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ABSTRACT. – We discuss in the context of nearly integrable Hamiltonian systems a functional
analysis approach to the “splitting of separatrices” and to the “shadowing problem”. As an
application we apply our method to the problem of Arnold Diffusion for nearly integrable
partially isochronous systems improving known results.
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RÉSUMÉ. – Nous discutons dans le contexte des systèmes hamiltoniens presque intégrables
une approche basée sur l’analyse fonctionnelle des problèmes de “splitting” des séparatrices et
de “shadowing”. Nous appliquons notre méthode au problème de la diffusion d’Arnold pour des
systèmes presque intégrables partiellement isochrones, améliorant des résultats connus.

1. Introduction

Topological instability of action variables in multidimensional nearly integrable
Hamiltonian systems is known as Arnold Diffusion. This terminology was introduced
by Chirikov in [17], years after Arnold discovered this phenomenon in his famous paper
[3]. For autonomous Hamiltonian systems with two degrees of freedom KAM theory
generically implies topological stability of the action variables (i.e. the time-evolution
of the action variables for the perturbed system stay close to their initial values for all
times). On the contrary, for systems with more than two degrees of freedom, outside
a wide range of initial conditions (the so-called “Kolmogorov set” provided by KAM
theory), the action variables may undergo a drift of order one in a very long, but finite
time called the “diffusion time”.
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After thirty years from Arnold’s seminal work [3], attention to Arnold diffusion
has been renewed by [15], followed by several papers (see, e.g., [8,14,24,28,45] and
references therein).

The Hamiltonian models which are usually studied (as suggested by normal form
theory near simple resonances) have the form

H(I,ϕ,p, q)= 1

2
I 2

1 + ω · I2+ 1

2
p2+ ε(cosq − 1)+ εµf (I,ϕ,p, q), (1.1)

whereε andµ are small parameters (the “natural” order forµ beingεd for some positive
d); (I1, I2,p) and (ϕ, q) are standard symplectic action-angle variables (Ii ∈ Rni ,
n1 + n2 = n, ϕ = (ϕ1, ϕ2) ∈ Tn, (p, q) ∈ R × T, T being the standard torusR/2πZ).
In Arnold’s modelI1, I2 ∈R, ω = 1, f (I, ϕ,p, q)= (cosq − 1)(sinϕ1+ cosϕ2) and in
[3] diffusion is proved forµ exponentially small w.r.t.

√
ε. Physically (1.1) describes a

system ofn1 “rotators” andn2 harmonic oscillators weakly coupled with a pendulum
through a perturbation term.

The existence of Arnold diffusion is usually proved following the mechanism
proposed in [3]. Forµ= 0, HamiltonianH admits a continuous family ofn-dimensional
partially hyperbolic invariant toriTI possessing stable and unstable manifoldsWs

0(TI )=
Wu

0 (TI ), called “whiskers” by Arnold. Arnold’s mechanism is then based on the
following three main steps.

(i) Forµ �= 0 small enough, the perturbed stable and unstable whiskersWs
µ(T

µ
I ) and

Wu
µ(T

µ
I ) split and intersect transversally (“splitting of the whiskers”);

(ii) Prove the existence of a chain of “transition” tori connected by heteroclinic orbits
(“transition chain”);

(iii) Prove the existence of an orbit, “shadowing” the transition chain, for which the
action variablesI undergo a variation of O(1) in a certain timeTd called the
diffusion time.

The shadowing problem (iii) has been extensively studied in the last years by
geometrical (see, e.g., [15,18–20,24,37]) and by variational methods (see, e.g., [8,9,11,
12]). More rich and older literature is available on the splitting problem see, e.g., [34,33,
23,15,29,21,25,26,30,43,41,42,31,36,38,39] and references therein.

The aim of this paper is to provide a functional analysis approach apt to deal with
Arnold diffusion, especially with “splitting” (i) and “shadowing” (iii) problems.

Rather than formulating our results in an abstract setting we shall illustrate the
method (in a complete and self-contained way) on a relatively simple class of models,
namely harmonic oscillators weakly coupled with a pendulum through purely spatial
perturbations.

In this context defining a transition chain (ii) is a straighforward consequence of
the “splitting of the whiskers” (i) sinceall the invariant tori are preserved by the
perturbation, being just slightly deformed. This also happens, for the peculiar choice
of the perturbation, in the non-isochronous system considered in [3]. Obviously this is
not the case for general non-isochronous systems where the surviving perturbed tori are
separated by the gaps appearing in KAM constructions, making the existence of chains
of tori a more difficult matter, see [15]. We also refer to [45] for a somewhat different
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mechanism of diffusion where step (ii) is bypassed for systems with three degrees of
freedom using Mather theory.

We now give a rough description of themain resultsof this paper. We consider nearly
integrable partiallyisochronousHamiltonian systems given by

Hµ = ω · I + p2

2
+ (cosq − 1)+µf (ϕ, q), (1.2)

where (ϕ, q) ∈ Tn × T1 := (Rn/2πZn) × (R/2πZ) are the angle variables,(I,p) ∈
Rn × R1 are the action variables andµ � 0 is a small real parameter. Whenµ = 0 the
energyωiIi of each oscillator is a constant of the motion. The unperturbed Hamitonian
possessesn-dimensional invariant toriTI0 = {(ϕ, I, q,p) ∈ Tn × Rn × T1 × R1 | I =
I0, q = p = 0} with stable and unstable manifoldsWs(TI0)=Wu(TI0)= {(ϕ, I, q,p)∈
Tn×Rn×T1×R1 | I = I0, p

2/2+ (cosq − 1)= 0}. The problem ofArnold diffusion
in this context is whether, forµ �= 0, there exist motions whose net effect is to transfer
O(1)-energy from one oscillator to the others. In order to exclude trivial drifts of the
actions due to resonance phenomena, it is standard to assume a diophantine condition for
the frequency vectorω. Precisely we will always suppose thatω is (γ, τ)-diophantine,
i.e.

∃γ > 0, τ � n− 1 such that|ω · k|� γ /|k|τ , ∀k ∈ Zn, k �= 0. (H1)

In the present paper we first prove general shadowing theorems (Theorems 2.3 and
3.2) which improve -for isochronous systems- known estimates on the diffusion time.
Secondly we discuss a new method for the splitting of the whiskers, providing general
estimates on the Fourier coefficients of some “splitting function” (see Theorem 4.2). As
applications we consider the following two cases

(a) the frequencies of the harmonic oscillators form a diophantine vectorω of order
1 (“a priori-unstable case”);

(b) the frequencies of the harmonic oscillators form a diophantine vectorωε =
(1/

√
ε,βεa) with a � 0, µε−3/2 small and the perturbationf (ϕ, q) = (1 −

cosq)f (ϕ) (“three-time-scales problem” with perturbations preserving all the
unperturbed invariant tori). This corresponds, after a time rescaling, toω =
(1, βεa

√
ε) in (1.1).

Case (a) highlights the improvement of our estimates on diffusion times. In this case
it is easy to show, using the classical Poincaré–Melnikov function

M(A)=
∫
R

[
f (ωt +A,0)− f

(
ωt +A,q0(t)

)]
dt,

q0(t) = 4arctan(expt) being the unperturbed separatrix of the pendulum, that the
splitting of the whiskers is O(µ). Then our shadowing method yields (see for a more
precise statement Theorems 2.4 and 3.3)

THEOREM 1.1. – Assume(H1) and letM possess a proper minimum(or maximum)
A0. Then, forµ small enough, there exist orbits whose action variables undergo a drift
of order one, with diffusion timeTd =O((1/µ) log(1/µ)).
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Theorem 1.1 answers a question raised in [35] (Section 7) proving that, at least for
isochronous systems, it is possible to reach the maximal speed of diffusionµ/| logµ|;
for related results compare also with [20] and [44]. We recall that the estimate on the
diffusion time obtained in [15] isTd � O(exp(1/µ)) and that in [24] it is improved
to beTd = O(exp(1/µ)); recently in [9], by means of Mather theory, the estimate on
the diffusion time has been improved to beTd =O(1/µ2τ+1); in [19] it is obtained via
geometric methods thatTd =O(1/µτ+1). It is worth pointing out that the estimates given
in [9] and [19], while providing a diffusion time polynomial in the splitting, depend on
the diophantine exponentτ and hence on the number of rotatorsn. Instead our estimate
(as well as that discussed in [20]) does not depend upon the number of degrees of
freedom.

The three-time-scales system illustrates an application of our estimate of the splitting
(Theorem 5.1), which, together with our general shadowing Theorem 2.3, yields Arnold
diffusion in case(b). Roughly (see Theorem 5.2 for a precise statement) we get

THEOREM 1.2. – Under a suitable non degeneracy condition onf , for all ε

small such thatωε is (γε, τ ) diophantine, forµε−3/2 small enough, stable and
unstable manifolds split and there exist orbits whose action variables undergo a
drift of order one with diffusion timeTd = O((

√
ε/µ)eπ/(2

√
ε)[(γε)−1(

√
εeπ/(2

√
ε))τ +

| logµ|]).

The choice of three time scales frequencies enables to derive lower estimates for the
splitting relatively easily. Incidentally we mention that Theorem 5.1 improves the main
Theorem I in [38] which holds forµ= εp, p > 2+ a; w.r.t. [25] (which deals with more
general systems) we remark that our results hold in any dimension, while the results
of [25], based on tree techniques and cancellations, are proved forn= 2.

We also mention that, forn � 3, with a more careful shadowing analysis (exploiting
the anisotropy of this splitting) we can prove that, along special directions, Arnold
diffusion takes place in polynomial time w.r.t 1/ε (see [7] and Remark 5.2).

Furthermore we also remark that our proof of Theorem 3.2 is completely self-
contained in the sense that, unlike the known approaches (excepted [45]), we do not
make use of any KAM-type result for proving, under assumption(H1), the persistence
of invariant tori, see Theorem 3.1.

The results of this paper have been announced in [6].
We now describe thefunctional analysis approachdeveloped in this paper to prove

both the results on the shadowing theorem and on the “splitting of the whiskers”. It
is based on a finite dimensional reduction of Lyapunov–Schmidt type, variational in
nature, introduced in [2] and in [1], and later extended in [4,5] in order to construct
shadowing orbits. For simplicity we describe our approach when the perturbation term
f (ϕ, q)= (1−cosq)f (ϕ) so that the toriTI0 are still invariant forµ �= 0. The equations
of motion derived by HamiltonianHµ are

ϕ̇ = ω, İ =−µ(1− cosq)∇f (ϕ), q̇ = p, ṗ = sinq −µsinqf (ϕ). (1.4)
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The dynamics on the anglesϕ is given byϕ(t)= ωt +A so that (1.4) are reduced to the
quasi-periodically forced pendulum equation

−q̈ + sinq = µsinqf (ωt +A), (1.5)

corresponding to the Lagrangian

Lµ,A(q, q̇, t)= q̇2

2
+ (1− cosq)+µ(cosq − 1)f (ωt +A). (1.6)

For each solutionq(t) of (1.5) one recovers the dynamics of the actionsI (t) by
quadratures in (1.4).

For µ = 0 Eq. (1.5) is autonomous and possesses the one parameter family
of homoclinic solutions (mod. 2π) qθ(t) = 4arctan(exp(t − θ)), θ ∈ R. Consider
the Lagrangian action functional"µ,A :q0 + H 1(R) → R associated to the quasi-
periodically forced pendulum (1.5)

"µ,A(q) :=
∫
R

Lµ,A

(
q(t), q̇(t), t

)
dt. (1.7)

"µ,A is smooth onq0 +H 1(R) and critical pointsq of "µ,A are homoclinic solutions
to 0, mod. 2π , of (1.5). These critical pointsq are in fact smooth functions of the timet
and are exponentially decaying to 0, mod. 2π , as|t| →+∞.

The unperturbed functional"0 := "0,A does not depend onA and possesses
the 1-dimensional manifold of critical pointsZ := {qθ | θ ∈ R} with tangent space
at qθ spanned byq̇θ . All the unperturbed critical pointsqθ are degenerate since
d2"0(qθ )[q̇θ ] = 0. Howeverqθ are non-degenerate critical points of the restriction"0|Eθ

for any subspaceEθ supplementary to〈q̇θ 〉. It is then possible to apply a Lyapunov–
Schmidt type reduction, based on the Implicit Function Theorem, to find nearqθ , for
µ small, critical pointsqµ

A,θ of "µ,A restricted toEθ ; more preciselyqµ
A,θ = qθ + w

µ
A,θ

with w
µ
A,θ ∈Eθ , ‖wµ

A,θ‖ =O(µ) and d"µ,A(q
µ
A,θ )|Eθ

= 0. We will call the functionsqµ
A,θ

“1-bump pseudo-homoclinic solutions” of the quasi-periodically forced pendulum (1.5).
It turns out that the 1-dimensional manifoldZµ = {qµ

A,θ | θ ∈ R} is a “natural
constraint” for the action functional"µ,A, namely any critical point of"µ,A|Zµ

is a
critical point of"µ,A, and hence a true solution of (1.5) homoclinic to 0 (mod. 2π ).

Through this paper we will perform the above finite dimensional reduction using
two different supplementary spaces to〈q̇θ 〉: one is better suited for the shadowing
arguments, the other is better suited for studying the splitting problem in presence of
“high frequencies”.

Shadowing. In Sections 2 and 3, dealing with the shadowing theorem, we choose

Eθ = {w : R→R |w(θ)= 0}. (1.8)

Eθ and 〈q̇θ 〉 are supplementary spaces sinceq̇0(0) �= 0. The corresponding “reduced
action functional”Fµ(A, θ) :="µ,A(q

µ
A,θ ), see (2.1), turns out to have a neat geometric
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meaning, see Remark 2.1, related to the generating functions of the exact Lagrangian
stable and unstable manifoldsWs,u(TI0) .

From a geometrical point of view, the choice of the supplementary space defined by
(1.8) means consideringWs(TI0) andWu(TI0) at the fixed Poincaré section{q = π},
sinceqµ

A,θ (θ)= qθ (θ)+w
µ
A,θ (θ)= q0(0)= π .

The supplementary spaceEθ is very well suited to perform the shadowing theorem
because the “1-bump pseudo solutions”q

µ
A,θ (t) are true solutions of (1.5) except at

the instantt = θ where q̇
µ
A,θ (t) may have a jump, see Lemma 2.1. Following [4,5]

we will generalize in Section 2.2 the above finite dimensional reduction, finding a
natural constraint for “k-bump pseudo homoclinic solutions” turningk times near the
unperturbed separatrices of the pendulum, see Lemma 2.4.

In this way under a suitable “splitting condition”, satisfied for instance ifGµ(A) :=
Fµ(A,0) possesses a proper minimum (see Condition 2.1), we can prove a general
shadowing theorem with explicit estimates on the diffusion timeTd , see Theorem 2.3.
This estimate (see expression (2.21)), is roughly the following:Td is estimated by the
product of the number of heteroclinic transitionsk (= number of tori forming the
transition chain = heteroclinic jump/splitting) and of the timeTs required for a single
transition, namelyTd = kTs . The time for a single transitionTs is bounded by the
maximum time between the “ergodization time” of the torusTn run by the linear flow
ωt , and the time needed to “shadow” homoclinic orbits for the quasi-periodically forced
pendulum.

Theorem 1.1 (for a priori unstable systems) is a straightforward consequence of the
general shadowing theorem, noting that, by the classical Poincaré–Melnikov theory, the
splitting of the whiskers is O(µ). The main reason for which Theorem 1.1 improves the
polynomial estimatesTd = O(1/µ2τ+1) andTd = O(1/µτ+1), obtained respectively in
[9] and [19], is that our shadowing orbit can be chosen, at each transition, to approach
the homoclinic point only up to a distance O(1) and not O(µ) like in [9] and [19]. This
implies that the time spent by our diffusion orbit at each transition isTs =O(log(1/µ)).
Since the number of tori forming the transition chain is equal to O(1/splitting)=O(1/µ)
the diffusion time is finally estimated byTd =O((1/µ) log(1/µ)).

As well, Theorem 1.2 (and Theorem 5.2) for three-time-scales systems, is a
consequence of the general shadowing Theorem 2.3, but in this situation the splitting
is by far less easy to measure, because it is exponentially small.

As mentioned above variational methods in the context of Arnold diffusion have been
already used in [8], see Remark 2.2 for comments on that. One possible advantage of
our approach is that it may be used to consider more general critical points of the
reduced functional, not only minima. Another advantage is that the same shadowing
arguments can be used also when the hyperbolic part is a general Hamiltonian in
R2m, m � 1, possessing one hyperbolic equilibrium and a transversal homoclinic orbit.
Nevertheless we have developed all the details when the hyperbolic part is the standard
one-dimensional pendulum because it is the model equation to study Arnold diffusion
near a simple-resonance.

Splitting. Detecting and measuring the splitting of the whiskers is a difficult
problem when the frequency vectorω = ωε depends on some small parameterε and
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contains some “fast frequencies”ωi =O(1/εb), b > 0. Indeed, in this case, the variations
of the Melnikov function along some directions turn out to be exponentially small with
respect toε and then the naive Poincaré–Melnikov expansion provides a valid measure
of the splitting only forµ exponentially small with respect to some power ofε.

The typical argument to estimate exponentially small splittings, used virtually in all
papers dealing with this problem, goes back to Arnold himself and is based on Fourier
analysis on complex domains.

For this reason we would like to extend analytically the “reduced action functional”
Fµ(A, θ) ="µ,A(q

µ
A,θ ) in a complex strip sufficiently wide in theθ variable. However

Fµ(A, θ) can not be easily analytically extended. Indeed, forθ complex, the supplemen-
tary spaceEθ = {w : R→ C |w(Reθ)= 0}, appearing naturally when we try to extend
the definition ofqµ

A,θ to θ ∈ C, does not depend analytically onθ . This breakdown of
analyticity, arising when measuring the “splitting of the whiskers” at the fixed Poincaré
section{q = π}, is a well known difficulty and has been compensated in [15,25,26] via
the introduction of tree techniques which enable to prove cancellations in the power
series expansions.

Our method to overcome this “loss of analyticity” is different and relies on the
introduction of another supplementary spaceẼθ , which depends analytically onθ . It
is defined by

Ẽθ =
{
w : R→R

∣∣∣ ∫
R

ψθ(t)w(t)dt = 0
}

whereψ0(t) = cosh2(t)/(1 + cosht)3. Ẽθ and 〈q̇θ 〉 are supplementary spaces since∫
R ψ0(t)q̇0 dt �= 0 (see Remark 4.1 for the choice ofψ0 ). The corresponding reduced

functionalF̃µ(A, θ) :="µ,A(Q
µ
A,θ ), defined in (4.4), whereQµ

A,θ are the corresponding
“1-bump pseudo-homoclinics solutions”, can be analytically extended in a sufficiently
large complex strip. This enables to find easily the exponentially small bounds on
the Fourier coefficients for the splitting, thanks to the important invariance property
F̃µ(A, θ +η)= F̃µ(A+ωη, θ), which is a consequence of the autonomy of Hamiltonian
Hµ. This type of Lyapunov–Schmidt reduction was used in [2] to study the exponentially
small splitting in rapidly periodically forced systems.

The crucial point is now to observe that “reduced action functionals” corresponding to
different choices of the supplementary space are equivalent: it turns out (Theorem 4.1)
that the reduced functionalsFµ andF̃µ are simply the same up to a change of variables
close to the identity,

Fµ(A, θ)= F̃µ

(
A,θ + hµ(A, θ)

)
, hµ =O(µ).

This fact enables to transpose the informations onF̃µ to Fµ and viceversa. We point out
that the proof of Theorem 4.1 relies only on the standard Implicit Function Theorem.
The introduction ofF̃µ may be interpreted simply as measuring the splitting with a non
constant Poincaré section.

A different approach for establishing exponentially small splittings for a rapidly
forced pendulum has been used by [23] and recently extended to the setting considered
here in [21] and [38,39] by the mean of normal form theory. For the more difficult case
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of the standard map, where the Melnikov method fails to give the correct prediction for
the splitting, we refer to the pioneering paper [34] and to [30].

We also mention that the recent papers [43] and [36], even though quite different in
spirit from ours, have also several technical similarities with our method (the use of
generating functions, nonfixed Poincaré section,. . . ). We add that these papers deal also
with non-isochronous systems.

The paper is organized as follows: in Section 2 we prove the shadowing theorem when
the perturbation term isf (ϕ, q)= (1− cosq)f (ϕ). In Section 3 we show how to prove
the shadowing theorem for general perturbation termsf (ϕ, q). In Section 4 we provide
the theorem on the Fourier coefficients of the splitting and in Section 5 we consider
three-time-scales systems.

2. The shadowing theorem

2.1. 1-bump homoclinic and heteroclinic solutions

Using the Implicit Function Theorem we now prove that, near the unperturbed
homoclinic solutionsqθ(t), there exist, forµ small enough,“ 1-bump pseudo-homoclinic
solutions” q

µ
A,θ (t) of Eq. (1.5). qµ

A,θ (t) are true solutions of (1.5) in(−∞, θ) and
(θ,+∞); at time t = θ such pseudo-solutions are glued with continuity at value
q
µ
A,θ (θ) = π and for t →±∞ are asymptotic to the equilibrium 0 mod 2π . The q

µ
A,θ

are critical points for"µ,A restricted toqθ +Eθ (Eθ is defined in (1.8)).

LEMMA 2.1. –There existµ0,C0 > 0 such that∀0<µ� µ0, ∀ω ∈Rn, ∀θ ∈R, there
exists a unique functionqµ

A,θ (t) : R→R, smooth in(A,µ), such that

(i) q
µ
A,θ (t)is a solution of(1.5) in each interval(−∞, θ) and(θ,+∞) and

q
µ
A,θ (θ)= π;

(ii) max
(∣∣qµ

A,θ (t)− qθ (t)
∣∣, ∣∣q̇µ

A,θ (t)− q̇θ (t)
∣∣)�C0µexp

(
−|t − θ |

2

)
, ∀t ∈R;

(iii) q
µ
A,θ (t)= q

µ
A+k2π,θ (t), ∀k ∈ Zn;

(iv) q
µ
A,θ+η(t)= q

µ
A+ωη,θ (t − η), ∀θ, η ∈R;

(v) max
(∣∣∂Aqµ

A,θ (t)
∣∣, ∣∣∂Aq̇µ

A,θ (t)
∣∣, ∣∣ω · ∂Aqµ

A,θ (t)
∣∣, ∣∣ω · ∂Aq̇µ

A,θ (t)
∣∣)

� C0µexp
(
−|t − θ |

2

)
.

Proof. –In Appendix A. ✷
We can then define the functionFµ : Tn × R → R as the action functional of

Lagrangian (1.6) evaluated on the 1-dimensional manifoldZµ := {qµ
A,θ | θ ∈ R} of

“1-bump pseudo-homoclinic solutions”, namely

Fµ(A, θ)="µ,A

(
q
µ
A,θ

)
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=
θ∫

−∞
Lµ,A

(
q
µ
A,θ (t), q̇

µ
A,θ (t), t

)
dt +

+∞∫
θ

Lµ,A

(
q
µ
A,θ (t), q̇

µ
A,θ (t), t

)
dt (2.1)

and the“homoclinic function” Gµ : Tn→R as

Gµ(A)= Fµ(A,0). (2.2)

Since q
µ
A,θ (t) converges exponentially fast to 0, mod 2π , the integrals in (2.1) are

convergent.
By property (iv) of Lemma 2.1 the following invariance property holds

Fµ(A, θ + η)= Fµ(A+ ωη, θ), ∀θ, η ∈R, (2.3)

and in particular

Fµ(A, θ)=Gµ(A+ ωθ), ∀θ ∈R. (2.4)

Remark2.1. – The homoclinic functionGµ is the difference between the generating
functionsS±µ,I0

(A, q0) of the stable and the unstable manifoldsWs,u
µ (TI0) (which in this

case areexactLagrangian manifolds) at sectionq0 = π , namelyGµ(A)= S−µ,I0
(A,π)−

S+µ,I0
(A,π). Indeed it can be easily verified that

S+µ,I0
(A, q0)

:= I0 ·A−
+∞∫
0

(q̇
µ
A,q0

(t))2

2
+ (1− cosqµ

A,q0
(t)
)+µ

(
cosqµ

A,q0
(t)− 1

)
f (ωt +A)dt,

where q
µ
A,q0

(t) is the unique solution of (1.5) nearq0(t) with q
µ
A,q0

(0) = q0 and
lim t→+∞ q

µ
A,q0

(t)= 2π . Analogously

S−µ,I0
(A, q0)

:= I0 ·A+
0∫

−∞

(q̇
µ
A,q0

(t))2

2
+ (1− cosqµ

A,q0
(t)
)+µ

(
cosqµ

A,q0
(t)− 1

)
f (ωt +A)dt,

where q
µ
A,q0

(t) is the unique solution of (1.5) nearq0(t) with q
µ
A,q0

(0) = q0 and
lim t→−∞ q

µ
A,q0

(t)= 0.

There holds

LEMMA 2.2. – Fµ : Tn×R→R is smooth and

∂AFµ(A, θ)=
∫
R

µ
(
cosqµ

A,θ (t)− 1
)
∂ϕf (ωt +A)dt, (2.5)

∂θFµ(A, θ)= µ

∫
R

f (ωt+A)sinqµ
A,θ (t)q̇

µ
A,θ (t)dt = (q̇

µ
A,θ )

2(θ+)
2

− (q̇
µ
A,θ )

2(θ−)
2

. (2.6)
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Proof. –Sinceqµ
A,θ depends smoothly onA so doesFµ(A, θ) and there holds

∂AFµ(A, θ)=
+∞∫
−∞

q̇
µ
A,θ (t)∂Aq̇

µ
A,θ (t)+ sinqµ

A,θ (t)∂Aq
µ
A,θ (t)

−µsinqµ
A,θ (t)f (ωt +A)∂Aq

µ
A,θ (t)+µ

(
cosqµ

A,θ (t)− 1
)
∂ϕf (ωt +A)dt.

Integrating by parts and using that limt→±∞ q̇
µ
A,θ (t)= 0 and∂Aq

µ
A,θ (θ)= 0, we get

+∞∫
−∞

q̇
µ
A,θ (t)∂Aq̇

µ
A,θ (t)dt =

θ∫
−∞

. . .+
+∞∫
θ

q̇
µ
A,θ (t)∂Aq̇

µ
A,θ (t)dt

=−
θ∫

−∞
q̈
µ
A,θ (t)∂Aq

µ
A,θ (t)dt −

+∞∫
θ

q̈
µ
A,θ (t)∂Aq

µ
A,θ (t)dt.

Hence, sinceqµ
A,θ (t) solves (1.5) on each interval(−∞, θ) and(θ,+∞),

∂AFµ(A, θ)=
+∞∫
−∞

µ
(
cosqµ

A,θ (t)− 1
)
∂ϕf (ωt +A)dt (2.7)

and (2.5) is proved.
∂θq

µ
A,θ is not defined inW 1,∞(R) because,̇qµ

A,θ may have a jump att = θ . However,
by the invariance property (2.3),Fµ(A, θ) is smooth also inθ and we have that

∂θFµ(A, θ)=ω · ∂AFµ(A, θ)

=µ

∫
R

(
cosqµ

A,θ (t)− 1
) d

dt
f (ωt +A)dt

=µ

∫
R

sinqµ
A,θ (t)q̇

µ
A,θ (t)f (ωt +A)dt,

by an integration by parts. Now sinceqµ
A,θ (t) solves (1.5) in(θ,+∞)

+∞∫
θ

µsinqµ
A,θ (t)q̇

µ
A,θ (t)f (ωt +A)dt =

+∞∫
θ

−q̈µ
A,θ q̇

µ
A,θ + sinqµ

A,θ (t)q̇
µ
A,θ (t)dt

= (q̇
µ
A,θ )

2(θ+)
2

+ cosqµ
A,θ (θ).

In the same way

θ∫
−∞

µsinqµ
A,θ (t)q̇

µ
A,θ (t)f (ωt +A)dt =−(q̇

µ
A,θ )

2(θ−)
2

− cosqµ
A,θ (θ).

This proves the lemma.✷
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It follows that Zµ := {qµ
A,θ | θ ∈ R} is a “natural constraint” for"µ,A. Indeed, by

(2.6) and Lemma 2.1(ii), if∂θFµ(A, θ)= 0 thenqµ
A,θ (t) is a true homoclinic (mod 2π )

solution of (1.5). Then, for eachI0 ∈Rn,(
ωt +A, Iµ(t), q

µ
A,θ (t), q̇

µ
A,θ (t)

)
(2.8)

where

Iµ(t)= I0−µ

t∫
−∞

(
1− cosqµ

A,θ (s)
)
∂ϕf (ωs +A)ds (2.9)

is a solution ofHµ emanating att = −∞ from torus TI0. Since q
µ
A,θ converges

exponentially fast to the equilibrium, the “jump” in the action variablesIµ(+∞)− I0 is
finite. We shall speak of homoclinic orbit to the torusTI0 when the jump is zero, and of
heteroclinic orbit fromTI0 toTIµ(+∞) when the jump is not zero. As a direct consequence
of (2.5) we have that such a jump is given by∂AFµ(A, θ):

LEMMA 2.3. – Let ∂θFµ(A, θ)= 0 thenIµ(t) given in(2.9)satisfies

∂AFµ(A, θ)=
+∞∫
−∞

İµ(t)dt = Iµ(+∞)− I0 ∈Rn. (2.10)

In particular if (A, θ) is a critical point ofFµ(A, θ) then(2.8)defines a homoclinic orbit
to torusTI0.

By the invariance property (2.4) ifB is a critical point of the homoclinic function
Gµ, then, for all(A, θ) such thatA+ωθ = B, (2.8) provides, for eachI0, a homoclinic
solution to the torusTI0. These homoclinic orbits are not geometrically distinct since, by
the autonomy ofHµ, they are all obtained by time translation of the same homoclinic
orbit. By the Ljusternik–Schnirelman category theory, since catTn = n+1, the function
Gµ : Tn→R has at leastn+ 1 distinct critical points. This proves (see also [36])

THEOREM 2.1. –Let 0< µ � µ0. ∀I0 ∈ Rn there exist at leastn + 1 geometrically
distinct homoclinic orbits toTI0.

From the conservation of energy a heteroclinic orbit betweenTI0 andTI ′0, if any, must
satisfy the energy relation

ω · I0 = ω · I ′0. (2.11)

By Lemma 2.3 a critical point ofFµ,I0,I
′
0
(A, θ), defined byFµ,I0,I

′
0
(A, θ)= Fµ(A, θ)−

(I ′0− I0) ·A= Gµ(A+ ωθ)− (I ′0− I0) ·A, gives rise to a heteroclinic solution joining
the toriTI0 andTI ′0. If the energy condition (2.11) holds then the functionFµ,I0,I

′
0
(A, θ)

satisfies the invariance property

Fµ,I0,I
′
0
(A, θ)=Gµ(A+ ωθ)− (I ′0− I0) · (A+ωθ)=Gµ,I0,I

′
0
(A+ ωθ), (2.12)

where

Gµ,I0,I
′
0
(B) :=Gµ(B)− (I ′0− I0) ·B. (2.13)
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Note thatGµ,I0,I
′
0

is not 2πZn-periodic, and it might possess no critical point even for
|I ′0 − I0| small. However near a homoclinic orbit toTI0 satisfying some “transversality
condition” there exist heteroclinic solutions connecting nearby toriTI ′0. As an example,
the following theorem holds, whereBρ(A0) denotes the open ball of radiusρ centered
atA0 in Rn (covering space ofTn).

THEOREM 2.2. –Assume that there existA0 ∈ Tn, δ > 0 and ρ > 0 such that
inf∂Bρ(A0) Gµ � infBρ(A0) Gµ + δ. Then for all I0, I

′
0 ∈ Rn satisfying(I0 − I ′0) · ω = 0

and |I0− I ′0|< δ/(2ρ) there exists a heteroclinic solution ofHµ connectingTI0 to TI ′0.
Proof. –Let us considerGµ(A) :=Gµ(A)− (I ′0 − I0) · (A−A0) which differs from

Gµ,I0,I
′
0
, defined in(2.13), only by a constant.G attains an absolute minimum inBρ(A0)

at some pointA. The theorem is proved if we show thatA ∈ Bρ(A0). Arguing by
contradiction we assume thatA ∈ ∂Bρ(A0). Denote byÃ ∈ Bρ(A0) a minimum point for
Gµ. ThenGµ(A) � Gµ(A)−|I ′0− I0|ρ > minBρ(A0) Gµ+ δ/2=Gµ(Ã)+ δ/2. However
Gµ(Ã) � Gµ(Ã)+ δ/2 and we get a contradiction.✷
2.2. The k-bump pseudo-homoclinic solutions

We prove in the next lemma the existence of “k-bump pseudo-homoclinic solutions”
qL
A,θ (t) of the quasi-periodically forced pendulum (1.5) which turnk times along the sep-

aratrices and are asymptotic to the equilibrium fort →±∞. Such pseudo-homoclinics
qL
A,θ (t) are found, via the Contraction Mapping Theorem, as small perturbations of a

chain of “1-bump pseudo-homoclinic solutions” obtained in Lemma 2.1.

LEMMA 2.4. – There existC1,L1 > 0 such that∀ω ∈ Rn, ∀0 < µ � µ0, ∀k ∈ N,
∀L > L1, ∀θ = (θ1, . . . , θk) ∈ Rk such thatmini (θi+1 − θi) > L, there exists a unique
pseudo-homoclinic solutionqL

A,θ (t) : R→R, smooth in(A, θ,µ) which is a true solution
of (1.5) in each interval(−∞, θ1), (θi, θi+1) (i = 1, . . . , k − 1), (θk,+∞) and

(i) qL
A,θ (θi)= π(2i − 1), qL

A,θ (t)= q
µ
A,θ1

(t) in (−∞, θ1)

andqL
A,θ (t)= 2π(k− 1)+ q

µ
A,θk

(t) in (θk,+∞);
(ii)

∥∥qL
A,θ − q

µ
A,θi

∥∥
W1,∞(Ji)

� C1 exp(−C1L),

whereJi = (θi, (θi + θi+1)/2),∀i = 1, . . . , k− 1;
(iii)

∥∥qL
A,θ − q

µ
A,θi+1

∥∥
W1,∞(J ′

i
)
�C1 exp(−C1L),

whereJ ′i = ((θi + θi+1)/2, θi+1), ∀i = 1, . . . , k− 1;
(iv) qL

A,θ (t)= qL
A+k2π,θ (t), ∀k ∈ Zn;

(v) qL
A,θ+ηek (t)= qL

A+ωη,θ (t − η), ∀η ∈R, θ ∈Rk, whereek = (1, . . . ,1) ∈ Rk.

Proof. –In Appendix A. ✷
Remark2.2. – The “k-bump pseudo-homoclinic solutions”qL

A,θ of Lemma 2.4 could
also be obtained minimizing the Lagrangian action functional with fixed end-points
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as in [8] using the directs method of the calculus of variations. For general systems,
where the homoclinic is not a minimum for the action functional, as for the Duffing
equation, this approach cannot be applied. Moreover we prefer to use the Contraction
Mapping Theorem since it also provides immediately the approximation estimates of
Lemma 2.4(ii)–(iii).

We consider the Lagrangian action functional evaluated on the pseudo-homoclinic
solutionsqL

A,θ given by lemma 2.4 depending onn+ k variables

Fk
µ(A1, . . . ,An, θ1, . . . , θk)=

θ1∫
−∞

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)
dt

+
k−1∑
i=1

θi+1∫
θi

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)
dt +

+∞∫
θk

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)
dt.

By Lemma 2.4(v) the following invariance property holds

Fk
µ(A, θ + ηek)= Fk

µ(A+ ηω, θ), ∀η ∈R, θ ∈ Rk. (2.14)

LetFk
µ : Tn×Rk →R be the “k-bump heteroclinic function” defined by

Fk
µ(A, θ) := Fk

µ(A, θ)− (I ′0− I0) ·A. (2.15)

It turns out that thek-dimensional manifoldZk := {qL
A,θ | θ ∈ Rk} of “k-bump pseudo-

homoclinic solutions” of (1.5) is a natural constraint for"µ,A, see [4]. Arguing as in
Lemma 2.2 we have

LEMMA 2.5. – ∀I0, I
′
0 ∈ Rn, if (A, θ) is a critical point ofFk

µ(A, θ), then(ωt + A,

Iµ(t), q
L
A,θ (t), q̇

L
A,θ (t)) whereIµ(t)= I0 − µ

∫ t
−∞(1− cosqL

A,θ (s))∂ϕf (ωs + A)ds is a
heteroclinic solution connectingTI0 to TI ′0.

By Lemma 2.5 we need to find critical points ofFk
µ(A, θ). When mini(θi+1 − θi)→

+∞ the “k-bump homoclinic function”Fk
µ(A, θ) is well approximated simply by the

sum ofFµ(A, θi) according to the following lemma. We setθ0 =−∞ andθk+1 =+∞.

LEMMA 2.6. – There existC2,L2 > 0 such that∀ω ∈ Rn, ∀0< µ � µ0, ∀L > L2,
∀θ1 < · · ·< θk with mini(θi+1− θi) > L

Fk
µ(A, θ1, . . . , θk)=

k∑
i=1

Fµ(A, θi)+
k∑

i=1

Ri(µ,A, θi−1, θi, θi+1), (2.16)

with ∣∣Ri(µ,A, θi−1, θi, θi+1)
∣∣� C2 exp(−C2L).

Proof. –We can write
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Fk
µ(A, θ1, . . . , θk)

=
( θ1∫
−∞

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)+ (θ1+θ2)/2∫
θ1

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

))

+
k−1∑
i=2

( θi∫
(θi−1+θi )/2

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)+ (θi+θi+1)/2∫
θi

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

))

+
( θk∫

(θk−1+θk)/2

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)+ +∞∫
θk

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

))
.

We define

R−
i (µ,A, θi−1, θi)

=
θi∫

(θi−1+θi)/2

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)
dt −

θi∫
−∞

Lµ,A

(
q
µ
A,θi

(t), q̇
µ
A,θi

(t), t
)

dt,

R+
i (µ,A, θi, θi+1)

=
(θi+θi+1)/2∫

θi

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)
dt −

+∞∫
θi

Lµ,A

(
q
µ
A,θi

(t), q̇
µ
A,θi

(t), t
)

dt,

whereqµ
A,θi

is the 1-bump pseudo-homoclinic solution obtained in Lemma 2.1. Recalling
the Definition 2.1 ofFµ(A, θ) we have

Fk
µ(A, θ1, . . . , θk)=Fµ(A, θ1)+R+

1 (µ,A, θ1, θ2)

+
k−1∑
i=2

Fµ(A, θi)+ (R−
i (µ,A, θi−1, θi)+R+

i (µ,A, θi, θi+1
)

+ Fµ(A, θk)+R−
k (µ,A, θk−1, θk).

Setting R1 = R+
1 , Ri = R−

i + R+
i (i = 2, . . . , k − 1) and Rk = R−

k we derive the
expression (2.16). In order to complete the proof, we have to show the existence of
C2,L2 > 0 such that∀ω ∈ Rn, for all 0 < µ � µ0, ∀L > L2, ∀θ1 < · · · < θk with
mini(θi+1− θi) > L, for all i = 1, . . . , k∣∣R±

i (µ,A, θi, θi+1)
∣∣� C2 exp(−C2L). (2.17)

We write the proof forR+
i . We have

R+
i (µ,A, θi, θi+1)

=
(θi+θi+1)/2∫

θi

(
Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)−Lµ,A

(
q
µ
A,θi

(t), q̇
µ
A,θi

(t), t
))

dt
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−
+∞∫

(θi+θi+1)/2

Lµ,A

(
q
µ
A,θi

(t), q̇
µ
A,θi

(t), t
)

dt. (2.18)

By Lemma 2.1(ii) the homoclinic orbit satisfies max(|qµ
A,θi

(t)|, |q̇µ
A,θi

(t)|) �
C exp(−|t − θi|/2). HenceLµ,A(q

µ
A,θi

(t), q̇
µ
A,θi

(t), t) = O(exp(−|t − θi |)) and for all
θ1 < · · ·< θk with mini(θi+1− θi) > L,

∣∣∣∣∣
+∞∫

(θi+θi+1)/2

Lµ,A

(
q
µ
A,θi

(t), q̇
µ
A,θi

(t), t
)

dt

∣∣∣∣∣=O
(
e−L/2). (2.19)

From Lemma 2.4(ii) we also deduce that

( (θi+θi+1)/2∫
θi

Lµ,A

(
qL
A,θ (t), q̇

L
A,θ (t), t

)−Lµ,A

(
q
µ
A,θi

(t), q̇
µ
A,θi

(t), t
)

dt

)
=O

(
e−CL

)
(2.20)

for some constantC > 0. From (2.18), (2.19) and (2.20) we deduce (2.17).✷
2.3. The diffusion orbit

We now give an example of condition onGµ which implies the existence of diffusion
orbits.Bα(A0)⊂Rn denotes the open ball centered atA0 ∈Rn and of radiusα.

Condition 2.1 (“Splitting condition”). – There existA0 ∈ Tn, α > 0, a bounded open
setU ⊂ Rn (the covering space ofTn) such thatBα(A0) ⊂ U and a positive constant
δ > 0 such that

(i) inf
∂U

Gµ � inf
U
Gµ + δ;

(ii) sup
Bα(A0)

Gµ � δ

4
+ inf

U
Gµ;

(iii) d
({
A ∈U |Gµ(A) � δ/2+ inf

U
Gµ

}
,
{
A ∈U |Gµ(A) � 3δ/4+ inf

U
Gµ

})
� 2α.

Remark2.3. – If Gµ possesses a non-degenerate minimum inA0 the “Splitting
condition” 2.1 is satisfied, for example, choosingU = Bρ(A0) with ρ = minλi/
(3supA∈Tn |D3Gµ|), δ = 4(minλi)ρ2/9 and α = ρ((

√
6 − √

5)/2
√

10)√
(mini λi)/(maxi λi) whereλi are the (positive) eigenvalues ofD2Gµ(A0). Details are

given in Appendix A.

The following shadowing type theorem holds, where

ρU := diam
(
;ω(U)

)
and;ω : Rn→Rn denotes the orthogonal projection ontoω⊥.

THEOREM 2.3. – Assume(H1) and the “Splitting condition”2.1. Then∀I0, I
′
0 with

ω · I0 = ω · I ′0, there is a heteroclinic orbit connecting the invariant toriTI0 and TI ′0.
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Moreover there existsC3 > 0 such that∀η > 0 small enough the “diffusion time”Td
needed to go from aη-neighbourhood ofTI0 to aη-neighbourhood ofTI ′0 is bounded by

Td � C3
|I0− I ′0|

δ
· ρU ·max

(
| logδ|, 1

γ ατ

)
+C3| log(η)|. (2.21)

Remark2.4. – The meaning of (2.21) is the following: the diffusion timeTd is
estimated by the product of the number of heteroclinic transitionsk = ( heteroclinic
jump / splitting )= |I ′0 − I0|/δ, and of the timeTs required for a single transition, that
is Td = k · Ts . The time for a single transitionTs is bounded by the maximum time
between the “ergodization time”(1/γ ατ), i.e. the time needed for the flowωt to make
anα-net of the torus, and the time| logδ| needed to “shadow” homoclinic orbits for the
forced pendulum equation. We use here that these homoclinic orbits are exponentially
asymptotic to the equilibrium.

Proof. –Assume with no loss of generality thatA0 = 0 and infU Gµ(A) = 0. Let us
choose the number of bumpsk as

k =
[

24 · ρU · |I ′0− I0|
δ

]
+ 1. (2.22)

By Lemma 2.4(i) and Lemma 2.1(ii), the trajectoryqL
A,θ converges exponentially fast to

TI0 (resp.TI ′0) ast →−∞ (resp.+∞) from θ1 (resp.θk). Therefore it is enough to prove

the existence of a critical point(A, θ) ∈ Tn×Rk of thek-bump heteroclinic functionFk
µ,

defined in (2.15), such that for some positive constantK1

|θk − θ1|� K1
|I0− I ′0|

δ
· ρU ·max

(
| logδ|, 1

γ ατ

)
. (2.23)

More precisely we shall enforce

K2| logδ|< |θ i+1− θ i |<K3 max
(
| logδ|, 1

γ ατ

)
∀i = 1, . . . , k − 1, (2.24)

for some positive constantsK2,K3. Let (=1, . . . ,=n) be an orthonormal basis ofRn

where

=1 = ω

|ω| and =2= I ′0− I0

|I ′0− I0| .

We recall thatω · (I ′0 − I0) = 0. In order to find a critical point ofFk
µ we introduce

suitable coordinates(a1, . . . , an, s1, . . . , sk) ∈ Rn× (−diamU,diamU)k defined by

A=
n∑

j=1

aj=j , θi = ηi + si − a1

|ω| ∀i = 1, . . . , k,
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whereηi are constants to be chosen later. In these new coordinates the heteroclinic
function defined in (2.15) is given by

F k
µ(a1, a2, . . . , an, s1, . . . , sk)

= Fk
µ

(
n∑

j=1

aj=j ,
η1+ s1− a1

|ω| , . . . ,
ηk + sk − a1

|ω|
)
− |I ′0− I0|a2.

(2.25)

Using the invariance property (2.14) we see thatF k
µ does not depend on the new variable

a1 :

F k
µ(a1, a2, . . . , an, s1, . . . , sk)=Fk

µ

(
n∑

j=2

aj=j ,
η1+ s1

|ω| , . . . ,
ηk + sk

|ω|
)
− |I ′0− I0|a2

=F k
µ(0, a2, . . . , an, s1, . . . , sk).

For simplicity we will still use the notationF k
µ(a2, . . . , an, s1, . . . , sk) for

F k
µ(0, a2, . . . , an, s1, . . . , sk). We now choose the constantsηi . Let

D = |ω|
C2

∣∣∣∣ log
(

24C2

δ

)∣∣∣∣+ 2diamU, (2.26)

whereC2 is the constant appearing in Lemma 2.6. We shall use the following fact
(see [13]): there isC > 0 such that, for all intervalsJ ⊂ R of length greater or equal
to C/(γ ατ), there isθ ∈ J such that

d
(
θω,2πZn

)
< α. (2.27)

By (2.27) there is(η1, . . . , ηk) ∈Rk such that

ηi=1≡ χi, mod 2πZn, |χi |< α and χi ·=1= 0, i.e.χi =
n∑

j=2

χi,j=j , (2.28)

η1 = 0, D < ηi+1− ηi <

(
D+ C|ω|

γ ατ

)
. (2.29)

By (2.26), (2.29), sincesi ∈ (−diamU,diamU) we have thatθi+1− θi � 1
C2
| log(24C2

δ
)|;

hence, by Lemma 2.6, setting

Ri =Ri(a2, . . . , an, si−1, si , si+1)

=Ri

(
µ,

n∑
j=2

aj=j ,
si−1+ ηi−1

|ω| ,
si + ηi

|ω| ,
si+1+ ηi+1

|ω|
)

we get ∣∣Ri(a2, . . . , an, si−1, si, si+1)
∣∣< δ

24
. (2.30)
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By Lemma 2.6, the invariance property (2.14), (2.28) and sinceGµ is 2πZn-periodic,
we have

F k
µ(a2, . . . , an, s1, . . . , sk)

=
k∑

i=1

Fµ

(
n∑

j=2

aj=j ,
ηi + si

|ω|
)
+Ri − |I ′0− I0|a2

=
k∑

i=1

Fµ

(
n∑

j=2

aj=j + χi + si=1,0

)
+Ri − |I ′0− I0|a2

=
k∑

i=1

Gµ

(
n∑

j=2

(aj + χi,j )=j + si=1

)
+Ri − |I ′0− I0|a2

=
k∑

i=1

Gµ(a2+ χi,2, . . . , an + χi,n, si)+Ri − |I ′0− I0|a2, (2.31)

where Gµ(a2, . . . , an, s) = Gµ(
∑n

j=2aj=j + s=1). By (2.31), settingχi := (χi,2,

. . . , χi,n) ∈Rn−1 anda = (a2, . . . , an), we get

F k
µ(a2, . . . , an, s1, . . . , sk)=

k∑
i=1

Gµ(a + χi, si)+Ri − |I ′0− I0|a2. (2.32)

Since the basis(=1, . . . ,=n) is orthonormal the functionGµ satisfies the same
properties asGµ, i.e.

sup
Bα(0)

Gµ � δ

4
, inf

∂Ũ

Gµ � δ

and d
({x ∈ Ũ | Gµ(x) � δ/2}, {x ∈ Ũ | Gµ(x) � 3δ/4}) � 2α, where Ũ = {(a2, . . . ,

an, s) ∈ Rn |∑n
j=2 aj=j + s=1 ∈ U }. Note that diamU = diamŨ . In particular, since

(0,0) ∈ Ũ , for all (a, s) ∈ Ũ , s ∈ (−diamU,diamU). Moreover, for all(a, s) ∈ Ũ ,
|a| = |;ω(

∑n
j=2aj=j + s=1)|� ρU .

We shall find a critical point ofF k
µ in

W = {(a, s) ∈Rn−1×Rk
∣∣ (a + χi, si) ∈ Ũ , ∀i = 1, . . . , k

}
.

As W is bounded,F k
µ attains its minimum overW at some point(a, s). Notice that by

(2.32) and (2.30)

inf
W

F k
µ � F k

µ(0,0)=
k∑

i=1

Gµ(χi,0)+ k
δ

24
.

Hence, since|χi |< α for all i = 1, . . . , k and supBα(0) Gµ � δ/4, we have

inf
W

F k
µ � k

δ

4
+ k

δ

24
= k

7δ

24
. (2.33)
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The theorem is proved if we show that(a, s) ∈W . Arguing by contradiction we assume
that (a, s) ∈ ∂W . Then there is somel ∈ {1, . . . , k} such that(a + χl, sl) ∈ ∂Ũ , so that
Gµ(a+χl, sl) � δ. We now prove that{(a+χl, t); t ∈ (−diamU,diamU)}∩ Ũ ⊂ Z :=
{x ∈ Ũ | Gµ(x) � 3δ/4}. Indeed, if not, by (2.30), for somet ∈ (−diamU,diamU) such
that(a + χl, t) ∈ Ũ ,

F k
µ(a, s1, . . . , sl−1, t, sl+1, . . . , sk)�F k

µ(a, s)+
(
Gµ(a + χl, t)−Gµ(a + χl, sl)

)
+ ∣∣Rl−1(a, sl−2, sl−1, sl)−Rl−1(a, sl−2, sl−1, t)

∣∣
+ ∣∣Rl(a, sl−1, t, sl)−Rl(a, sl−1, sl, sl+1)

∣∣
+ ∣∣Rl+1(a, sl, sl+1, t)−Rl+1(a, sl, sl+1, sl+2)

∣∣
<F k

µ(a, s)−
δ

4
+ 6δ

24
=F k

µ(a, s),

which is wrong since(a, s) is the minimum ofF k
µ overW . We deduce in particular that,

for all i,

(a + χl, si) ∈Z ∪ Ũ c. (2.34)

We now prove that for alli,

Gµ(a + χi, si) >
δ

2
. (2.35)

Indeed, assume thatGµ(a+ χi, si) � δ/2. SinceGµ � 3δ/4 in a neighbourhood of∂Ũ ,
d(x, Ũ c) � 2α for all x ∈ Ũ such thatGµ(x) � δ/2, so our splitting condition implies
that

d
(
Z ∪ Ũ c, {x ∈ Ũ | Gµ(x) � δ/2})� 2α.

Therefore we get, recalling (2.34), that|(a + χl, si)− (a + χi, si)| = |χl − χi| � 2α.
This contradicts|χi|, |χl|< α in (2.28).

By (2.32), (2.35), (2.30), and noting that, by (2.22),|I ′0 − I0||a2| � |I ′0 − I0|ρU �
(kδ)/24, we deduce that

F k
µ(a, s) � k

δ

2
− k

δ

24
− k

δ

24
= k

10δ

24
> k

7δ

24
,

contradicting (2.33). The proof of the theorem is complete.✷
Remark2.5. – The latter proof works ifGµ possesses a local maximum which

satisfies a non-degeneracy type condition like the “splitting condition” 2.1, while in
the approaches developed in [9] and [45], based on Mather’s theory, diffusion orbits
are always built from local minima ofGµ. The proof of the shadowing theorem
when the homoclimic pointA0 is a saddle point requires slightly different arguments
involving the topological degree. For example it holds assuming as in [24] the condition
D2Gµ(A0)ω ·ω �= 0. This condition enables to prove that deg(∇F k

µ(a, s),W,0) �= 0 for
a suitableW .

When the frequency vectorω is considered as a constant, independent of any
parameter (“a priori-unstable case”) it is easy to justify the splitting condition 2.1 using
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the first-order approximation given by the Poincaré–Melnikov primitive. With a Taylor
expansion inµ we can easily prove that forµ small enough

Gµ(B)= b+µC(B)+O
(
µ2), ∀B ∈ Tn,

whereb="0(q0) andC : Tn→R is nothing but the Poincaré–Melnikov primitive

C(B)=
∫
R

(
cosq0(t)− 1

)
f (ωt +B)dt. (2.36)

Hence, ifC possesses a proper minimum (resp. maximum) inA0 ∈ Rn, i.e. if ∃r > 0
such that inf∂Br (A0) C > C(A0) (resp. sup∂Br(A0)

C < C(A0)) then, forµ small enough,
the “splitting” condition 2.1 holds withU = Bρ(A0), ρU = O(1), δ = cµ andα = c′
for some positive constantsc andc′ depending onC. We remark thatBr(A0) could be
replaced by a bounded open subsetU of Rn. Applying Theorem 2.3 we deduce

THEOREM 2.4. – Assume(H1) and letC possess a proper minimum(or maximum)
A0, i.e. suppose that∃r > 0 such that inf∂Br (A0) C > C(A0). Then, for µ small
enough, the same statement as in Theorem2.3 holds with a diffusion timeTd =
O((1/µ) log(1/µ)).

3. More general perturbation terms

In this section we show how to adapt the arguments of the previous section in order to
deal with a more general perturbation termf (ϕ, q). Regarding regularity it is sufficient
to have finite large enough smoothness forf . The equation of motion derived by
HamiltonianHµ are

ϕ̇ = ω, İ =−µ∂ϕf (ϕ, q), q̇ = p, ṗ = sinq −µ∂qf (ϕ, q), (3.1)

corresponding to the quasi-periodically forced pendulum

−q̈ + sinq = µ∂qf (ωt +A,q). (3.2)

3.1. Invariant tori in the perturbed system

The first step is to prove the persistence of invariant tori forµ �= 0 small enough. It
appears that no more than the standard Implicit Function Theorem is required to prove
the following well known result (see for example [32] for a different proof)

THEOREM 3.1. – Letω satisfy(H1). For µ small enough and∀I0 ∈ Rn systemHµ

possessesn-dimensional invariant toriT µ
I0
≈ TI0 of the form

T µ
I0
= {I = I0+ aµ(ψ), p = Pµ(ψ),ϕ =ψ, q =Qµ(ψ), ψ ∈ Tn

}
, (3.3)

with Qµ(ψ),P µ(ψ) = O(µ), aµ(ψ) = O(µ). Moreover the dynamics onT µ
I0

is
conjugated to the rotation of speedω for ψ .
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We first determine the functionsQµ,Pµ in (3.3). Using the standard Implicit Function
Theorem we prove that there exists a unique quasi-periodic solutionq

µ
A(t) for the

quasi-periodically forced pendulum equation (3.2) which bifurcates from the hyperbolic
equilibrium 0.

LEMMA 3.1. –Letf ∈ Cl(Tn × T), l � 2. For µ small enough there exists a unique
quasi-periodic solutionqµ

A(t) of (3.2) with (q
µ
A(t), q̇

µ
A(t)) = (q

µ
A(t),p

µ
A(t)) = O(µ),

Cl−1-smooth inA. More precisely there exist functionsQµ,Pµ : Tn → R of classCl−1,
such that(qµ

A(t),p
µ
A(t))= (Qµ(ωt +A),Pµ(ωt +A)).

Proof. –Let L be the Green operator of the differential operatorh → −D2h +
h with Dirichlet boundary conditions at±∞. L is explicitely given byL(f ) =∫

R e−|t−s|f (s)ds/2. It results thatL is a continuous linear operator in the Banach space
of the continuous bounded functions fromR to R endowed with the sup-norm, which
we shall denote byE. We consider the non-linear operatorS : R×Tn×E→E

S(µ,A,q) := q −L(q − sinq)−µL
(
∂qf (ωt +A,q)

)
.

S is of classCl−1. We are looking for a solutionqµ
A of S(µ,A,q)= 0. SinceS(0,A,0)=

0 and∂qS(0,A,0) = Id, by the Implicit Function Theorem there exists, forµ small
enough, a unique solutionqµ

A = O(µ). By (3.2) qµ
A ∈ Cl+1(R); moreover it isCl−1-

smooth inA. We define theCl−1-mapsQµ(·),P µ(·) : Tn→R by

Qµ(A) := q
µ
A(0), P µ(A) := q̇

µ
A(0).

By uniqueness we deduce thatq
µ
A(s + t)= q

µ
A+ωs(t),∀s, t ∈R. For t = 0 this yields

q
µ
A(s)= q

µ
A+ωs(0) :=Qµ(A+ωs) and p

µ
A(s)= p

µ
A+ωs(0) := Pµ(A+ωs), ∀s ∈R,

proving the lemma. ✷
We now define the functionsaµ(ψ) of (3.3). We impose that(ωt +A, I0 + aµ(ωt +

A),Qµ(ωt+A),Pµ(ωt+A)) satisfy the equations of motions (3.1); hence the functions
aµ(ψ) must satisfy the following system of equations

(ω · ∇)aµ(ψ)= µgµ(ψ), wheregµ(ψ) := −(∇ψf )
(
ψ,Qµ(ψ)

)
. (3.4)

In order to solve (3.4) we expand in Fourier series the functionsaµ(ψ)=∑k∈Zn akeik·ψ ,
gµ(ψ)=∑k∈Zn gkeik·ψ . Each Fourier coefficientak must then satisfy

i(k ·ω)ak = µgk, ∀k ∈ Zn. (3.5)

It is necessary for the existence of a solution thatg0 = ∫Tn g
µ(ψ)dψ = 0. This property

can be checked directly, that is

LEMMA 3.2. –We have ∫
Tn

(∇ψf )
(
ψ,Qµ(ψ)

)
dψ = 0. (3.6)
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Proof. –For a proof see [16] or Appendix A12 of [15].✷
Sinceω satisfies(H1), if f is smooth enough, then the functionaµ defined by

aµ(ψ)= ∑
k∈Zn,k �=0

gk

i(k ·ω)eik·ψ, (3.7)

which formally solves Eq. (3.5), is well defined and smooth. Indeed sincef ∈ Cl the
function gµ defined in (3.4) isCl−1 and there existsM > 0 such that|gk| � M/|k|l−1,
∀k ∈ Zn, k �= 0. By (H1) it follows that |ak|� M/|k|l−1|ω · k|� M|k|τ /(γ |k|l−1). The
proof of Theorem 3.1 is complete.

3.2. The new symplectic coordinates

In order to reduce to the previous case we want to put the toriT µ
I0

at the origin by
a symplectic change of variables. Recalling that the toriT µ

I0
areisotropicsubmanifolds,

i.e. that the symplectic 2 form dI∧ dψ+dp ∧ dq vanishes on each tangent space toT µ
I0

(or equivalently daµ(ψ) ∧ dψ + dPµ(ψ) ∧ dQµ(ψ)= 0), we can prove the following
lemma

LEMMA 3.3. –The transformation of coordinates(J, v,ψ,u)→ (I,p,ϕ, q) defined
on the spaceRn×R×Tn ×R by

I = aµ(ψ)+ u∂ψP
µ(ψ)− v∂ψQ

µ(ψ)+ J, p = Pµ(ψ)+ v, ϕ =ψ,

q =Qµ(ψ)+ u (3.8)

is symplectic.

Proof. –Since the toriT µ
I0

are isotropic the 1-form onTn λ=∑n
i=1 a

µ
i dϕi + Pµ dQµ

is closed. Therefore there exists a uniquec ∈ Rn and there existsbµ : Tn → R such that
λ=∑n

i=1 ci dϕi + dbµ. Then transformation (3.8) has the generating function

"(J, v,ϕ, q)= (J + c) · ϕ + vq + bµ(ϕ)− Pµ(ϕ)Qµ(ϕ)+ qPµ(ϕ)− vQµ(ϕ)

and hence is symplectic.✷
In the new coordinates each invariant torusT µ

I0
is simply described by{J = I0,ψ ∈

Tn, u= v = 0} and the new Hamiltonian writes

Kµ =Eµ + ω · J + v2

2
+ (cosu− 1)+ P0(µ,u,ψ), (Kµ)

where

P0(µ,u,ψ)= (cos(Qµ + u
)− cosQµ + (sinQµ

)
u+ 1− cosu

)
+µ

(
f
(
ψ,Qµ + u

)− f
(
ψ,Qµ

)− ∂qf
(
ψ,Qµ

)
u
)

and Eµ is the energy of the perturbed invariant torusT µ
0 = {(aµ(ψ),ψ,Qµ(ψ),

Pµ(ψ));ψ ∈ Tn}. To Hamiltonian (Kµ) is associated the quasi-periodically forced
pendulum equation

−ü+ sinu= ∂uP0(µ,u,ωt +A) (3.9)
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of Lagrangian

Lµ = u̇2

2
+ (1− cosu)− P0(µ,u,ωt +A). (3.10)

Since the HamiltonianKµ is no more periodic in the variableu we can not directly apply
Theorem 2.3 and the arguments of the previous sections require some modifications.
Arguing as in Lemma 2.1 we deduce that, there exists, forµ small enough, a unique 1-
bump pseudo-homoclinic solutionuµA,θ (t), true solution of (3.9) in(−∞, θ), (θ,+∞),
satisfying all the properties of Lemma 2.1. Then we define the functionFµ : Tn×R→R
as

Fµ(A, θ)=
θ∫

−∞

(u̇
µ
A,θ )

2

2
+ (1− cosuµA,θ

)−P0
(
µ,u

µ
A,θ ,ωt +A

)
dt

+
+∞∫
θ

(u̇
µ
A,θ )

2

2
+ (1− cosuµA,θ

)− P1
(
µ,u

µ
A,θ ,ωt +A

)
dt + 2πq̇µ

A(θ),

where,qµ
A(t)=Qµ(ωt +A) and∀i ∈ Z, we have set

Pi(µ,u,ωt +A)= (cos(qµ
A(t)+ u)− cosqµ

A(t)+ sinqµ
A(t)(u− 2πi)+ 1− cosu

)
+µ

(
f (ωt +A,q

µ
A(t)+ u)− f (ωt +A,q

µ
A(t))

− (∂qf )(ωt +A,q
µ
A(t))(u− 2πi)

)
.

SinceuµA,θ converges exponentially fast to 0 fort →−∞ and to 2π for t →+∞ the
above integrals are convergent. We define the“homoclinic function” Gµ : Tn→R as

Gµ(A)=Fµ(A,0). (3.11)

There holds alsoFµ(A, θ) = Gµ(A + ωθ),∀θ ∈ R. Arguing as in Lemma 2.4 we
can prove the existence ofk-bump pseudo-homoclinic solutionsuLA,θ , which are true
solutions of (3.9) in each interval(−∞, θ1), (θi, θi+1) (i = 1, . . . , k − 1), (θk,+∞),
and satisfy all the properties of Lemma 2.4. Then we define the “k-bump heteroclinic
function”

Fk
µ(A, θ1, . . . , θk)

=
θ1∫

−∞

(u̇LA,θ )
2

2
+ (1− cosuLA,θ

)− P0
(
µ,uLA,θ ,ωt +A

)
dt + 2πq̇µ

A(θ1)

+
k−1∑
i=1

θi+1∫
θi

(u̇LA,θ )
2

2
+ (1− cosuLA,θ

)− Pi

(
µ,uLA,θ ,ωt +A

)
dt + 2πq̇µ

A(θi+1)

+
+∞∫
θk

(u̇LA,θ )
2

2
+ (1− cosuLA,θ

)− Pk

(
µ,u

µ
A,θ ,ωt +A

)
dt − (I ′0− I0) ·A.

If ∂θiFk
µ(A, θ1, . . . , θk) = (u̇LA,θ )

2(θ−i )/2 − (u̇LA,θ )
2(θ+i )/2 = 0 then uLA,θ is a true

solution of the quasi-periodically forced pendulum equation (3.9). As in the previous
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section the variation in the action variables is given by the partial derivative with respect
to A, that is

∂AFk
µ(A, θ)=

+∞∫
−∞

−µ(∂ϕf (ωt +A,q
µ
A(t)+ uLA,θ (t)

)
− ∂ϕf

(
ωt +A,q

µ
A(t)

))
dt − (I ′0− I0). (3.12)

LEMMA 3.4. – Let (A, θ) be a critical point ofFk
µ. Then there exists a heteroclinic

orbit connecting the toriT µ
I0

andT µ

I ′0
.

Proof. –By (3.12) it is easy to verify that the solution of (3.1)(Iµ(t),ωt + A,q
µ
A +

uLA,θ , q̇
µ
A + u̇LA,θ ), with Iµ(t)= C −µ

∫ t
0 ∂ϕf (ωs +A,q

µ
A(s)+ uLA,θ (s))ds andC = I ′0+

aµ(A)+µ
∫ +∞

0 ∂ϕf (ωt+A,q
µ
A(t)+uLA,θ (t))− ∂ϕf (ωt+A,q

µ
A(t))dt, is a heteroclinic

solution connectingT µ
I0

andT µ

I ′0
. ✷

Finally, arguing as in the proof of Theorem 2.3, we obtain

THEOREM 3.2. – Assume(H1) and letGµ satisfy the “splitting condition”2.1. Then
∀I0, I

′
0 with ω · I0= ω · I ′0, there is a heteroclinic orbit connecting the invariant toriT µ

I0

andT µ

I ′0
. The same estimate on the diffusion time as in Theorem2.3holds.

A Taylor expansion inµ gives

LEMMA 3.5. – For µ small enough

Gµ(A)= b+µM(A)+O
(
µ2), ∀A ∈ Tn, (3.13)

whereb = "0(q0) andM(A) is the Poincaré–Melnikov primitiveM(A) = ∫R[f (ωt +
A,0)− f (ωt +A,q0(t))]dt.

Proof. –We develop inµ the LagrangianLµ,i = u̇2/2+(1−cosu)−Pi(µ,u,ωt+A)

for i = 0,1.

Lµ,i = u̇2

2
+ (1− cosu)−µ

(
(u− 2πi − sinu)γ + f (ωt +A,u)− f (ωt +A,0)

− ∂qf (ωt +A,0)(u− 2πi)
)+Ri (µ,u, t),

whereγ (t) := ∂µ|µ=0q
µ
A(t) and |R(µ,u, t)| = O(µ2(u − 2πi)2). HenceGµ(A) = b +

µM∗(A)+O(µ2) where

M∗(A)=−
0∫

−∞

(
q0(t)− sinq0(t)

)
γ (t)+ f

(
ωt +A,q0(t)

)− f (ωt +A,0)

− ∂qf (ωt +A,0)q0(t)dt −
+∞∫
0

(
q0(t)− 2π − sinq0(t)

)
γ (t)

+ f
(
ωt +A,q0(t)

)− f (ωt +A,0)dt
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+
+∞∫
0

∂qf (ωt +A,0)(q0(t)− 2π)dt + 2πγ̇ (0). (3.14)

The lemma is proved if we show thatM∗(A) = M(A). Integrating by parts, since
sinq0(t)= q̈0(t) and−γ̈ + γ = ∂qf (ωt +A,0), we have

0∫
−∞

(
q0(t)− sinq0(t)

)
γ (t)=

0∫
−∞

q0(t)∂qf (ωt +A,0)dt − q̇0(0)γ (0)+ πγ̇ (0) (3.15)

and

+∞∫
0

(
q0(t)− 2π − sinq0(t)

)
γ (t)

=
+∞∫
0

(
q0(t)− 2π

)
∂qf (ωt +A,0)dt + q̇0(0)γ (0)+ πγ̇ (0).

(3.16)

Finally we deduce from (3.14), (3.15) and (3.16) thatM∗(A) = M(A) = ∫R[f (ωt +
A,0)− f (ωt +A,q0(t))]dt . ✷

THEOREM 3.3. – Assume(H1) and letM possess a proper minimum(or maximum)
A0, i.e. ∃r > 0 such thatinf∂Br (A0) M > M(A0). Then, forµ small enough, the same
statement as in Theorem3.2holds where the diffusion time isTd =O((1/µ) log(1/µ)).

Remark3.1. – By Theorems 3.1–3.2 we obtain that, for a priori-stable, isochronous,
degenerate systems considered in [9] (see also [10])

Hε = εω · I + p2

2
+ εd(cosq − 1)+µf (ϕ, q) with 1< d < 2,

for µ= δεd , δ being a small constant, the diffusion time is bounded byTd =O(C(δ)/εd).
This improves the result of [9], which holds forµ=O(εd

′
), d ′ > d/2+ 3, and provides

the upper bound on the diffusion timeTd =O(1/εC+2(τ+1)(2d ′−1−d/2)), C being a suitable
positive constant.

4. Splitting of whiskers

If the frequency vectorω = ωε contains some “fast frequencies”ωi = O(1/εb),
b > 0, ε being a small parameter, and if the perturbation is analytic, the oscillations
of the Melnikov function along some directions turn out to be exponentially small
with respect toε. Hence the development (3.13) will provide a valid measure of
the splitting only forµ exponentially small with respect toε. In order to justify the
dominance of the Poincaré–Melnikov function whenµ =O(εp) we need more refined
estimates for the error. However it turns out that the functionFµ(A, θ) can not be
easily analytically extended in a sufficiently wide complex strip (roughly speaking,
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the conditionqµ
A,θ (Reθ) = π appearing naturally when we try to extend the definition

of qµ
A,θ to θ ∈ C breaks analyticity). We bypass this problem considering the action

functional evaluated on different “1-bump pseudo-homoclinic solutions”Q
µ
A,θ . This

new “reduced action functional”̃Fµ(A, θ) = G̃µ(A + ωθ) has the advantage to have
an analytic extension in(A, θ) in a wide complex strip. Moreover we will show that
the homoclinic functionsGµ, G̃µ corresponding to both reductions are the same up to
a change of variables of the torus close to the identity. This enables to recover enough
information on the homoclinic functionGµ to construct diffusion orbits.

We assume thatf (ϕ, q) = (1− cosq)f (ϕ), f (ϕ) = ∑
k∈Zn fk exp(ik · ϕ) and that

there areri � 0 such that

∀s ∈N,∃Ds > 0 such that |fk|� Ds

|k|s exp

(
−

n∑
i=1

ri |ki|
)
, ∀k ∈ Zn. (4.1)

Condition (4.1) means thatf has aC∞ extension defined in

D := (R+ i[−r1, r1])× · · · × (R+ i[−rn, rn]),
which is holomorphic w.r.t. the variables for whichri > 0 in (R+ iI1)× · · ·× (R+ iIn),
whereIi = {0} if ri = 0, Ii = (−ri, ri) if ri > 0. We denote the supremum of|f | overD
as

‖f ‖ := sup
A∈D

|f (A)|. (4.2)

Note that we can take in (4.1)D0= supϕ∈Tn |f (ϕ)|� ‖f ‖. It will be used starting from
Section 4.2.

4.1. The change of coordinates

In order to obtain an analytic “reduced functional” we perform a Lyapunov–Schmidt
reduction with a supplementary spaceẼθ to 〈q̇θ 〉 which depends analytically onθ . We
defineψ0 : R→R byψ0(t)= cosh2 t/(1+ cosht)3 and setψθ(t)=ψ(t − θ). Note that,
since, ∫

R

ψ0(t)q̇0(t)dt =K �= 0, (4.3)

Ẽθ :=
{
w ∈H 1(R)

∣∣∣ ∫
R

ψθ(t)w(t)dt = 0
}

is a supplementary space to〈q̇θ 〉.
Remark4.1. – We could use any functionψ decaying at infinity, analytic in the

complex stripS := {θ ∈ C | |Im θ | < π/2} such that (4.3) holds. We use the function
ψ0(t) instead of the more naturalq̇0(t) because the closest singularities to the real line
of ψ0(z) are located in the complex plain at±iπ , while the closest singularities ofq̇0(t)

are located at±i(π/2). Hence near the boundary of the complex stripS the analytic
functionψ0 is regular and this improves the bounds of Lemmas 4.6 and 4.7.
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Arguing as in Lemma 2.1 we can prove, forµ small, the existence of “1 bump pseudo-
homoclinics”Qµ

A,θ ∈ qθ + Ẽθ which is nearqθ .

LEMMA 4.1. – There existµ1 > 0 (independent ofω) andC4 > 0 such that for all
0<µ<µ1, for all θ ∈ R, for all A ∈Rn there exists a unique functionQµ

A,θ (t) : R→R,
and a constantαµ

A,θ smooth in(A, θ,µ), such that

(i) −Q̈µ
A,θ (t)+ sinQµ

A,θ (t)= µsinQµ
A,θ (t)f (ωt +A)+ α

µ
A,θψθ (t);

(ii)
∫
R

(
Q

µ
A,θ (t)− qθ (t)

)
ψθ(t)dt = 0;

(iii) max
(|Qµ

A,θ (t)− qθ (t)|, |Q̇µ
A,θ (t)− q̇θ (t)|)�C4µexp

(
−|t − θ |

2

)
;

(iv) max
(∣∣∂AQµ

A,θ (t)
∣∣, ∣∣∂AQ̇µ

A,θ (t)
∣∣, ∣∣ω · ∂AQµ

A,θ (t)
∣∣,∣∣ω · ∂AQ̇µ

A,θ (t)
∣∣)� C4µexp

(
−|t − θ |

2

)
;

(v) Q
µ
A,θ (t)=Q

µ
A+k2π,θ (t), ∀k ∈ Zn andQµ

A,θ+η(t)=Q
µ
A+ωη,θ (t − η),∀θ, η ∈R.

We define the functionF̃µ(A, θ) : Tn × R → R as the action functional of La-
grangian 1.6 evaluated on the “1-bump pseudo-homoclinic solutions”Q

µ
A,θ (t) obtained

in Lemma 4.1, namely

F̃µ(A, θ) :="µ,A

(
Q

µ
A,θ

)= ∫
R

Lµ,A

(
Q

µ
A,θ (t), Q̇

µ
A,θ (t), t

)
dt (4.4)

and G̃µ(A) : Tn → R as G̃µ(A) = F̃µ(A,0). By Lemma (4.1)(v) the following invari-
ance property holds̃Fµ(A, θ +η)= F̃µ(A+ωη, θ), ∀θ, η ∈ R; in particularF̃µ(A, θ)=
G̃µ(A+ ωθ), ∀θ ∈R.

Lemma 4.1(i)–(ii) suggests that{Qµ
A,θ |θ ∈ R} is “natural constraint” for"µ,A. For

completeness we prove it in detail (it is the analogue of (2.6)), together with useful
bounds of the derivatives of̃Fµ (andG̃µ) up to order 2.

LEMMA 4.2. – Let 0 < µ < min{µ1, (K/8C4)}, whereK is defined in(4.3). If
∂θF̃µ(A, θ)= 0 thenQµ

A,θ is a true solution of(1.5). More precisely

∣∣αµ
A,θ

∣∣� 2

|K|
∣∣∂θ F̃µ(A, θ)

∣∣. (4.5)

Moreover we also have∣∣∇sG̃µ(A)
∣∣=O(µ),

∣∣∇s F̃µ(A, θ)
∣∣=O(µ), s = 1,2. (4.6)

Proof. –We have

∂θ F̃µ(A, θ)=
∫
R

Q̇
µ
A,θ (t)∂θQ̇

µ
A,θ (t)
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+ (sinQµ
A,θ (t)−µsinQµ

A,θ (t)f (ωt +A)
)
∂θQ

µ
A,θ (t)dt.

Integrating by parts and using also thatQ
µ
A,θ (t) solves (i) in Lemma 4.1 we obtain

∂θF̃µ(A, θ)= [∂θQµ
A,θ (t)Q̇

µ
A,θ (t)

]+∞
−∞ +

∫
R

∂θQ
µ
A,θ (t)α

µ
A,θψθ(t)dt. (4.7)

By Lemma 4.1(iii)–(iv) the boundary term in (4.7) vanishes. Moreover, deriving w.r.t.η

the second equality in lemma 4.1(v), we get

∂θQ
µ
A,θ (t)= ω · ∂AQµ

A,θ (t)− Q̇
µ
A,θ (t). (4.8)

Since, by Lemma 4.1(ii),
∫

R Q
µ
A,θψθ dt = ∫R qθψθ dt is independent ofA,

∫
R ∂AQ

µ
A,θψθ(t)

= 0. Hence

∂θF̃µ(A, θ)= α
µ
A,θ

∫
R

(
ω · ∂AQµ

A,θ (t)− Q̇
µ
A,θ (t)

)
ψθ(t)dt

=−αµ
A,θ

∫
R

Q̇
µ
A,θ (t)ψθ(t)dt

=−αµ
A,θ

(
K +

∫
R

(
Q̇

µ
A,θ (t)− q̇θ (t)

)
ψθ dt

)
. (4.9)

By Lemma 4.1(iii), noting that|ψθ |� 1, we have∣∣∣∣ ∫
R

(
Q̇

µ
A,θ (t)− q̇θ (t)

)
ψθ(t)dt

∣∣∣∣� 4C4µ. (4.10)

Finally by (4.10) and (4.9), if 0<µ4C4 � |K|/2, then∣∣∂θ F̃µ(A, θ)
∣∣� ∣∣αµ

A,θ

∣∣(|K| − 4µC4
)
�
∣∣αµ

A,θ

∣∣|K|/2,

namely (4.5).
The proof of (4.6) can be performed with similar computations. Let us for instance

justify that∂2
θ F̃µ(A, θ)=O(µ). We have

∂θ F̃µ(A, θ)=−αµ
A,θ

∫
R

Q̇
µ
A,θ (t)ψθ(t)dt

=
∫
R

Q̈
µ
A,θQ̇

µ
A,θ − sinQµ

A,θQ̇
µ
A,θ +µf (ωt +A)sinQµ

A,θQ̇
µ
A,θ dt

=µ

∫
R

f (ωt +A)sinQµ
A,θQ̇

µ
A,θ dt. (4.11)

Hence

∂2
θ F̃µ(A, θ)= µ

∫
R

(
cosQµ

A,θ∂θQ
µ
A,θQ̇

µ
A,θ + sinQµ

A,θ∂θQ̇
µ
A,θ

)
f (ωt +A)dt.
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The bound of∂2
θ F̃µ(A, θ) (independent ofω) is then a straightforward consequence of

(4.8) and Lemma 4.1(i)–(iii)–(iv). ✷
The relation between the two reduced action functionalsFµ(A, θ) = "µ,A(q

µ
A,θ )

and F̃µ(A, θ) = "µ,A(Q
µ
A,θ ) is given below: they are the same “up to a change of

variables near the identity”. The next theorem is formulated to handle also non-analytic
perturbationsf .

THEOREM 4.1. – Assume thatf is smooth. There existµ2 > 0 and C5 > 0
(independent ofω) such that, for0<µ<µ2, there exist a Lipschitz continuous function
hµ : Tn × R → R, with |hµ(A, θ)| � C5µ, |hµ(A

′, θ ′) − hµ(A, θ)| � C5µ(|A′ − A| +
|θ ′ − θ |), hµ(A, θ + η)= hµ(A+ ηω, θ), such that

Fµ(A, θ)= F̃µ

(
A,θ + hµ(A, θ)

)
. (4.12)

In particular, settinggµ(A)= hµ(A,0), ψµ : Tn→ Tn defined byψµ(A)=A+gµ(A)ω

is a homeomorphism provided thatC5µ � 1/2 and satisfies

Gµ = G̃µ ◦ψµ.

The inverse ofψµ writesψ−1
µ (A)=A+kµ(A)ω wherekµ is 2C5µ-Lipschitz continuous.

Moreover, iff is analytic and satisfies(4.1) with ri > 0 for all i = 1, . . . , n, then the
homeomorphismψµ is a real analytic diffeomorphism.

In order to prove Theorem 4.1 we need the next two lemmas, proved in Appendix A.
The next lemma states thatQ

µ
A,θ belongs to the supplementary spaceEθ+lµ(A,θ) for some

lµ(A, θ)=O(µ).

LEMMA 4.3. – For µ small enough(independently ofω) there exists a smooth
function lµ(A, θ) with lµ(A, θ) = O(µ),∇lµ(A, θ) = O(µ), lµ(A, θ + η) = lµ(A +
ηω, θ) such thatQµ

A,θ (θ + lµ(A, θ))= π.

DefineVµ(A, θ) := Fµ(A, θ + lµ(A, θ))="µ,A(q
µ
A,θ+lµ(A,θ)).

LEMMA 4.4. – There exists a positive constantC6 such that, for all(A, θ) ∈ Tn×R,
there holds ∣∣F̃µ(A, θ)− Vµ(A, θ)

∣∣�C6
∣∣∂θ F̃µ(A, θ)

∣∣2. (4.13)

In particular if ∂θF̃µ(A, θ)= 0 thenF̃µ(A, θ)= Vµ(A, θ). In addition∣∣∇F̃µ(A, θ)−∇Vµ(A, θ)
∣∣� C6µ

∣∣∂θ F̃µ(A, θ)
∣∣. (4.14)

Proof of Theorem 4.1. –By Lemma 4.3, there is a smooth functionlµ such that
lµ(A, θ) = O(µ), ∇lµ(A, θ) = O(µ), lµ(A, θ + η) = lµ(A + ηω, θ) andFµ(A, θ) =
Vµ(A, θ + lµ(A, θ)). lµ(A, θ) is the unique solution of the equationx =−lµ(A, θ + x).
It is enough to find, for allθ , y = hµ(A, θ) such that

Vµ(A, θ)= F̃µ(A, θ + y). (4.15)
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Indeed, then

Fµ(A, θ)= Vµ

(
A,θ + lµ(A, θ)

)= F̃µ

(
A, (θ + lµ(A, θ)

)+ hµ

(
A,θ + lµ(A, θ)

))
andhµ(A, θ) will be defined by

hµ(A, θ)= lµ(A, θ)+ hµ

(
A,θ + lµ(A, θ)

)
. (4.16)

Note that if ∂θ F̃µ(A, θ) = 0 then, by Lemma 4.4, Eq. (4.15) is solved byy = 0. In
general we look fory of the formy = ∂θ F̃µ(A, θ)z. Then we can write

F̃µ(A, θ + y)= F̃µ(A, θ)+ ∂θ F̃µ(A, θ)y +Rµ(A, θ, y)y
2 (4.17)

= F̃µ(A, θ)+ (∂θ F̃µ(A, θ)
)2
z+Rµ

(
A,θ, ∂θ F̃µ(A, θ)z

)(
∂θ F̃µ(A, θ)

)2
z2,

where

Rµ(A, θ, y)= 1

y2

[
F̃µ(A, θ + y)− F̃µ(A, θ)− ∂θ F̃µ(A, θ)y

]
is smooth and, by the estimates (4.6) on the derivatives ofF̃µ, satisfiesRµ(A, θ, y) =
O(µ), ∂yRµ(A, θ, y)=O(µ/|y|). By (4.17) Eq. (4.15) is then equivalent to

Vµ(A, θ)− F̃µ(A, θ)

(∂θ F̃µ(A, θ))2
= z+Rµ

(
A,θ, ∂θ F̃µ(A, θ)z

)
z2.

We haveRµ(A, θ, ∂θF̃µ(A, θ)z)z
2=O(µz2) and∂z(Rµ(A, θ, ∂θ F̃µ(A, θ)z)z

2)=O(µz).
By the contraction mapping theorem, forµ small enough, for allu ∈ R such that
|u|< 2C6, there exists a unique solutionz= ϕ(µ,A, θ, u) of the equation

u= z+Rµ

(
A,θ, ∂θ F̃µ(A, θ)z

)
z2, (4.18)

such that|z|< 3C6. Moreover, the functionϕ defined in this way is smooth and is real
analytic if F̃µ is real analytic. Setting

hµ(A, θ) := ϕ

(
µ,A, θ,

Vµ(A, θ)− F̃µ(A, θ)

(∂θ F̃µ(A, θ))2

)
∂θ F̃µ(A, θ) (4.19)

if ∂θ F̃µ(A, θ) �= 0 andhµ(A, θ)= 0 if ∂θ F̃µ(A, θ)= 0, we get a continuous functionhµ
which satisfies (4.15) and|hµ(A, θ)| � 3C6|∂θ F̃µ(A, θ)|, which implies|hµ| = O(µ).
Moreoverhµ is the unique function that enjoys these properties. By (4.19) the restriction
of hµ to

Uµ := {(A, θ) ∈ Tn×R: ∂θF̃µ(A, θ) �= 0
}

is smooth. Deriving the identityVµ(A, θ)= F̃µ(A, θ + hµ(A, θ)) we obtain

(∂θ F̃µ)
(
A,θ + hµ(A, θ)

)∇hµ(A, θ)=∇Vµ(A, θ)−∇F̃µ

(
A,θ + hµ(A, θ)

)
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for (A, θ) ∈Uµ. By (4.6)

∇F̃µ

(
A,θ + hµ(A, θ)

)=∇F̃µ(A, θ)+O
(
µ|hµ(A, θ)|)

=∇F̃µ(A, θ)+O
(
µ|∂θ F̃µ(A, θ)|).

Hence, if∂θ F̃µ(A, θ) �= 0 then, by (4.14),

∇hµ = ∇Vµ(A, θ)−∇F̃µ(A, θ)+O(µ|∂θ F̃µ(A, θ)|)
∂θ F̃µ(A, θ)(1+O(µ))

=O(µ)

uniformly inUµ. Sincehµ is continuous andhµ(A, θ)= 0, if (A, θ) /∈Uµ, the Lipschitz
continuity ofhµ follows.

Regarding the properties ofhµ, we observe thathµ(A, θ+η)= hµ(A+ηω, θ), which
is a consequence of uniqueness.

Hence, by (4.16) and sincelµ(A, θ + η) = lµ(A + ηω, θ), hµ(A, θ + η) = hµ(A +
ηω, θ). Moreover, since|∇lµ(A, θ)| = O(µ), by the Lipschitz continuity ofhµ, there
is a constantC5 such that|hµ(A, θ)| � C5µ andhµ is Lipschitz continuous with ratio
C5µ.

To complete the proof, we remark that for a givenA ∈ Tn, the equation inx,
ψµ(A+ xω)=A is equivalent to

x =−gµ(A+ωx)=−hµ(A,x), (4.20)

wherehµ is C5µ-Lipschitz continuous. By the contracting mapping theorem, ifC5µ �
1/2 then (4.20) has a unique solutionkµ(A) ∈ R. Moreover, one can prove without
much effort that|kµ(A)| � C5µ and kµ is Lipschitz continuous of ratio 2C5µ. As a
consequenceψµ is a homeomorphism and its inverse is defined byψ−1

µ (A) = A +
kµ(A)ω.

The proof of the analyticity ofψµ whenf is analytic, is given in the next Remark 4.2
and in Appendix A. ✷

By Theorem 4.1 we deduce the following lemma which enables us to apply the
shadowing Theorem 2.3 once a “splitting condition” forG̃µ is verified.

LEMMA 4.5. – Assume thatG̃µ satisfies the “splitting condition”2.1 for some
bounded open setU , A0 ∈ U , with constantsδ andα. Then, forµ|ω|C5 < 1/2, Gµ too
satisfies the “splitting condition” withA′

0 = ψ−1
µ (A0), U ′ = ψ−1

µ (U) and the constants
δ′ = δ andα′ = α/2.

Proof. –In Appendix A. ✷
Remark4.2. – Assume thatri > 0 for all i (i.e. that the perturbationf is analytic).

Then we can prove, using the arguments of the next subsection, that the homoclinic
function Gµ(·) = Fµ(·,0) can be extended to a complex analytic function over the
interior ofD. HenceFµ(A, θ)=Gµ(A+ωθ) can be defined in an open neighbourhood
of Tn × R in (Tn + iRn) × C, so that the extension is analytic. One could check
that lµ and Vµ, defined in Lemma 4.3 have analytic extensions too, and that the
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inequality of Lemma 4.4 still holds in the new set of definition. Moreover in the
next Lemma 4.6 it is proved that̃Fµ is analytic w.r.t. (A, θ). As a consequence,
(Vµ(A, θ)− F̃µ(A, θ))/(∂θ F̃µ(A, θ))

2 is real analytic, and so is the functionhµ defined
in the proof of Theorem 4.1. Therefore ifri > 0 for all i, then the homeomorphismψµ

defined in Theorem 4.1 is a real analytic diffeomorphism. For completeness, the proof
of the claims included in this remark is spelled out in Appendix A.

4.2. Analytic extension

The unpertubed homoclinicq0(t) = 4arctan et can be extended to a holomorphic
function over the stripS := R+ i(−π/2, π/2). Moreover Eq. (1.5) may be considered
also for complex values ofq and, forµ= 0, qθ is a solution of (1.5) for allθ ∈ S. The
unperturbed manifold of critical pointsZ = {qθ | θ ∈ S} can be seen as a holomorphic
curve in the complex affine spaceqθ +H 1(R,C).

We want to perform the Lyapunov–Schmidt reduction on the complex strip

Sσ :=R+ i
(
−
(
π

2
− σ

)
,
π

2
− σ

)
,

for σ ∈ (0, π/2). We have

q̇θ (z)= 2

cosh(z− θ)
, q̈θ (z)= sinqθ (z)=−2

sinh(z− θ)

cosh2(z− θ)
,

(
1− cosqθ (z)

)= 2

cosh2(z− θ)
.

Assume thatθ ∈ Sσ ,Re(θ)= 0. The following estimates hold, wheret ∈R

|q̇θ (t)|� C

min{(|t| + σ ),1} exp(−|t|); (4.21)

|sinqθ (t)|� C

min{(|t| + σ )2,1} exp(−|t|); (4.22)

|cosqθ (t)|� C

min{(|t| + σ )2,1} ; (4.23)

1

|q̇θ (t)| �C exp(|t|)min{(|t| + σ ),1}. (4.24)

In what follows we consider the Banach spaces

X = {w ∈ C2(R,C) | sup
t

exp(|t|/2)
(|w(t)| + |ẇ(t)| + |ẅ(t)|)<+∞}

and

X = {w ∈X |w(0)= 0},
endowed with norm

‖w‖2,σ = sup
|t |>1

(|w(t)| + |ẇ(t)| + |ẅ(t)|)exp
( |t|

2

)
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+ sup
|t |<1

( |w(t)|
(|t| + σ )2

+ |ẇ(t)|
(|t| + σ )

+ |ẅ(t)|
)
.

Note that the functionψ0(t) can be extended to a holomorphic function onR +
i(−π,π). With the definition for‖f ‖ given in (4.2), we have

LEMMA 4.6. – There exist positive constantsη,C7 such that for allσ ∈ (0, π/2),
∀0 < µ � (ησ 3)/‖f ‖, for all ω, for all A ∈ D, for all θ ∈ Sσ there exist a unique
Q

µ
A,θ : R→C and a uniqueαµ

A,θ ∈C such that
• Q

µ
A,θ = qθ+νµ

A,θ
+w

µ
A,θ , whereνµA,θ ∈ C, w ∈X and‖wµ

A,θ‖2,σ + |νµA,θ | + |αµ
A,θ |�

C7µ‖f ‖/σ 2;
• −Q̈µ

A,θ (t)+ sinQµ
A,θ (t)= µsinQµ

A,θ (t)f (ωt +A)+ α
µ
A,θψθ (t);

• ∫R(Q
µ
A,θ (t)− qθ (t))ψθ(t)dt = 0.

MoreoverQµ
A,θ andαµ

A,θ depend analytically onθ and on theAi for whichri > 0.

Proof. – 1st step. Let us consider the Banach space

Y =
{
v ∈ C(R,C) | sup

t
|v(t)|exp

( |t|
2

)
<+∞

}
endowed with norm‖v‖−1,σ = sup|t |>1 |v(t)|exp( |t |2 )+sup|t |<1(|t|+σ )|v(t)|. Letθ ∈ Sσ
be given once for all. We may assume without loss of generality thatRe(θ)= 0.

Forθ ′ ∈ Sσ/2 such that|θ ′−θ |� σ/2 we introduce the linear operatorLθ ′ :X×C→ Y

defined by

Lθ ′(w,α)=−ẅ+ (cosqθ ′)w− αψθ .

Using thatq̇θ ′ is a solution of−ÿ + cosqθ ′y = 0 and thatq̇θ ′ does not vanish anywhere,
we can compute the inverse ofLθ ′ . It is given byL−1

θ ′ (g)= (w,α) with

α =−
∫

R g(t)q̇θ ′(t)dt∫
R ψθ(t)q̇θ ′(t)dt

, (4.25)

w(t)= q̇θ ′(t)

[ t∫
0

− 1

q̇2
θ ′(s)

( s∫
−∞

(
g(σ )+ αψθ(σ )

)
q̇θ ′(σ )dσ

)
ds

]
(4.26)

= q̇θ ′(t)

[ t∫
0

1

q̇2
θ ′(s)

( +∞∫
s

(
g(σ )+ αψθ(σ )

)
q̇θ ′(σ )dσ

)
ds

]
. (4.27)

Note that since|θ − θ ′| � σ/2, Re(θ ′) � σ/2. Therefore estimates (4.21)–(4.24) hold
as well (with perhaps different constants) whenθ is replaced byθ ′. We derive from
(4.25)–(4.27) that

|α| + ‖w‖2,σ � C

σ
‖g‖−1,σ . (4.28)

2nd step. We shall searchQ asQ= qθ+ν +w with |ν|< σ/2, w ∈ X. Let B denote
the open ball of radiusσ/2 in C centered at 0. LetJµ :B ×X×C→ Y ×C be defined
by
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Jµ(ν,w,α)=
(
−q̈θ+ν − ẅ+ sin(qθ+ν +w)−µsin(qθ+ν +w)f (ϕ)− αψθ,∫
R

(qθ+ν +w− qθ )ψθ(t)

)
.

From now we shall use the norms‖(ν,w,α)‖2= |ν| + ‖w‖2,σ + |α| onB ×X×C and
‖(g,β)‖−1 = ‖g‖−1,σ + |β| onY ×C. Jµ is of classC1 and

DJµ(ν,w,α)[z,W,a]
=
(
−z ···qθ+ν −Ẅ + cos(qθ+ν +w)(zq̇θ+ν +W)

−µcos(qθ+ν +w)(zq̇θ+ν +W)f (ϕ)− aψθ ,

∫
R

(zq̇θ+ν +W)ψθ(t)

)
.

We shall prove that, provided‖(ν,w,α)‖2/σ and µ‖f ‖/σ 3 are small enough
DJµ(ν,w,α) is invertible. We first consider the case whenw = 0 andµ = 0. Let

Tν =DJ0(ν,0, α) (independent ofα). Observing that− ···
qθ+ν +cos(qθ+ν)q̇θ+ν = 0, we

obtain

Tν[z,W,a] =
(
−Ẅ + cosqθ+νW − aψθ ,

∫
R

(zq̇θ+ν +W)ψθ(t)

)
.

Using the first step we derive thatTν is invertible and that, for a suitable positive
constantC, ∥∥T −1

ν (g,β)
∥∥

2 � C

σ
‖(g,β)‖−1. (4.29)

Now we estimate‖(DJµ(ν,w,α)− Tν)[z,W,a]‖−1. We have

(DJµ(ν,w,α)− Tν)[z,W,a] = ((cos(qθ+ν +w)− (cosqθ+ν))(zq̇θ+ν +W)

−µcos(qθ+ν +w)(zq̇θ+ν +W)f (ϕ),0
)
.

We easily get∥∥(DJµ(ν,w,α)− Tν)[z,W,a]∥∥−1

�C‖w‖2,σ
(‖W‖2,σ + |z|)+ µ‖f ‖

σ 2
|z| + |µ|‖f ‖‖W‖2,σ

�C

(
‖w‖2,σ + µ‖f ‖

σ 2

)
‖(z,W,a)‖2.

As a consequence, by (4.29), ifµ‖f ‖/σ 3 � K0 and ‖w‖2,σ /σ � K0, for K0 small
enough, thenDJµ(µ,w,α) is invertible and

∥∥(DJµ(ν,w,α)
)−1∥∥� K1

σ

for a suitable positive constantK1.
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3rd step.We now prove the existence of a constantK2 such that(0,0,0) is the unique
solution of the equationJ0(ν,w,α)= 0 in B(K2σ ), ball centered at the origin and of
radiusK2σ for the norm‖‖2. First we observe that, sincëqθ+ν = sin(qθ+ν), there holds

J0(ν,w,α)= Tν[ν,w,α] +
(

sin(qθ+ν +w)− sin(qθ+ν)− cos(qθ+ν)w,∫
R

(qθ+ν − qθ − νq̇θ+ν)ψθ

)
.

Moreover, by the analyticity ofq0, q̇0,ψ0 overS,∫
R

(
qθ+ν(t)− qθ(t)− νq̇θ+ν(t)

)
ψθ(t)dt =

∫
R

(
qν(t)− q0(t)− νq̇ν(t)

)
ψ0(t)dt.

Hence there is a constantC ′ such that∥∥∥∥(sin(qθ+ν +w)− sin(qθ+ν)− cos(qθ+ν)w,

∫
R

(qθ+ν − qθ − νq̇θ+ν)ψθ

)∥∥∥∥−1

� C ′(‖w‖2
2,σ + |ν|2

)
.

So, if J0(ν,w,α)= 0 then, by (4.29)

‖(ν,w,α)‖2

=
∥∥∥∥− T −1

ν

(
sin(qθ+ν +w)− sin(qθ+ν)− cos(qθ+ν)w,

∫
R

(qθ+ν − qθ − νq̇θ+ν)ψθ

)∥∥∥∥
2

� CC ′

σ
‖(ν,w,α)‖2

2.

Let K2 < 1/(CC ′). By the latter inequality, ifJ0(ν,w,α)= 0 and ‖(ν,w,α)‖2 � K2σ ,
thenν = 0,w = 0, α = 0.

4th step.By the previous steps we know that there exist positive constantsK0, K1 and
K2 such that

(i) (J0(ν,w,α)= 0 and ‖(ν,w,α)‖2 �K2σ )⇔ ν =w = α = 0;
(ii) If |ν|< σ/2,‖w‖2,σ � K0σ,µ‖f ‖� K0σ

3 thenDJµ(ν,w,α)

is invertible and‖(DJµ(ν,w,α))−1‖�K1/σ.

Moreover there exists a constantK3 > 0 such that

(iii) ‖∂µJµ(ν,w,α)‖−1=
∥∥(sin(qθ+ν +w)f (ϕ),0)

∥∥−1 � ‖f ‖K3/σ.

We say that (i), (ii), (iii) imply that there isη such that, for all 0< µ < ησ 3/‖f ‖,
the equationJµ(ν,w,α)= 0 has a unique solution such that‖(ν,w,α)‖2 <K2σ/2. In
addition‖(ν,w,α)‖2 = O(µ‖f ‖/σ 2). To prove existence, we can proceed as follows.
Let S denote the set of allµ ∈ [0,K0σ

3/‖f ‖] such that there exists aC1 function
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Sµ : [0,µ] → {(ν,w,α): ‖(ν,w,α)‖2 <K2σ/2} such thatSµ(0)= 0, Jt (Sµ(t))= 0 for
all t ∈ [0,µ]. S is a bounded interval. Let us callµ its supremum. By (ii) and the Implicit
Function Theorem,µ> 0. In addition, forµ ∈ S , there is a unique functionSµ with the
required properties. As a consequence, for 0<µ< µ′, Sµ = Sµ′|[0,µ] and we can define
aC1 functionS : [0,µ)→{(ν,w,α): ‖(ν,w,α)‖2 <K2σ/2} such thatS(t)= Sµ(t) for
all µ ∈ (0,µ). By (ii) and (iii), we can write, for allt ∈ (0,µ),

‖S ′(t)‖2 =
∥∥∥∥[DJt

(
S(t)

)]−1
.

(
∂Jt

∂t

(
S(t)

))∥∥∥∥
2
� K1K3‖f ‖

σ 2
.

Hence

‖S(t)‖2 � K1K3

σ 2
‖f ‖|t|. (4.30)

Now, sinceS ′(t) is bounded,S(t) converges to someS ast → µ. Eitherµ=K0σ
3/‖f ‖

or ‖S‖2 =K2σ/2 (if not, by the Implicit Function Theorem, we could extend the solution
S to an interval[0,µ+ ξ), ξ > 0, contradicting the definition ofµ). In the latter case,
by (4.30),

‖S‖2 = K2σ

2
� K1K3

σ 2
µ‖f ‖.

So the existence assertion holds for 0< µ < ησ 3/‖f ‖, where η = min(K0,

K2/(2K1K3)).
In order to prove uniqueness, we assume that there areb1, b2 such that‖bi‖2 <K2σ/2,

Jµ(bi) = 0. Then, by the same argument as previously, we can prove the existence
of two functions of classC1 S1, S2 : [0,µ] → {b: ‖b‖2 < K2σ } such thatSi(µ) = bi ,
Jt(Si(t)) = 0. Moreover, by (ii) and the Implicit Function Theorem,S1(µ) �= S2(µ)

implies thatS1(t) �= S2(t) for all t ∈ [0,µ], which contradicts (i), proving uniqueness.
The bound of‖wµ

A,θ‖2,σ+|νµA,θ |+|αµ
A,θ | given in the statement is a direct consequence

of (4.30).
To complete the proof, we point out thatJµ is complex differentiable w.r.t all its

variables. Therefore, as a consequence of the Implicit Function Theorem (see for
example [2]),Qµ

A,θ = qθ+νµ(A,θ) + wµ(A, θ) depends analytically onθ and onAi if
ri > 0. ✷

We now consider the analytic extension of the functionF̃µ defined for(A, θ) ∈D×Sσ
by

F̃µ

(
A,θ

)="µ,A

(
Q

µ
A,θ

)
=
∫
R

(Q̇
µ
A,θ )

2(t)

2
+ (1− cosQµ

A,θ (t)
)+µ

(
cosQµ

A,θ (t)− 1
)
f (ωt +A)dt.

Let us consider also the analytic extension for(A, θ) ∈D×Sσ of the Melnikov function

M(A,θ)=
∫
R

(
cosqθ(t)− 1

)
f (ωt +A)dt.

We haveM(A,θ)= C(A+ ωθ), whereC is defined in (2.36). We now prove
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LEMMA 4.7. – For µ‖f ‖σ−3 small enough, we have

F̃µ(A, θ)= b+µM(A, θ)+O
(
µ2‖f ‖2

σ 4

)
(4.31)

uniformly for(A, θ) ∈D× Sσ , whereb ="0(q0).

Proof. –We haveQµ
A,θ = qθ+νµ

A,θ
+w

µ
A,θ which we denote for brevityQµ

A,θ = qθ+ν +w.

F̃µ(A, θ)

=
∫
R

(q̇θ+ν + ẇ)2

2
+ (1− cos(qθ+ν +w)

)+µ
(
cos(qθ+ν +w)− 1

)
f (ωt +A)dt

= b+
∫
R

[
−q̈θ+νw+ 1

2
ẇ2+ (cosqθ+ν − cos(qθ+ν +w)

)
+µ

(
cos(qθ+ν)− 1

)
f (ωt +A)+µ

(
cos(qθ+ν +w)− cosqθ+ν

)
f (ωt +A)

]
dt

= b+µM(θ + ν,A)+
∫
R

1

2
ẇ2+ (−cos(qθ+ν +w)+ cosqθ+ν − sinqθ+νw

)
dt

+µ

∫
R

(
cos(qθ+ν +w)− cosqθ+ν

)
f (ωt +A)dt.

By the estimate‖w‖2,σ � Cµ‖f ‖/σ 2, it follows easily

F̃µ(A, θ)= b+µM(A, θ + ν)+O
(
µ2‖f ‖2

σ 4

)
.

For example we can get that
∫

R cosqθ+ν−cos(qθ+ν+w)−(sinqθ+ν)w =O(µ2‖f ‖2/σ 4)

by writing cosqθ+ν−cos(qθ+ν+w)−(sinqθ+ν)w=w2
∫ 1

0 (1−s)cos(qθ+ν+sw)ds and
using (4.22)–(4.23) together with‖w‖2,σ � µ‖f ‖/σ 2. Moreover

∣∣M(A,θ + ν)−M(A,θ)
∣∣=O

( |ν|
σ 2

)
=O

(
µ‖f ‖
σ 4

)
,

which completes the proof of the lemma.✷
The Fourier coefficients of the Melnikov functionC(A) = ∑

k Ck exp(ikA) are
explicitely given by

Ck = fk
2π(k ·ω)

sinh((k ·ω)π2 )
(k �= 0), C0 = 4f0. (4.32)

SinceF̃µ(A, θ) = G̃µ(A + ωθ) andM(A,θ) = C(A+ ωθ), we obtain, via a standard
argument on Fourier coefficients of analytic functions, the following result
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THEOREM 4.2. – There exists a positive constantC8 such that, ifµ‖f ‖σ−3 is small
enough, then∀k ∈ Zn\{0}, for all σ ∈ (0, π

2 ), for all ω,

|G̃k −µCk|� C8µ
2‖f ‖2

σ 4
exp

(
−

n∑
i=1

ri |ki|
)

exp
(
−|k ·ω|

(
π

2
− σ

))
. (4.33)

Proof. F̃µ(A, θ)− b − µM(A, θ) = G̃µ(A+ ωθ)− b − µC(A+ ωθ) is analytic in
D×Sσ and, by (4.31), its modulus is bounded byC8µ

2/(‖f ‖2σ 4) whereC8 is a positive
contant. By Lemma 3 in [21], (4.33) follows.✷

Remark4.3. – Compare with Theorem 3.4.5 in [36] which gives the exponentially
small estimate of the Fourier coefficients.

5. Three time scales

We consider in this section three-time-scales systems, introduced and investigated in
connection with the problem of Arnold Diffusion in [15] (see also [25] and [38]), as

H= I1√
ε
+ εaβ · I2+ p2

2
+ (cosq − 1)+µ(1− cosq)f (ϕ1, ϕ2), ε > 0, a � 0

with n � 2, ϕ1 ∈ T1, ϕ2 ∈ Tn−1, I1 ∈ R1, I2 ∈ Rn−1, β ∈ Rn−1 andε is a positive small
parameter. The frequency vector isω = (1/

√
ε, εaβ), whereβ = (β2, . . . , βn) ∈ Rn−1 is

fixed.
We assume through this section thatµ‖f ‖ε−3/2 andε are small.
Given κ2 = (k2, . . . , kn) ∈ Zn−1 , we shall use the notationκ+2 := (|k2|, . . . , |kn|).

Moreover we shall use the abbreviationρ2 := (r2, . . . , rn), so thatκ+2 · ρ2 :=∑n
i=2 ri |ki|.

We recall thatr1, . . . , rn are defined in formula (4.1). Writing

f (ϕ1, ϕ2)=
∑

(k1,κ2)∈Z×Zn−1

fk1,κ2 exp
(
i(k1ϕ1+ κ2 · ϕ2)

)
,

we assume thatf is analytic w.r.tϕ2. More precisely fori � 2, ri > 0, whereasr1 may
be zero in (4.1). Ifa = 0, we impose in addition thatri > |βi |π/2 for i � 2.

We shall use (4.33) in order to give an expansion for the “homoclinic function”

G̃µ(A)=
∑

(k1,κ2)∈Z×Zn−1

G̃k1,κ2 exp
(
i(k1A1+ κ2 ·A2)

)=∑
k1∈Z

g̃k1(A2)exp(ik1A1),

where

g̃k1(A2)= 1

2π

2π∫
0

G̃µ(A1,A2)exp(−ik1A1)dA1 =
∑

κ2∈Zn−1

G̃k1,κ2 exp(iκ2 ·A2).

We start with
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LEMMA 5.1. – There exists a positive constantC9 such that, forµ‖f ‖ε−3/2 small
enough,∣∣∣∣ ∑

|k1|�2

g̃k1(A2)exp(ik1A1)

∣∣∣∣� ∑
κ2∈Zn−1,|k1|�2

|G̃k1,κ2|� C9
µ‖f ‖√

ε
exp
(
− π√

ε

)
. (5.1)

Proof. –Choosingσ =√ε and recalling that by (4.1)|fk|� ‖f ‖e−κ+2 ·ρ2, we get from
(4.32) and (4.33) that

|G̃k1,κ2|�µ|Ck1,κ2| + |G̃k1,κ2 −µCk1,κ2|
�Cµ‖f ‖e−κ+2 ·ρ2

(∣∣∣∣ k1√
ε
+ κ2 · βεa

∣∣∣∣+ 1
)

e
−| k1√

ε
+κ2·βεa|π/2

+C
µ2

ε2
‖f ‖2e−κ

+
2 ·ρ2e

−| k1√
ε
+κ2·βεa|(π/2−√ε)

.

Since| k1√
ε
+ κ2 · βεa|� | k1√

ε
| − |κ2 · βεa| we get,

|G̃k1,κ2|
� C

µ‖f ‖√
ε

(|k1| + |κ2|)e−κ+2 ·ρ2+|κ2·β|εaπ/2e
− |k1|√

ε
π/2

+C
µ2

ε2
‖f ‖2e−κ

+
2 ·ρ2+|κ2·β|εa(π/2−√ε)e

−|k1|( π

2
√
ε
−1)

� C
µ‖f ‖√

ε
(|k1| + |κ2|)exp

(
−

n∑
j=2

|kj |(rj − |βj |εaπ/2
))

exp
(
−|k1|

(
π

2
√
ε
− 1

))
.

We have used in the last line thatµ‖f ‖/ε3/2 = O(1). Now rj − |βj |εaπ/2> 0 for ε
small enough both ifa = 0 or if a > 0. Summing in|k1|> 2 and in κ2 ∈ Zn−1 we obtain
(5.1). ✷

The Poincaré–Melnikov primitive defined in (2.36) can be written as

C(ε,A)= ∑
(k1,κ2)∈Z×Zn−1

Ck1,κ2 exp
(
i(k1A1+ κ2 ·A2)

)=∑
k1∈Z

Ck1(ε,A2)exp(ik1A1).

LEMMA 5.2. – Define

R0(ε,µ,A2)= g̃0(A2)− b−µC0(ε,A2)

and

R1(ε,µ,A2)= g̃±1(A2)−µC±1(ε,A2).

The following estimates hold

R0(ε,µ,A2)=O
(
µ2‖f ‖2) and R1(ε,µ,A2)=O

(
µ2‖f ‖2

ε2
exp
(
− π

2
√
ε

))
.
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Proof. –We get immediately the estimate forR0(ε,µ,A2) by taking the mean value
w.r.t.A1 ∈ T in formula (4.31) whereθ = 0,A2 ∈ Tn−1 andσ = π/4.

We now prove the estimate forR1(ε,µ,A2). By (4.33) (where we chooseσ =√ε and
k1=±1), we can obtain as in the proof of Lemma 5.1∣∣g̃±1(A2)−µC±1(ε,A2)

∣∣
� C

µ2

ε2
‖f ‖2

∑
κ2∈Zn−1

exp

(
−

n∑
j=2

|kj |(rj − |βj |εaπ/2
))

exp
(
−
(

π

2
√
ε
− 1

))
.

� C
µ2

ε2
‖f ‖2e

− π

2
√
ε . ✷

SinceC(A) andGµ(A) are real valued functions we have thatg̃−1(A2)= g̃1(A2) and
C−1(A2) = C1(A2), wherez denotes the complex conjugate of the complex numberz.
We deduce from the previous two lemmas the following result.

THEOREM 5.1. – For µ‖f ‖ε−3/2 small there holds

G̃µ(A1,A2)= g̃0(A2)+ 2Re
[
g̃1(A2)e

iA1
]+ ∑

|k1|�2

g̃k1(A2)exp(ik1A1)

= b+ (µC0(ε,A2)+R0(ε,µ,A2)
)

+ 2Re
[(
µC1(ε,A2)+R1(ε,µ,A2)

)
eiA1

]
+O

(
µε−1/2‖f ‖exp

(
− π√

ε

))
,

where

R0(ε,µ,A2)=O
(
µ2‖f ‖2) and R1(ε,µ,A2)=O

(
µ2‖f ‖2

ε2
exp
(
− π

2
√
ε

))
.

Remark5.1. – (i) This improves the results in [38] which requireµ = εp with
p > 2+ a.

(ii) Theorem 5.1 certainly holds in any dimension, while the results of [25], which
hold for more general systems, are proved for 2 rotators only.

(iii) In order to prove a splitting condition using Theorem 5.1 it is necessary,
accordingly with [25] and [38], that∃m, l ∈ Zn−1 such thatf0,l, f1,m �= 0. If not,
recalling (4.32), there results thatC0(ε,A2) =∑κ2∈Zn−1 C0,κ2 exp iκ2 ·A2 = 0 and also
C1(ε,A2)=∑κ2∈Zn−1 C1,κ2 exp iκ2 ·A2 = 0.

Theorem 5.1 enables us to provide conditions implying the existence of diffusion
orbits. For instance we obtain the following result.

LEMMA 5.3. – Assume that there areA2 ∈ Rn−1 and d0, c0 > 0 such that, for all
smallε > 0,

(i) |C1(ε,A2)|> (c0/
√
ε)e−π/(2

√
ε), ∀A2 ∈Rn−1 such that|A2−A2|� d0;

(ii) C0(ε,A2) > C0(ε,A2)+ c0, ∀A2 ∈Rn−1 such that|A2−A2| = d0.
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Then there isν(c0, d0) > 0 and a constantK > 0 such that, for all ε,µ with
ε,µ‖f ‖ε−3/2 < ν(c0, d0), condition2.1 is satisfied byG̃µ for some bounded open set
U ∈Rn andδ = (c0µ/2

√
ε)e−π/(2

√
ε), α =Kc0e−π/(2

√
ε)/2

√
ε, ρU � 3d0 .

Proof. –First we can derive from (4.32) and (4.33) in the same way as in the proof of
Lemmas 5.1 and 5.2 that

|g̃1(A2)| + |∇g̃1(A2)|�
∑

κ2∈Zn−1

(1+ |κ2|)|G̃1,κ2|� K0
µ‖f ‖√

ε
e−π/(2

√
ε) (5.2)

for some constantK0. By the bounds ofR0 andR1 in Theorem 5.1, forε andµ‖f ‖ε−3/2

small enough, we have

(a) |g̃1(A2)| = |(µC1+R1)(A2)|> (µc0/(2
√
ε))e−π/(2

√
ε) ∀A2 ∈ Bd0,

(b) g̃0(A2)= (µC0+R0)(A2) > (µC0+R0)(A2)+ (µc0)/2 ∀A2 ∈ ∂Bd0,

whereBd0 is the open ball centered atA2 of radiusd0.
So we can writẽg1(A2)= |g̃1(A2)|eiφ(A2), whereφ is a smooth real function defined

in Bd0: (5.2) and the previous lower bound of|g̃1(A2)| provide a bound of∇φ(A2).
Precisely,

|∇φ(A2)|� |∇g̃1(A2)|
|g̃1(A2)| � 2‖f ‖K0

c0
. (5.3)

ForA2 ∈ Bd0, by Theorem 5.1 we have

G̃µ(A1,A2)= b+ (µC0+R0)(ε,µ,A2)+ 2
∣∣(µC1+R1)(ε,µ,A2)

∣∣cos
(
A1+ φ(A2)

)
+O

(
µε−1/2‖f ‖exp

(
− π√

ε

))
.

Let

U =
{
(A1,A2) ∈R×Rn−1 |A2 ∈ Bd0, |A1+ φ(A2)− π |< π

2

}
.

We now prove that̃Gµ satisfies point (i) of condition 2.1, withδ = c0µe−π/2
√
ε/2

√
ε and

A0 = (A1,A2) = (π − φ(A2),A2). Assume that(A1,A2) ∈ ∂U . EitherA2 ∈ ∂Bd0 and
then

G̃µ(A1,A2)− G̃µ

(
π − φ(A2),A2

)
� µc0

2
+O

(
µε−1/2‖f ‖exp

(
− π

2
√
ε

))
, (5.4)

or |A1+ φ(A2)− π | = π/2 and then

G̃µ(A1,A2)− G̃µ(π − φ(A2),A2)

= 2|(µC1+R1)(A2)| +O
(
µε−1/2‖f ‖exp

(
− π√

ε

))
� µc0√

ε
e−π/(2

√
ε) +O

(
µε−1/2‖f ‖exp

(
− π√

ε

))
. (5.5)
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Hence, by (5.4) and (5.5), forε andµ‖f ‖ε−3/2 small enough,

inf
∂U

G̃µ � inf
U
G̃µ + c0µe−π/2

√
ε

2
√
ε

. (5.6)

Thus (G̃µ,U) satisfies point(i) of condition 2.1, withδ = c0µe−π/2
√
ε/2

√
ε. Now

|∇G̃µ| = O(µ), hence there exists a positive constantK1 such that, for allA,B ∈ Rn,
|G̃µ(A) − G̃µ(B)| � K1µ|A − B|. Let α = Kδ/µ = Kc0e−π/2

√
ε/2

√
ε, whereK =

1/8K1. Then

∀(A,B) ∈Rn ×Rn |A−B|� 2α⇒ |G̃µ(A)− G̃µ(B)|� δ

4
. (5.7)

Let A0 = (A0
1,A

0
2) ∈ U be such that infU G̃µ = G̃µ(A

0). Then by (5.7) and (5.6),
supBα(A0) G̃µ � infU G̃µ + δ/4, and the ballBα(A

0) is included inU . So (ii) is satisfied
with the above choice ofα.

That (iii) is satisfied is a straightforward consequence of (5.7).
To complete the proof, we observe that, by (5.3),|φ(A2)− φ(A2)| � 2d0K0‖f ‖/c0

for all A2 ∈ Bd0. Hence anyA ∈ U can be written as

A= (π − φ(A2),A2
)+ (l1, l2), |l1|� π + 2d0K0

c0
‖f ‖, |l2|� d0.

Now, since(l1, l2)=√εl1ω+ (0, l2− εa+1/2l1β),

|;ω(l1, l2)| =
∣∣;ω

(
0, l2− εa+1/2l1β

)∣∣� ∣∣l2− εa+1/2l1β
∣∣� d0+O(

√
ε).

HenceρU � 2d0 +O(
√
ε), and forε small enough,ρU � 3d0. ✷

The condition given in the previous lemma is not easily handable. We now want
to provide simpler conditions, involving properties of the perturbationf . For A =
(A1,A2) ∈ T1×Tn−1, let

f (A1,A2)=
∑

(k1,κ2)∈Z×Zn−1

fk1,κ2 exp
(
i(k1A1+ κ2 ·A2)

)=∑
k1∈Z

fk1(A2)exp(ik1A1).

Sincef is analytic w.r.tA2, fk1(A2)= (1/2π)
∫ 2π

0 f (σ,A2)e−ik1σ dσ depends analyt-
ically of A2.

THEOREM 5.2. – Assume thatf satisfies one of the following conditions:
(i) a > 0, f0(A2) admits a strict local minimum at the pointA2 andf1(A2) �= 0.
(ii) a = 0, f0(A2) admits a strict local minimum at the pointA2 and f1(A2 +

i(π/2)β) �= 0.
Then, for all smallε such thatωε = (1/

√
ε,βεa) satisfies

|ωε · k|� γε

|k|τ , ∀k ∈ Zn, k �= 0
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for all I0, I
′
0 with ωε · I0 = ωε · I ′0, for all µ‖f ‖ε−3/2 small enough, there is a

heteroclinic orbit of the perturbed three-time-scales system, connecting the invariant
tori TI0 and TI ′0. In addition, for all η > 0 small enough the “diffusion time”Td
needed to go from aη-neighbourhood ofTI0 to a η-neighbourhood ofTI ′0 is O(|I0 −
I ′0|(

√
ε/µ)eπ/(2

√
ε)[(γε)−1(

√
εeπ/(2

√
ε))τ + | logµ|] + | log(η)|).

Proof. –It is enough to prove that, if (i) or (ii) is satisfied, then the condition given
in Lemma 5.3 holds for somec0, d0 > 0 . The statement is then a direct consequence of
Theorem 2.3 and Lemma 4.5.

We first assume that condition (i) is satisfied. In what follows, the notationu=O(v)

means that|u|�C|v|, whereC is a universal constant. We have

C0(ε,A2)=
∑

κ2∈Zn−1

2πκ2 · βεa
sinh(πκ2 · βεa/2)

f0,κ2e
iκ2·A2

= ∑
κ2∈Zn−1

(
4+O

(
ε2a|κ2|2))f0,κ2e

iκ2·A2

= 4f0(A2)+O
( ∑
κ2∈Zn−1

ε2a|κ2|2e−κ+2 ·ρ2

)
= 4f0(A2)+O

(
ε2a).

Moreover

C1(ε,A2)=
∑

κ2∈Zn−1

2π(ε−1/2+ κ2 · βεa)
sinh((π/2)(ε−1/2+ κ2 · βεa))f1,κ2e

iκ2·A2

= ∑
κ2∈Zn−1

4π√
ε

e−(π/2)(ε−1/2+κ2·βεa)(1+O
(
(|κ2| + 1)εa+(1/2)))f1,κ2e

iκ2·A2.

Since, by (4.1),|f1,κ2| =O(e−κ
+
2 ·ρ2), we have

C1(ε,A2)= 4π√
ε

e−(π/2)ε−1/2
[
f1(A2)

+O
( ∑

κ2∈Zn−1

e−κ
+
2 ·ρ2

(∣∣e−(π/2)κ2·βεa − 1
∣∣+ (|κ2| + 1)εa+(1/2)e|κ2·β|εa))]

= 4π√
ε

e−(π/2)ε−1/2

[
f1(A2)

+O

( ∑
κ2∈Zn−1

(|κ2| + 1)εa exp

(
−

n∑
j=2

|kj |(rj − (π/2)|βj |εa)
))]

= 4π√
ε

e−(π/2)ε−1/2[
f1(A2)+O

(
εa
)]
,

provided thatε is small enough. Now, sincef1(A2) �= 0 and f0 admits a strict local
minimum atA2, by the continuity off1, there isd0 > 0 such that|f1(A2)|> |f1(A2)|/2
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for all |A2 − A2| � d0 andT(d0) := inf |A2−A2|=d0
f0(A2) − f0(A2) > 0. Hence, forε

small enough, the assumptions of lemma 5.3 hold withc0 =min(π |f1(A2)|,2T(d0)).
We now assume that condition (ii) is satisfied. As previously, we have

C1(ε,A2)=
∑

κ2∈Zn−1

4π√
ε

e−(π/2)(ε−1/2+κ2·β)(1+O
(
(|κ2| + 1)ε1/2))f1,κ2e

iκ2·A2

= 4π√
ε

e−(π/2)ε−1/2

[
f1
(
A2+ i(π/2)β

)
+O

( ∑
κ2∈Zn−1

(|κ2| + 1)ε1/2 exp

(
−

n∑
j=2

|kj |(rj − (π/2)|βj |)
))]

= 4π√
ε

e−(π/2)ε−1/2[
f1
(
A2+ i(π/2)β

)+O(
√
ε)
]
.

We observe also that, ifa = 0, thenC0(ε,A2) = 4f0(A2) is independent ofε. It
follows easily that condition (ii) as well implies that the assumption of lemma 5.3 holds
true. ✷

Remark5.2. – In the time estimate obtained in Theorem 5.2,τ is the exponent of
an exponetially large number, since, in order to apply the shadowing Theorem 2.3,
which relies on condition 2.1, the diffusion orbit must approach to the homoclinic point
at an exponentially small distance (namelyα = O(exp−(π/2

√
ε)). This result can be

improved via a shadowing theorem suited to the case when the splitting is exponentially
small in one direction only. This allows to find diffusion orbits which approach to the
homoclinic point just at a polynomially small distance in the orthogonal directions to
ω. This is proved in [7]. Moreover, for this reason, we are able to obtain diffusion
orbits which drift in polynomial time w.r.t 1/ε along the fast directions(I2, . . . , In) (no
diffusion in I1), see [7].
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Appendix A

In the proof of the following lemmas we will closely follow the arguments developed
in the papers [4,5] to which we refer for further details. In the sequel the notation
u = O(v) (resp. u = o(v)) will mean that there is a constantC (resp. a function
ε(v)) independent of anything exceptf such that|u| � C|v| (resp.|u| � ε(v)|v| and
limv→0 ε(v)= 0).

Proof of Lemma 2.1. –We first assume thatθ = 0 and give the existence proof in
[0,+∞). We are looking for a solution of (1.5) in the form ofq = q0+w with w(0)= 0
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and limt→+∞w(t)= 0. The functionw must satisfy the equation

−ẅ+w=−(sin(q0+w)− sinq0−w
)+µsin(q0+w)f (ωt +A).

Let

X=
{
w(·) ∈W 1,∞([0,+∞)

) | ‖w‖1 := sup
t∈R

max
(|w(t)|, |ẇ(t)|)exp

( |t|
2

)
<+∞

}
and

X′ =
{
w(·) ∈ L∞

([0,+∞)
) | ‖w‖0 := sup

t∈R
|w(t)|exp

( |t|
2

)
<+∞

}
.

X andX′, endowed respectively with norms‖‖1 and‖‖0, are Banach spaces. LetL0 be
the linear operator which assigns toh ∈X′ the unique solutionu= L0h of the problem:{−ü+ u= h

u(0)= 0, lim t→+∞ u(t)= 0.

An explicit computation shows that, fort ∈ [0,+∞),

u(t)= (L0h)(t)= 1

2

+∞∫
0

(
e−|t−s| − e−(t+s)

)
h(s)ds. (A.1)

As an easy consequenceL0 sendsX′ into X continuously.
We define the non-linear operatorH : R×Rn ×X→X by

H(µ,A,w) :=w−L0
(−(sin(q0+w)−sinq0−w

)+µsin(q0+w)f (ωt+A)
)
. (A.2)

H is smooth, 2πZn-periodic w.r.t.A and we haveH(0,A,0)= 0. The unknownw must
solve the equationH(µ,A,w) = 0. We can apply the Implicit Function Theorem. In
fact, let us check that

∂wH(0,A,0) :W →W −L0
[
(1− cosq0)W

]
is invertible. Since limt→∞(1− cosq0(t))= 0, ∂wH(0,A,0) is of the type “Identity+
Compact” and therefore it is sufficient to show that it is injective.W is in the kernel of
∂wH(0,A,0) iff W(0)= 0 and W satisfies in(0,+∞) the equation

−Ẅ + cosq0W = 0. (A.3)

Multiplying by q̇0 in (A.3) and integrating over[0,+∞) by parts twice we obtain that
Ẇ(0)q̇0(0) = 0. Sinceq̇0(0) �= 0 we get alsoẆ (0) = 0 and as a consequenceW = 0.
Thus the kernel of∂wH(0,A,0) is reduced to 0, and this operator is invertible. We
derive by the Implicit Function Theorem that there areρ0 > 0 andµ0 > 0 such that, for
all |µ|< µ0, for all A ∈ Rn, the equationH(µ,A,w)= 0 has a unique solutionwµ

A in
X such that‖wµ

A‖< ρ0.
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Note thatµ0 and ρ0 may be chosen independent ofA (and of ω too) because
∂wH(0,A,0) is independent ofA and ω, ∂µH(0,A,0) is uniformly bounded, and
∂wH(µ,A,w) (resp. ∂µH(µ,A,w)) tend to ∂wH(0,A,0) (resp. ∂µH(0,A,0)) as
(µ,w)→ (0,0) uniformly in (A,ω).

SinceH is smoothwµ
A depends smoothly onµ andA andwµ

A+2πk =w
µ
A by the 2πZn-

periodicity ofH w.r.t.A. By the properties of∂µH mentioned above,‖wµ
A‖1 =O(µ).

In a similar way we can prove the existence and uniqueness ofw′µ
A : (−∞,0] → R

which satisfies analogous properties over the interval(−∞,0]. We can defineqµ
A,0 by

q
µ
A,0(t) = q0(t) + w

µ
A(t) if t � 0, qµ

A,0 = q0(t) + w′µ
A(t) if t < 0. This is the unique

function for which (i), (ii) (withθ = 0) hold.
If θ �= 0, we observe thatq satisfies (i) iff{−(T−θq)′′ + sin(T−θq)= µsin(T−θq)f (ωt +A+ ωθ),

(T−θq)(0)= π,

whereT−θ q(t)= q(t+θ). Hence there is a uniqueqµ
A,θ which satisfies (i), (ii), defined by

q
µ
A,θ = Tθq

µ
A+ωθ,0, i.e.qµ

A,θ (t)= q
µ
A+ωθ,0(t − θ); (iii) and (iv) clearly hold. The regularity

of qµ
A,θ w.r.t. A,µ is a consequence of the regularity ofw

µ
A andw′µ

A w.r.t. A andµ. (v)
follows from

∂Aw
µ
A =−

[
∂wH

(
µ,A,w

µ
A

)]−1
(∂AH)

(
µ,A,wA

µ

)
provided we can justify that‖(∂AH)(µ,A,w

µ
A)‖1 =O(µ), ‖ω · ∂AH(µ,A,w

µ
A)‖1 =

O(µ). The second bound (uniform inω) is less obvious. We just point out that

ω · ∂AH (µ,A,wµ
A

)=−L0

(
µsin

(
q0+w

µ
A

) d

dt
f
(
ωt +A

))
and that we can use the “regularizing” properties ofL0. ✷

Proof of Lemma 2.4. –We give the proof in the interval[θ1, θ2]. We may assume
without loss of generality thatθ1 = 0 since, by the remark at the end of the proof of
Lemma 2.1, a translation of the time by−θ1 amounts to addingωθ1 to A. For simplicity
of notations, we shall writeθ2 = θ .

We are looking for a solutionq = q∗0,θ +w of (1.5) over[0, θ] with w(0)=w(θ)= 0,
whereq∗0,θ is the following smooth “approximate solution”

q∗0,θ (t)=

q
µ
A,0(t) if t ∈ (0, θ/2− 1),
r∗θ (t) if t ∈ [θ/2− 1, θ/2+ 1],
2π + q

µ
A,θ (t) if t ∈ (θ/2+ 1, θ),

where

r∗θ (t)=
(
1−R(t − θ/2)

)
q
µ
A,0(t)+R(t − θ/2)

(
q
µ
A,θ (t)+ 2π

)
,

andR : R→[0,1] is aC∞ function such thatR(s)= 0 if s �−1,R(s)= 1 if s � 1. Let
L0,θ be the linear operator which assigns toh ∈L∞([0, θ]) the unique solutionu= L0,θh
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of the problem: {−ü+ u= h

u(0)= 0, u(θ)= 0.
(A.4)

An explicit computation shows that fort ∈ [0, θ] the solutionu of (A.4) is given by

u(t)= 1

sinh(θ)

[ t∫
0

h(s)sinh(s)sinh(θ − t)ds +
θ∫

t

h(s)sinh(θ − s)sinh(t)ds

]
.

Note thatL0,θ sendsL∞([0, θ]) into W 1,∞([0, θ]) (W 2,∞([0, θ]) in fact) and that there
is a constantK independent ofθ such that‖L0,θW‖1,∞ �K‖W‖∞ , where‖‖∞ denotes
the infty norm in[0, θ] and‖W‖1,∞ := ‖W‖∞ + ‖Ẇ‖∞.

We define the smooth non-linear operatorHθ : R×Rn×W 1,∞([0, θ])→W 1,∞([0, θ])
by

Hθ(µ,A,w) :=w−L0,θ
(−(sin(q∗0,θ +w)− q̈∗0,θ −w

)+µsin(q∗0,θ +w)f (ωt +A)
)
.

We immediately remark for further purpose that∥∥∂2
wH

θ(µ,A,w)[W,W ]∥∥=O
(‖W‖2

∞
)
. (A.5)

Moreover, by Lemma 2.1(i) and the definition ofq∗0,θ , ‖− sinq∗0,θ + q̈∗0,θ +µsin(q∗0,θ )×
f (ωt +A)‖∞ =O(exp(−θ/2)) hence∥∥Hθ(µ,A,0)

∥∥
1,∞ =O

(
exp(−θ/2)

)
. (A.6)

q∗0,θ +w is a solution of (1.5) with the appropriate boundary conditions iffHθ(µ,A,w)

= 0. We shall show that there existC,L,µ > 0 such that∀θ > L, for all |µ|<µ, for all
A andω, ∂wHθ(µ,A,0) is invertible and∥∥(∂wHθ(µ,A,0)

)−1∥∥� C. (A.7)

Since∂wHθ(µ,A,0) is of the type “Id+ Compact”, it is enough to prove that

∀W ∈W 1,∞([0, θ]) ∥∥∂wHθ(µ,A,0)W
∥∥

1,∞ � 1

C
‖W‖1,∞.

We shall just sketch the proof of this assertion (see also Lemma 2 of [4]). Arguing by
contradiction, we assume that there are sequences(µn)→ 0, (θn)→∞, (An), (ωn),
(Wn) such thatWn ∈W 1,∞([0, θn]),‖Wn‖1,∞ = 1,∥∥∂wHθn(µn,An,0)Wn

∥∥
1,∞→ 0. (A.8)

Let ξn ∈ [0, θn] be such thatmn := maxt∈[0,θn]|Wn(t)| = Wn(ξn). By (A.8) and the
properties ofL0,θ , ‖Wn‖1,∞ = O(mn). Hence lim inf(mn) > 0. Taking a subsequence,
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we may assume that(ξn) is bounded or(θn − ξn) is bounded or ((ξn) → ∞ and
(θn − ξn)→∞).

In the first case, still up to a subsequenceWn →W �= 0 uniformly in compact subsets
of [0,∞). Taking limits in (A.8) we obtain thatW(0) = 0,−Ẅ + cosq0W = 0, which
contradictsW �= 0. The second case can be dealt with similarly. In the third case,
up to a subsequence,Wn(· + ξn)→ W �= 0 uniformly in compact subsets ofR, with
|W(t)|� |W(0)| for all t ∈R. Taking limits in (A.8), we obtain that−Ẅ +W = 0 over
R, which contradictsW �= 0 bounded.

From now we shall assume that|µ|<µ0 �µ, θ > L. Let

Rθ(µ,A,w)=Hθ(µ,A,w)−Hθ(µ,A,0)− ∂wH
θ(µ,A,0)w.

By the previous assertion,

Hθ(µ,A,w)= 0⇔w=−(∂wHθ(µ,A, ,0)
)−1

Hθ(µ,A,0)

− (∂wHθ(µ,A,0)
)−1

Rθ(µ,A,w) := Fθ
µ,A(w).

We just have to show thatFθ
µ,A is a contraction in some ballB(0, ρ)⊂W 1,∞([0, θ]). For

this, we derive from (A.5) and (A.6) in a standard way that, for all‖w‖1,∞,‖w′‖1,∞ � ρ,
|µ|<µ, θ > L there holds

∥∥Fθ
µ,A(w)

∥∥
1,∞ =O(exp

(−θ/2)+ ρ2); ∥∥Fθ
µ,A(w)−Fθ

µ,A(w
′)
∥∥=O(ρ‖w′ −w‖).

(A.9)
We can deduce thatFθ

µ,A is a contraction inB(0, ρ), with ρ = C exp(−θ/2), for some
constantC, provided thatθ > L, L large enough. Applying the Contraction Mapping
Theorem we conclude that there is a unique solution‖wL

µ(A, θ)‖1,∞ � C exp(−θ/2)
of the equationHθ

µ,A(w) = 0. Note that by (A.9) uniqueness holds inB(0, ρ0) for
someρ0 > 0 independent ofθ . The regularity of the solutions in(A, θ,µ) follows as
in [4]. ✷

Proof of Remark 2.3. –Assume with no loss of generality thatA0 = 0 and that
D2Gµ(0) = diag{λ1, . . . , λn} (this can be always obtained by an orthogonal change of
variables). Assume also thatλ1 =minλi and thatλn = maxλi . Let Q(A) = 1

2(λ1A
2
1 +

· · · + λnA
2
n). By the Taylor expansion

Gµ(A)=Q(A)+ 1

6
D3Gµ(A)A

3, (A.10)

for a suitableA with |A|< |A|. ForA ∈ Bρ(0), with ρ = λ1/(3supA∈Tn |D3Gµ|), there
holds|(1/6)D3Gµ(A)A

3|� (1/9)Q(A), hence, by (A.10)

8

9
Q(A) � Gµ(A) � 10

9
Q(A). (A.11)
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If we chooseU = Bρ(0) condition (i) is then satisfied withδ = 4λ1ρ
2/9 (we have

infBρ(0) Gµ = 0). Moreover, by (A.11) we have that{
Gµ � δ

2

}
⊂
{
Q(A) � 9δ

16

}
and

{
Gµ � 3δ

4

}
⊂
{
Q(A) � 27δ

40

}
.

One can easily compute that

dist
({

Q(A) � 9δ

16

}
,

{
Q(A) � 27δ

40

})
= ((√6−√5

)
/
√

10
)
ρ
√
λ1/λn = 2α,

hence dist({Gµ � δ
2}, {Gµ � 3δ

4 }) � 2α.
Condition (ii) holds as well since, by (A.11),{Gµ(A) � δ/4} contains{Q(A)� δ/5},

andBα(0)⊂ {Q(A) � δ/5}. ✷
Proof of Lemma 4.3. –Let us consider the functionH : R×Tn×R×R→R defined

by

H(µ,A, θ, l)=Q
µ
A,θ (θ + l)− π.

The unknownlµ(A, θ) can be implicitely defined by the equationH(µ,A, θ, l)= 0. We
haveH(0,A, θ,0)= 0 and

∂lH(0,A, θ,0)= q̇θ (θ)= q̇0(0) �= 0.

Hence by the Implicit function theorem, forµ small enough (independently of
A,θ,ω because∂lH and ∂µH are continuous uniformly inA,θ with a modulus of
continuity independent ofω), there exists a unique smooth solutionlµ(A, θ) = O(µ)

of H(µ,A, θ, l) = 0. Moreover, by the uniform estimates inA and ω that we can
obtain for∂AQ

µ
A,θ , ω · ∂AQµ

A,θ and by (4.8),|∂AH | + |∂θH | =O(µ). Hence there holds
|∇lµ(A, θ)| =O(µ). ✷

Proof of Lemma 4.4. –The first step is to prove that

max
(∣∣qµ

A,θ+lµ(A,θ)(t)−Q
µ
A,θ (t)

∣∣, ∣∣q̇µ
A,θ+lµ(A,θ)(t)− Q̇

µ
A,θ (t)

∣∣)
� K0

∣∣∂θ F̃µ(A, θ)
∣∣exp

(
−|t − θ |

2

)
, ∀t ∈R. (A.12)

By Lemma 2.1(iv) we haveqµ
A,θ+lµ(A,θ) = Tθ+lµ(A,θ)q

µ
A′,0; Qµ

A,θ = Tθ+lµ(A,θ)Q
µ
A′,θ ′ , where

A′ =A+ ω(θ + lµ(A, θ)) andθ ′ = −lµ(A, θ). So it is enough to prove the estimate for
w :=Q

µ
A′,θ ′ − q

µ
A′,0.

Note thatQµ
A′,θ ′(0)= q

µ
A′,0(0)= π . SoQµ

A′,θ ′ − q0, qµ
A′,0− q0 belong toX and satisfy

H
(
µ,A′, qµ

A′,0− q0
)= 0; H

(
µ,A′,Qµ

A′,θ ′ − q0
)= α

µ
A′,θ ′L0(ψθ ′),

whereX,H andL0 are defined in the proof of Lemma 2.1. Therefore

α
µ
A′,θ ′L0(ψθ ′)= ∂wH

(
µ,A′, qµ

A′,0− q0
)(
Q

µ
A′,θ ′ − q

µ
A′,0
)+ o

(‖Qµ
A′,θ ′ − q

µ
A′,0‖1

)
.
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Moreover ‖Qµ
A′,θ ′ − q0‖1 + ‖qµ

A′,0 − q0‖1 = O(µ). Hence, by the properties ofH
mentioned in the proof of Lemma 2.1 (in particular the fact that∂wH(0,A′,0) is
invertible) we obtain, forµ small enough the following bound:∥∥Qµ

A′,θ ′ − q
µ
A′,0
∥∥

1=O
(|αµ

A′,θ ′ |
)
.

Since, by Lemma 4.2,|αµ
A′,θ ′ | =O(|∂θ F̃µ(A, θ)|) we deduce estimate (A.12).

We can now estimatẽFµ(A, θ) − Vµ(A, θ). Consider the action functional"µ,A′
defined in (1.7). For|µ|<µ0,

D2"µ,A′(q)[w,w] =
∫
R

ẇ2+ cos(q)w2−µcos(q)w2f (A′ +ωt)dt =O
(‖w‖2

1

)
.

By the definition ofqµ
A′,0 ((i) in Lemma 2.1), we easily obtain with an integration by

parts thatD"µ,A′(q
µ
A′,0)w= 0 for all w ∈X such thatw(0)= 0. Therefore

"µ,A′
(
q
µ
A′,0+w

)="µ,A′
(
q
µ
A′,0
)+O

(‖w‖2
1

)
for all w ∈X such thatw(0)= 0. Hence since(Qµ

A′,θ ′ − q
µ
A′,0)(0)= 0,

F̃µ(A, θ)− Vµ(A, θ)= F̃µ

(
A,θ + lµ(A, θ)+ θ ′

)− Fµ

(
A,θ + lµ(A, θ)

)
= F̃µ(A

′, θ ′)−Fµ(A
′,0)

="µ,A′
(
Q

µ
A′,θ ′

)−"µ,A′
(
q
µ
A′,0
)=O

(∥∥Qµ
A′,θ ′ − q

µ
A′,0
∥∥2

1

)
.

We obtain by (A.12) that∣∣F̃µ(A, θ)− Vµ(A, θ)
∣∣=O

(
∂θF̃µ(A, θ)

2),
namely (4.13). We now prove (4.14). As a consequence of (4.11), (2.6) and (A.12), we
have ∣∣(∂θFµ)

(
A,θ + lµ(A, θ)

)− ∂θ F̃µ(A, θ)
∣∣=O

(
µ|∂θ F̃µ(A, θ)|). (A.13)

In the same way, using that

∇AFµ(A, θ)= µ

∫
R

∂ϕf (ωt +A)
(
cos
(
q
µ
A,θ (t)

)− 1
)

dt,

and an analogous expression for∇AF̃µ(A, θ), we get∣∣(∇AFµ)
(
A,θ + lµ(A, θ)

)−∇AF̃µ(A, θ)
∣∣=O

(
µ|∂θ F̃µ(A, θ)|). (A.14)

We compute

∇AVµ(A, θ)−∇AF̃µ(A, θ)= (∇AFµ)
(
A,θ + lµ(A, θ)

)−∇AF̃µ(A, θ)
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+ (∂θFµ)
(
A,θ + lµ(A, θ)

)∇Alµ(A, θ)

=O(µ|∂θF̃µ(A, θ)|)+O(µ|(∂θF )
(
A,θ + lµ(A, θ)

)
− ∂θ F̃µ(A, θ)|),

by (A.14) and since|∇Alµ(A, θ)| =O(µ). By (A.13) we get∣∣∇AVµ(A, θ)−∇AF̃µ(A, θ)
∣∣=O

(
µ|∂θ F̃µ(A, θ)|).

The estimate ∣∣∂θVµ(A, θ)− ∂θ F̃µ(A, θ)
∣∣=O

(
µ|∂θ F̃µ(A, θ)|)

is obtained in a similar way. ✷
Proof of Lemma 4.5. –By Theorem 4.1, forC5µ|ω| � 1/2, for all A,A′ ∈ Rn there

holds∣∣(ψµ)(A)− (ψµ)(A
′)
∣∣= ∣∣A−A′ + (gµ(A)− gµ(A

′)
)
ω
∣∣

� |A−A′| + ∣∣gµ(A)− gµ(A
′)
∣∣|ω|� |A−A′| +C5µ|ω||A−A′|

� 3|A−A′|/2.

Hence, for allA,A′ ∈ Rn,

∣∣ψ−1
µ (A)−ψ−1

µ (A′)
∣∣� 2

3
|A−A′|� 1

2
|A−A′|. (A.15)

We now verify that the image ofBα(A0) under the homeomorphismψ−1
µ contains the

ballBα/2(ψ
−1
µ (A0)) of radiusα′ = α/2 centered atψ−1

µ (A0). Sinceψ−1
µ is a homeomor-

phism,∂ψ−1
µ (Bα(A0))=ψ−1

µ (∂Bα(A0)). LetA ∈ ∂Bα(A0), namely|A−A0| = α. Then
by (A.15) |ψ−1

µ (A)− ψ−1
µ (A0)| � α/2 and then dist{∂ψ−1

µ (Bα(A0)),ψ
−1
µ (A0)} > α/2.

This means thatBα/2(ψ
−1
µ (A0)) ⊂ ψ−1

µ (Bα). Recalling thatG̃µ = Gµ ◦ ψ−1
µ we have

that infψ−1
µ (U)Gµ = infU G̃µ, inf∂ψ−1

µ (U) Gµ = inf∂U G̃µ, supψ−1
µ (Bα)

Gµ = supBα
G̃µ and

then we easily deduce (i)–(ii). Properties (iii) follows as well since by (A.15) the home-
omorphismψ−1

µ reduces the distance between sets at most by a factor 1/2. ✷
Proof of remark 4.2. –We shall use in this proof the results of Section 4.2.
(i) We first prove thatFµ(A, θ) has a complex analytic extension. Let

Y = {w ∈W 1,∞(R,C)
∣∣ ‖w‖ := sup

t∈R

(|w(t)| + |ẇ(t)|)e|t |/2 <∞}
andY = {w ∈ Y |w(0)= 0}. We assume thatf has an analytic extension defined in an
open neighbourhood of

Dr :=Tn + i[−r, r]n
for somer > 0 and we introduce|f |r := supA∈Dr

|f (A)|<∞. Let"µ :Dr ×Y →C be
defined by
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"µ(A,w)=
∞∫

−∞

1

2

(
q̇0(t)+ ẇ(t)

)2+ (1− cos
(
q0(t)+w(t)

))
−µ(1− cos

(
q0(t)+w(t)

))
f (A+ωt)dt.

"µ is a smooth functional. Furthermore, since cos :C → C is analytic,"µ is complex
differentiable, which means that its differentialD"µ is C-linear everywhere. We shall
denote by"µ the restriction of"µ toDr×Y ; w ∈ Y is a critical point of"µ(A, ·) iff the
restriction ofq := q0 + w to each interval(−∞,0) and(0,∞) is smooth and satisfies
−q̈(t)+ sinq(t)=µsinq(t)f (A+ ωt).

Note that, in analogy with the real case, ifw ∈ Y is a solution of the linear equation
−ẅ+ (cosq0)w = 0 in each interval(−∞,0) and(0,∞), thenw = 0.

As a consequence we can apply the Implicit Function Theorem and obtain in the same
way as in the proof of Lemma 2.1 that there isρ > 0 such that, forµ|f |r small enough,
for all A ∈Dr there is a uniqueqµ

A,0 = q0+w
µ
A in q0+ Y such that‖wµ

A‖< ρ and

−q̈µ
A,0(t)+ sinqµ

A,0(t)= µsinqµ
A,0f (A+ωt) in (−∞,0) and(0,∞), q

µ
A(0)= π.

Moreoverqµ
A,0 depends smoothly onA.

For later purpose, we remark that, in connection with the Implicit Function Theorem,
there are two constantsρ ′,C > 0 such that, ifQ ∈ q0+ Y is a solution of−q̈ + sinq =
µsinqf (A + ωt) = g(t) in each interval(−∞,0) and(0,+∞) with g ∈ Y , ‖g‖ < ρ ′
then ∥∥Q− q

µ
A,0

∥∥�C‖g‖. (A.16)

From (A.16) we can derive as in the proof of lemma 4.4 that

"µ(A,Q− q0)−"µ

(
A,q

µ
A,0− q0

)
=Dw"µ

(
A,q

µ
A,0− q0

) · (Q− q
µ
A,0

)+O
(‖Q− q

µ
A,0‖2)

=O
(‖Q− q

µ
A,0‖2). (A.17)

By the complex differentiability of"µ, the differential of the map(A *→ q
µ
A,0) is C-

linear at all point, henceqµ
A,0 depends analytically onA ∈Dr . As a result,Gµ : Tn →R

has an analytic extension which we shall still denote byGµ, defined byGµ(A) =
"µ(w

µ
A). Now let

Ur,ω = {θ ∈C: |ω‖Im θ |< r/2}.
SinceFµ(A, θ)=Gµ(A+ ωθ) for all A ∈ Tn, θ ∈ R, Fµ too has an analytic extension,
defined inDr/2×Ur,ω by Fµ(A, θ)=Gµ(A+ θω).

(ii) Now we justify that lµ too has an analytic extension and that the estimate
|Vµ− F̃µ| =O(|∂θF̃µ|2) may be extended to complex values of(A, θ). Let

S ′ =
{
θ ∈C: Im θ ∈

(
−π

4
,
π

4

)}
.

As a straightforward consequence of Lemma 4.6 (whereσ is not small but for instance
equal toπ/6) for µ|f |r small enough, for allA ∈ Dr , θ ∈ S ′, there is a unique
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Q
µ
A,θ ∈ q0+ Y = qθ + Y , there is a uniqueαµ

A,θ ∈C such that‖Qµ
A,θ − qθ‖+ |αµ

A,θ |� ρ

and 
−Q̈µ

A,θ + sinQµ
A,θ = µsinQµ

A,θf (A+ωt)+ α
µ
A,θψθ

∞∫
−∞

(Q
µ
A,θ − qθ )ψθ dt = 0.

Moreover‖Qµ
A,θ − qθ‖ + |αµ

A,θ | =O(µ|f |r ),∥∥∂AQµ
A,θ

∥∥=O(µ|f |r ) (A.18)

andQµ
A,θ , α

µ
A,θ depend analytically on(A, θ) ∈Dr × S ′.

We haveF̃µ(A, θ)="µ(A,Q
µ
A,θ − qθ). In a similar way as in Lemma 4.2 we obtain

∣∣αµ
A,θ

∣∣=O
(|∂θ F̃µ(A, θ)|). (A.19)

Now by Lemma 4.1,

Q
µ
A,0(t + η)=Q

µ
A+ωη,−η(t) (A.20)

for all A ∈ Tn, η ∈ R. Hence, by analyticity, (A.20) holds for allA ∈ Dr , η ∈ R.
In particular Qµ

A,0(η) = Q
µ
A+ωη,−η(0). This implies that forA ∈ Dr/2, Q

µ
A,0 has an

analytic extension defined inUr,ω (providedr/(2|ω|)� π/4). We can write forA ∈Dr/2,
η ∈Ur,ω,

d

dη
Q

µ
A+ωη,−η(0)= Q̇µ

A+ωη,−η(0)= q̇0(η)+O(µ)= q̇0(0)+O(|η|)+O(µ). (A.21)

We already know (Lemma 4.3) that, forA ∈ Tn, there isl̃(A) = lµ(A,0) = O(µ) ∈ R
such thatQµ

A,0(l̃(A)) = π , which writes alsoQµ

A+ω̃l(A),−̃l(A)(0) = π . Hence by (A.18),

for A′ ∈ [−r, r]n andB =A+ iA′ + ωl̃(A),

Q
µ

B,−̃l(A)(0)= π +O(µ|A′|).

Hence, sincėq0(0) �= 0, by (A.21) and by the Implicit Function Theorem, ifµ|ω||A′| is
small enough, there is̃l(A+ iA′)= l̃(A)+O(µ|A′|) such that

Q
µ

A+iA′+ω̃l(A+iA′),−̃l(A+iA′)
(0)= π.

Moreover l̃ thus defined is analytic inDr ′ for r ′ small enough (how small depending
on |ω|). For a givenA ∈ Dr ′ , let q = Q

µ

A+ω̃l(A),−̃l(A). Then, with the abbreviation

α = α
µ

A+ω̃l(A),−̃l(A),{−q̈ + sinq = µsinqf (A+ωl̃(A)+ ωt)+ αψ−̃l(A),
q(0)= π.
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Therefore, by (A.17),

Gµ

(
A+ l̃(A)ω

)− G̃µ(A)=Gµ

(
A+ l̃(A)ω

)− F̃µ

(
A+ ωl̃(A),−l̃(A))

="µ

(
q
µ

A+̃l(A)ω − q0
)−"µ

(
Q

µ

A+̃l(A)ω,−̃l(A) − q0
)

=O
(‖αψ−̃l(A)‖2)

=O
(|∂θ F̃µ(A+ωl̃(A),−l̃(A))|2)=O

(|∂θF̃µ(A,0)|2).
Let lµ be the analytic map defined inDr ′/2×Ur ′/2,ω by lµ(A, θ)= l̃(A+ωθ). Let

Vµ(A, θ)= Fµ(A, θ + lµ(A, θ)).

This is an analytic extension of the map defined in Lemma 4.3. By the previous estimates,

|Vµ − F̃µ| =O
(|∂θF̃µ|2), (A.22)

uniformly for (A, θ) ∈Dr ′/2×Ur ′/2,ω.
(iii) To complete the proof, we remark that, iff,g :U → C are analytic inU ,

open subset ofCm and g �≡ 0, f = O(g) locally in U , then f/g has an analytic
extension defined in the whole setU (see for instance [40], p. 32, Theorem 3.4). Hence
(Vµ − F̃µ)/(∂θ F̃µ)

2 is real analytic inTn × R. As a consequence,hµ(A, θ) given by
(4.19) is real analytic w.r.t.(A, θ). Moreover, aslµ is an analytic function, so islµ.
Finally hµ(A, θ)= lµ(A, θ)+ hµ(A, θ + lµ(A, θ)) is real analytic. ✷
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