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ABSTRACT. – We study the asymptotic behavior of the radially symmetric ground state
solution of a quasilinear elliptic equation involving them-Laplacian. The case of two vanishing
parameters is considered: we show that these two parameters have opposite effects on
the asymptotic behavior. Moreover the results highlight a suprising phenomenon: different
asymptotic are obtained according to whethern > m2 or n � m2, where n is the dimension
of the underlying space.

RÉSUMÉ. – Nous étudions le comportement asymptotique de l’état fondamental à symétrie
radiale d’une équation elliptique quasilinéaire contenant lem-Laplacien. Le cas de deux
paramètres tendant vers 0 est considéré : nous montrons que ces deux paramètres sont
en compétition. Les résultats obtenus découvrent un nouveau surprenant phénomène : deux
comportements asymptotiques complètement différents sont obtenus suivant une relation entre
le paramètrem et la dimensionn de l’espace.

1. Introduction

Let �mu = div(|∇u|m−2∇u) denote the degeneratem-Laplace operator and consider
the quasilinear elliptic equation

−�mu = −δum−1 + up−1 in R
n, (P δ

p )

wheren >m> 1,m< p <m∗, δ > 0 and

m∗ = nm

n−m
.

1 Supported by the Italian MURST project “Metodi Variazionali ed Equazioni Differenziali non Lineari”.
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By the results in [6,10] (see also [1,4] for earlier results in the casem = 2) we know that
(P δ

p ) admits a ground state for allp, δ in the given ranges. Here, by aground statewe
mean aC1(Rn) positive distribution solution of (P δ

p ), which tends to zero as|x| → ∞.
Since in this paper we only deal with radial solutions of (P δ

p ), from now on by a ground
state we shall mean precisely a radial ground state. It is known [14,17] moreover that
radial ground states of (P δ

p ) are unique.
Equation (P δ

p ) is of particular interest because of the choice of the powerm − 1 for
the lower order term: ifm = 2 (i.e.�m = �) this is just the linear case, while for any
m> 1 the lower order term has the same homogeneity as the differential operator�m,
a fact which allows the use of rescaling methods. Moreover, this case is precisely the
borderline between compact support and positive ground states, see [7, Section 1.3].

It is our purpose to study the behavior of (radial) ground states of (P δ
p ) asp → m∗,

δ → 0. As far as we are aware, the asymptotic behavior of solutions of (P δ
p ) has been

studied previously only for the vanishing parameterε = m∗ − p and only in the case of
bounded domains, see [3,8,9,11,15,16] and references therein.

Consider first the case whenδ = 0. Then (P δ
p ) becomes

−�mu= up−1 in R
n, (P 0

p )

which by [13, Theorem 5] admits no ground states (recallp < m∗). It is of interest
therefore to study the behavior of the ground statesu of (P δ

p ) asδ → 0 andp is fixed:
in Theorem 1 below we prove in this case thatu → 0 uniformly onR

n and moreover
estimate the rate of convergence. As a side result, the arguments used in the proof of
Theorem 1 allow us to show that the corresponding ground statesu converge to a Dirac
measure concentrated atx = 0 whenδ → ∞, see Theorem 9 in Section 4 below.

Next, letp = m∗ andδ > 0; then (P δ
p ) becomes

−�mu= −δum−1 + um
∗−1 in R

n, (P δ
m∗)

which by the results in [12] again admits no ground states. Thus we next study the
behavior of ground statesu of (P δ

p ) asε = m∗ − p → 0 with δ > 0 fixed. We prove in
Theorem 2 thatu then converges to a Dirac measure concentrated at the origin, namely,
u(0) → ∞ andu(x) → 0 for all x 	= 0, while also, at the same time,u converges strongly
to 0 in any Lebesgue spaceLq(Rn) with m − 1 � q < m∗. Our study also reveals a
striking and unexpected phenomenon: the asymptotic behavior is different in the two
casesn � m2 and n > m2; for instance, in the casem = 2 (i.e. �m = �) there is a
difference of behavior between the space dimensionsn = 3,4 andn � 5. More precisely,
if n > m2 we show thatu(0) blows up asymptotically likeε−(n−m)/m2

while if n � m2

it blows up at a stronger rate, essentiallyε−(m−1)/m. This phenomenon is closely related
with theLm summability of functions which achieve the best constant in the Sobolev
embeddingD1,m ⊂Lm∗

, see [18] and (1) below for the explicit form of these functions.
Finally, let bothp = m∗ andδ = 0; then equation (P δ

p ) reads

−�mu= um
∗−1 in R

n, (P 0
m∗)
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which admits the one-parameter family of ground states

Ud(x) = d
[
1+D

(
d

m
n−m |x| m

m−1
)]− n−m

m (d > 0), (1)

where D = Dm,n = (m − 1)/(n − m)n1/(m−1) and Ud(0) = d. Since the effects of
vanishingm∗ − p and δ are in some sense “opposite”, it is reasonable to conjecture
that there exists a continuous functionh, with h(0) = 0, such that ifδ = h(ε), p =
m∗ − ε, then ground statesu of (P δ

p ) converge neither to a Dirac measure nor to 0!
In Theorem 4 below we prove the surprising fact that whenn > m2 this equilibrium
occurs exactly whenδ andε arelinearly related, h(ε) ≈ Constε. Moreover in this case
the corresponding ground statesu then converge uniformly to a suitably concentrated
ground state of (P 0

m∗ ), namely a function of the family (1), with the parameterd =Ud(0)
representing a “measure of concentration” and depending on the limiting value of the
ratioh(ε)/ε.

Let us heuristically describe the phenomena highlighted by our results. Whenp → m∗
with δ fixed, the mass of the ground stateu of (P δ

p) tends to concentrate near the point
x = 0, that is, all other points of the graph are attracted to this point: in order to “let the
other points fit nearx = 0” the maximum levelu(0) is forced to blow up. Whenδ → 0
with p fixed, the ground state spreads, since nowx = 0 behaves as a repulsive point,
forcing the maximum level to blow down in order “not to break the graph”. When both
ε = m∗ − p andδ tend to 0 at the “equilibrium velocity”δ = h(ε), the pointx = 0 is
neither attractive nor repulsive: in this case, a further striking fact is that the exponential
decay of the solutionu of (P δ

p) at infinity reverts to a polynomial decay.
The outline of the paper is as follows. In the next section we state our main results,

Theorems 1–5. Then in Section 3 we present background material on radial ground
states, including an estimate for the asymptotic decay asr → ∞ of ground states of
(P δ

p), see Theorem 8. This estimate, along with Theorems 6 and 7 in Section 3, seems
to be new and may be useful in other contexts. These results allow us to give a simple
proof of Theorem 5 while the proofs of Theorems 1–4 are given in subsequent sections.

2. Main results

The existence and uniqueness of radial ground states for equation(P δ
p) is well known

[10,17]. We state this formally as

PROPOSITION 1. – For all n >m> 1, m< p <m∗ andδ > 0 equation(P δ
p) admits

a unique radial ground stateu= u(r), r = |x|. Moreoveru′(r) < 0 for r > 0.

We start the asymptotic analysis of (P δ
p ) by maintainingp fixed and lettingδ → 0. An

important role will be played by the rescaled problem (δ = 1)

−�mv = −vm−1 + vp−1 in R
n. (Qp)

By Proposition 1 there exists a unique (radial) ground statev of (Qp), so that the
constant

β = v(0) (2)
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is a well-defined function of the parametersm,n,p.

THEOREM 1. – For all δ > 0, let u be the unique ground state of(P δ
p) withm< p <

m∗. Thenu(0) = δ1/(p−m)β, while for fixedp andx 	= 0 there holds

u(x)

u(0)
= 1− m− 1

m

(
βp−m − 1

n
δ

) 1
m−1

|x| m
m−1 + o

(
δ

1
m−1 |x| m

m−1
)

asδ → 0. (3)

Also, putting�= n(p −m)/m, there existsαm,n,p > 0 independent ofδ such that

∫
Rn

u� = αm,n,p ∀δ > 0.

From Theorem 1 we can also obtain a result which, while slightly beyond the scope
of the paper, is nevertheless worth noting. It states that the unique solution of(P δ

p) for
fixedp <m∗ tends to a Dirac measure asδ → ∞, see Theorem 9 in Section 4.

We now maintainδ > 0 fixed and letp → m∗. In order to state our main asymptotic
result for this case, it is convenient to introduce the beta functionB(·, ·) defined by

B(a, b) =
∞∫

0

ta−1

(1+ t)a+b
dt, a, b > 0.

Then we put

βm,n =
(
n

(
m

n−m

)2B(n(m−1)
m

, n−m2

m
)

B(n(m−1)
m

, n
m
)

)(n−m)/m2

for n >m2,

and

γm,n = ωn

m− 1

m

[
n

(
n−m

m− 1

)m−1]n/m
B

(
n(m− 1)

m
,
n

m

) (
ωn = measureSn−1).

We also putCm,n =D−(m−1)(n−m)/m, whereD = Dm,n is given in Eq. (1).
These coefficients allow us to describe the exact behavior of ground states when

n >m2: in particular note thatβm,n → ∞ asm ↑ √
n.

THEOREM 2. – For all m < p < m∗, let u be the unique ground state for
equation(P δ

p) with fixedδ > 0. Then, writingε =m∗ − p, we have

lim
ε→0

[(
ε

δ

)(n−m)/m2

u(0)
]

=
{
βm,n if n >m2,
∞ if n� m2.

(4)

Moreover for allx 	= 0

lim
ε→0

{
u(0)um−1(x)

}
� Cm,n|x|−(n−m) (5)
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uniformly outside of any neighborhood of the origin, while also

lim
ε→0

∫
Rn

uq = 0 ∀q ∈ [m− 1,m∗), lim
ε→0

∫
Rn

um
∗ = γm,n. (6)

Theorem 2 gives a complete description of the asymptotic behavior ofu whenn >m2;
it leaves open the exact behavior whenn� m2. This latter question is considered in more
detail in Section 5.2. The results given there, while not as precise as in the casen >m2,
nevertheless provide significant insight into the behavior ofu(0) asε → 0 beyond that
described in the second case of (4). In particular from Lemmas 7 and 8 we have the
following additional asymptotic results asε → 0.

Let δ = 1. If n= m2, then

(
ε

| logε|
)(m−1)/m

u(0) ≈ 1,

while if m< n<m2, then for appropriate positive constants we have

Const.| logε|(n−m2)/m2 � ε(m−1)/mu(0) � Const.| logε|(n−m)/m2
.

The picture below describes this striking phenomenon; let

µ= inf
{
γ > 0; lim

ε→0

[
u(0)εγ

]= 0
}
,

then,µ = (m − 1)/m whenn � m2 andµ = (n − m)/m2 whenn > m2. The figure
represents the mapµ= µ(n) in the casem = 2.

Fig. 1.
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Condition (6) shows that, asε → 0, not only doesu approach a Dirac measure
(u(0) → ∞ andu(|x|) → 0 for |x| 	= 0), but also that theLm∗

norm ofu approaches a
non-zero finite limit. It is a remarkable fact, also, that the limit relation (6) is independent
of the value ofδ. It is worthwhile to note as well that by (6) and interpolating, theLq

norm ofu becomes∞ if q >m∗.

Remark. – The constants in Theorem 2 in the important casem = 2 are given by

β2,n =
(

4n

(n− 2)2

B(n2,
n−4

2 )

B(n2,
n
2)

)(n−2)/4

, γ2,n = ωn

2
[n(n− 2)]n/2B

(
n

2
,
n

2

)
,

andC2,n = [n(n− 2)](n−2)/2.

The results of Theorem 2 can be supplemented with the following asymptotic
estimates for the gradient∇u of a ground state.

THEOREM 3. – For all m < p < m∗, let u be the unique ground state for equation
(P δ

p) with fixedδ > 0. Then for allx 	= 0 we have

lim
ε→0

{
u(0)|∇u(x)|m−1}�

(
n−m

m− 1

)m−1

Cm,n|x|1−n (7)

and

lim
ε→0

∫
Rn

|∇u|q = 0 ∀q ∈
(
n
m− 1

n− 1
,m

)
, lim

ε→0

∫
Rn

|∇u|m = γm,n. (8)

Finally, we may accurately describe the behavior of the ground states of (P δ
p ) when

ε = m∗ − p andδ approach zero simultaneously.

THEOREM 4. – For δ > 0 andm< p <m∗, let u be the unique ground state of(P δ
p).

Then for alld > 0 there exists a positive continuous functionτ(ε) = τ(ε, d) such that
(i) τ (ε) → (d/βm,n)

m2/(n−m) asε → 0 (whenn >m2), andτ(ε) → 0 asε → 0 (when
n� m2).

(ii) If δ = ετ(ε), p = m∗ − ε, thenu(0) = d. Moreover

u → Ud asε = m∗ − p → 0

uniformly onR
n, whereUd is the function defined in(1).

If ε, δ → 0 without respecting the equilibrium behaviorδ ≈ Constε (in the case
n > m2), the central heightu(0) of the ground state may either converge to zero or
diverge to infinity. We note finally that as soon as the asymptotic behavior ofu(0)
asp → m∗ is more accurately determined in the casen � m2 of (4), one also gets a
more precise statement of (i): of course, the equilibrium behavior will no longer be
δ ≈ Constε.

To conclude the section, we supply two global estimates foru(0), supplementing the
asymptotic conditions (3) and (4).
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Table 1

m n m∗ p β(m,n,p)

1.6 2 8 1.8 2.11< β < 57.67

1.2 2 3 1.9 3.89< β < 37.61

1.1 2 2.4̄ 1.6 5.36< β < 10.72

1.2 3 2 1.4 9.1< β < 525.22

THEOREM 5. – Letu be a ground state of(P δ
p). Then

u(0) >
(

mp

mn− p(n−m)
δ

)1/(p−m)

, (9)

and, provided thatp < n/(n− 1),

u(0) <
(
p

m

n−m(n− 1)

n− p(n− 1)
δ

)1/(p−m)

. (10)

The proof of this result is given in next section. By settingδ = 1 in Theorem 5 we
obtain related estimates for the parameterβ = v(0) in Theorem 1. Also from Theorem 2
we have the following asymptotic formula forβ, with ε = m∗ − p → 0,

β = βm,nε
−(n−m)/m2(

1+ o(1)
)

if n >m2;

see also Lemmas 5–8 in Sections 5.

Remark. – The conditionp < n/(n − 1) implies p < m/(m − 1), since n > m:
therefore, the upper bound in (10) is obtained only for valuesm< 2 (becausep >m) and
valuesp “far” from the critical exponentm∗, that ism∗ −p > n2(m−1)/(n−m)(n−1).
However, in the restricted range of valuesp < n/(n − 1), inequality (10) gives useful
information aboutv(0) = β; we quote here some numerical computations (Table 1).

3. Preliminary results about ground states

In this section we consider the ground state problem for the general equation

−�mu = f (u) in R
n, (11)

where the functionf is assumed only to be continuous on[0,∞) and to obey the
condition

f (0) = 0, f (u) < 0 for u near 0. (12)
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A radial ground stateu= u(r), r = |x|, of (11) is in fact aC1 solution of the ordinary
differential equation

(|u′|m−2u′)′ + n− 1

r
|u′|m−2u′ + f (u) = 0, r > 0,

u(0) = α > 0, u′(0) = 0
(13)

for some initial valueα > 0. For our purposes the dimensionn may in fact be considered
as any real number greater thanm.

Put

F(u) =
u∫

0

f (s)ds (14)

and introduce the energy function

E = E(r) = m− 1

m
|u′(r)|m + F

(
u(r)

)
. (15)

The following properties of ground states are well-known [7].

PROPOSITION 2. – A radial ground stateu= u(r) of (13)has the properties

|u′(r)|m−1

r
→ f (α)

n
asr → 0,

rn−1|u′(r)|m−1 → Finite limit asr → ∞,

F (α)= (n− 1)

∞∫
0

|u′(r)|m
r

dr

and

E(r) > 0 ∀r � 0, E(r) → 0 asr → ∞.

In the next result we recall a Pohozaev-type identity [12].2

PROPOSITION 3. – Letu= u(r) be a radial ground state of(13), and put

Q(r) = nmF(u)− (n−m)uf (u). (16)

Then the functionsrn−1Q(r) andrn−1F(u(r)) are inL1(0,∞), and moreover

∞∫
0

Q(r)rn−1 dr = 0. (17)

2 Formula (17) is given in [12] for the casem = 2, see (3.7) and puta = (n− 2)/2; the case for generalm
moreover is implicit in Section 4, Case (V) of [12].
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Remark. – In other terms, the result of Proposition 3 says that the functionsQ(|x|)
andF(u(|x|)) are inL1(Rn) and that

∫
Rn Q(|x|)dx = 0.

For completeness we give a proof of Proposition 3. By direct calculation, using (13),
one finds that

P(r) =
r∫

0

Q(t)tn−1 dt, r > 0,

where

P(r) = (n−m)rn−1u(r)u′(r)|u′(r)|m−2 +mrnE(r).

SinceE = m−1
m

|u′|m + F(u(r)) > 0 and becausef (s) < 0 for s near 0, we get

∣∣F (u(r))∣∣, E(r) � m− 1

m
|u′(r)|m

for all sufficiently larger . Using Proposition 2 then givesrn−1|u′|m−1 � Const. and

rn
∣∣F (u(r))∣∣, rnE(r) � Const.r−(n−m)/(m−1) (18)

for sufficiently larger . HenceP(r) → 0 asr → ∞, which yields

lim
r→∞

r∫
0

Q(t)tn−1 dt = 0.

But from (18) we getrn−1|F(u(r))| ∈L1(0,∞), while alsouf (u) < 0 for all sufficiently
large r . Thus the previous equation together with the definition ofQ(r) shows in fact
thatrn−1Q(r) is in L1(0,∞) and that (17) holds. This completes the proof.✷

Proposition 3 has the following important consequence.

THEOREM 6. – Suppose there existsγ > 0 such that

nmF(s)− (n−m)sf (s) < 0 for 0< s < γ. (19)

Thenα > γ .

Proof. –Suppose for contradiction thatα � γ . Then sinceu′ < 0 for r > 0, it
follows thatu(r) < γ for all r > 0. In turn, by the hypothesis (19) we haveQ(r) =
nmF(u)− (n−m)uf (u) < 0 for all r > 0, which contradicts Proposition 3.✷

An upper bound foru(0) can also be obtained in some circumstances, as in the
following

THEOREM 7. – Supposef ′(s) � 0 wheneverf (s) > 0 and that there existsµ > 0
such that

nF(s)− (n− 1)sf (s) � 0 for s �µ. (20)

Thenα < µ.
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Proof. –We assert that the functionr �→ +(r) = r−1|u′(r)|m−1 is decreasing on
(0,∞). By direct calculation, using (13),

r+′(r) = f (u)− n+(r).

If f (u) � 0 then+′ < 0. On the other hand, for allr such thatf (u) > 0, we have
(f (u)− n+(r))′ = f ′(u)u′ − n+′(r) � −n+′(r), by hypothesis. Consequently

(r+′)′ � −n+′.

By integration this givesrn+1+′(r) � rn+1
1 +′(r1) on any interval(r1, r) wheref (u) > 0.

The assertion now follows by an easy argument, once one notes notes thatrn+1+′(r) →
0 asr → 0.

Now by Proposition 2 and the assertion, we have

F(α)= (n− 1)

∞∫
0

|u′(r)|m
r

dr = (n− 1)

∞∫
0

+(r)|u′(r)|dr

< (n− 1)+(0)

∞∫
0

|u′(r)|dr = (n− 1)α+(0).

Since by Proposition 2 we also have+(0) = f (α)/n, this givesnF(α)−(n−1)αf (α) <
0. The conclusion now follows from the main hypothesis (20).

Using Theorems 6 and 7 it is now easy to obtain the

Proof of Theorem 5. –Equation(P δ
p) can be written in the form (11), or (13), with

f (s) = −δsm−1 + sp−1, Q(r) = −δmum + mn− p(n−m)

p
up.

Hence for this case we can take

γ =
(

mp

mn− p(n−m)
δ

)1/(p−m)

in (19), giving the first conclusion of Theorem 5 as a consequence of Theorem 6.
Moreover

nF(s)− (n− 1)sf (s) = −n−m(n− 1)

m
δsm + n− p(n− 1)

p
sp.

Thus we can take

µ =
(
p

m

n−m(n− 1)

n− p(n− 1)
δ

)1/(p−m)

in (20), giving the second conclusion as a consequence of Theorem 7.
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We conclude the section by showing that radial ground statesu = u(r) of (P δ
ε ) have

exponential decay asr approaches infinity. This is well-known in the casem = 2, see [4,
Theorem 1(iv)]: we give here a different proof in the general casem> 1.

THEOREM 8. – Suppose that there exist constantsδ, λ, ρ > 0 such thatf satisfies
the inequality

−δsm−1 � f (s) � −λsm−1 for 0< s < ρ. (21)

Then there exist constantsµ0,µ1,µ2, ν > 0 (depending onm,n, δ, λ) such that, forr
suitably large,

u(r) �µ0e−νr |u′(r)| � µ1e−νr |u′′(r)| �µ2e−νr . (22)

Remark. – For general nonlinearitiesf in (13), one usually expects polynomial decay
at infinity, see [12, Lemma 5.1], [17, Proposition 2.2]. Nevertheless, Theorem 8 is
not entirely unexpected, since the nonlinearity (21) has “borderline behavior” which
separates compact support and positive ground states, see [7, Section 1.3].

Proof of Theorem 8. –Obviously u = u(r) satisfies (13). LetR � 0 be such that
u(r) � ρ when r � R. Sinceu → 0 asr → ∞, it is clear that such a valueR exists.
By Proposition 2 and the right hand inequality of (21) we thus obtain

m− 1

m
|u′(r)|m > −F

(
u(r)

)
� λ

m
um(r)

for r �R. Therefore,

−u′(r)
u(r)

>

(
λ

m− 1

)1/m

∀r � R. (23)

Integrating this inequality on the interval[R, r] yields the first part of the result, with

µ0 = ρeνR, ν = (
λ/(m− 1)

)1/m
. (24)

For the other estimates, we rewrite (13) in the form

(
rn−1|u′(r)|m−1)′ = rn−1f

(
u(r)

)
. (25)

Sincef (u) < 0 for u near 0, it follows thatrn−1|u′(r)|m−1 is ultimately decreasing,
clearly to a non-negative limit asr → ∞ (this is the first result of Proposition 2). By the
exponential decay proved above, the limit must be 0. Therefore we can integrate (25) on
[r,∞) for r �R to obtain, with the help of (21),

rn−1|u′(r)|m−1 = −
∞∫
r

tn−1f
(
u(t)

)
dt < δ

∞∫
r

tn−1um−1(t)dt

� δµm−1
0

∞∫
r

tn−1e−(m−1)νt dt.
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With n− 1 integrations by parts, this proves that

|u′(r)| �µ1e−νr ∀r � R.

Finally, we write (13) as

(m− 1)|u′(r)|m−2u′′(r) = n− 1

r
|u′(r)|m−1 − f (u).

From the right hand inequality of (21) we getf (u) � 0 for r � R, which shows that
u′′(r) > 0 for all r � R. Further, from the left hand inequality,

u′′(r) <
n− 1

(m− 1)R
|u′(r)| + δ

m− 1

um−1(r)

|u′(r)|m−2
.

Hence by (23) and by the exponential decay ofu andu′, this yields

0< u′′(r) <
n− 1

(m− 1)R
|u′(r)| + δ

m− 1

(
m− 1

λ

)(m−2)/m

u(r) �µ2e−νr ∀r � R.

The proof of Theorem 8 is now complete.✷
Remarks. – The first estimate of (22) requires only the right hand inequality of (21)

for its validity.
It almost goes without saying that the functionf (u) = −δum−1 + up−1 satisfies (21) for
suitableλ, ρ.

4. Proof of Theorem 1

Let u= u(r) be a ground state of(P δ
p). Definev = v(r) by means of the rescaling

v(r) = δ−1/(p−m)u

(
r

δ1/m

)
, (26)

so thatv is the unique ground state of the rescaled equation(Qp). By definition (2) and
by (26) one hasu(0) = δ1/(p−m)β.

Next, from(Qp) we find, as in (25),

|v′(r)|m−1 = 1

rn−1

r∫
0

sn−1{−vm−1(s)+ vp−1(s)
}

ds

= 1

rn−1

r∫
0

sn−1{−βm−1 + βp−1 + o(1)
}

ds

= r

n

{−βm−1 + βp−1 + o(1)
}
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asr → 0. Taking the 1/(m− 1) root and integrating from 0 tor then gives

v(r) = β − m− 1

m

(
βp−1 − βm−1

n

)1/(m−1)

rm/(m−1) + o
(
rm/(m−1)) asr → 0. (27)

This, together with (26), yields (3).
The final part of theorem is an almost obvious consequence of (26) and the change of

variabless = δ1/mr ; in particularαm,n,p = ∫
Rn v

�. ✷
Whenδ → ∞ we can obtain a partial companion result to (3) in Theorem 1.

THEOREM 9. – For fixedx 	= 0 we have

u(x) = o
(
e−νδ1/m|x|)

asδ → ∞, whereν is any(positive)number less than1/(m− 1)1/m.

Proof. –We apply Theorem 7 for ground states of(Qp). Heref (s) = −sm−1 + sp−1,
so that one can takeλ to be any number less than 1 in (21), provided thatρ is chosen
appropriately near 0. Thus by Theorem 8 we have

v(r) � µ0e−νr

for all sufficiently larger , where, see (24),ν is any number less than 1/(m − 1)1/m.
Hence, by (26),

u(x) = δ1/(p−m)v
(
δ1/m|x|)�µ0δ

1/(p−m)e−νδ1/m|x|

for all fixed x 	= 0 and sufficiently largeδ. Finally, takingν̂ = ν − θ , with θ small, we
get

u(x) � µ0δ
1/(p−m)e−θδ1/m|x| · e−ν̂δ1/m|x| = o

(
e−ν̂δ1/m|x|)

asδ → ∞. The conclusion now follows at once, since clearly by appropriate choice of
ν andθ we can assume thatν̂ is any number less than 1/(m− 1)1/m. ✷

5. Proof of Theorem 2

The argument is delicate, covering a number of pages. For the proof of (4) we need to
distinguish the two casesn > m2 andm< n � m2; this is done in Sections 5.1 and 5.2
below. The proof of (5) and (6) is given in Section 5.3.

We shall prove (4) first, for the caseδ = 1, and then obtain the general estimate by
means of the rescaling (26).

Thus we assume thatu= u(r) satisfies (13) withf (s) = −sm−1 + sp−1, namely

(|u′|m−2u′)′ + n− 1

r
|u′|m−2u′ − um−1 + up−1 = 0 (28)
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with u(0) = α. From the estimate (9) in Theorem 5 we have alwaysα > 1 (sincep >m)
and, more precisely,

α >

(
mp

ε(n−m)

)1/(p−m)

where

p = m∗ − ε.

Hence

α >

(
m2

n−m

1

ε

)1/(p−m)

,

which gives the important condition

ω ≡ εαp−m �K ∀ε ∈ (0,m∗ −m), (29)

whereK = m2/(n−m).
We make a second rescaling

w(r) = 1

α
u
(
α−(p−m)/mr

)
, (30)

so that ifu = u(r) solves (28), thenw = w(r) satisfies

{
(|w′|m−2w′)′ + n−1

r
|w′|m−2w′ − ηwm−1 +wp−1 = 0,

w(0) = 1, w′(0) = 0,
(31)

whereη = α−(p−m). Note thatη < 1 sinceα > 1, and also, by (29),η → 0 asε → 0.
Now define the modified nonlinearity

fη(s) = −ηsm−1 + sp−1

and the corresponding functions (see (14) and (16))

Fη(s) = − η

m
sm + 1

p
sp, Qη(r) = −mηwm(r)+ ε(n−m)

p
wp(r). (32)

Also, for r � 0 let us define the function

z(r) = (
1+ (1− η)1/(m−1)Drm/(m−1))−(n−m)/m

(33)

where the constantD = Dm,n is given in (1).
We can now prove the following comparison result, closely related to Lemma 2.1

of [11]. 3

3 The idea of a uniform upper bound for a scaled functionw(r) first appears (for the casem = 2) in [2].
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LEMMA 1. – We have

w(r) < z(r) ∀r > 0. (34)

Proof. –We make use of the functionH introduced in Lemma 2.1 in [11]: here
however it will be applied without a previous Emden–Fowler inversion. Thus set

H(r) = (m− 1)rn|w′(r)|m − (n−m)rn−1w(r)|w′(r)|m−1 + n−m

n
rnw(r)fη

(
w(r)

)
.

Then by using the fact thatw solves (31) we obtain

H ′(r) = rn

n

(
m2ηwm−1(r)− ε(n−m)wp−1(r)

)
w′(r).

LetR be the unique value ofr where

w(R)=
(

m2

(n−m)ω

)1/(p−m)

∈ (0,1);

see (29) and recall from Proposition 2 thatw′ < 0 and w <1 for r > 0. Hence it is easy
to see thatH is strictly increasing on[0,R] and strictly decreasing on[R,∞). Moreover,
H(0)= 0 and limr→∞H(r) = 0 by Theorem 8. Consequently

H(r) > 0 ∀r > 0. (35)

Consider the function

6(r) = |w′(r)|m−1

rwn(m−1)/(n−m)(r)
= +(r)

wn(m−1)/(n−m)(r)
,

where+(r) = |w′(r)|m−1/r (see the proof of Theorem 7). By using (31) again we find
that

6 ′(r) = n

n−m

1

rn+1 wm(n−1)/(n−m)(r)
H(r).

From (35) it follows that6 is strictly increasing on[0,∞). Therefore, by Proposition 2
we have

6(r) > lim
t→0

6(t) = fη(1)

n
= 1− η

n
;

hence

|w′(r)|
wn/(n−m)(r)

>

(
1− η

n

)1/(m−1)

r1/(m−1) = |z′(r)|
zn/(n−m)(r)

∀r > 0.

The conclusion (34) follows upon integration, and the proof is complete.✷
For later use we observe that the functionz = z(r) defined in (33) satisfies the equation

(|z′|m−2z′)′ + n− 1

r
|z′|m−2z′ + (1− η)zm

∗−1 = 0 (36)
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(the easiest way to check this is to note from (1) thatz = d−1Ud for d = (1−η)(n−m)/m2
,

so thatz then satisfies(P 0
m∗) with the extra coefficient(1−η) inserted on the right side).

Now let

C1 = C1(ε) =
(
n−m

m2
ε

)ε/(p−m)

. (37)

Then by differential calculus (recalling thatp = m∗ − ε and η = α−(p−m)) we find
without difficulty that

fη(s) � C1α
εsm

∗−1 ∀s > 0 and lim
ε→0

C1 = 1. (38)

This allows us to obtain the following partial converse of Lemma 1.

LEMMA 2. – There exists a positive functionC2 = C2(ε) such thatlimε→0C2 = 1
and

w(r) > C2α
ε/(m−1)z(r)− (C2α

ε/(m−1) − 1
) ∀r > 0. (39)

MoreoverC2α
ε/(m−1) > 1.

Proof. –Eq. (31) may be rewritten as

(
rn−1|w′|m−1)′ = rn−1fη(w). (40)

Integrating on[0, r], and taking into account (38) and Lemma 1, yields

rn−1|w′(r)|m−1 =
r∫

0

tn−1fη
(
w(t)

)
dt < C1α

ε

r∫
0

tn−1zm
∗−1(t)dt

= C1

1− η
αεrn−1|z′(r)|m−1,

the last equality being obtained by a similar integration of (36) on[0, r]. Therefore,

|w′(r)| <C2α
ε/(m−1)|z′(r)| ∀r > 0, (41)

where

C2 =
(

C1

1− η

)1/(m−1)

.

Integrating (41) on[0, r] then gives (39).
Finally, from (38) one sees thatC2 → 1 asε → 0, while by (34) and (39) we infer that

(
C2α

ε/(m−1) − 1
)
(z(r)− 1) < 0 ∀r > 0,

that is,C2α
ε/(m−1) − 1> 0 sincez(r) < 1 for r > 0 by (34) and the fact thatη < 1. This

completes the proof. ✷
The following technical lemmas will be crucial in the sequel. To simplify their

presentation, we shall think of the functionsw = w(r) and z = z(r), given in (30)
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and (33), to be defined over the spaceR
n instead of onr � 0; that is,w = w(|x|) and

z = z(|x|). In particular,w then satisfies the partial differential equation

−�mw = fη(w) = −ηwm−1 +wp−1, η = α−(p−m). (42)

We observe also thatw(|x|) decays exponentially as|x| → ∞, so that the integrals below
are well defined.

LEMMA 3. – We have

c1ω

∫
Rn

wp �
∫
Rn

wm � c2ω

∫
Rn

wp,

whereω = εαp−m, p = m∗ − ε, and

c1 = 1

n

(
n−m

m

)2

, c2 = n−m

m2
.

Proof. –By Proposition 3 applied to the ground statew of (31) we get, with the help
of the second part of (32),

−mη

∫
Rn

wm + ε(n−m)

p

∫
Rn

wp = 0, that is,
∫
Rn

wm = n−m

mp
ω

∫
Rn

wp.

But p ∈ (m,m∗), so the conclusion follows at once.✷
LEMMA 4. – We have∫

Rn

wp �
(
Cαε

)−(n−m)/m
,

∫
Rn

|∇w|m �
(
Cαε

)−(n−m)/m
,

whereC is a Sobolev constant for the embedding ofD1,m(Rn) into Lm∗
(Rn).

Proof. –If we multiply (42) byw and integrate by parts, we obtain

∫
Rn

|∇w|m = −η

∫
Rn

wm +
∫
Rn

wp <

∫
Rn

wp. (43)

Using (38) and the fact thatC1 � 1 by (37), Eq. (42) can also be written in the form
−�mw = fη(w) � αεwm∗−1. Thus, as before,

∫
Rn

|∇w|m � αε

∫
Rn

wm∗ �Cαε

( ∫
Rn

|∇w|m
)m∗/m

(44)

by the Sobolev inequality. Solving this relation for
∫

Rn |∇w|m gives the second inequality
of the lemma; the first is then obtained from (43). This completes the proof.✷
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5.1. The case n > m2

By (33) we see thatz(|x|) ≈ |x|−(n−m)/(m−1) as|x| → ∞, soz ∈ Lm(Rn) if and only
if n >m2. This allows us to derive

LEMMA 5. – Letn >m2. Then there existsA> 0 (depending only onm,n) such that

α �
(
A

ε

)(n−m)/m

for all ε ∈
(

0,
m− 1

n

m2

n−m

)
. (45)

Proof. –Define ẑ(|x|) to be the function given by (33) with the parameterη fixedat
the value

η̂ = (m− 1)(n−m)

n2 −m(m− 1)
.

Using (9) with δ = 1, an easy calculation shows that forε in the range stated in the
lemma we haveη = α−(p−m) ∈ (0, η̂). Hence, for the given range ofε, we infer from
(34) that ∫

Rn

wm �
∫
Rn

zm �
∫
Rn

ẑm ≡ ĉ

(recalln >m2, and observe specifically thatĉ = ĉ(m,n)).
On the other hand, by Lemmas 3 and 4,

∫
Rn

wm � c1ω

∫
Rn

wp � c1
(
Cαε

)−(n−m)/m
ω.

Combining the two previous lines, and remembering thatω = εαp−m, p = m∗ − ε, we
obtain

αm∗−m−ε n
m � A

ε
, (46)

whereA ≡ (ĉ/c1)C
(n−m)/m depends only onm,n. Finally, using the given restriction

0< ε � m− 1

n

m2

n−m
(47)

(notem∗ −m = m2/(n−m)), one derives from (46) that

αm/(n−m) � A

ε
;

(45) now follows immediately, and the proof is complete.✷
Together with the inequalityα > 1, Lemma 5 implies the important conclusion

αε → 1 asε → 0. (48)
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LEMMA 6. – Let n > m2. Then there existsK ′ > 0 (depending only onm,n) such
that

ω = εαp−m �K ′ for all ε ∈
(

0,
m− 1

n

m2

n−m

)
.

Proof. –We have

αp−m = αm∗−m−ε n
m · αε n−m

m � A

ε
·
(
A

ε

)ε( n−m
m )2

,

by (45) and (46). Hence

ω = εαp−m �A ·
(
A

ε

)ε( n−m
m )2

.

It remains to show that the right side is bounded, but this follows directly from the fact
that(1/s)s is bounded (� e1/e) on (0,∞). The proof is complete. ✷

Remark. – A short calculation, taking into account restriction (47), shows that in fact
we can chooseK ′ = Am(n−m+1)/ne(n−m)2/em2

.

We can now complete the proof of (4). Here it is convenient to revert to the original
understanding thatw = w(r) andz = z(r). We first rewrite the results of Lemmas 1, 2
as

0< z−w <C3 − 1 for all r > 0, (49)

whereC3 =C3(ε)= C2α
ε/(m−1) → 1 asε → 0; of course alsoC3 > 1 by Lemma 2.

From Proposition 3 applied to equation (31) we obtain

∞∫
0

Qη(r)r
n−1 dr = 0, (50)

whereQη(r) is defined by (32); see the same argument in Lemma 3.
Now by (29) and Lemma 6 we know thatε/η = ω ∈ [K,K ′]. Then, sincew � 1, it

follows from (32) that

|Qη(r)| � Constmηwm � Constmη̂ẑm,

see the proof of Lemma 5. Recalling thatẑm ∈ L1(Rn), we can therefore apply the
Lebesgue dominated convergence theorem to (50) whenε → 0. Clearlyω converges
to some limitω0 ∈ [K,K ′], up to a subsequence (in fact we will determine a unique
possible value forω0, which shows thatω → ω0 on the continuumε > 0). Moreover by
(49) and the fact thatη → 0 asε → 0, we have

z(r)→ z0(r) ≡ (
1+Drm/(m−1))−(n−m)/m
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pointwise for allr � 0. Consequently there results

∞∫
0

zm0 (r)r
n−1 dr = ω0

(n−m)2

nm2

∞∫
0

zm
∗

0 (r)rn−1 dr.

Both zm0 r
n−1 andzm

∗
0 rn−1 are inL1(0,∞) sincen >m2.

By means of the change of variabless = Drm/(m−1) one obtains

∞∫
0

zm0 (r)r
n−1 dr = m− 1

m
D−m−1

m nB

(
n(m− 1)

m
,
n−m2

m

)
(51)

and
∞∫

0

zm
∗

0 (r)rn−1 dr = m− 1

m
D−m−1

m
nB

(
n(m− 1)

m
,
n

m

)
. (52)

Hence,

ω0 = n

(
m

n−m

)2B(n(m−1)
m

, n−m2

m
)

B(n(m−1)
m

, n
m
)

.

We can now prove the asymptotic relation (4). Indeed,

ε(n−m)/m2
α = (

ωαε
)(n−m)/m2 → ω

(n−m)/m2

0 = βm,n

asε → 0 (recallαε → 1), which is just (4) for the caseδ = 1. Since for generalδ one
hasu(0) = δ1/(p−m)α ≈ δ(n−m)/m2

α, relation (4) is proved (casen >m2).

5.2. The case n � m2

Herez /∈ Lm(Rn) and the crucial Lemma 6 does not hold; nevertheless, we can prove
the following result.

LEMMA 7. – Assume thatn � m2. Then then there existsK ′ = K ′(m,n) > 0 such
that

εαm/(m−1) � K ′| logε|(n−m)/m(m−1).

Proof. –We argue as in the proof of Lemmas 5 and 6, with several major changes. Let
� be an exponent greater thann(m− 1)/(n−m) to be determined later. Then, from (34)
we have ∫

Rn

w� �
∫
Rn

z� �
∫
Rn

ẑ� = d̂ < ∞ (53)

sinceẑ ∈ L�(Rn); hered̂ of course depends on�. On the other hand, by Lemmas 3 and 4
we find ∫

Rn

wm � c1ω

∫
Rn

wp � c1ω
(
Cαε

)−(n−m)/m
. (54)
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Next, integrating (40) over(0,∞) and taking into account the exponential decay ofw

andw′, as well as (34), we get

∫
Rn

wm−1 = αp−m

∫
Rn

wp−1 � αp−m

∫
Rn

ẑp−1 = d̂1α
p−m, (55)

where we have used the fact thatẑ ∈Lp−1(Rn) (for ε < m/(n−m)).
By Hölder interpolation,

∫
Rn

wm �
(∫

Rn

wm−1
)1−ϑ(∫

Rn

w�

)ϑ

, (56)

whereϑ = 1/(� − m + 1) ∈ (0,1) sincen � m2. A short calculation shows moreover
that

d̂ = O
(
n−m

m− 1
�− n

)−1

as� → n(m− 1)

n−m
. (57)

Now we choose� near to but slightly larger thann(m− 1)/(n−m), namely

�= m− 1

1− | logε|−1

(
n

n−m
− 1

| logε|
)
,

with ε so small that| logε| > 1. Then

ϑ = (�−m+ 1)−1 = n−m

m(m− 1)

(
1− | logε|−1), and

(
n−m

m− 1
�− n

)−1

= | logε| − 1

m
.

Inserting (53), (54), (55), (57) into (56) now gives, after a little calculation,

εα(p−m)ϑ−ε(n−m)/m � A1| logε|ϑ

whereA1 = A1(m,n); hence in turn,

εαm/(m−1)−ρ/(m−1) �A1| logε|(n−m)/m(m−1)

with ρ = m| logε|−1 + ε(n−m).
For suitably smallε, sayε � ε0, one then obtains (compare Lemma 5)

α �
(
A1

ε

)2(m−1)/m

. (58)

As before this implies thatαε andα1/| logε| are bounded, that is,αρ is bounded, from
which the lemma follows at once, subject of course to the previous restrictions given
for ε. ✷
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From (58) it follows thatαε → 1 asε → 0, just as in the casen > m2. In turn (49)
holds exactly as before, withC3 → 1 asε → 0.

For the next conclusion, we shall need a sharper form for the behavior ofC3. First, it
is not difficult to verify that the functionC1 = C1(ε) defined in (37) satisfies

C1 � 1+ cε| logε|

for some constantc > 0; we understand here and in what follows thatc denotes a generic
positive constant, depending only onm andn. Moreover, by (29) we haveη < cε, so the
functionC2 =C2(ε) defined in (41) also satisfies

C2 � 1+ cε| logε|.

Finally

C3 = C2α
ε/(m−1) � 1+ cε| logε| (59)

for sufficiently smallε.
Next, letR > 0 denote the unique value ofr wherez(R)= νε| logε|, whereν > 0 is

a constant to be determined later; note in particular thatR → ∞ asε → 0. Now, arguing
from (39) and the fact that

1<C3 < 1+ cε| logε|,
we infer

w(r) >C3z(r)− (C3 − 1)
z(r)

z(R)
>

(
1− C3 − 1

νε| logε|
)
z(r)

�
(

1− c

ν

)
z(r) ∀r ∈ [0,R].

In turn, fixingν sufficiently large,

w(r) � 1

2
z(r) ∀r ∈ [0,R]. (60)

We can now prove a companion result to (29); in particular, it shows that Lemma 6 does
not hold whenn� m2.

LEMMA 8. – There existsK1 = K1(m,n) > 0 such that forε sufficiently small

εαm/(m−1) � K1| logε|(n−m2)/m(m−1) whenm< n<m2

and

εαm/(m−1) � K1| logε| whenn= m2.
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Proof. –Assume first thatn <m2. Then forε sufficiently small there holds

d̂1 �
∫
Rn

ẑp �
∫
Rn

wp by (34)

� c

ω

∫
Rn

wm by Lemma 3

� c

ω

∫
|x|<R

zm by (60)

� c

ω

R∫
1

tn−1

tm(n−m)/(m−1)
dt by (33)

= c

ω

{
R(m2−n)/(m−1) − 1

}
� c

ω
(ε| logε|)−(m2−n)/(n−m),

where the last inequality is obtained by solvingz(R)= νε| logε| (ε small). Rearranging
with the help of the relationω = εαp−m � εαm2/(n−m) now yields the first statement of
the lemma.

If n= m2, the same arguments lead to

d̂1 � c

ω

R∫
1

dt

t
= c

ω
logR � c

ω
| logε|,

from which the second statement follows at once.✷
Lemma 8 shows at once that (4) also holds in the casem< n � m2, that is whenever

n >m.

Remark. – As already mentioned in the introduction, more precision in the asymptotic
behavior ofu(0) is needed in the casen �m2. We conjecture that also in this case there
exists a continuous increasing functiongm,n defined on[0,∞) such thatgm,n(0) = 0 and
limε→0[gm,n(ε)u(0)] = 1.

5.3. Dirac limits

Here we shall complete the demonstration of Theorem 2 by proving conditions (5)
and (6). It will be convenient here and in the sequelnot to makethe initial assumption
δ = 1, though we continue to writeu(0) = α.

From Section 5.1 we recall the basic estimate (49); with the help of (59) this can be
rewritten in the form

0< z−w < cε| logε|. (61)

Here we wish to scale back to the original functionu, this being accomplished by means
of (26) and (30). More specifically, in (30) it is necessary to replaceu andα respectively
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by v andβ (β as in (2)) because of the initial assumption in Section 5 thatδ = 1. The
required rescaling is therefore given by

w(r) = 1

δ1/(p−m)β
u

(
r

δ1/mβ(p−m)/m

)
= 1

α
u

(
r

α(p−m)/m

)
(62)

where from Theorem 1 we haveδ1/(p−m)β = α. After a little calculation, (61) then leads
to the basic formula

0< zα − u� cαε| logε|, (63)

where

zα = zα(x) = αz
(
α(p−m)/m|x|)

= α/
[
1+ (1− η)1/(m−1)α(p−m)/(m−1)D|x|m/(m−1)](n−m)/m

(64)

and (33) is used at the last step.
Observe from the left hand inequality of (63) that (recallη → 0 asε → 0)

α1/(m−1)u(x) < α1/(m−1)zα(x) →D− n−m
m |x|− n−m

m−1 asε → 0,

which immediately yields (5).
To prove (6), letX = XR denote the Lebesgue spaceLm∗

over the domain{|x| <R},
and similarly letX′ = X′

R be the spaceLm∗
over the domain{|x| � R}. By Minkowski’s

inequality and (63),

∣∣‖u‖X − ‖zα‖X
∣∣� ‖u− zα‖X � cαε| logε|‖1‖X. (65)

In particular, let us make the new choice

R = α−m/(n−m)+µ,

whereµ> 0 is a positive constant to be determined later. Then with the obvious change
of variabless = α(p−m)/mr , we find

‖zα‖m∗
X = ωnα

εn/m

α−ε/m+µ∫
0

sn−1 ds

[1+ (1− η)1/(m−1)Dsm/(m−1)]n → γm,n (66)

asε → 0, see (52) and (48) (which as shown in Section 5.2 is valid for alln > m). By
the same calculation

‖zα‖m∗
X′ → 0 (67)

asε → 0, since the integration is now over the interval(α−ε/m+µ,∞) and the integral is
convergent.

Next, one calculates that

‖1‖X = ωn

n
Rn/m∗ = ωn

n
α−1+µ(n−m)/m
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in view of the definition ofR. We can now determine the limit asε → 0 of the quantity

αε| logε|‖1‖X = (ωn/n)α
µ(n−m)/mε| logε|.

From Lemmas 6 and 7 it is evident that, whatever the case considered, there existsλ > 0
(depending only onm,n) such thatα < cε−λ, providedε is small. (One can check that
λ= (n−m)/m2 + 1 in fact suffices.) Hence

αµ(n−m)/mε| logε| � cε1−λµ(n−m)/m| logε|,
which tends to 0 asε → 0 if µ is chosen small enough. It now follows at once from (65)
and (66) that‖u‖m∗

X → γm,n asε → 0.
We observe finally from the left hand inequality of (63) that

‖u‖m∗
X′ < ‖zα‖m∗

X′ → 0

by (67). Hence

‖u‖m∗
m∗ = ‖u‖m∗

X + ‖u‖m∗
X′ → γm,n,

proving the second part of (6).
To obtain the first part, note that integration of(P δ

p) over R
n and use of Theorem 8

yields

δ

∫
Rn

um−1 =
∫
Rn

up−1. (68)

But from the left inequality of (63) together with a calculation as in (66), we have

∫
Rn

up−1 �
∫
Rn

zp−1
α = ωnα

−1+ε(n−m)/m

∞∫
0

sn−1ds

[1+ (1− η)1/(m−1)Dsm/(m−1)](n−m)(p−1)/m
.

Since the integral is uniformly bounded for anyε less thanm/2(n−m), we then get

∫
Rn

up−1 → 0 asε → 0.

With the help of (68) (and a trivial interpolation) this completes the proof of (6), and
therefore of Theorem 2.

6. Proof of Theorem 3

First we prove (8). Multiplying the equation(P δ
p) by u and integrating overRn gives

∫
Rn

|∇u|m = −δ

∫
Rn

um +
∫
Rn

up. (69)
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We now letε → 0. The first term on the right approaches 0 by (6).
To treat the second term on the right side of (69), we slightly modify the spaceX from

its meaning in the previous subsection, so that now it represents the Lebesgue spaceLp

over the domain{|x| <R}, and similarly for the spaceX′. Then as in (66) there holds

‖zα‖pX = ωnα
ε(n−m)/m

α−ε/m+µ∫
0

sn−1ds

[1+ (1− η)1/(m−1)Dsm/(m−1)]n−ε(n−m)/m
,

the integral being convergent whenε < m/(n − m). To evaluate the limit of the right
side, note first that on the interval 0< s < αµ there holds (for smallε)

1<
[
1+ (1− η)1/(m−1)Dsm/(m−1)]ε(n−m)/m

< αεµn/(m−1),

so that by (48), uniformly fors ∈ (0, αµ),

[
1+ (1− η)1/(m−1)Dsm/(m−1)]ε(n−m)/m → 1.

Hence as in (66), one obtains‖zα‖pX → γm,n asε → 0. Also as before,‖zα‖pX′ → 0, so
that finally, again arguing as in the previous subsection,

‖u‖pp = ‖u‖pX + ‖u‖pX′ → γm,n,

that is,
∫

Rn u
p → γm,n. The second statement in (8) follows at once from (69). In order

to prove the first statement in (8), note that by (62) we have

∫
Rn

|∇u|q = cαpq/m

∞∫
0

|w′(α(p−m)/mr)|qrn−1 dr ∀q � 1;

note also thatz ∈D1,q(Rn) for all q > n(m−1)/(n−1) and that‖∇z‖q remains bounded
asε → 0: therefore, by (41) and an obvious change of variables, we obtain

∫
Rn

|∇u|q � cαp(q−n)/m+n

∞∫
0

|z′(r)|qrn−1 dr � cαp(q−n)/m+n → 0 ∀q ∈
(
m,

n(m− 1)

n− 1

)

which completes the proof of (8).
It remains to prove (7). By evaluatingz′(r) and by using (41) and (59) we obtain

|w′(r)| � (1+ cε| logε|)n−m

m− 1
(1− η)1/(m−1)

×D
r1/(m−1)

(1+ (1− η)1/(m−1)Drm/(m−1))n/m
.

(70)

Moreover, according to the “double rescaling” (62) we have

|w′(r)| = 1

αp/m

∣∣∣∣u′
(

r

α(p−m)/m

)∣∣∣∣.
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Inserting this in (70), using an obvious change of variables and then lettingε → 0, yields

lim
ε→0

{
α1/(m−1)|u′(r)|}�

(
n−m

m− 1

)n/m

n(n−m)/m(m−1)r(1−n)/(m−1),

which immediately gives (7) sinceα = u(0).

7. Proof of Theorem 4

We define

τ(ε) = τ(ε, d) = 1

ε

(
d

β

)p−m

,

whereβ is given by (2); hereβ is a (well-defined) continuous function ofε and of course
also ofm,n. By Theorem 1, whenδ = ετ(ε) we have

u(0) = δ1/(p−m)β = d,

proving (ii). Also by Theorem 2 we know that whenn >m2 (caseδ = 1)

ε(n−m)/m2
β → βm,n asε → 0,

so that

τ(ε) =
(

d

ε(n−m)/m2
β

)p−m

· ε−ε(n−m)/m2 →
(

d

βm,n

)m2/(n−m)

as ε → 0; similarly, whenn � m2, by Theorem 2 we infer thatτ(ε) → 0 asε → 0.
Statement (i) is so proved.

To prove the final statement of the theorem, we first use (63), together with the fact
that in the present caseα = u(0) = d, to infer the fundamental relation

|u− zd | � cdε| logε|. (71)

But by (64), and sinceη → 0 asε → 0, it now follows that

zd(x) → d
[
1+D

(
d

m
n−m |x|) m

m−1
]− n−m

m ≡ Ud(x)

uniformly for x in R
n; see (1) in the introduction. Together with (71) this completes the

proof of (ii).
An easy consequence of the above argument is the following companion result for

Theorem 4.

COROLLARY. – Letn >m2. In place of the conditionδ = ετ(ε), suppose thatδ = aε,
wherea is a positive constant. Thenu→ Ud uniformly onR

n asε = p−m → 0, where
d = a(n−m)/m2

βm,n.
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