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ABSTRACT. — We study the asymptotic behavior of the radially symmetric ground state
solution of a quasilinear elliptic equation involving thkeLaplacian. The case of two vanishing
parameters is considered: we show that these two parameters have opposite effects
the asymptotic behavior. Moreover the results highlight a suprising phenomenon: different
asymptotic are obtained according to whethes m? or n < m?, where nis the dimension
of the underlying space.
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RESUME. — Nous étudions le comportement asymptotique de I'état fondamental & symétrie
radiale d’'une équation elliptique quasilinéaire contenaninkeaplacien. Le cas de deux
paramétres tendant vers O est considéré : nous montrons que ces deux parametres s
en compétition. Les résultats obtenus découvrent un nouveau surprenant phénoméne : de
comportements asymptotiques complétement différents sont obtenus suivant une relation ent
le paramétren et la dimensiom de I'espace.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

Let A,,u = div(|Vu|"2Vu) denote the degenerate-Laplace operator and consider
the quasilinear elliptic equation

—Apu=—8u""t+u’"t inR", (P)

wheren >m >1,m < p <m*,§ >0and

1 Supported by the Italian MURST project “Metodi Variazionali ed Equazioni Differenziali non Lineari”.
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By the results in [6,10] (see also [1,4] for earlier results in the ease2) we know that
(P;j) admits a ground state for gfl, § in the given ranges. Here, byground statewve
mean aC*(R") positive distribution solution oflfl’f), which tends to zero ds| — oc.
Since in this paper we only deal with radial solutions B,fX, from now on by a ground
state we shall mean precisely a radial ground state. It is known [14,17] moreover tha
radial ground states OPQ) are unique.
Equation Q”I’f) is of particular interest because of the choice of the power 1 for
the lower order term: itn = 2 (i.e. A,, = A) this is just the linear case, while for any
m > 1 the lower order term has the same homogeneity as the differential oparator
a fact which allows the use of rescaling methods. Moreover, this case is precisely th
borderline between compact support and positive ground states, see [7, Section 1.3].
It is our purpose to study the behavior of (radial) ground statesPlf))‘ dsp —> m*,
8 — 0. As far as we are aware, the asymptotic behavior of solutionng:)f ltas been
studied previously only for the vanishing parametet m* — p and only in the case of
bounded domainsee [3,8,9,11,15,16] and references therein.
Consider first the case whén= 0. Then QD;E) becomes

—Apu=u""t inR", (P]()J)

which by [13, Theorem 5] admits no ground states (repak m*). It is of interest
therefore to study the behavior of the ground states (P;j) asé — 0 andp is fixed:
in Theorem 1 below we prove in this case that> O uniformly onRR” and moreover
estimate the rate of convergence. As a side result, the arguments used in the proof
Theorem 1 allow us to show that the corresponding ground statesverge to a Dirac
measure concentrated.at= 0 whensé — oo, see Theorem 9 in Section 4 below.

Next, letp = m* andé > 0O; then (Pl’f) becomes

—Apu=—8u""1+u""1 inR", (P2.)

which by the results in [12] again admits no ground states. Thus we next study the

behavior of ground statas of (P;j) ase =m* — p — 0 with § > 0 fixed. We prove in

Theorem 2 that then converges to a Dirac measure concentrated at the origin, namely

u(0) — oo andu(x) — Ofor all x # 0, while also, at the same timegconverges strongly

to 0 in any Lebesgue spade/ (R") with m — 1 < g < m*. Our study also reveals a

striking and unexpected phenomenon: the asymptotic behavior is different in the twc

casesn < m? andn > m?; for instance, in the case = 2 (i.e. A,, = A) there is a

difference of behavior between the space dimensioas3, 4 andn > 5. More precisely,

if n > m2 we show that:(0) blows up asymptotically like="—™/m* while if n < m?

it blows up at a stronger rate, essentialty” /", This phenomenon is closely related

with the L™ summability of functions which achieve the best constant in the Sobolev

embeddingD'” c L™, see [18] and (1) below for the explicit form of these functions.
Finally, let bothp = m* and$ = 0; then equationlelf) reads

—Apu=u""1 inR", (P2.)
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which admits the one-parameter family of ground states

Us(x) =d[1+4 D(d7m |x|=1)]" ™ (d>0), 1)

where D = D,,,, = (m — 1)/(n — m)n¥™=Y and U,4(0) = d. Since the effects of
vanishingm* — p and$ are in some sense “opposite”, it is reasonable to conjecture
that there exists a continuous functiaén with #(0) = 0, such that if§ = h(e), p =

m* — g, then ground states of (P;f) converge neither to a Dirac measure nor to O!
In Theorem 4 below we prove the surprising fact that when m? this equilibrium
occurs exactly whed ande arelinearly related & (¢) ~ Conste. Moreover in this case

the corresponding ground stateghen converge uniformly to a suitably concentrated
ground state of £°.), namely a function of the family (1), with the paramete U, (0)
representing a “measure of concentration” and depending on the limiting value of the
ratioh(e)/e.

Let us heuristically describe the phenomena highlighted by our results. Whem*
with § fixed, the mass of the ground statef (P;f) tends to concentrate near the point
x =0, that is, all other points of the graph are attracted to this point: in order to “let the
other points fit neax = 0” the maximum levek (0) is forced to blow up. Wheid — 0
with p fixed, the ground state spreads, since now O behaves as a repulsive point,
forcing the maximum level to blow down in order “not to break the graph”. When both
e =m* — p and$ tend to O at the “equilibrium velocitys = h(e), the pointx =0 is
neither attractive nor repulsive: in this case, a further striking fact is that the exponentia
decay of the solutiom of (P;j) at infinity reverts to a polynomial decay.

The outline of the paper is as follows. In the next section we state our main results
Theorems 1-5. Then in Section 3 we present background material on radial groun
states, including an estimate for the asymptotic decay -asoco of ground states of
(P;j), see Theorem 8. This estimate, along with Theorems 6 and 7 in Section 3, seem
to be new and may be useful in other contexts. These results allow us to give a simpl
proof of Theorem 5 while the proofs of Theorems 1—-4 are given in subsequent sections

2. Main results

The existence and uniqueness of radial ground states for eqlmgjq)lis well known
[10,17]. We state this formally as

PrRoOPOSITION 1. — Foralln >m >1,m < p <m*ands§ >0 equation(P;f) admits
a unique radial ground state = u(r), r = |x|. Moreoveru'(r) < Ofor r > 0.

We start the asymptotic analysis d?l‘jo by maintainingp fixed and lettingg — 0. An
important role will be played by the rescaled probleia=(1)

—Ayv=—v""14 7 inR™ (Q,)

By Proposition 1 there exists a unique (radial) ground statef (Q,), so that the
constant

B =v(0) )
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is a well-defined function of the parametetsn, p.

THEOREM 1. — For all § > 0, letu be the unique ground state (Yf’;j) withm < p <
m*. Thenu(0) = §¥/(»=™ g, while for fixedp andx # 0 there holds

u(x)_ _m—l

u m

1
(’6 5) x| T +o(871|x|#1) ass—0. (3)
n
Also, puttingl = n(p — m)/m, there existsy,, , , > 0 independent of such that

/ue =y V6>0.
Rn

From Theorem 1 we can also obtain a result which, while slightly beyond the scope
of the paper, is nevertheless worth noting. It states that the unigue solut'(d?j)ofor
fixed p < m* tends to a Dirac measure &s> oo, see Theorem 9 in Section 4.

We now maintains > 0O fixed and letp — m™*. In order to state our main asymptotic
result for this case, it is convenient to introduce the beta fund@ion-) defined by

® ta—l
B((l,b):/mdt, a,b>0.
0

Then we put
2 nm—1) n—m? (n—m)/m2
B(®=/—= =
,an=<n< n ) ( e )> for n > m?,
’ n—m) B
and
-1 _ m—1qn/m 1
Vo = [n <n m) } B <m ﬁ) (w0, = measures”1).
m m—1 m m

We also putC,, , = D~"=D0=m/m \whereD = D, , is given in Eq. (1).
These coefficients allow us to describe the exact behavior of ground states whe
n > m?: in particular note thag,, , — oo asm + /n.

THEOREM 2.— For all m < p < m*, let u be the unique ground state for
equation(P;j) with fixeds > 0. Then, writinge = m* — p, we have

im K§>(n—m)/m2u(o)} _ {,Bm,n if n > m2, @

e—0 (0.8] if n < m2.

Moreover for allx #0

lim {u(@u" " (x)} < Cppnlx| 7"~ (5)
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uniformly outside of any neighborhood of the origin, while also

m

lim [u?=0 Vge[m—1m"), lim [ u" = Vinun- (6)
e—0 e—0

Rn Rn

Theorem 2 gives a complete description of the asymptotic behaviowbenn > m?;
it leaves open the exact behavior whes m?. This latter question is considered in more
detail in Section 5.2. The results given there, while not as precise as in the sasé,
nevertheless provide significant insight into the behaviai (@) ass — 0 beyond that
described in the second case of (4). In particular from Lemmas 7 and 8 we have th
following additional asymptotic results as— 0.

Lets = 1. If n = m?, then
(m—1)/m
£
0)~1,
(lloge|> 4©)

while if m < n < m?, then for appropriate positive constants we have

Const| |Ogg|(n—m2)/m2 < g(m—l)/mu(o) < Const| Iogsl(”"")/’"z.

The picture below describes this striking phenomenon; let

w=inf{y >0; Iimo[u(O)sy] =0},

then,u = (m — 1)/m whenn < m? andu = (n — m)/m? whenn > m?. The figure
represents the map = w(n) in the casen = 2.

15T

0.5T
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Condition (6) shows that, as — 0, not only does: approach a Dirac measure
(u(0) — oo andu(|x|) — O for |x| # 0), but also that th&”" norm of u approaches a
non-zero finite limitlt is a remarkable fact, also, that the limit relation (6) is independent
of the value ofs. It is worthwhile to note as well that by (6) and interpolating, itre
norm ofu becomesxo if g > m*.

Remark— The constants in Theorem 2 in the important case 2 are given by

4n  B(5, %) (n=2/4 W, non
n— s n— "~ -2 n/ZB(_’_>’
B, ((n “272 B(L L) ) Von =~ [n(n=2)] >

andC,, = [n(n — 2)]"=2/2,

The results of Theorem 2 can be supplemented with the following asymptotic
estimates for the gradie’™u of a ground state.

THEOREM 3. - For all m < p < m*, letu be the unique ground state for equation
(P}) with fixeds > 0. Then for allx 0 we have

m—1
H m—1 < n— m) 1-n
m @ vu" ) < (S=1) Cplx ™)
and
. m—1 .
IIm/|Vu|q=O Vg € <n ,m), IIm/|Vu|m:)/m,,. (8)
e—0 n—1 e—0 :
R)l R”

Finally, we may accurately describe the behavior of the ground state%;f))f/\(hen
¢ =m* — p and$ approach zero simultaneously.

THEOREM 4. - For § > 0andm < p <m*, letu be the unique ground state (ﬂ’[‘j).
Then for alld > 0 there exists a positive continuous functiofa) = t (e, d) such that

(i) (&) = (d/Bun)" /=™ ase — 0 (whenn > m?), andt(¢) — Oase — O (when
n <m?).

(i) If § =e1(e), p=m* — ¢, thenu(0) = d. Moreover

u—U; ase=m"—p—>0

uniformly onR”, whereU,, is the function defined ifL).

If £,6 — 0 without respecting the equilibrium behaviér~ Conste (in the case
n > m?), the central height:(0) of the ground state may either converge to zero or
diverge to infinity. We note finally that as soon as the asymptotic behavian@f
asp — m* is more accurately determined in the casg m? of (4), one also gets a
more precise statement of (i): of course, the equilibrium behavior will no longer be
5 ~ Conste.

To conclude the section, we supply two global estimates {0y, supplementing the
asymptotic conditions (3) and (4).
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Table 1
m n m* P B(m,n, p)
1.6 2 8 1.8 2.1k B <5767
12 2 19  B/I<B <3761
1.1 2 24 1.6 836< B8 <10.72
1.2 3 14 9 < B <52522

THEOREM 5. — Letu be a ground state c{fP]’f). Then
1/(p—m)
u(0) > (L(S) , ©9)
mn — p(n —m)
and, provided thap <n/(n — 1),

pn—m(n— 1)8>l/(p_m)

u(© < <Zn—p(n—1)

(10)

The proof of this result is given in next section. By settihg: 1 in Theorem 5 we
obtain related estimates for the parametet v(0) in Theorem 1. Also from Theorem 2
we have the following asymptotic formula f@r, with e =m* — p — 0,

B = ,Bm,ne_("_'")/'"z (l+ O(l)) if n > m?;
see also Lemmas 5-8 in Sections 5.

Remark— The conditionp < n/(n — 1) implies p < m/(m — 1), sincen > m:
therefore, the upper bound in (10) is obtained only for values 2 (because > m) and
valuesp “far” from the critical exponentn*, that ism* — p > n?(m —1)/(n —m)(n —1).
However, in the restricted range of valugs< n/(n — 1), inequality (10) gives useful
information aboub (0) = 8; we quote here some numerical computations (Table 1).

3. Preliminary results about ground states
In this section we consider the ground state problem for the general equation

—Aju=f) inR" (12)

where the functionf is assumed only to be continuous { oo) and to obey the
condition

f(0 =0, f(u)<0 forunearO (12)
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A radial ground state = u(r), r = |x|, of (11) is in fact aC* solution of the ordinary
differential equation

, n-1

(|u’|m_2u/) + n—lu/lm_zu/ +fw)=0, r>0,
d (13)

uQ=a=>0, u'0)=0

for some initial valuex > 0. For our purposes the dimensiemay in fact be considered

as any real number greater than
Put

Fa = [ fds (14)
0
and introduce the energy function

m-—1
E=E@r) =

' (I + F (u(r)). (15)

The following properties of ground states are well-known [7].

PROPOSITION 2. — A radial ground state: = u(r) of (13) has the properties

' (r) "t L f@
n

asr — 0,
,

r"u' (r)" "t = Finite limit asr — oo,

"

r

F(a):(n—l)/
0

and
Er)>0 Vr>=0, E(r)— 0 asr— oc.
In the next result we recall a Pohozaev-type identity [12].

PrROPOSITION 3. — Letu = u(r) be a radial ground state afL3), and put

Q@) =nmF u) — (n —m)uf(u). (16)

Then the functions”~1Q(r) andr"~1F (u(r)) are in L1(0, co), and moreover
/ Q(r)r"~tdr=0. a7
0

2Formula (17) is given in [12] for the cage= 2, see (3.7) and put= (n — 2)/2; the case for general
moreover is implicit in Section 4, Case (V) of [12].
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Remark— In other terms, the result of Proposition 3 says that the functi@fis|)
and F (u(|x])) are inL*(R") and thatfg, Q(|x|) dx =0.

For completeness we give a proof of Proposition 3. By direct calculation, using (13),
one finds that

P(r)=/Q(t)t”_ldt, r>0,
0

where
P(r)=(n—m)r" u(r)u' (r)|u' ()" 2+ mr"E(r).
SinceE = %|u’|m + F(u(r)) > 0 and becausg(s) < 0 for s near 0, we get

m—1

lu' (r)|™

|F (u()

. E(r) <
m

for all sufficiently larger. Using Proposition 2 then give$~1|u'|"~* < Const and

r”’F(u(r)) , r"E(r) < Constr~(—m/(m=1 (18)

for sufficiently larger. HenceP (r) — 0 asr — oo, which yields
,"_[QO/ O tdt =0.
0

But from (18) we get" | F (u(r))| € L*(0, o0), while alsou f (1) < 0 for all sufficiently
larger. Thus the previous equation together with the definitiorQgf) shows in fact
thatr"~1Q(r) is in L1(0, oo) and that (17) holds. This completes the proofi

Proposition 3 has the following important consequence.
THEOREM 6. — Suppose there exisfs> 0 such that

nmF(s) — (n—m)sf(s) <0 forO<s <y. (29)

Thena > y.

Proof. —Suppose for contradiction that < y. Then sinceu’ < 0 for r > 0, it
follows thatu(r) < y for all » > 0. In turn, by the hypothesis (19) we hagr) =
nmFu) — (n —m)uf (u) <0 forall » > 0, which contradicts Proposition 3.0

An upper bound foru(0) can also be obtained in some circumstances, as in the
following

THEOREM 7. — Supposef’(s) > 0 wheneverf (s) > 0 and that there existg > 0
such that

nF(s)—m—1sf(s) >0 fors > pu. (20)
Thena < u.
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Proof. —-We assert that the function — ®(r) = r~|u/(r)|" is decreasing on
(0, 00). By direct calculation, using (13),

r®'(r) = f(u) —nd(r).

If f(u) <0 thend’ < 0. On the other hand, for al such thatf(«) > 0, we have
(f(w) —nd(@) = f'wu’ —nd'(r) < —nd'(r), by hypothesis. Consequently

Fd) < —nd'.

By integration this gives"1®’(r) < r{’*ld)’(rl) on any intervalry, r) where f (1) > 0.
The assertion now follows by an easy argument, once one notes note’shbi(r) —
0 asr — 0.

Now by Proposition 2 and the assertion, we have

Fla)=(n— 1)/ lu (:)lm dr = (n — 1)/c1>(r)|u’(r)| dr
0 0

<(n—1®(0) / lu' ()| dr = (n — Dad(0).
0

Since by Proposition 2 we also ha®g€0) = f(«x)/n, this givesi F («) — (n — Daf (@) <
0. The conclusion now follows from the main hypothesis (20).

Using Theorems 6 and 7 it is now easy to obtain the
Proof of Theorem 5. Equation(P;j) can be written in the form (11), or (13), with

mn — p(n —m) »
——u”.
p

f(s)=—=8s""t 4571, O(r) = —Smu™ +

Hence for this case we can take

( mp )1/(17—’")
y=(———s
mn — p(n —m)

in (19), giving the first conclusion of Theorem 5 as a consequence of Theorem 6.
Moreover

—m(n—1 —pn—1
nemn =), n—pn=D
p

nF(s)—m—Dsf(s)=—

Thus we can take
_ (En —m(n — 1)8>l/(p—m)
mn—pn-—1)
in (20), giving the second conclusion as a consequence of Theorem 7.
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We conclude the section by showing that radial ground states:(r) of (P?) have
exponential decay asapproaches infinity. This is well-known in the case= 2, see [4,
Theorem 1(iv)]: we give here a different proof in the general casel.

THEOREM 8. — Suppose that there exist constafis., p > 0 such thatf satisfies
the inequality

—8s" 1< f(s) <—as™t for O<s < p. (22)

Then there exist constants, w1, u2, v > 0 (depending onn, n, 8, 1) such that, forr
suitably large,

u(r) < po€™” U/ (NI < €™ u" ()] < poe. (22)

Remark— For general nonlinearitieg in (13), one usually expects polynomial decay
at infinity, see [12, Lemma 5.1], [17, Proposition 2.2]. Nevertheless, Theorem 8 is
not entirely unexpected, since the nonlinearity (21) has “borderline behavior” which
separates compact support and positive ground states, see [7, Section 1.3].

Proof of Theorem 8. ©bviously u = u(r) satisfies (13). LetR > 0 be such that
u(r) < p whenr > R. Sinceu — 0 asr — oo, it is clear that such a valug exists.
By Proposition 2 and the right hand inequality of (21) we thus obtain

m—1 ’ m A m
lu' ()" > —F (u(r)) = —u™(r)
m m
for r > R. Therefore,
u/(r) A 1/m
— — Vr > R. 23
u(ry <m —1> ’ 23)

Integrating this inequality on the intervgR, r] yields the first part of the result, with

po=pe®,  v=(/m—1)"". (24)
For the other estimates, we rewrite (13) in the form
(F" ' O = f (). (25)

Since f(u) < 0 for u near 0, it follows that"—1|u’(r)|™~! is ultimately decreasing,
clearly to a non-negative limit as— oo (this is the first result of Proposition 2). By the
exponential decay proved above, the limit must be 0. Therefore we can integrate (25) o
[r, 00) for r > R to obtain, with the help of (21),

o0

rn—llu/(r)|n1—l - _ /tn—lf(u(t)) dt < 3§ /tn—lum—l(t) dr

r

00
< Sugn—l/tn—le—(m—l)vt dl.
r
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With n — 1 integrations by parts, this proves that
lu'(r)| < pi€™" Vr>R.
Finally, we write (13) as

n—1

(m = D' (" 2u”"(r) = ——|u' ("~ = f(@).

From the right hand inequality of (21) we g¢{u) < O for r > R, which shows that
u”(r) > 0 for all » > R. Further, from the left hand inequality,

n—1 ‘") s u"t(r)
m—DR" O S T

Hence by (23) and by the exponential decay @indu’, this yields

u'(r) <

” n—1 ’ ) m—1 (n=2m —Vr
O<u (r)<m|u(r)|+m T) u(r) < u€e Vr > R.

The proof of Theorem 8 is now completer

Remarks. — The first estimate of (22) requires only the right hand inequality of (21)
for its validity.
It almost goes without saying that the functigitu) = —8u"~ + u?~! satisfies (21) for
suitablex, p.

4, Proof of Theorem 1

Letu = u(r) be a ground state chP;f). Definev = v(r) by means of the rescaling

_s—Yp-m, [ T
v(r) =861 u<81/m>, (26)
so thatv is the unique ground state of the rescaled equat{®y). By definition (2) and
by (26) one has(0) = §Y/P—mg.

Next, from(Q,) we find, as in (25),

1 r
W' ()"t = S Sn_l{—vm_l(s) + vp_l(s)} ds
r 0/

r

_ 1 /sn—l{_le—l _J’_pr—l _J’_O(l)} ds

rn—l
0

= ~{=p"" 4+ 4" +0(D)




F. GAZZOLA, J. SERRIN/ Ann. I. H. Poincaré — AN 19 (2002) 477-504 489

asr — 0. Taking the 1/(m— 1) root and integrating from O to then gives

mn; 1 (ﬁp—l e

1/(m—1)
) pm/ D oo(pm/ Dy asr — 0. (27)
n

v(r) =B —

This, together with (26), yields (3).
The final part of theorem is an almost obvious consequence of (26) and the change ¢
variabless = §¥/"r; in particulara,, , , = [p. v*. O

Whens — oo we can obtain a partial companion result to (3) in Theorem 1.

THEOREM 9. — For fixedx £ 0 we have
u(x) = O(e_”51/m|x|)

asé — oo, wherev is any(positive)number less that/(m — 1)1/,

Proof. —We apply Theorem 7 for ground states(@f,). Here f (s) = —s" =1 + 5771,
so that one can take to be any number less than 1 in (21), provided thas chosen
appropriately near 0. Thus by Theorem 8 we have

v(r) < o€ "

for all sufficiently larger, where, see (24)y is any number less thary @ — 1)Y/™.
Hence, by (26),

u(x) = 81/(P—m)v(81/m|x|) < ,U/O(Sl/(p_m)e_vél/mlx‘
for all fixed x # 0 and sufficiently largé. Finally, takingd = v — 6, with 6 small, we
get
ulx) < Mo(Sl/(”_’")e_95l/m|x| . e—f;al/mm _ O(e_wl/mlx‘)

asé — oo. The conclusion now follows at once, since clearly by appropriate choice of
v andé we can assume thétis any number less thary @ — 1)¥". O

5. Proof of Theorem 2

The argument is delicate, covering a number of pages. For the proof of (4) we need t
distinguish the two cases> m? andm < n < m?; this is done in Sections 5.1 and 5.2
below. The proof of (5) and (6) is given in Section 5.3.

We shall prove (4) first, for the cage= 1, and then obtain the general estimate by
means of the rescaling (26).

Thus we assume that= u(r) satisfies (13) withf (s) = —s"~ + s?~1, namely

-1
(|u,|m_2u,)/ + n |u/|m—2u/ _ um—l + ul’—l =0 (28)
r
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with 1(0) = «. From the estimate (9) in Theorem 5 we have always1 (sincep > m)
and, more precisely,

( mp )1/(17—"1)
o> ——
e(n —m)
where

p=m"—s.

Hence

< m2 1)1/(17—”1)
o > - ,

n—meée

which gives the important condition
w=eca’™>K Vee(O,m*—m), (29)

whereK =m?/(n —m).
We make a second rescaling

w(r) = %u(a_(”_m)/mr), (30)

so that ifu = u(r) solves (28), them = w(r) satisfies

{ (|w/|m—2w/)/ + nT—l|w/|m—2w/ _ nwm—l + wp—l — 0’ (31)
wO =1 w'(0) =0,

wheren = o=~ Note thatn < 1 sincea > 1, and also, by (29); — 0 ase — O.
Now define the modified nonlinearity

fn(s) — _nsm—l +sp—l
and the corresponding functions (see (14) and (16))

Fy(s) = _%sm * %sp’ Q,(r) = —mnw"(r) + @wﬁ(”- (32)

Also, forr > 0 let us define the function
Z(r) — (1+ (1 _ T])l/(m_l)Drm/(m_l))_(n_m)/m (33)
where the constand = D,, ,, is given in (1).
We can now prove the following comparison result, closely related to Lemma 2.1

of [11].3

3The idea of a uniform upper bound for a scaled functign) first appears (for the case= 2) in [2].
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LEMMA 1.-— We have
w@) <z(@r) Vr>0. (34)
Proof. -We make use of the functiod/ introduced in Lemma 2.1 in [11]: here
however it will be applied without a previous Emden—Fowler inversion. Thus set

H(r) = (m —Dr"|w' ()" — (n — m)r" tw(r) |w' (7)™ + %r"w(r)fn(wm)-

Then by using the fact that solves (31) we obtain

n

H'(r) = %(mznwm_l(r) — e(n —m)w" L) w'(r).

Let R be the unique value af where
2 1/(p—m)
wiRy= () e
(n—m)w

see (29) and recall from Proposition 2 th&t< 0 and w <1 forr > 0. Hence it is easy
to see thaH is strictly increasing of0, R] and strictly decreasing diR, co). Moreover,
H(0)=0andlim_, H(r) =0 by Theorem 8. Consequently

Hr)>0 Vr=>0. (35)

Consider the function

oy wert e
(7‘) - rwn(m—l)/(n—m)(r) - wn(m—l)/(n—m)(r)’

where® (r) = |w'(r)|"/r (see the proof of Theorem 7). By using (31) again we find
that

H(r).

Wiy = 1
(I") - n—m rn+1 wm(n—l)/(n—m) (}")

From (35) it follows that¥ is strictly increasing ofi0, co). Therefore, by Proposition 2
we have

. 1 1-
Ur) > limw(@) = S = _77;
t—0 n n
hence
|w'(r)] 1=\ " ey 1Z 0
r =———— Vr> 0
wn/(n—m) (I") n Zn/(n—m) (I")

The conclusion (34) follows upon integration, and the proof is complete.
For later use we observe that the functioa z(r) defined in (33) satisfies the equation

’ -1 nm—2_r m*—
(I2'1"%2') +n—r 12" % + A —mz" t=0 (36)
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(the easiest way to check this is to note from (1) thatd—1U, for d = (1 — n)@—m/m*,
so thatz then satisfieg PC.) with the extra coefficientl — ) inserted on the right side).
Now let

e/(p—m)
n—m
Cl = C1(8) = ( 2 8) . (37)

Then by differential calculus (recalling that = m* — ¢ and n = «=®»~™) we find
without difficulty that

fn(s) < Ciafs™ 1 Vs>0 and IirQCl =1 (38)

This allows us to obtain the following partial converse of Lemma 1.

LEMMA 2.— There exists a positive functiati, = C,(¢) such thatlim,_,oC, =1
and

w(r) > Coa/ " Vz(r) — (Ca”/™ P —1) vr>0. (39)
MoreoverCoo®/ "= > 1.

Proof. —Eqg. (31) may be rewritten as
(rn—llw/lm—l)/ — I"n_lfn(W). (40)

Integrating o0, r], and taking into account (38) and Lemma 1, yields

r r

rn—llwl(r)lm—l — /tn_lfn (w(t)) dt < Clas /tn—lzm*_l(t) dt
0 0

— 1(il Ola?”n_l|Z/(I’)|m_1,

the last equality being obtained by a similar integration of (36)Gn]. Therefore,

lw'(r)| < Caa® ™ D17/ (r)| Vr >0, (41)
where

o ( Cl >l/(m—l)
2= -7 .

Integrating (41) o0, r] then gives (39).
Finally, from (38) one sees thét, — 1 ase — 0, while by (34) and (39) we infer that

(Coa®/™ D —1)(z(r) —1) <0 Vr >0,

that is,Coa®/~Y — 1> 0 sincez(r) < 1 for r > 0 by (34) and the fact that < 1. This
completes the proof. O

The following technical lemmas will be crucial in the sequel. To simplify their
presentation, we shall think of the functioms= w(r) and z = z(r), given in (30)
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and (33), to be defined over the sp&tinstead of orr > 0; that is,w = w(|x|) and
z=2z(|x|). In particular,w then satisfies the partial differential equation

—Apw = fy(w) = —nuw" +wP p=a P, (42)

We observe also thai(|x|) decays exponentially as| — oo, so that the integrals below
are well defined.

LEMMA 3. - We have
cla)/wpé/wméczw/w”,
R)l Rn R)l

wherew = ea?™, p =m* — ¢, and

1/n—m n—m
c1=— , Cy = 5 -
m m

Proof. —By Proposition 3 applied to the ground stateof (31) we get, with the help
of the second part of (32),

en—m ) n—m
—mn/wm—i—g/wl’zo, that is, /w’": a)/w”.
rJ mp

R» Rn Rn

But p € (m, m*), so the conclusion follows at once

LEMMA 4. — We have
\/w[7 > (Cag)—(n—m)/m’ /|Vw|m > (Cag)—(n—m)/m’
Rll R”

whereC is a Sobolev constant for the embeddingdf” (R") into L™ (R").
Proof. —If we multiply (42) by w and integrate by parts, we obtain

/|Vw|m:—n/wm+/w”</w”. (43)
Rn Rn Rll Rn

Using (38) and the fact that; < 1 by (37), EqQ. (42) can also be written in the form
—Anw = f,(w) <afw™ ~L Thus, as before,

m*/m
/lel’" goff/wm* gca*?(/wwr") (44)

Rr Rn Rn

by the Sobolev inequality. Solving this relation ffy, [Vw|™ gives the second inequality
of the lemma,; the first is then obtained from (43). This completes the praof.
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5.1. Thecasen > m?

By (33) we see that(|x|) &~ |x|~"—™/"-D as|x| — oo, soz € L™ (R") if and only
if n > m?. This allows us to derive

LEMMA 5.— Letn > m?. Then there existd > 0 (depending only om:, n) such that

A (n—m)/m -1 2
a < (—) forall s € (O, m " ) (45)

& n n—m

Proof. —Definez(]x|) to be the function given by (33) with the parametefixed at

the value
. (m—=1)(mn—m)
= n2—m@m-—1)"

Using (9) with§ = 1, an easy calculation shows that foiin the range stated in the
lemma we have) = a~?~™ ¢ (0, /). Hence, for the given range of we infer from

(34) that
/wn1</zn1</2rn56

R2 R2 R»

(recalln > m?, and observe specifically that= ¢(m, n)).
On the other hand, by Lemmas 3 and 4,

/wm >clw/w1’ >C1(Ca6)_(n_m)/ma)
Rll Rn

Combining the two previous lines, and remembering that ca”~™, p = m* — ¢, we
obtain

* n
m m—e o

: (46)

o

o |

whereA = (¢/c1)C"~™/™ depends only om, n. Finally, using the given restriction

m—1 m?

O<e<

(47)

n n—m
(notem* —m = m?/(n — m)), one derives from (46) that

A
am/(n—m) <=
&

(45) now follows immediately, and the proof is completex

Together with the inequality > 1, Lemma 5 implies the important conclusion

a®*—>1 ase— 0. (48)
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LEMMA 6.— Letn > m?. Then there existX’ > 0 (depending only om:, n) such
that

m—1 m?
w=c¢ca?™ LK forallee (O, )

n n—m

Proof. —We have

n—m )2

_ A A S(m
— *_gp_ oL n—m
al M =" T gt <= [ = ,
& &

by (45) and (46). Hence

n—m-2
AN ECRD)
a):soz”_’"éA-(—) .
£

It remains to show that the right side is bounded, but this follows directly from the fact
that(1/s)* is bounded € €'/®) on (0, oo). The proof is complete. O

Remark— A short calculation, taking into account restriction (47), shows that in fact
we can choosé’ = Amn—m+1)/ngln=—m)?/en?

We can now complete the proof of (4). Here it is convenient to revert to the original
understanding thab = w(r) andz = z(r). We first rewrite the results of Lemmas 1, 2
as

O<z—w<C3—1 forallr>0, (49)

whereCs = C3(e) = Coa®/ ™~V — 1 ase — 0; of course als@z > 1 by Lemma 2.
From Proposition 3 applied to equation (31) we obtain

/ Q,(rr"tdr =0, (50)
0

whereQ, (r) is defined by (32); see the same argument in Lemma 3.
Now by (29) and Lemma 6 we know thafn = w € [K, K']. Then, sincew < 1, it
follows from (32) that

|0, ()| < Constnnw™ < Constmnz™,

see the proof of Lemma 5. Recalling thétt € L1(R"), we can therefore apply the
Lebesgue dominated convergence theorem to (50) whenO. Clearlyw converges

to some limitwg € [K, K'], up to a subsequence (in fact we will determine a unique
possible value fowg, which shows tha&» — wg on the continuung > 0). Moreover by
(49) and the fact thaj — 0 ase — 0, we have

2(r) = zo(r) = (14 Dp/m=by=mmim
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pointwise for all» > 0. Consequently there results

n—m? T

o0
/Zg’(r)r”_l dr =wo————— /zg’* (r)yr"tdr.
0 o 0

Both z&'r"~1 andz "~ are inL1(0, co) sincen > m?.
By means of the change of variables- Dr"/~Y one obtains

® — 1 m— - 1 - 2
/ZE)"(r)r”‘1 dr = m—D‘Tl”B(n(m ), pr ) (51)
m m m
and
® " — 1 m— - 1
/zg’ ridr = ML pminp (M ﬁ), (52)
m m m
0
Hence,

_ 2
ZB(n(rr’zn 1)’ n n:n )
0 n n(m—1) n
n—m B(F=—=, 1)

m ’m

We can now prove the asymptotic relation (4). Indeed,
— 2 _ 2
g(n—m)/mza — (0)058)(” m)/m N wén m)/m _ leﬂ

ase — 0 (recalla® — 1), which is just (4) for the casé= 1. Since for generat one
hasu(0) = sY/(P—mq ~ s=m/m?y relation (4) is proved (case> m?2).

5.2. Thecasen < m?
Herez ¢ L™(R") and the crucial Lemma 6 does not hold; nevertheless, we can prove
the following result.

LEMMA 7.— Assume that < m?2. Then then there exist&’ = K’(m,n) > 0 such
that

80(m/(m—l) < K/| Ioggl(n—m)/m(m—l)‘

Proof. —We argue as in the proof of Lemmas 5 and 6, with several major changes. Le
¢ be an exponent greater thatm — 1) /(n — m) to be determined later. Then, from (34)

we have
/wg</1€</26=dA<oo (53)

Rn Rn Rn

sincez € LY(R™); hered of course depends ah On the other hand, by Lemmas 3 and 4
we find

/w’" > cla)/w” >c1a)(Coﬁ)_(n_m)/m. (54)
R)l R)l
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Next, integrating (40) ove(0, oo) and taking into account the exponential decaywof
andw’, as well as (34), we get

/wm—l:ap—m/wp—l gap—m/zp—lzdlap—m’ (55)
Rn Rn Rll

where we have used the fact that LP~1(R") (for ¢ < m/(n — m)).
By Holder interpolation,

[or<(fe) ([#) )
R” R”

Rn

where® = 1/(¢ —m + 1) € (0, 1) sincen < m?. A short calculation shows moreover
that

A n—m -1 nim—1)
dzO( 1€—n> as{ - ———. (57)

m — n—m

Now we choosé near to but slightly larger tham(m — 1)/(n — m), hamely

‘= m—1 ( n 1 )
" 1—|loge|-*\n—m |loge|/)’

with & so small thatloge| > 1. Then

ﬁ:(ﬂ-m+1r1=%%ig%¢1—umnrw, and
(n—m >_1 [loge| —1

t—n) =217
m—1 m

Inserting (53), (54), (55), (57) into (56) now gives, after a little calculation,

ga(p_m)ﬁ—s(n—m)/m < All |Og€|ﬂ

whereA; = A1(m, n); hence in turn,

g/ (m=D—p/(m=1) < A4 |Ogg|(n—m)/m(m—l)

with p =m|loge|™* + e(n — m).
For suitably smalk, says < g9, one then obtains (compare Lemma 5)

A 2(m—1)/m
a<<i> . (58)
)

As before this implies tha#® and «/!'°9! are bounded, that is;” is bounded, from
which the lemma follows at once, subject of course to the previous restrictions given
fore. O



498 F. GAZZOLA, J. SERRIN/ Ann. I. H. Poincaré — AN 19 (2002) 477-504

From (58) it follows thatx® — 1 ase — 0, just as in the case > m?. In turn (49)
holds exactly as before, witi; — 1 ase — 0.

For the next conclusion, we shall need a sharper form for the behavi@y. irst, it
is not difficult to verify that the functiorf, = C1(¢) defined in (37) satisfies

C1< 1+ celloge]

for some constant > 0; we understand here and in what follows thdenotes a generic
positive constant, depending only anandn. Moreover, by (29) we have < ce, so the
function C, = C,(¢) defined in (41) also satisfies

Cy <1+ cellogel.

Finally
C3 = Cout®/ ™D <14 ce|loge] (59)

for sufficiently smalle.

Next, letR > 0 denote the unique value efwherez(R) = ve|loge|, wherev > 0 is
a constant to be determined later; note in particular hat oo ase — 0. Now, arguing
from (39) and the fact that

1< C3<1+cel|logel,

we infer

z(r) C;—1
w() > Cazl) = (Ca= D > (1— m)z(?)

> (1— %)z(r) Vr € [0, R].

In turn, fixing v sufficiently large,
1
w() > Ez(r) Vr € [0, R]. (60)

We can now prove a companion result to (29); in particular, it shows that Lemma 6 doe:
not hold whenn < m?.

LEMMA 8. — There existK; = K;(m, n) > 0 such that fore sufficiently small
g™ MY > K| |Ogs|(”_m2)/’"(’"_1) whenm < n < m?

and

ea™ ™D > Killoge| whenn =m?.
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Proof. —Assume first that < m?. Then fore sufficiently small there holds

di > /2P>/w" by (34)

Rll Rn

> E/w’" by Lemma 3
a)]R”
C

> S [ by (60)
w

|x|<R

R

c tn—l
® / a4 by (33

w
1

— g{R(mz—n)/(m—l) _ 1}

WV

C 2
> —(e]logel)~m—m/n=m)
w

where the last inequality is obtained by solvin@g) = ve|loge| (¢ small). Rearranging
with the help of the relatiom = sa?~™ < ea™*/®"=™ now yields the first statement of
the lemma.

If n =m?, the same arguments lead to

d ¢ c
/— = —IlogR > —|loge]|,
w

t w

from which the second statement follows at onces

Lemma 8 shows at once that (4) also holds in the easen < m?, that is whenever
n>m.

Remark— As already mentioned in the introduction, more precision in the asymptotic
behavior ofu(0) is needed in the case< m?. We conjecture that also in this case there
exists a continuous increasing functigy,, defined or{0, co) such thaf,, ,(0) =0 and
Iim£—>0[gm,n (e)u0)] = 1.

5.3. Diraclimits

Here we shall complete the demonstration of Theorem 2 by proving conditions (5)
and (6). It will be convenient here and in the sequei to makehe initial assumption
8 =1, though we continue to write(0) = «.

From Section 5.1 we recall the basic estimate (49); with the help of (59) this can be
rewritten in the form

O0<z—w<cel|logel. (61)

Here we wish to scale back to the original functigrthis being accomplished by means
of (26) and (30). More specifically, in (30) it is necessary to replaaada respectively
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by v andg (B8 as in (2)) because of the initial assumption in Section 5dhatl. The
required rescaling is therefore given by

1 r ! d
w(r) = 81/(1,_,”)’3“(81/141,3(17—”1)/”1) - EU<W) ©2

where from Theorem 1 we hasé’?~™ 8 = «. After a little calculation, (61) then leads
to the basic formula

0<zy —u < caellogel, (63)
where
Zo = Zo(X) :az(a(p—m)/m|x|)
(64)
— a/[l+ (1-— n)l/(m—l)a(p—m)/(m—l)Dlx|m/(m—l)](”—m)/m

and (33) is used at the last step.
Observe from the left hand inequality of (63) that (reegl> 0 ase — 0)

n—m

m |)c|_H ase — 0,

o Vy(x) <Y Dz, (x) > D™

which immediately yields (5).

To prove (6), letX = X denote the Lebesgue spaté over the domairf|x| < R},
and similarly letx’ = X/, be the spac&™" over the domair|x| > R}. By Minkowski’s
inequality and (63),

Nullx — Nzallx| < llu — zollx < caellogel|I1x. (65)

In particular, let us make the new choice

R = g~/ (1=m)+i

whereu > 0 is a positive constant to be determined later. Then with the obvious change
of variabless = «»=™/™y we find

a*S/W‘FM

1
; st ds
Izl = waa/™ /

0

[1 + (1 _ n)l/(m—l)Dsm/(m—l)]n

= Vn (66)

ase — 0, see (52) and (48) (which as shown in Section 5.2 is valid fot allm). By
the same calculation

m

lza % — 0 (67)

ase — 0, since the integration is now over the interyats/"*+* oo) and the integral is
convergent.
Next, one calculates that

11l = &2 Rrm* = @1 =1t /m
n n



F. GAZZOLA, J. SERRIN/ Ann. I. H. Poincaré — AN 19 (2002) 477-504 501
in view of the definition ofR. We can now determine the limit as— 0 of the quantity
aelloge|[[1llx = (w./m)a*" ™ "¢[loge].

From Lemmas 6 and 7 it is evident that, whatever the case considered, there exidts
(depending only om:, n) such thatx < ce=*, providede is small. (One can check that
= (n —m)/m? + 1in fact suffices.) Hence

Olu(n—m)/mgl IOgEl < cel—ku(n—m)/m| |0g8|,

which tends to 0 as — 0 if u is chosen small enough. It now follows at once from (65)
and (66) that|u|%" — ¥, ase — 0.
We observe finally from the left hand inequality of (63) that

lully, < llzel% — O
by (67). Hence

lallpe = el + Nul% = Vs

proving the second part of (6).
To obtain the first part, note that integration(d?]’j) over R" and use of Theorem 8

yields
8/um_1=/u1’_l. (68)

Rll Rll
But from the left inequality of (63) together with a calculation as in (66), we have

00
Sn_ldS

/up—lg/zp—l —1+£(n m)/m/ ]
A 2 o " [1+ (]_ — n)l/(m—l)Dsm/(m—l)](n—m)(p—l)/m

Since the integral is uniformly bounded for asyess thann /2(n — m), we then get

/u”_l—> 0 ase¢— 0.
Rn

With the help of (68) (and a trivial interpolation) this completes the proof of (6), and
therefore of Theorem 2.
6. Proof of Theorem 3
First we prove (8). Multiplying the equatio(rP;j) by u and integrating ovelR” gives

/qul _—8/u +/u” (69)

Rn
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We now lete — 0. The first term on the right approaches 0 by (6).

To treat the second term on the right side of (69), we slightly modify the spdoam
its meaning in the previous subsection, so that now it represents the Lebesgué&pace
over the domairf|x| < R}, and similarly for the spac&’. Then as in (66) there holds

a—s/m-HL

-1
_ s tds
Za |l = wpat®—m/m /

[1 + (1 _ 77)l/(m—l)l)sm/(m—l)]n—s(n—m)/m ?

the integral being convergent when< m/(n — m). To evaluate the limit of the right
side, note first that on the intervalOs < o* there holds (for smalt)

1< [1+ (1— n)l/(m—l)Dsm/(m—l)]5(”_’")/’” < aa;m/(m—l)’
so that by (48), uniformly fos € (0, «*),
[l-{- (1 _ n)l/(m—l)Dsm/(m—l)]3("—’")/’" -1

Hence as in (66), one obtaitis, ||’y — .. ase — 0. Also as before||z, |5 — 0, so
that finally, again arguing as in the previous subsection,

laellh = Il + Nl = Vinns

that is, [z, u” — ym.n. The second statement in (8) follows at once from (69). In order
to prove the first statement in (8), note that by (62) we have

o
/qulq =coz”q/m/|w’(oz(”_m)/mr)|qr"_ldr Vg > 1,
R 0

note also that € D> (R") forallg > n(m—1)/(n—1) and that| Vz||, remains bounded
ase — 0: therefore, by (41) and an obvious change of variables, we obtain

o0
nim—1
/qulq < cqPa—m/mtn / I/ (M9 dr < caP /M 50 Vg e (m g)
R 0

n—1
which completes the proof of (8).
It remains to prove (7). By evaluating(r) and by using (41) and (59) we obtain

¢ SR
m—1

1/ m=1) (70)
x D (1 + (1 _ n)l/(m—l)Drm/(m—l))n/m :

[w'(r] < (1+ cellogel)

Moreover, according to the “double rescaling” (62) we have

, r
u O((P_m)/m ’

lw'(r)] =

ap/m
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Inserting this in (70), using an obvious change of variables and then letiin@, yields

n/m
lim {al/(m—l)|u/(r)|} < n—m jp (1=m)/m(m=1) . (1=n)/(m—1)
e—0 m—1 ’

which immediately gives (7) sinae = u(0).

7. Proof of Theorem 4

We define

p—m
T(e)=71(8,d) = %(%) ,

whereg is given by (2); herg is a (well-defined) continuous function ©find of course
also ofm, n. By Theorem 1, whei = et (¢) we have

u(0) = 31/(p—m)’3 =d,
proving (ii). Also by Theorem 2 we know that when> m? (cases = 1)

2
g—m/m*g 5 B, , ase— 0,

2
p—m m</(n—m)
7(e) = <7d ; ) .g-6<"-'n>/m2_>< d )
S(n—m)/m :8 ,Bm,n

ase — 0; similarly, whenn < m?, by Theorem 2 we infer that(¢) — 0 ase — 0.
Statement (i) is so proved.

To prove the final statement of the theorem, we first use (63), together with the fac
that in the present case= u(0) = d, to infer the fundamental relation

so that

lu — z4] < cdelloge]. (72)

But by (64), and since — 0 ase — 0, it now follows that

n—m

2a6) = d[1+ D@ )™ T =000

uniformly for x in R"; see (1) in the introduction. Together with (71) this completes the
proof of (ii).

An easy consequence of the above argument is the following companion result fol
Theorem 4.

COROLLARY. —Letn > m?. In place of the conditiod = 7 (¢), suppose that = ae,
whereaq is a positive constant. Then— U, uniformly onR"” ase = p —m — 0, where

2
d= a(n—m)/m IBm,n-
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