+1,0),

where

rg()=(1—R(t —60/2))qly o(t) + R(t —0/2)(q)y o (t) + 27),

andR:R — [0, 1]is aC® function such thaR(s) =0if s < —1,R(s)=1if s > 1. Let
Lo ¢ be the linear operator which assigngita L*°([0, #]) the unique solutiom = Lg ph
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of the problem:

{—ii-i—u:h (A.4)

u(0) =0, u@)=0.
An explicit computation shows that fore [0, 8] the solutionu of (A.4) is given by

u(t) =

~ nh(e) [/h(s)smh(s)smh(e —1t)ds + /h(s)smh(e — s)sinh(t) ds | .

Note thatLgy sendsL>([0, ]) into W1°([0, 8]) (W2>([0, 8]) in fact) and that there
is a constank independent of such that| Loy W|l1.00 < K||W |, Where] | denotes
the infty norm in[0, 8] and || W{|1.00 := | W lloo + | W]l cc-

We define the smooth non-linear operakit: R x R" x W1>([0, 6]) — W1>([0, 8])
by

H(n, A, w) :=w — Log(—(SiN(g, + w) — Gg o — w) + uSin(gg, +w) f(wt + A)).
We immediately remark for further purpose that
195 H (e, A, w)IW, W[ = O(IW|3,). (A.5)

Moreover, by Lemma 2.1(i) and the definitiongf,, || — singg s + Gg » + 1 SIN(gg 4) x
f(wt + A) |l = O(exp(—6/2)) hence

[H® (11, A, Q)| o, = O(exp(—6/2)). (A.6)

45 + w is a solution of (1.5) with the appropriate boundary conditiongfifi ., A, w)

= 0. We shall show that there exi6t L, x > 0 such thav6 > L, for all || < mz, for all
A andw, 3,H? (u, A, 0) is invertible and

(8, H® (. A,0)) || < C. (A7)

Sinced,, H (1, A, 0) is of the type “ld+ Compact”, it is enough to prove that
1
YW e Wh([0,0]) |0, H® (1, A,O)W||, > = Wllo.

We shall just sketch the proof of this assertion (see also Lemma 2 of [4]). Arguing by
contradiction, we assume that there are sequetegs— 0, (6,) — oo, (A,), (w,),
(W,) such thatw, e Wl’oo([oy 0,1, ”Wn”l,oo =1,

10w H (145, A, O W, | o = O. (A.8)

Let &, € [0, 6,] be such thain, := maxcq,|W.()| = W, (&,). By (A.8) and the
properties ofLo g, |W,ll1.00 = O(m,). Hence liminfm,) > 0. Taking a subsequence,
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we may assume thag,) is bounded or(6, — &,) is bounded or &, — oo and
(911 - 5n) - OO)
In the first case, still up to a subsequenge— W # 0 uniformly in compact subsets
of [0, 0o). Taking limits in (A.8) we obtain tha (0) = 0, —W + cosgoW = 0, which
contradictsW # 0. The second case can be dealt with similarly. In the third case,
up to a subsequenc&, (- + &,) — W # 0 uniformly in compact subsets &, with
W ()| < |W(0)| for all r € R. Taking limits in (A.8), we obtain that W + W = 0 over
R, which contradicts¥ # 0 bounded.
From now we shall assume thiat| < o <7, 6 > L. Let

R(u, A, w)=H%(u, A, w) — H(u, A,0) — 3, H? (1, A, O)w.
By the previous assertion,

H (1 A, w) =06 w=—(3,H" (. A,,0) "H (11 A,0)
— (8,H (1, A,0))" YRO(, A, w) = F} s(w).

We just have to show theﬂ" _4 Is acontraction in some ball(0, p) C w([0, 6]). For
this, we derive from (A.5) and (A.6) in a standard way that, fofjall|1 «, |w'[l1.00 < P,
|| <, 6 > L there holds

[F A)10o = O@XD(=6/2) + p%);  ||Fyl 4 (w) = Fyl ,(w)] =O<p||w’—w(||>.9)
A.

We can deduce tha’ , is a contraction imB(0, p), with p = C exp(—6/2), for some
constantC, provided tha® > L, L large enough. Applying the Contraction Mapping
Theorem we conclude that there is a unique solutimf[(A,@)HLOo < Cexp(—0/2)
of the equationHﬁ,A(w) = 0. Note that by (A.9) uniqueness holds B0, pg) for
somepg > 0 independent of. The regularity of the solutions A4, 6, i) follows as
in[4]. O

Proof of Remark 2.3. Assume with no loss of generality thato = 0 and that
D?G,(0) = diag{A1, ..., A,} (this can be always obtained by an orthogonal change of
variables). Assume also that = mina; and thati,, = maxa;. Let Q(A) = %(AlAi +

.-+ 1,A2). By the Taylor expansion

G, (A) = Q(A) + %D3GM(Z)A3, (A.10)

for a suitableA with [A| < |A|. For A € B,(0), with p = A1/(3sup, .1« | D3G ), there
holds|(1/6) D3G,,(A)A3%| < (1/9)Q(A), hence, by (A.10)

8 10
g2 < Gu(A) s 5 Q(A). (A.11)



M. BERTI, P. BOLLE / Ann. I. H. Poincaré — AN 19 (2002) 395-450 443

If we chooseU = B,(0) condition (i) is then satisfied witld = 41;02/9 (we have
infg,0) G, = 0). Moreover, by (A.11) we have that

8 95 35 276
{6.<5}cfow <} and {6.>T}c{ow=0}

One can easily compute that

dist<{Q(A) < i—‘;} {Q(A) > @}) = ((vV6—/5)/v10) p\/21/ 1y = 20,

40
hence dist{G,, < 3}, {G, > %)) > 2a.
Condition (ii) holds as well since, by (A.11)¢, (A) < §/4} contains{Q(A) < §/5},
andB,(0) Cc {Q(A) <4§/5}). DO

Proof of Lemma 4.3. ket us consider the functio : R x T" x R x R — R defined
by
Hu,A0,l)= Q’X,Q(G +1) —m.

The unknowr, (A, 6) can be implicitely defined by the equatiéfh(u, A, 6,1) = 0. We
haveH (0, A, 9,0) =0 and

9 H (0, A,0,0) =qs(0) =qo(0) #0.

Hence by the Implicit function theorem, for small enough (independently of
A,0,w becaused, H and d,H are continuous uniformly im, 6 with a modulus of
continuity independent ab), there exists a unique smooth solutiby{A, 6) = O(u)
of H(u, A,0,1) = 0. Moreover, by the uniform estimates i and » that we can
obtain ford, Q% 4, w - 94 QY 4 and by (4.8)|04 H| + |99 H| = O(n). Hence there holds
VI, (A, 0)|=0(w). O

Proof of Lemma 4.4. Fhe first step is to prove that

max(|QZ,0+1M(A,9)(t) — Qo0 QX,GA—IM(A,@)(I‘) — 04y (0)])

- t—6
< Ko|dpFu(A, 0)| exp(—%), Vi eR. (A.12)

’

By Lemma 2.1(iv) we have); 4., (1 0) = To+1,4.094 00 Qho = To1,04,0 Q' o, Where
A'=A+w@+1,(A,0)) andd’ = —I,(A,0). So it is enough to prove the estimate for
w = QIAL/,G/ - qf:/,o. ]

Note thatQ’,, ,,(0) = ¢}y, o(0) = 7. S0 Q% »» — qo, 4ly o — g0 belONg toX and satisfy

H(u, A" gl o—qo) =0, H(w, A, Q% y — qo) =y o Lo(We),
whereX, H and L are defined in the proof of Lemma 2.1. Therefore

ol o L) = 3w H (1. A" ¢y o — 40) (Qlyy 50 — dlir0) +0(1 Q' o — 'l oll0).
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Moreover || QY o — qolls + llg)y o — qoll1 = O(u). Hence, by the properties off
mentioned in the proof of Lemma 2.1 (in particular the fact thaH (0, A’,0) is
invertible) we obtain, fopx small enough the following bound:

1Q% o = i ol = Ol /1)

Since, by Lemma 4.Zaﬁ/,9/| = 0O(|9y fM(A, 0)|) we deduce estimate (A.12).
We can now estimatefM(A,e) — V,.(A,6). Consider the action functionab,, 4
defined in (1.7). Foftu| < uo,

D?®,, 4 (q)[w, w] = /w2 + cog(q)w? — ucosq)w? f (A’ + wt)dt = O(||wl|F).
R

By the definition ofg, , ((i) in Lemma 2.1), we easily obtain with an integration by
parts thatD®,, 4 (¢} o)w = 0 for all w € X such thatw(0) = 0. Therefore

Dy (gl o+ w) = Dua (gl o) + O(llwl?)
for all w € X such thatw(0) = 0. Hence sinc&€Q’;, , — ¢y ¢)(0) =0,
ﬁM(A, 0)—V,.(A,0)= fM(A, 0+1,(A,0) —{—0’) — FM(A, 0+1,(A, 9))
=F,(A,0) — F,(A',0)
= q’u,A/(QZ’,e’) —Qua (QX/D) = O(H Qﬁ/,e’ - QX/,O
We obtain by (A.12) that

2

|F.(A,0) — V,(A,0)| =O(8:F,.(A, 6)?),

namely (4.13). We now prove (4.14). As a consequence of (4.11), (2.6) and (A.12), we
have

(39 F,) (A, 0 +1,(A,0)) — 3 F, (A, 0)| = O(1|dg F,u (A, 0)]). (A.13)

In the same way, using that

VaF,(A,0)=p / 3, f (wt + A)(cos(qy »(1)) — 1) dt,
R

and an analogous expression mgﬁM(A, 0), we get
(VAF,)(A,0 +1,(A,0)) — V4AF,(A,0)] = O(u|ds F (A, 0)]). (A.14)

We compute

VaVu(A,0) —VAF,(A,0) = (VaF,)(A,0 +1,(A,0)) — V4F,(A,0)
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+ (agFu)(A,Q +lM(A,0))VAlM(A,9)
= O(uldg Fuu (A, 0)]) + O(1u| (3 F) (A, 0 +1,(A, )
— 9 Fu (A, 0))),
by (A.14) and sincgV4/, (A, 0)| = O(n). By (A.13) we get

[VaV,.(A,0) — V4F,(A,60)| =O(n|ds . (A, 0)]).

The estimate
99V, (A, 0) — 99 F, (A, 6)| = O(1u|ds Fu(A, 6)))

is obtained in a similar way. O

Proof of Lemma 4.5. By Theorem 4.1, folCsu|w| < 1/2, for all A, A’ € R" there
holds
(¥ (A) — (Y ) (A=A — A"+ (g,(A4) — g (A)) |
<A — A1+ |gu(A) — gu(A)|lw| <|A — A'| 4 Csplw||A — A'|
<3lA—A'))2.
Hence, for allA, A’ ¢ R",

“1A) — 1A >8A—A/>}A—A/ A.15
¥ H(A) =¥ ( )|/3| |/2I [. (A.15)

We now verify that the image aB,(Ag) under the homeomorphisnﬁ;l contains the
ball B,/2(y,*(Ao)) of radiusa’ = «/2 centered a/,, *(Ao). Sincey,, * is a homeomor-
phism,d vy 1 (B,(Ao)) = ¥, 1 (0 B4 (Ap)). Let A € 0 B, (Ao), namely|A — Ag| = a. Then

by (A.15) [y, *(4) — ¥, (A0)| > /2 and then digBy, " (Ba(Ao)). ¥, *(A0)} > /2.

This means thaB,2(¥, ' (Ao)) C ¥, '(B,). Recalling thatG, = G, o ;' we have
that inf, 1) G, =infy G, inf,, 1) Gy =infyy G\ SUR, 15, G = SUR,, G, and
then we easily deduce (i)—(ii). Properties (iii) follows as well since by (A.15) the home-
omorphismwljl reduces the distance between sets at most by a facZor Ly

Proof of remark 4.2. We shall use in this proof the results of Section 4.2.
() We first prove thatF, (A, 6) has a complex analytic extension. Let

Y ={weW>R,C) | |uw|:= suRp(|w(;)| + (1)) €172 < oo}

andY = {w € Y | w(0) = 0}. We assume thaf has an analytic extension defined in an
open neighbourhood of

D, :=T"+i[-rr]"

for somer > 0 and we introduc¢f |, :=sup,.p, | f(A)| <oo.Letd,:D, xY — Che
defined by
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o]

1
D, (A, w)= / 5 (qo(r) + w(t))z + (1 —cos(qo(t) + w(t)))

—00

— u(1—cogqo(r) + w(?))) f (A + wt) dt.

®,, is a smooth functional. Furthermore, since d0s+ C is analytic,®, is complex
differentiable, which means that its differentibid® , is C-linear everywhere. We shall
denote byd,, the restriction ofb,, to D, x Y; w € Y is a critical point of®,, (A, -) iff the
restriction ofg := go + w to each interval—oo, 0) and (0, co) is smooth and satisfies
—G(t) +sing(t) = using(?) f (A + wt). B

Note that, in analogy with the real caseuife Y is a solution of the linear equation
—w + (cosgo)w = 0 in each interval—oo, 0) and (0, o0), thenw = 0.

As a consequence we can apply the Implicit Function Theorem and obtain in the sam
way as in the proof of Lemma 2.1 that therepis- O such that, fop| f|, small enough,
forall A € D, thereis a uniquqﬁf,o = qo + w'y in go + Y such thatjw’ || < p and

=Gy o(t) +singly o(t) = usingy o f (A+ wt) in (—oo,0) and(0, 00), ¢4 (0) =.

Moreoverg; , depends smoothly oA.

For later purpose, we remark that, in connection with the Implicit Function Theorem,
there are two constang, C > 0 such that, ifQ € go + Y is a solution of—§ + sing =
usingf (A + wt) = g(t) in each interval—oo, 0) and (0, +o00) with g € Y, |gl| < o’
then

10 —gioll < Cligl- (A.16)
From (A.16) we can derive as in the proof of lemma 4.4 that
D, (A, 0 —q0) — Du(A, g o — q0)
=Dy, ®, (A, g4 0= q0) - (Q =gl o) +O(IQ — ¢l oll®)
=0(11Q - g4 oll?)- (A.17)
By the complex differentiability ofb,,, the differential of the mapA — ¢/ o) is C-
linear at all point, hencg/; , depends analytically oA € D,. As aresultG,:T" — R

has an analytic extension which we shall still denotey, defined byG,(A) =
@, (w'). Now let

U, =1{0 €C: |0]lm8] <r/2}.

SinceF,(A,0) =G, (A+wb) forall A e T", 6 € R, F, too has an analytic extension,
defined inD, > x U, ., by F,(A,0) =G, (A +0w).

(i) Now we justify that/, too has an analytic extension and that the estimate
|V, — F,| = O(|3, F,,|? may be extended to complex values(df, 6). Let

T 7T
S =20eC:Imo -, — .
{ © e( 4 4>}

As a straightforward consequence of Lemma 4.6 (whergenot small but for instance
equal tox/6) for u|f|, small enough, for allA € D,, 6 € &', there is a unigue
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Q%o €qo+Y =qy+7,thereisauniquel; , € C such that| Q% , — gall + |y 41 < p
and

—0h 4 +sinQY , =usin0h , f(A+wt) +ali yi
o0

/(Qii,@ g di =0

Moreover|| Q' y — qoll + |y o] = O(ul f1,),

184Q% ] = O(uel £1,) (A.18)

and QY 4, o)y 4 depend analytically o0A, 6) € D, x §'.
We haveF, (A, 0) =, (A, Q’/ﬁﬁ — qo)- In a similar way as in Lemma 4.2 we obtain

s | = O(105 Fu(A, 0)]). (A.19)

Now by Lemma 4.1,

Ol ot +1) = Qi () (A.20)
for all A € T", n € R. Hence, by analyticity, (A.20) holds for alk € D,, n € R.
In particular Q) (1) = Q%,,, _,(0). This implies that forA € D,,, Q) , has an
analytic extension defined i, ,, (providedr/(2|w|) < 7 /4). We can write forA € D, 5,
n€U o,

d .
%Qx+wn,—n (O) = QMA-Q—wn,—n(O) = QO(U) + O(/’L) = QO(O) + O(|77|) + O(M) (A21)

We already know (Lemma 4.3) that, faer e T", there isI(A) = 1,(A,00=0(n) eR
such thatQA 0(l(A)) = 7, which writes alsoQ” (0) = 7. Hence by (A.18),

A+wl(A),—1(A)
for A’ e[—r,r]" andB = A +iA’ + wl(A),

Qll

i@ =7+ 0.

Hence, sincep(0) # 0, by (A.21) and by the Implicit Function Theorem uifw||A'| is
small enough, there i§A +iA’) =I1(A) + O(u|A’|) such that
QM

A+|A/+wl(A+|A/) Z(A-HA/ ( ) =7T.
Moreover! thus defined is analytic i, for " small enough (how small depending

on |w|). For a givenA € D, let ¢ = Q" Then, with the abbreviation
M A-‘rwl(A) I(A)

(04 Y !
A+ol(A),—1(A)

{ —§ +sing = usingf(A + CUT(A) +wt) + c”//—T(A)’
q(0) =m.
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Therefore, by (A.17),
Gu(A+1(A)w) — G, (A) =G, (A+1(A)w) — F, (A + wl(A), —I(A))

_ w _ _d 12 _
q)“(qAJrT(A)w 90) = Pu( A+l(Aw,~1(A) 90)

=O(llay_j,11%)
=O(|39 F. (A + wl(A), —1(A))?) = O(13: F,,(A, 0)|).
Let/, be the analytic map defined D, > x U, /2., by [,,(A, 0) =I(A+ w0). Let

V(A 0)=F,(A,0+1,(A,0)).
This is an analytic extension of the map defined in Lemma 4.3. By the previous estimates
|V, — F| = O(|8s F,.|?), (A.22)

uniformly for (A, 0) € D,/ X Uy /2,4

(iif) To complete the proof, we remark that, if, ¢:U — C are analytic inU,
open subset of£” and g # 0, f = O(g) locally in U, then f/g has an analytic
extension defined in the whole gét(see for instance [40], p. 32, Theorem 3.4). Hence
(V, — FM)/(a@FM)2 is real analytic inT” x R. As a consequencé,, (A, 6) given by
(4.19) is real analytic w.r.t(A, 8). Moreover, ad,, is an analytic function, so i§,.
Finally 7,,(A,0) =1,(A,0) +h,(A, 0 +1,(A,0)) is real analytic. O
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