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ABSTRACT. — Plasticity, ferromagnetism, ferroelectricity and other phenomena lead to quasi-
linear hyperbolic equations of the form

2

%[u—i—f(u)] + Au=f,

where F is a (possibly discontinuous) hysteresis operator, anig a second order elliptic
operator. Existence of a solution is proved for an associated initial- and boundary-value problen
in the framework of Sobolev spaces. The argument is based on the dissipation properties ¢
hysteresis, and can be applied to a large class of hysteresis operators, including the class
Preisach model.
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RESUME. — Plusieurs phénoménes (plasticité, ferro-magnétisme, ferro-électricité, etc.) condui
sent & la formulation d’'une équation hyperbolique quasilinéaire de la forme

52

m[u-l—}—(u)] + Au=f;

ici F est un opérateur d’hystérésis éventuellement discontinliest un opérateur elliptique du
deuxiéme ordre. On démontre I'existence d’une solution faible pour un probléme aux limites ef
aux valeurs initiales associé a cette équation. L'argument est basé sur les propriétés de dissipati
de I'hystérésis, et s’applique a une large classe d’opérateurs, qui inclut le modele classique c

Preisach.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Introduction

In the last years the mathematical research on hysteresis models has been progressi
see, e.g., [1,4,6,10]. In particular results have been obtained for PDEs containin
hysteresis nonlinearities, including quasilinear parabolic and semilinear hyperbolic
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equations. On the other hand, #f is a scalarhysteresis operatoand A is a second
order elliptic operator, the quasilinear hyperbolic equation

2
%[u%—f(u)]—i—Au:f (1)
has still been looking rather challenging, if we exclude the especially easy case in whicl
F can be represented by one or more variational inequalities, see [10, Chap. VII]. Ir
a single space dimension, existence of a solution of the initial- and boundary-value
problem associated to (1) was proved by Kirdp,6] assuming strict convexity of the
hysteresis loops. Strict convexity is also required by known existence results for the
analogous equation without hysteresis, see, e.g., Di Perna [3].

Although at first sight occurrence of hysteresis may look as an element of difficulty,
its dissipative character suggests that it might allow to prove existence of a solutior
under weaker hypotheses than for the problem without hysteresis. This is shown i
the present paper, in which existence of a solution is proved for the multidimensional
problem, for a large class of (possibly discontinuous) nondegenerate scalar hysteres
operators. Discontinuities in the hysteresis relation account for the occurreffiee of
boundaries Unigueness of the solution remains an open question.

Equations of the form (1) occur in elastoplasticity, pseudoelasticity, ferromagnetism,
ferrimagnetism, ferroelectricity, and in other physical phenomena; however, due to thei
scalar character, applications are essentially restricted to univariate systems. The study
Maxwell equations in three-dimensional domains requires the useeftarhysteresis
model. In [12] the hysteresis relation has been represented by a vector model of [2];
weak formulation has been provided along the lines of the present paper, and existenc
of a solution has been proved for corresponding quasilinear hyperbolic and paraboli
initial- and boundary-value problems, which are respectively obtained by including or
neglecting displacement currents; see [14].

The plan of this paper is as follows. In Section 1 we outline the problem. In Section 2
we shortly illustrate how equations of the form (1) arise in mathematical physics.
In Section 3 we provide a precise definition of tieday and Preisachoperators. In
Sections 4, 5 (6, 7, respectively) we formulate our problemAoe= —A, and prove
existence of a solution faF equal to a relay operator (a Preisach operator, resp.). In
Section 8 we discuss a regularity issue, and deal with a modified formulation in which
the variablex is convoluted in space with a regularizing kernel. Finally, in Section 9 we
point out some remarks, draw conclusions and discuss some open questions.

The results of the present paper have been announced in [13].

1. Theproblem

Hysteresis. A causal operatorF which acts between Banach spaces of time-
dependent functions is callechgisteresis operatavhenever it igate-independenthat
is, [F(u)](e@)) = [F (o ¢)](¢) for any increasing time-homeomorphigmand for any
instants. We allow F to be multi-valued, and extend it to space- and time-dependent
functions by settingF («)1(x, 1) := [F(u(x, -))1(¢); see [10] for details.
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Fig. 1. Relay operator.

A large and important class of hysteresis operators is provided by the dPas@ach
mode] loosely speaking, this consists in a linear combination of more elementary
operators, nameftlelayed) relay operatorsThroughout this paper by we denote any
pair (o1, p2) € R? such thatp; < p,; the corresponding relay operathy is outlined
in Fig. 1. For instance, let(0) < p1; thenw(0) = —1, andw(t) = —1 as long as
u(t) < py; if at some instant reachesp, thenw jumps up to 1, where it remains as
long asu(t) > pq; if later u reaches,, thenw jumps down to—1, and so on. Whenever
p1 < u(0) < py, the initial valuew?(= +1) must be prescribed. The operatoyris causal
and rate-independent; it is the most simple model of discontinuous hysteresis.

Let us now consider a finite Borel measyre(called Preisach measujeon the
half-planeP := {p := (p1, p2) € R% p1 < p,} of admissible thresholds, and define the
Preisach operatof, := [, h,du(p). See Fig. 2 for a simple example.

Let Q be a bounded domain d®RY (N > 1) of Lipschitz class,T > 0 and set
0:=Q x]0,T[. Let f:Q — R be a given function,F a (possibly multi-valued)
scalar hysteresis operator, afich second order elliptic operator; regularity requirements
will be specified afterwards. In this paper we deal with the second order quasilinear
hyperbolic equation

32 :
ﬁ[u +Fw)] +Au=f inQ, 1.1

coupled with the initial and boundary conditions

0 .
u4w=u’+w°, E(u—l—w):ul—l—wl in Q x {0}, (1.2)

u=0 ono2x]0,TJ; (1.3)
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Fig. 2. Preisach model corresponding to a positive meagswaencentrated at three pointsBf

hereu®, w° u!, w!: Q — R are prescribed functions. Integrating (1.1) in time we get
8 t t
5@+?Wﬂ+A/Mywm:uﬂwﬂ+/fmﬂdn:F inQ.  (1.4)
0 0

If the operatorA is in divergence form, Eqg. (1.1) is also equivalent to a first-order system.

2. Applications

In this section we briefly illustrate how equations like (1.1) arise in continuum me-
chanics and in electromagnetism.

Elastoplasticity and pseudoelasticity. Let @ c R® represent a continuum bodly,
and let us denote the displacement vectomubyhe (linearized) strain tensor lay the
stress tensor by, and a distributed load bly. Newton’s law and the definition afyield

82Ml' 3 801-4 1 <81/£i + 8uj

0z = > + hi, gij =5

) inQ G, j=123, (2.1
=1 2

a)Cg a)Cj 8x,~

whence

312 :EZ 2

8281']' 1 8 ( 820’1'[ 820’]'( ) l(Bh, i Bh]
=1

) N0 G,j=1223). (2.2

8Xg8)€j 8x48x,- a)Cj 8x,~

In an elastoplastic material the dependence of the stress on the strain exhibits hysteres
The same applies to austenitic materials exhibiting so-cpedidoelasticityi.e.,shape
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memory In either case we may assume that ao + F1(0), a being a positive constant
andF; a tensor hysteresis operator. This yields an equation of the form (1.1) for tensol
variables; for univariate systems, this is reduced to an equation for scalar variables.

Ferromagnetism and ferroelectricity.  Let €2 represent an electromagnetic mater-
ial, and let us denote the electric field Eythe electric displacement tiy the electric
current density by, the magnetic field by, the magnetic induction bg, the electric
conductivity byo, the dielectric permittivity by, the magnetic permeability by, the
speed of light in vacuum by, and an applied electromotive force pyFor the sake of
simplicity, here we assume that the equationgican be decoupled from those outside.
However, this outline and the results of this paper can be extended to the case in whic
this restriction is dropped.

In Gauss units, the Ampeére, Faraday and Ohm laws respectively read

-

- - oD .
chH=4nJ+¥ in O (Vx :=curl), (2.3)
. 9B .
¢cVXE=—— 1inQ, (2.4)
at
J=c(E+3) inQ. (2.5)

In a ferromagnetic material we can assume tf)a;ti sE. Applying the curl operator
to (2.3), differentiating (2.4) in time, and eliminating D, E, we then get

82B

B .
8 5 +47TO'8— +AV xV x H= drcoV x g in Q. (2.6)

This equation applies to both ferromagnetic and ferrimagnetic materials. The former ar
all metals, and so for slow processes the displacement et%ignis dominated by the

Ohmic term 4:0 . In this case (2.6) is then usually replaced by the so-cadtiatly-
current equatlon

dB , L
47105 +c?VxVxH=4rcoVxg inQ. 2.7)
However, for fast processes (2.6) applies. On the other hand, ferrimagnetic material
may be insulators; (2.6) with = 0 can then be used for either slow or fast processes.

In any of these case8 = H + 47 M, and the magnetlzatlom/I depends with
hysteresis ori . We may then assume thatk = ]—'z(H) whereF; is a vector hysteresis
operator.

If instead we deal with a ferroelectric material, we may assume Bhat MH
Egs. (2.3), (2.4) and (2.5) then yield

3213 IE g
Moz —{—471#08— +C2V><V><E_—4nuaa—f in Q. (2.8)
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Here D = E + 4z P, and the electric polarizatio depends orE with hysteresis; we
may then assume th& = F3(E), whereF; is a vector hysteresis operator.

Special geometries. For univariate systems we are reduced to an equation for
scalar variables, witd = —%22 Under severe restrictions on the geometry and on
the symmetry of the fields, the above setting can also be reduced to a planar problel
for scalar variables. LeD be a domain oR?, Q := D x R, and assume that, using
orthogonal Cartesian coordinatesy, z, H is parallel to the;-axis and only depends on
the coordinates, y, i.e., H = (0,0, H(x, y)). Then

- 92 92
VxVxH=(0,0-A,,H) (Ax,y = + 8—y2> in Q.

Dealing with a strongly anysotropic material, we can also assumeMhat (0, 0,
M(x,y)).lf Vxg:=(0,0,r), Eqg. (2.6) is then reduced to

92 9 :
eﬁ(H + 47 M) + 4;105@1 +47 M) — *A, yH = 4rcor in D. (2.9
We can then assume thét = F(H), whereF is a scalar hysteresis operator. A similar
discussion applies to (2.8).

Remark — We have represented the above phenomena by equations to the form (1.1
This has required differentiation operations, and indeed (1.1) can be expected to hol
just in the sense of distributions. We might also derive equivalent systems. For instance
in continuum mechanics one might just couple the system (2.1) with the constitutive law
¢ =ao + Fi(o). Similarly, in electromagnetism one might couple the Maxwell-Ohm
equations (2.3), (2.4), (2.5) with the appropriate constitutive relations.

3. Hysteresis

In this section we make the definition of the relay and Preisach operators precise, an
specify the functional framework.

Relay operator. Let us fix any pairp := (p1, p2) € R?, p1 < po. FOr anyu e
C%([0, T)) and any¢ € {—1, 1}, we setX, := {t €10, 1]: u(r) = p1 or po} and define
the functionw = h,(u, £): [0, T] — {—1, 1} as follows:

-1 ifu(0) <p1,
w(0):=4¢ & if pr<u(0) < py, (3.1)
1 ifu(0) > py,

w0 if X, =0,
w():=<¢ -1 if X, # @ andu(maxX,) = p, vt €10, T]. 3.2)
1 if X; # ¥ andu(maxX,) = p»,
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Any functionu € C°([0, T') is uniformly continuous, hence it can only oscillate a finite
number of times betweep, and p,, if any. Thereforew can just have a finite number
of jumps between-1 and 1, if any; hence the total variationfin [0, T] is finite, i.e.,

w e BV, T).

Completion. The relay operator is not closed in natural function spaces, because
of its discontinuity, cf. [10, Chap. VI]. A suitable extension of this operator is then
needed, in view of coupling with PDEs. Following [10], we introduce the (multi-valued)
completed relay operatot,. For anyu € C°([0,T]) and any¢ € [—1,1], we set
w e k,(u, &) ifand only if w is measurable if0, T'[,

-1 if u(0) < pq,
w0):=4¢§& if pr<u(0) < py, (3.3
1 if u(0) > py,

and, for anyr € 10, T'],
{-1} if u(t) < pa,

w(t) e [-1,1] if p1<u(t) < po, (3.4)
{1 if u(t) > pa2,

if u(t) # p1, p2, thenwis constant in a neighbourhood: of
if u(t) = p1, then w is nonincreasing in a neighbourhood of (3.5)

if u(t) = po, then w is nondecreasing in a neighbourhood. of

The graph ofk, in the (1, w)-plane invades the whole rectangje, p-] x [—1, 1], cf.
Fig. 3. Moreoverw € BV(0, T) for anyu € C°([0, T1), by the argument we used fhy,.

The operatok,, is the closure of:, in certain function spaces which are relevant for
the analysis of PDEs, cf. [10, Chap. VI]. The definitionigfcan also be justified by
means of the Preisach model; see below at the end of this section.

Reformulation of the relay operator. In view of the analysis of PDEs, it is
convenient to provide an alternative formulation of the completed relay operator. It is
easy to see that (3.4) is equivalent to the system

(w—=1 @ —p2) =20,
(w+D@wm—p1) >0 ae.in]o,TI. (3.6)

lwl <1,
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Fig. 3. Completed relay operator. Here the gairw) can also attain any value of the rectangle
[p1, p2] x [-1,1].

If we W10, T), the dynamics (3.5) is tantamount to

t

/ dw dw\ ™" dw\ ™
J Eu dr :0/|:<E) 02 — (E) ,01} dr =V, (w,t) Vte]0,T]. 3.7)

In continuum dynamics and in electromagnetism a quantityJdikéw, ¢) represents the
dissipated energy.

If the pair (1, w) moves along a closed loop [@, 7], then¥,(w, t) equals the area
of the region bounded by the loop. The condition (3.7) is extended ®©BV(0, T),
provided that we set

t

t
V,(w,t) ::/pzdw+—/p1dw_ vVt €10, T],
0 0

and interpret the latter expression as a Stieltjes integral. Notice that

t t

t t
‘I’p(w,t)=/pzdw+—/p1dw‘= pz;pl/dw+p2;pl/ldwl
0 0 0 0

t

=22 P )~ w(o)] +¥/|dw| Vi €]0.T], Yw € BVQ.T).
0

(3.8)

and that the total variatiorfé |dw|, equals the total mass of the Borel measurg/dk in
([0, 1]); i-e-,fé |[dw| = ||[dw/dt || coo,y -
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The condition (3.4) entails thgf u dw < ¥, (w, 1), independently from the dynamics;
(3.7) is then equivalent to the opposite inequality. Therefore the system (3.4) and (3.5
is equivalent to theonfinement conditio(8.6) coupled with thelissipation inequality

t

/u dw > W¥,(w,t) Vte]0,T]. (3.9)
0

Whenevem: € C°([0, T]) NBV(0, T), (3.9) also reads
/u d(u + w) — %[u(z)z —u(0)?] > ¥,(w,t) Vtrelo,TI. (3.10)
0

Notice that (3.9) is also equivalent to the variational inequality

t

/(u —v)dw >0 Vve[p, p2], Ve €]0,T]. (3.12)
0
The above formulation of the relay operator can be extended to space-distribute
systems, just assuming thatx, -) € C°([0, T]), w(x,-) € BV(0, T), and (3.3), (3.6)

and (3.9) hold a.e. i®. Let us setQ, := Q x 10, ¢[ for any¢ > 0. In alternative, (3.9)
may also be extended by requiring that

< ow
cop\% 7= )
9T / cog,y

O

w
0T

o,y

=:/\I—'p(w,t) Vi €10, T]. (3.12)
Q

Here we denote the total mass of the Borel measkyew, ¢) in Q by Jo W, (w, 1)
(without the d), and reserve the notatiofy, ¥, (w, 1) dx (with the dx) for the case in
which W, (w(x, -), t) is Lebesgue integrable.

Preisach integral. Let u be a finite Borel measure on the half-plaRe= {p :=
(01, p2) € R?% p1 < pa}, and define theompleted Preisach operatég,, := Jpk,di(p).

More precisely, for any: € C°([0, T']) and any measurable functign? — {—1, 1},
we setw € IC,(u, §) iff there exists a measurable function: P x 10, T[ — [—1, 1]
such thatw, € k,(u,&,) a.e. inP x ]0, T[ (w.r.t. the product of the Preisach and
Lebesgue measures), atid= [, w, du(p) a.e. in]0, T[. For anyp € P the inclusion
w, € k,(u, &,) can be represented by (3.3), (3.6) and (3.9).

If the measure: has no masses concentrated either in points or on lines parallel to
any coordinate axis, thek, operates inc%([0, T1) and is continuous with respect to
the uniform topology. Under further hypotheses;anC,, operates in smaller spaces, or
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is invertible, or fulfils other properties; for instanceuif> 0 then any hysteresis branch
is nondecreasing. For these and other properties of the Preisach model see, e.g., [
Chap. IV]. Notice thatC,, = H,, whenever the measuyeis such that{,, operates in
Co([0, T).

In view of latter application, we notice that, wheneyer+ p; is u-integrable orP,
by (3.8) we have

/ W, (w,, 1) du(p) = / w [w, (1) — w,(0)] duu(p)
A A

+//p2;pl<o/|dwp|>du(p>

vVt €10, T], V measurable set C P. (3.13)

Finally, we briefly outline how the definition of the completed relay operatgyr,
can be justified by means of the Preisach model. According to this model eact
relay i, corresponds to a Dirac measure, concentrated at the point € P. In
order to approximate the relay, it is then natutalsmear outthat measure by a
sequence of absolutely continuous measujes}, having abell-shapeddensity w.r.t.
to the Lebesgue measure. It is not difficult to show thatpas oo, the Preisach
operators corresponding to the approximating measures converge to the completed rel
operatork,, pointwise inC°([0, T]).

4. Weak formulation of the PDE for the relay operator

We shall deal with Eq. (1.1) foA := — A (associated with the homogeneous Dirichlet
condition). We assume that

u®, wl e L3(Q), FelL?0,T; HY(Q)),
(4.1)
Wl <1, wl=-1ifu’<p;, w’=1ifu’>p, ae.inQ,
and provide a weak formulation of the initial- and boundary-value problem associated
with Eq. (1.4).
We denote the duality pairing betweéh1(Q2) and H}(R2) by (-, ), and the trace
operator byyp.

PROBLEM 1.— To find U € HY(Q) and w € L*(Q) such thatyoU = 0 a.e. in
(Qx{0HU @R x]0,T]), |lw <lae.inQ,anddw/dt € C°(Q)’. Moreover, we set

oU . .
ui=—— a.e.inQ, w(-,0:=w’ ae.inQ, (4.2)

and require that

T

//{(uo—i—wo—u—w)z—’z—i—VU-Vn}dxdt:/(F,n)dt
0 0
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Vne CY(Q), n=0ae.in(Q x {T}) U (82 x 10, T[), (4.3)

(w—=Du—-p2) 20, (w+D@u—-p)=>0 ae.ingQ, (4.4)

t

1 2
= [uGe, * + | VU, )| = u®@)?] de + [ W, (w, 1) < [ (F,u)dr
fora.a.r €10, T[. (4.5)

See (3.12) for the definition of, W, (w, 7).
The initial condition in (4.2) is meaningful, on account of the regularityof

Interpretation. (4.3) is equivalent to the system
ad .
a(u+w)—AU:F in HX(Q), (4.6)
u+wl—o=u’+w’ in HYQ). 4.7
Differentiating (4.6) in time, we get
2

%(u—{—w)—Au:f inD'(Q). (4.8)

A comparison of the terms of (4.6) yield$(u + w) € L2(0, T; H~*()); the initial
condition (4.7) is then meaningful.

For a moment let us assume that L?(0, T; H3(S2)). Multiplying (4.6) by« and
integrating in time, we get

t
1
/<ai(u+w)—F,u>df+§/|VU(x,t)|2dx:0 fora.are]0,T[; (4.9)
T
0 Q

(4.5) is then equivalent to

[/ 1
O/<E(u+w),u>dr - 552/[14()(’[)2_1,{0()()2] dx > /\Dp(w(x, ), 1)
9

fora.a.r €10, T[. (4.10)

This inequality can be compared with (3.10), which jointly with (3.6) and with the
second condition of (4.2) represents the hysteresis relation

w e k,(u, w’) a.e.inQ. (4.11)

Therefore we can regard Problem 1 as a weak formulation of an initial- and boundary-
value problem associated to the system (4.6) and (4.11).

Finally, we notice that, on account of the equivalence between (3.9) and (3.11),
in Problem 1 (4.5) might be replaced by the following variational inequality, for any
v e HY(Q) such thaip; <v < ppae.inQ,
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| =

2/[u(x,t)2+ yVU(x,z)yz—uO(x)Z]dx+/[u(x,z)v(x,z)—uo(x)v(x,O)]dx
Q

t

+/ dr/[u— + VU - Vv} dx < /(F,u —v)dr fora.a.re]0, T[, (4.12)
0
which is formally equivalent to

/ ou
dr {—(u—v)+VU-V(u—v)} ,u—v)ydr fora.a.re]0, T[. (4.13)
o/ /ar o/

Q

5. Existenceresult for therelay operator

At first we recall a result of interpolation of spaces of vector-valued functions.

LEMMA 5.1 (see, e.g., Triebel [9, p. 128])Let A and A; be Banach spaces,
subspaces of the same separated topological vector space. Let

1 1
1< po,pr<+00, 0<6<1l —=0—+(1- 9)— (5.1)
p po pP1

Denoting by(Ao, A1)(e; the complex interpolation space, we then have
(L”O(Q; Ag), LP1(Q; Al))[el = L”(Q; (Ao, Al)[g]). (5.2)

This statement allows us to derive the followiogmpensated compactnessult.
LEMMA 5.2. - Letz, w and the sequencds,,}, {w,,} be such that

Zm— 2z weakly inL?(Q) N H (0, T; HY(Q)),

w, — w weakly star inL*°(Q),

Wil L1:Bv(0.7)) < COnstant (5.3)

// Wy zm e dlf — // wz dy dr. (5.4)
0 0

Proof. —Let 0, p, r be such that

Then

0<06<l, 2<p<+o0, O<r<%, %+1—9=%.

Obviously these conditions are nonempty. By Sobolev inclusion and by interpolation,
we have

BV(0,T) C H'(0,T), (L*(0,T), H'(0, T)) = H"*~(O, T).

Lemma 5.1 then yields
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L®(Q)NLY(2;BV(0,T)) C L®(Q)NL*(Q; H' (0, T))
C (LP(R:; L*(0,T)), L*(: H'(0,T))) 4,
=L*(Q: (L%0,T), H' (0, 1)) ,,) = L*(2; H'*"(0, T)).

Note that O< r(1 — 0) < 2 < 1. Again by interpolation, see, e.g., Lions and
Magenes [7, Chap. V], we also have

LAQ)NH™(0,T; HY(Q)) = L3(Q; L*(0, T)) N HY(2; HX(0, 7))
C L3 H 90, 7)) = L(Q; H' 90, 7))’
with compact injection. Therefore (5.4) holds.

THEOREM 5.3 (Existence). -f (4.1) is fulfilled andF € WY(0, T; H1(Q)), then
there exists a solutiof/, w) of Problem1 such that

UeWh®(0,T; LA(Q)) N L>(0, T; H}(S)). (5.5)
Proof. —(i) Approximation. Let us fix any: € N, setk := T/m, u® :=u°, w? := w°,
Fp, =1 0% Fi(.0drae.inQ, Ff, = Fa(nk), Fi:= FjL, + F3, forn=1,....m,
and
{_1} if v < P1,
[-1&] if v=py,
G,(v,8):=1¢ {§} if o1 <v<py, V& eRx[-11], cf.Fig.4. (5.6)
[£,1] ifv=py,
{1} if v> po,

We are now able to introduce a time-discretization scheme of implicit type for our
problem.

O
o
ey

Fig. 4. Graph of the multi-valued functia®, (-, £), for a fixed¢ e [-1, 1].
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PROBLEM 1,,. — To findu”, € H}(Q) andw” € L>(Q) forn=1,...,m, such that

wk e G,ul,wht) ae inQforn=1...,m, (5.7)
u” _un—l wt — wn—l n ) ]
" - n_ 4 - o —k;Au{n:F; in H-1(Q),forn=1,...,m. (5.8)

For anyn and for a.ax € 2, the maximal monotone functioG , (-, w;’n‘l(x)) is the
subdifferential of a lower semicontinuous and convex functigis, x), which depends
measurably orr. The functional

Jy v
U2 k2 n—1
/[5 8 (v00), %) + SV + K2 Y V™t Vo — (3™ 4w v dr
Q j=1
—k(F",v) (5.9)

is (strictly) convex, lower semicontinuous and coercive Bf(S2). Hence it has a
(unique) minimizeru”, anddJ"(u") > 0 in H~1(Q). This inclusion is equivalent to
the system (5.7) and (5.8).

(i) A priori estimatesPreliminarly, for any family{v” },—1. . of functions — R
let us denote by,, the time interpolate of? :=v°, vl,...,v" a.e. inQ, and set
U (1) :=0" a.e.inQ, if (n — Dk <t <nk,forn=1,...,m.

Let us multiply Eq. (5.8) byu”,, and sum fom =0, ..., ¢, forany ¢ € {1, ..., m}.
By (5.7) we have

4 4
S (wh = wi M, =3 [(wh —wi ) 2 — (wh —wi ) p1] =Wy (wy, L)
n=1 n=1
a.e.inQ,fore=1,...,m. (5.10)

SettingU)) := kZ'}:l u/ a.e.inQforn=1,...,m, we then get

1 14
5 [T+ VUL = @) v + [ @, ety de <D (Fy )
Q Q

n=1
fore=1,...,m. (5.11)

A standard calculation then yields

W, (W, < Cy. (5.12)

Ul WL0(0,T; L2(Q))NL>®(0,T; HY(Q))* ) HLOO(O,T;Ll(Q))

(Throughout this paper bg1, C», ... we denote suitable positive constants independent
of m.) Hence by (3.8) we get

lwm | L1@:BvO0, 1) < Ca2- (5.13)
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(iii) Limit procedure By the above estimates, there existw such that, ag: — oo
along a suitable sequence,

U, — U weakly star inW*>(0, T; L*(2)) N L™®(0, T; Hy (X)), (5.14)
w, — w weakly star inL>°(Q), (5.15)

ow,, ow 0, A
Py — o weakly star inC*(Q)". (5.16)

SettingU,, := [y itn (-, T) dr a.€.inQ, (5.8) reads
0 _
E(Mm +wy) — AU, = F, in H-X(), a.e.in]o, T, (5.17)

and passing to the limit we get (4.6), whence (4.3) follows on account of the initial
condition (4.7). (5.7) entails

(wm - 1)(12141 - ;02) 2 07 (wm + 1)(L_tm - ,01) 2 0 a.e. inQ, (518)

whence, for any nonnegativec D(Q),

/<mr4mm—mwmnmw>a /(mﬁdmm—mwwnmw>a

0 0
(5.19)

Applying Lemma 5.1 to the sequencis,} := {u,,¢} and{w,,}, we have

//wmﬁm(pdxdte//wuwdxdt.
o o

//li)mitmgodxdt% //wmpdxdt,
o 0]

as||w,, — wyllr2¢) — 0. Passing to the limit in (5.19) we then get

Hence

[[w-vw-pexndidr =0, [[w+nw=pope.nded >0
0 0
for any nonnegative € D(Q); this is equivalent to (4.4). (5.11) yields

t
1 _ _
z/[ﬁi VO~ @07 d +/\I/p(wm,t)dx < /<Fm,ﬁm>dr
Q Q 0
fora.a.r €10, T[. (5.20)

Integrating in]0, T[ and passing to the inferior limit as — oo, by lower semicontinuity
we finally get an inequality equivalent to (4.5).
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6. Weak formulation of the PDE for the Preisach operator
We assume that
w is afinite positive Borel measure @h:= {p := (p1, p2) € R?: p1 < p2},  (6.1)

and equip2 x P and Q x P with the product of the Lebesgue and Preisach measures,
LN x u (LYY % u, respectively). We also set

// \pr(wp,l)IZ/d,bL(,O) pfzrpl //[wp(x,r)—wfj(x)]dxdr
P O

QxP
P2 — pP1 aw,o
2 9t llcog xpy

and reserve the notatioff,, » ¥, (w,, t) dx du(p) for the case in which,(w, (x, -), 1)
is Lebesgue integrable w.r£" x . We assume that

+ | vt €10, T], (6.2)

e l?(Q), Fel*0,T;HQ), w’elL®Qx7P), 6.3
|w2| <1, w2=—1 if u® < pa, wg:l iful’>p, a.e.inQxP,

and provide a weak formulation of the initial- and boundary-value problem associatec
with (1.4), for F equal to the Preisach operator.

PROBLEM 2. - To findU € H'(Q) andw € L™(Q x P) such thaty,U =0 a.e. in
(Qx{0HU@R %10, T, |lw| <la.e.inQ xP,anddw/dt € C°(Q x P)’. Moreover,
we set

U= % a.e.inQ, w° ::/wg du(p), W ::/wp du(p) a.e.inQ, (6.4)
P P

w, (-, 0):= wg a.e. inQ x P, w0 = /wg du(p) a.e.ing, (6.5)
P

and require that
T

//[(u°+w°—u—w)g—’z+VU-vn]dxdt:/(F,mdz
) 0

Vne CY(Q), n=0ae.in(Q x (T}) U (dQ x 10, T[), (6.6)

(w, =D —p2) >0, (w,+Du—p1) >0 ae.inQx7P, (6.7)

1 2 /
= [uG, 0+ VU (x, )] — u®(x)?] dx + U, (wy, 1) < [ (F,u)dr
fora.a.r €10, T[. (6.8)
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Interpretation. (6.6) is equivalent to the system
ad .
E(u—l—ﬁ))—AU:F in HX(Q), (6.9)

(u+0)|o=u’+a° in HXQ). (6.10)

Similarly to what we saw in the interpretation of Problem 1y i L2(0, T; H}(2))
then (6.6) yields (4.8), here with in place ofw. (6.8) is then equivalent to

t a y 1
O/<E(u+w),u>df > E![“(x,l)z—uo(x)z]dx"‘/_/ Yo (wp, 1)

QxP
fora.a.r €10, T[. (6.11)

This can be regarded as a weak formulation of the inequality (3.10) a&xirP; the
opposite inequality follows from theonfinement conditio(8.6). (By displaying the d

in the integral expression, we still distinguish the Lebesgue integr&l rom the total
mass of a Borel measure, cf. Section 3.) (6.7) and (6.8) then account for the hysteres
relation

W e K, (u, w®) = /kp (u, wg) du(p) in]0, T, a.e.in. (6.12)
P

Therefore Problem 2 can be regarded as a weak formulation of an initial- and
boundary-value problem associated to the system (6.9) and (6.12).

7. Existenceresult for the Preisach operator

We still assume that is a finite positive Borel measure on the Preisach half-plane
P :={p = (p1, p2) € R% p; < po}. The following extension of Lemma 5.2 can be
justified by the same argument.

LEMMA 7.1.—. Let A be any measurable subset Bf Assume that, w and the
sequences$z,, }, {w,,} are such that

Zn — z  weakly inL?(Q) N H~1(0, T; HY()), uniformly w.r.t.p in A,
w,, — w weakly star inL*(Q x A), (7.2)
1w Il L1 @x 4:Bv(0.7)) < CONstant

Then
/du//wmzmdxdta/du//wzdxdt. (7.2)
A 0 A )

THEOREM 7.2. — Assume that6.1) and (6.3) hold, thatF € W10, T; H1(Q)),
and that

p1+ p2 € LY(P; ). (7.3)
Then there exists a solutiqi/, w) of Problem2 such that

UeWh>(0,T; LAQ)) N L™(0, T; H}(Q)). (7.9)
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Proof. —This argument is partly similar to that of Theorem 5.3.
(i) Approximation.Let us fix anym € N, and definet, u%, w?, F", G, andg, as in
Section 5.

PROBLEM 2,,. —To findu" € H}(Q) andw” € L>®(Q x P) forn =1,...,m, such
that, settingw;, := [»(w},), du(p) a.e.in,

(wp), €Gplup, (wyh),) aein@xP,forn=1...,m, (7.5)

m

n 1 n
i k’" + = - m —k;Au;:Eg in H7Y(Q),forn=1,...,m. (7.6)

For anyn the functional

I

v? k? =l
/[E +/gp(v,x) du(p) + o Vo + K23 Vah - Vo — (™ + )
Q P j=1
—k(F,,v) (7.7)

is (strictly) convex, lower semicontinuous and coercive K($2). Hence it has a
(unique) minimizery),, and af;;(ufn) 50 in H~1(Q). This inclusion is equivalent to
the system (7.5) and (7.6).

(ii) A priori estimates.We shall denote piecewise-linear and piecewise-constant

interpolate functions as in Section 5. Let us multiply Eq. (7.6)kby,, and sum for
n=1,...,¢ forany¢ e {1,...,m}. Integrating (5.10) irP, we have

12
S — =3 [ ), = @), duto) > [ [, (), 08 dato)
P

n=1 n=1»P
a.e.inQ,fore=1,...,m.
We then get

1 l

o [ 1)+ VUL = @0 v+ [ [, (o), ) dechatp) <k D (Fpuy)
Q QxP n=1
a.e.inQ,fore=1,...,m. (7.8)

A standard calculation then yields

U ”W1~°°(0,T;LZ(Q))OL“’(O,T;H(}(Q))’ ‘pp((wm)pv ) HLoo(o,T;Ll(QxP)) <GCs. (7.9)

(iii) Limit procedure By the above estimates, there existw such that, ag: — oo
along a suitable sequence,

U, — U weakly star inW*>(0, T; L*(2)) N L™®(0, T; Hy (X)), (7.10)

w, — w weakly star inL*°(Q x P). (7.12)
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SettingU,, := [y itn (-, T) dr a.€.inQ, (7.6) reads

d _
5(um +W,) — AU, =F, in HY(Q), a.e.in]0, T[, (7.12)

and passing to the limit we get (6.9), whence (6.6) follows on account of the initial
condition (6.10).
(7.5) entails

[(wm),o - 1] (lzm - ,02) 2 07 [(wm),o + 1] (lzm - ,01) 2 0 ae. mQ X P, (713)
whence, for any nonnegativee D(Q x P),

/ du(p) / [ @)y~ U — porodece >0,

(7.14)
/ due(p) / [ 1), + LG = poygdecr >0
P o

We claim that (see below for the argument)

/d,u(p) //(wm)pﬁmwdxdta/du(p) //wpmpdxdt. (7.15)
P 0 P Q

Passing to the limitin (7.14), we then get a system of two inequalities equivalent to (6.7).
(7.8) yields

t

/[ + VU, y — %?] d.x+// o (W) s )dxdu(p)g/@m,ﬁm}dr

Q QxP 0
fora.a.r €10, T[. (7.16)

Integrating in]O, T[ and passing to the inferior limit as — oo, by lower semicontinuity
we get an inequality equivalent to (6.8).

(iv) Proof of (7.15). For any > 0, there exist$ > 0 such that, settin®; := {p :=
(p1, p2) € R% po — p1 > 8}, we haveu (P \ Ps) < e. By (3.13), we have

/du(p)//]d(wm)p 6// dx due(p >/p2 2L d(wn(x. ), |

QxPs
5 // (wm),o dXdpl,(p)
QxPs
2 +
— g / /P P2 5 P1 [(Wm)p(x, T) — (wm)p(X, 0)] dx dM(,O)
QxPs

// p (W), T) dx die(p) + // lp2 4+ paldx du(p).  (7.17)

QxP QxP
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By (7.9), w,, is therefore uniformly bounded in(Q2 x Ps; BV(0, T)). We can then
apply Lemma 7.1 to the sequendegs} = {u,,¢} and{w,,}, which yields

[ duo) [ [ @ingdsdt > [ duco) [ [ w,updar (7.18)
Ps 0 Ps 0

Finally, we have

‘ [ o) [[@nanpard - [ aueo) [f (wm>pam<pdxdr‘
P 0 Ps [¢)

<‘/ du(p)//mmwdxdr\<u(7>\7>,s>||ﬁm||L1(Q)rQna7;<<o—>0 ase 0
P\Ps 0

uniformly in m. Therefore (7.18) yields (7.15).

Remarks— (i) If F € L0, T; L%(Q)) + W10, T; HX(Q)), the formulation of
Problems 1 and 2 and the corresponding existence results are easily extended.

(i) Theorems 5.3 and 7.2 can be extended i is replaced by any (nondegenerate)
self-adjoint, second order, elliptic operator in divergence form with constant coefficients.
The same applies if terms Iik%} or %—'f are included in the hyperbolic equation.

8. A mean field model

A class of parabolic equations. The representation of the relay operator based on
the confinement condition (3.6) and on the dissipation inequality (3.9) can also be use
to deal with quasilinear parabolic equations with hysteresis of the form

%[u + F ()] + Au= f. (8.1)

The eddy-current Eq. (2.7) is an example of this class. Existence of a solution for
a corresponding initial- and boundary-vale problem can be proved via approximation
derivation of a priori estimates, passage to the limit. Here the main estimates are derive
multiplying the approximate equation by the approximatéhis applies also ifd is not
self-adjoint. See also Problem 5 belowAlis self-adjoint, stronger regularity results can
be proved multiplying the approximate equation by the approxir%ﬁtsee, e.g., [10,
Chap. IX].

A regularity issue. The formulation of Problem 1 rests on two issues:

(i) the use of the completed relay operatoksg, in place of the standard relay
operatorsh ,;

(i) the representation of the condition (3.5) via the inequality (4.5); on account
of Eq. (4.6), this inequality isormally equivalent to (4.10). The latter formula
would be meaningful only if one were able to give a meaningtg-1 .o, (3 (u +
w)/ar,u)Hg(Q) dz, or to some other duality product of the same functions
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over Q,. Notice thatdw/dt is just a Borel measure ove?, andu can hardly be
expected to be an elementbf(0, T; H3($2)) or to be continuous i®. Anyway
this shortcoming occurs neither for the ODE

d2
@(u +w)+au=f, wek,(u)in]0,T[ (a: constant> 0), (8.2)

nor for the parabolic Eq. (8.1) in a single dimension of spaced ifs self-
adjoint. In the latter case indeed, by multiplying the approximate equation by
the approximatéu /dz, one can derive a uniform bound for the approximata
HY0, T; L3())NL>(0, T; H()), and the latter space is compactly imbedded
in C°(Q), for N = 1.
Concerning equations including the Preisach opet&tgif this operates i€ °([0, 7'])
then it is equivalent to deal with, or with the originary relays;,,. In the other cases the
extension (i) is actually needed. Indeed, even for the Cauchy problem for the ODE (8.2
one can easily construct a functighfor which the only solution is such that does
attain values if—1, 1].

A mean field model. The above regularity problems are removed if Eq. (1.1) is
coupled with a relation of the form

w=F,(u*xn)xn inQ. (8.3)
Heren is abell-shapednollifier, for instance,

2
n(x) = (1) "2 exp(—%) Vx € R3 (A: constant- 0);

by « we denote the convolution in spacex n(x) := [gsu(x — y)n(y)dy for any
x € Q. Prior to convolution, here: has been extended with value 0 outside The
transformationu — u % n may be interpreted as a length-scale transformation from
mesoscopic to macroscopic variables; (8.3) then represemgam fieldhysteresis
relation.

Let us assume that

u®,%e LX(Q), Fel®(0,T; H (),
(8.4)
129<1, P=—1iful<p, 2=1ifu’>p, ae.inQ,

fix any a > 0, setX, := C°([0,t]; H“()) for any ¢ > 0, and definefs W, (-, 1) as
in (3.12).

We can now provide a weak formulation of the initial- and boundary-value problem
associated with (1.1) and (8.3). For the sake of simplicity, here we just deal with a single
completed relay, i.e., we assume thats a Dirac mass concentrated at a point of the
Preisach plane.

PROBLEM 3. - TofindU € W (0, T; L3(Q2)) N L>®(0, T; H}(Q)) andz € L>(Q)
such thatyoU =0 a.e. in(2 x {0}) U (02 x 10, TD, |z] < la.e.inQ, anddz/adr €
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C%Q)'. Moreover, we set

oU . .
U= TR w:=zxnae.inQ, z(0:=z" w':="«y ae.inQ, (8.5)

and require that

T

//{(”0+w0‘”‘w)a—n+VU'Vn]dxdt=/<F,n>dz
0

at
0

VneC*Q),n=0a.e.in(Q x (T}) U (3 x 10, T[), (8.6)

=D@xn—p2) 20, (+1u*xn—p1)=>0 ae.inQ, (8.7)
ow S 1 2 021 dy ”
x;<¥’u+w>x, > Eg/[w(x,t) —w (x)?] +/ o(z, 1)
Q
fora.a.r €10, T[. (8.8)

Interpretation. In Section 4 we saw that (8.6) is equivalent to the system (4.6)
and (4.7). By the regularity we assumed fbandz, we have: +w € L®(0, T; L3(RQ));
moreover a comparison in (4.6) yields- w € W1>°(0, T; H~1(Q)). Henceu +w € X,
for anyr € 10, T[, by a generalization of the Ascoli theorem. ﬁd\}§ = j—j x1 € X;, the
duality pairing that occurs in (8.8) is meaningful. As

/dr/a—zu*ndx:/dr/a—wudx
J 0T 0T

Q Q Q

0 1
:/ dr/—w(u—i—w)dx— —/[w(x,t)z—wo(x)z]dx,
ot 2
Q Q Q
by (3.6) and (3.10), (8.7) and (8.8) represent the hysteresis relation

zek,(uxn,w’), e, wek,(uxnw’) xn ae.inQ. (8.9)
In conclusion, Problem 3 is a weak formulation of an initial- and boundary-value
problem associated to the system (4.6) and (8.9).
THEOREM 8.1. — Under the hypothesi&.1), Problem3 has a solution.

The argument is similar to that of Theorem 5.3. Problem 3 and the above existenc:
result can be extended to a general Preisach operator along the lines of Sections 6, 7.
Convergence to an equation without hysteresis. Let us now fix anyr € R, and
deal with the behaviour of the solution of Problem 3vas- (o1, p2) — (, 7).

PROPOSITION 8.2. — For any p € P, there exists a solutiogU,, w,) of Problem3
such that, ap — (r, r) along a suitable sequence,

U,— U weakly star inW">(0, T; L*(Q2)) N L™®(0, T; Hy (X)),
w, — w weakly star inL*(Q). (8.10)



A. VISINTIN/ Ann. I. H. Poincaré — AN 19 (2002) 451-476 473

Moreover w := z x n, where (U, z) is a suitable solution of the following reduced
problem.

PROBLEM 4. — To findU € W>°(0, T; L?(2)) N L>(0, T; H}(Q)) andz € L>(Q)
such thatyoU =0 a.e. in(2 x {0}) U (92 x 10, T[), and such that, setting

0

aU . .
= w:=z*n ae.ingQ, w’:=7"«n ae.inQ, (8.11)

U =—,
ot

T

//{(uo+wo—u—w)aa—?+VU-Vn]dxdt:/(F,n)dt
0 0

vne CY(Q),n=0a.e.in(Q x {T}) U (32 x 10, T[), (8.12)

zesignuxn) a.e.inQ. (8.13)

The argument is fairly standard. In particular, notice that in the limit we get
z—Dw*xn—r)=>0, (z+Duxn—r)>0 a.e.inQ,

which is tantamount to (8.13). Therefore Problem 4 is an initial- and boundary-value
problem for the inclusion

a {BU
at

. (oU .
o +S|gn(g * n) * n] —AU=F inQ. (8.14)

The latter result can also be extended to a general Preisach model; in this case in t
limit one getsz € «(u * n), a being a bounded maximal monotone graph.

9. Remarks and conclusions

About the Preisach model. The Preisach half-plan® is open, i.e., it does not
contain any point of the main diagongh € R% p; = p,}. Therefore the two curves
that bound the major hysteresis loop can only merge along horizontal branches. Fc
instance, the hysteresis relations outlined in Fig. 2 and in Fig. 5(a) can be represented
the formw = F, (1), F,, being a Preisach operator. This does not apply to Fig. 5(b),
which can only represent a relation of the fonm= F,(u) + ¢(u), for a suitable
nonvanishing real functiorf. (Of course, the latter relation might also be represented
by a Preisach operator if we allowed the suppornt @b intersect the main diagonal. But
other drawbacks would then arise.)

If the w vs. u relation is of the form represented in Fig. 5(b), Theorem 7.2 does not
apply. However, DiPerna [3] proved existence of a solution for the equation

2
ﬁ[wr@(u)] —Au=f,
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Fig. 5. Examples of hysteresis loops. Only the first one can be represented in the form
w = F,(u), for a Preisach operatdf,,.

for any monotone and strictly convex functign One might then try to prove existence
of a solution for the equation

2

o2 [u + Fu(u) + (p(u)] —Au=f inQ, 9.1)

by combining the above technique with that of DiPerna.

Other equations. (i) The existence results of Sections 5, 7 can easily be extended
to degenerate hyperbolic equations of the form

9? du . 9.2
sl + s+ Au=f inQ, (9.2)
whereF,, represents a Preisach operator. As it is easy to see, here one gets the regular
U e HY0,T; L*Q)) in place ofU € W->(0, T; LA(2)). If in Eq. (9.2) the termi* is
dropped, existence of a solution is an open question.

(ii) As a further example, let us couple the degenerate quasilinear parabolic equation

%}"M(u) +Au=f inQ (9.3)

with an initial condition forw := F,, («) and with the homogeneous Dirichlet condition
for u. Foranyf e L?(0, T; H1(Q)), we can formulate this problem as follows.

PROBLEM 5. — To findu € L%(0, T; H}(Q)) andw € L>(Q x P) such thafjw| <1

a.e.inQ x P, 2 ¢ C%(Q x P, and such that, setting (-, 0) := w a.e. inQ x P,



A. VISINTIN/ Ann. I. H. Poincaré — AN 19 (2002) 451-476 475

//[(wo—w)i—?+Vu-Vn]dxdt:/T(f,n)dt
0 0

VneCHQ),n=0a.e.in(Q x (T}) U (82 x 10, T[), (9.4)

(w, =D —p2) >0, (w,+Du—p1) >0 ae.inQx7P, (9.5)

dr [|Vux, t)|Pdr + W,(w,, 1)< [(fiuydr foraa.rel0, T[. (9.6)
[«] [ werns]

Existence of a solution can be proved by a technique similar to that of Section 5. This
formulation and the existence result can easily be extended to the Preisach model.

10. Conclusions

Several phenomena yield second order quasilinear hyperbolic equations with hystere
sis of the form (1.1) for vector variables; in one-dimensional domains, the latter are
reduced to scalars. However our analysis technique applies to scalar equations in d
mains of any dimension. It also allows fdrscontinuoushysteresis relations, thus for
the occurrence dfee boundaries.

We provided a weak formulation of an initial- and boundary-value problem for (1.1)
in the framework of Sobolev spaces, at first orequal to aelay operatorthen for the
Preisach modelFor these problems we proved existence of a solution via approximation,
derivation of a priori estimates, passage to the limit. The dissipative character of
hysteresis provided a uniform estimate fap,,/d¢ in L(Q); this allowed us to pass
to the limit in the hysteresis relation, via a compensated compactness argument.

We took profit of occurrence of hysteresis to prove stronger results than are knowr
for the corresponding problem without hysteresis. The equation with hysteresis car
then be used to approximate that without hysteresis; however, if one lets the hysteres
effect vanish (and thus lets the hysteresis loop degenerate into a curve), then the typic
difficulties of quasilinear hyperbolic equations are retrieved.

The analysis of tensor models of elastoplasticity and of vector models of ferromag-
netism are major issues. For the relevant class of Prandtl-Ishlimsidels of elasto-
plasticity, 7 can be represented by a system of variational inequalities. In this case the
analysis of our problem is fairly well understood, see [10, Chaps. IlI, VII]. (However, an
extension of the Preisach model to rank-two tensors is not a priori excluded.)

The study of vector ferromagnetism looks more challenging; here even the formula-
tion of the vector hysteresis relation is not completely clear. In [12] the Maxwell equa-
tions have been coupled with a vector hysteresis model of [2], distinguishing the cases i
which displacement currents are either included or neglected; existence of a solution he
been proved for the respective hyperbolic and parabolic problems, by using technique
of the present paper.

The existence results we proved in this article are based on approximation by implici
time-discretization. This requires the minimization of a (finite) family of functionals;
therefore this approximation procedure is also convenient for numeric implementation.
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For quasilinear parabolic problems with Preisach hysteresis, it is known that the
solution is unique and depends continuously on the data. On the other hand, fo
hyperbolic problems the uniqueness of the solution is largely an open question. Howeve
for one-dimensional systems, K&ééjproved uniqueness in a more restricted class than
that in which we have existence of a solution, see, [6, Section IIl.2]. Open questions
also include the existence of periodic solutions, and the large-time behaviour of the
solution(s), too.
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