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ABSTRACT. – We study the existence of periodic solutions of singular
Hamiltonian systems as well as closed geodesics on non-compact
Riemannian manifolds via variational methods.

For Hamiltonian systems, we show the existence of a periodic solution
of prescribed-energy problem:

••
q +∇V (q)= 0,

1

2
| •q |2+ V (q)= 0

under the conditions: (i)V (q) < 0 for all q ∈ RN \ {0}; (ii) V (q) ∼
−1/|q|2 as|q| ∼ 0 and|q| ∼∞.

For closed geodesics, we show the existence of a non-constant closed
geodesic on(R× SN−1, g) under the condition:

g(s,x) ∼ ds2+ h0 ass ∼±∞,
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whereh0 is the standard metric onSN−1.

AMS classification: 58F05, 34C25

RÉSUMÉ. – Nous étudions l’existence de solutions p’eriodiques pour
des systèmes Hamiltoniens singuliers, et de géodésiques fermées sur des
variétes Riemanniennes non-compactes par des méthodes variationnelles.

Pour les systèmes Hamiltoniens, nouns montrons l’existence d’une
solution périodique pour un probl‘eme à énergie prescrite :

••
q +∇V (q)= 0,
1

2
| •q |2+ V (q)= 0

sous les conditions : (i)V (q) < 0 pour toutq ∈ RN \ {0} ; (ii) V (q) ∼
−1/|q|2 quand|q| ∼ 0 et|q| ∼∞.

Pour les géodésiques fermées, nouns montrons l’existence d’une
géodésique fermée non-constante sur(R× SN−1, g) sous la condition :

g(s,x) ∼ ds2+ h0 quands ∼±∞,
oùh0 est la métrique standard surSN−1.

0. INTRODUCTION

In this paper we study the existence of periodic solutions of singular
Hamiltonian systems as well as the existence of closed geodesics on non-
compact Riemannian manifolds in a related situation.

As to periodic solutions of Hamiltonian systems, we consider the ex-
istence of periodic solutions of the so-called prescribed energy problem:

••
q +∇V (q)= 0, (HS.1)

1

2
| •q|2+ V (q)=H, (HS.2)

whereq(t) :R→ RN \ {0} (N > 2), V :RN \ {0} → R andH ∈ R. We
consider the situation whereV (q) has a singularity at 0;

(V0) V (q) ∈C2(RN \ {0},R).
(V1) V (q) < 0 for all q ∈RN \ {0}.
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(V2) There exists anα > 0 such that

V (q)∼− 1

|q|α nearq = 0;

more precisely, forW(q)= V (q)+ (1/|q|α)

|q|αW(q), |q|α+1∇W(q), |q|α+2∇2W(q)→ 0 as|q| → 0.

The orderα of the singularity 0 plays an important role for the
existence of periodic solutions. For example, forV (q) = −1/|q|α ,
(HS.1)–(HS.2) has a periodic solution if and only if

H > 0 for α > 2, (0.1)

H = 0 for α = 2, (0.2)

H < 0 for α ∈ (0,2). (0.3)

The situation which generalizes the case (0.1)—which is called strong
force—is considered by [2,10,15,18] and the existence of a periodic so-
lution is obtained via minimax methods. The situation which generalizes
the case (0.3)—which is called weak force—is also studied by [2,12,13,
19,22,23]. We also refer to Ambrosetti and Coti Zelati [3] and references
therein. See also [4] for generalization for the first order Hamiltonian
systems. However, it seems that the situation related to the border case
α = 2 is not well studied; The only work, we know, is Ambrosetti and
Bessi [1]. They considered potentialsV (q) ∼ −(1/|q|2) − (1/|q|) and
proved the existence of multiple periodic solutions of (HS.1)–(HS.2) for
suitable range ofH < 0. See also [2,22,23] in which periodic solutions
are constructed forH < 0 andV (q)∼−(ε/|q|2)− (1/|q|α) whereε > 0
is sufficiently small andα ∈ (0,2). We remark that a perturbation of weak
force case is studied in these works and the caseV (q)=−1/|q|2, H = 0
is excluded.

In this paper we study a class of perturbations of−1/|q|2 and we look
for periodic solutions of (HS.1)–(HS.2) forH = 0. Our result does not
exclude the caseV (q)=−1/|q|2, H = 0.

Since (HS.1)–(HS.2) withV (q) = −1/|q|2 has a periodic solution
if and only if H = 0, it seems that the situation is rather delicate
and the problem (HS.1)–(HS.2) accepts only very restricted class of
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perturbations. However, we have the following existence result which
ensures the existence for rather wide class ofV (q)’s.

THEOREM 0.1. –Assume(V0)–(V2) with α = 2 and
(V3) SetW(q)= V (q)+ (1/|q|2), thenW(q) satisfies

|q|2W(q), |q|3∇W(q), |q|4∇2W(q)→ 0 as|q| →∞.

Then(HS.1)–(HS.2)withH = 0 has at least one periodic solution.

The conditions (V2) and (V3) request

V (q)∼− 1

|q|2 as|q| ∼ 0 and|q| ∼∞.

This condition is necessary for the existence of periodic solutions of
(HS.1)–(HS.2) withH = 0 in the following sense; if

V (q)∼− a

|q|2 as|q| ∼ 0,

V (q)∼− b

|q|2 as|q| ∼∞

and a 6= b, then (HS.1)–(HS.2) withH = 0 does not have periodic
solutions in general. (Of course, ifa = b > 0, the existence of periodic
solutions is ensured by Theorem 0.1.) More precisely, we have the
following

THEOREM 0.2. –Supposeϕ(r) ∈ C2([0,∞),R) satisfies

ϕ′(r) 6= 0 for all r > 0, (0.4)

ϕ(r)→ a > 0 asr→ 0, (0.5)

ϕ(r)→ b > 0 asr→∞ (0.6)

and let

V (q)=−ϕ(|q|)|q|2 . (0.7)

Then(HS.1)–(HS.2)withH = 0 does not have periodic solutions.

SinceR× SN−1 andRN \ {0} are diffeomorphic through a mapping

R× SN−1→RN \ {0}; (s, x) 7→ esx,



K. TANAKA / Ann. Inst. Henri Poincaré 17 (2000) 1–33 5

we can reduce (HS.1)–(HS.2) to the existence problem for closed
geodesics on non-compact Riemannian manifoldR×SN−1 with a metric
gV defined by

gV(s,x)= e2s(H − V (esx))g0
(s,x). (0.8)

Hereg0 is the standard product metric onR× SN−1;

g0
(s,x)

(
(ξ, η), (ξ, η)

)= |ξ |2+ |η|2 (0.9)

for (s, x) ∈ R×SN−1 and(ξ, η) ∈ T(s,x)(R×SN−1)=R×TxSN−1. Here
we identify

TxS
N−1= {η ∈RN ; x · η= 0}. (0.10)

We will give ono-to-one correspondence between periodic solutions of
(HS.1)–(HS.2) and non-constant closed geodesics on(R× SN−1, gV ) in
Section 1.

We study the existence of non-constant closed geodesics on(R ×
SN−1, g) in more general situation. Our main result for closed geodesics
is the following

THEOREM 0.3. –Let g be a Riemannian metric onR × SN−1 and
suppose thatg satisfiesg ∼ g0 ass ∼±∞. More precisely,

(g0) g is aC2-Riemannian metric onR× SN−1.
(g1) g ∼ g0 ass ∼±∞ in the following sense; let (ξ1, . . . , ξN−1) be a

local coordinate ofSN−1 in an open setU ⊂ SN−1 and setξ0= s.
We write

g =
N−1∑
i,j=0

gij (ξ
0, ξ1, . . . , ξN−1) dξ i ⊗ dξj .

We also writeg0=∑g0
ij (ξ

0, ξ1, . . . , ξN−1) dξ i ⊗ dξj , whereg0

is the standard product Riemannian metric onR × SN−1. We
remark thatg0

ij (ξ
0, ξ1, . . . , ξN−1) is independent ofξ0 = s. We

assume

gij (s, ξ
1, . . . , ξN−1)→ g0

ij (ξ
1, . . . , ξN−1) in C2(U,R),

∂gij

∂s
(s, ξ1, . . . , ξN−1)→ 0 in C1(U,R) as|s| →∞.

Then(R× SN−1, g) has at least one non-constant closed geodesic.
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Remark0.4. – We have a non-existence result for non-constant closed
geodesics on(R × SN−1, g) which is related to Theorem 0.2. See
Section 1.2.

We remark that ifV (q)=−1/|q|2 then the corresponding metricgV is
the standard product metric, that is,gV = g0. We can derive our Theorem
0.1 from Theorem 0.3.

Proof of Theorem 0.1. –Under the conditions (V0)–(V3), we can
see that(R × SN−1, gV ) is a Riemannian manifold and satisfies the
assumptions of Theorem 0.3. Thus(R×SN−1, gV ) has at least one closed
geodesic by Theorem 0.3. As we stated before, non-constant closed
geodesics on(R× SN−1, gV ) are corresponding to periodic solutions of
(HS.1)–(HS.2). 2

The existence of closed geodesics on compact Riemannian manifolds
is rather well studied (see for example [16] and references therein). For
non-compact manifolds, the existence of closed geodesics is studied
only in a few papers. Thorbergsson [25] obtains the existence of a
closed geodesic whenM is complete, non-contractible and its sectional
curvature is non-negative outside some compact set. Benci and Giannoni
[11] also shows the existence of a closed geodesic for non-compact
complete Riemannian manifoldsM with asymptotically non-positive
sectional curvature. We remark that our Theorem 0.3 ensures the
existence of a closed geodesic in a situation different from [25,11]. See
Section 1.2 below.

This paper is organized as follows: In Section 1, we study the relation
between periodic solutions of (HS.1)–(HS.2) and non-constant closed
geodesics on(R × SN−1, gV ) where gV is defined in (0.8). We also
give a proof to Theorem 0.2. Sections 2–5 are devoted to the proof of
Theorem 0.3. Here we use an idea form Bahri and Li [5] and our proof
uses the structure of closed geodesics on the standard sphereSN−1; closed
geodesics on the standard sphereSN−1 are great circles onSN−1.

1. PRELIMINARIES

In this section, we first study the relation between periodic solutions
of (HS.1)–(HS.2) and non-constant closed geodesics onR× SN−1 with
a suitable metricg and we reduce our Theorem 0.1 to our Theorem 0.3.
Second, we give some reviews on the results due to Thorbergsson [25]
and Benci and Giannoni [11].



K. TANAKA / Ann. Inst. Henri Poincaré 17 (2000) 1–33 7

1.1. Periodic solutions of (HS.1)–(HS.2) and closed geodesics on
(R× SN−1,g)

In this section, we assume thatV (q) ∈ C2(RN \ {0},R) andH satisfies

H − V (q) > 0 for all q ∈ RN \ {0}. (1.1)

We introduce a metrichV onRN \ {0} by

hVq (v, v)=
(
H − V (q))|v|2 for v ∈RN = Tq(RN \ {0}).

Suppose thatu(τ) is a non-constant closed geodesic on(RN \ {0}, hV ),
that is,u(τ) is a non-constant critical point of the energy functional:

E(u)= 1

2

1∫
0

(
H − V (u(τ)))| •u(τ)|2dτ (1.2)

acting on 1-periodic functions. Thenu(τ) satisfies for some constant
E0> 0

1

2

(
H − V (u(τ)))| •u(τ)|2=E0, (1.3)

d

dτ

((
H − V (u)) •u )+ 1

2
| •u|2∇V (u)= 0 for all τ. (1.4)

By (1.3) and (1.4), we get

1

2

∣∣∣∣H − V (u)√
E0

du

dτ

∣∣∣∣2+ V (u)=H,
H − V (u)√

E0

d

dτ

(
H − V (u)√

E0

du

dτ

)
+∇V (u)= 0.

Now we define

t (τ )=
τ∫

0

√
E0

H − V (u(η)) dη

and let τ = τ(t) be the inverse oft = t (τ ). Then q(t) = u(τ(t)) is
t (1)-periodic and satisfies (HS.1)–(HS.2). Conversely, ifq(t) satisfies
(HS.1)–(HS.2), we remark thatq(t) is not constant int because of (1.1).
We can also seeu(τ) = q(t (τ )) is a non-constant closed geodesic on
(RN \ {0}, hV ) after a suitable change of variablet = t (τ ).
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SinceRN \{0} 'R×SN−1, we can reduce our problem to the existence
problem for closed geodesics onR× SN−1 with a suitable metric.

Let gV be a metric onR× SN−1 induced fromhV by a mapping

R× SN−1→RN \ {0}; (s, x) 7→ esx.

That is,

gV(s,x)
(
(ξ, η), (ξ, η)

)= e2s(H − V (esx))g0
(s,x)

(
(ξ, η), (ξ, η)

)
, (1.5)

whereg0 is the standard product metric onR× SN−1 defined in (0.9).
Therefore there is a one-to-one correspondence between periodic

solutions of (HS.1)–(HS.2) and non-constant closed geodesics on(R×
SN−1, gV ).

We also remark that(R× SN−1, gV ) is complete under the condition:

inf
(s,x)∈R×SN−1

e2s(H − V (esx))> 0.

Especially(R× SN−1, gV ) is complete if there exists a constantC > 0
such that

H > 0 and − V (q)> C

|q|2 for all q ∈RN \ {0}. (1.6)

1.2. Variational characterization of closed geodesics on
(R× SN−1,g) and non-existence result

From now on, we consider a complete Riemannian metricg on
R× SN−1. Closed geodesics on(R× SN−1, g) can be characterized as
critical points of the following functional:

E(u)= 1

2

1∫
0

gu
( •
u,
•
u
)
dt :Λ→R,

whereΛ is a space of 1-periodic curves onR× SN−1, i.e.,

Λ= {u ∈H 1(0,1;R× SN−1); u(0)= u(1)}.
It is known thatΛ is a C∞ Hilbert manifold and its tangent space at
u(t)= (s(t), x(t)) ∈Λ is given by
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TuΛ= {(ξ(t), η(t)) ∈H 1(0,1;R×RN); ξ(0)= ξ(1), η(0)= η(1),(
ξ(t), η(t)

) ∈R× Tu(t)SN−1 for all t ∈ [0,1]}.
We will give a precise Hilbert structure toΛ later in Section 1.3.

Using this variational formulation, we can give a proof of Theorem 0.2.

Proof of Theorem 0.2. –The corresponding metricgV and functional
E(u) for V (q)=−φ(|q|)/|q|2, H = 0 are given by

gV(s,x) = φ(es)g0
(s,x),

E(u)= 1

2

1∫
0

φ(es(t))
(|•s(t)|2+ | •x(t)|2)dt for u(t)= (s(t), x(t)) ∈Λ.

We setuτ (t)= (s(t)+ τ, x(t)) and we see

E′(u)(1,0)= d

dτ

∣∣∣∣
τ=0
E(uτ )=

1∫
0

es(t)φ′(es(t))
(|•s(t)|2+ | •x(t)|2)dt.

Thus E′(u) 6= 0 for all non-constant curveu ∈ Λ under the condi-
tion (0.4). 2

Remark1.1. – We have a similar non-existence result for closed
geodesics on(R × SN−1, φ(es)g) if φ(s) satisfies the condition (0.4)–
(0.6).

In [11,25], the existence of closed geodesics on non-compact mani-
folds is studied. In Section 2 of [25] and Section 2 of [11], they consider
the case of a “warped product” Riemannian manifold; let(M0, h0) be a
compact Riemannian manifold and letM = R ×M0. We consider the
warped product metric onM :

g(s,x)
(
(ξ, η), (ξ, η)

)= ξ2+ β(s)h0x(η, η)

for (s, x) ∈ R×M0, (ξ, η) ∈R× TxM0.

Here β :R → (0,∞) is a smooth positive function. They showed if
β ′(s) 6= 0 for all s ∈ R, then(M,g) does not have non-constant closed
geodesics (see Proposition 2.2 in [11]). We can also modify their
arguments to prove our Theorem 0.2.

Their arguments and Remark 1.1 show that if a metricg(s,x) onR×M0

satisfies



10 K. TANAKA / Ann. Inst. Henri Poincaré 17 (2000) 1–33

g(s,x) ∼ a(ds2+ h0) ass ∼∞, (1.7)

g(s,x) ∼ b(ds2+ h0) ass ∼−∞ (1.8)

anda 6= b, then(R×M0, g) does not have non-constant closed geodesics
in general. Conversely, when(M0, h0) = the standard shereSN−1, our
Theorem 0.3 ensures the existence of a non-constant closed geodesic
under the conditiona = b in (1.7)–(1.8). It seems that for general
compact Riemannian manifolds(M0, h0) the existence of non-constant
closed geodesics is not known under the conditiona = b in (1.7)–(1.8).

Besides non-existence result for a “warped-product” Riemannian man-
ifolds, [11,25] study the existence of non-constant closed geodesics on
non-compact complete Riemannian manifolds. In [25], the existence of
non-constant closed geodesics is proved for non-compact complete man-
ifolds whose sectional curvature is non-negative outside some compact
sets. ForN = 2, [25] also proves the existence for non-compact com-
plete surfaces which are neither homeomorphic toR2 norR× S1. (See
also Bangert [8].) Benci and Giannoni [11] proves the existence for non-
compact complete Riemannian manifoldsM with asymptotically non-
positive sectional curvature under a suitable condition on the topology of
the free loop spaceΛ(M) onM .

1.3. A Hilbert structure on Λ

For later use, we define the spaceΛ and fix a Hilbert structure onΛ
precisely.

We embedR× SN−1 intoRN+1 in a standard way:

R× SN−1= {(s, x) ∈R×RN ; |x| = 1
}⊂RN+1.

We also identify

T(s,x)(R× SN−1)= {(ξ, η) ∈R×RN ; x · η= 0
}
.

We introduce the free loop spaceΛ onR× SN−1 by

Λ= {u(t)= (s(t), x(t)) ∈H 1(0,1;R×RN);(
s(0), x(0)

)= (s(1), x(1)) and

|x(t)| = 1 for all t ∈ [0,1]}.
We equipΛ with a Riemannian structure
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〈
(ξ1, η1), (ξ2, η2)

〉
T(s,x)Λ

=
1∫

0

•
ξ1

•
ξ2+Dtη1 ·Dtη2 dt

+ ξ1(0)ξ2(0)+ η1(0) · η2(0)

for (ξ1, η1), (ξ2, η2) ∈ T(s,x)Λ and(s, x) ∈ Λ. HereDtη is the covariant
derivative ofη(t), i.e., denoting byP(x(t)) the projection fromRN onto

Tx(t)S
N−1, Dtη= P(x(t)) •η(t). We also denote by distΛ(·, ·) the distance

onΛ induced by the Riemannian structure〈·, ·〉T Λ. We have

(i) For uj , u0 ∈Λ, distΛ(uj , u0)→ 0 if and only if

‖uj − u0‖H1(0,1;R×RN)→ 0.

(ii) For (uj )∞j=1⊂Λ, (uj )∞j=1 is a Cauchy sequence in(Λ,distΛ(·, ·))
if and only if

‖ui − uj‖H1(0,1;R×RN)→ 0 asi, j→∞.
(iii) (Λ,distΛ(·, ·)) is a complete metric space.

Similarly for SN−1= {x ∈RN ; |x| = 1}, we define

ΛSN−1 = {x(t) ∈H 1(0,1;RN); x(0)= x(1), |x(t)| = 1

for all t ∈ [0,1]},
TxΛSN−1 = {η(t) ∈H 1(0,1;RN); η(0)= η(1), η(t) · x(t)= 0

for all t ∈ [0,1]} for x(t) ∈ΛSN−1,

〈η1, η2〉 =
1∫

0

Dtη1 ·Dtη2 dt + η1(0) · η2(0) for η1(t), η2(t) ∈ TxΛSN−1.

(ΛSN−1, 〈·, ·〉TΛ
SN−1 ) has properties similar to the above (i)–(iii).

Finally in this section, we give a minimax characterization of closed
geodesics onSN−1 with the standard metric. Closed geodesics on the
standard sphereSN−1 can be characterized as critical points of

ESN−1(x)= 1

2

1∫
0

| •x|2dt ∈C2(ΛSN−1,R) (1.9)

and they are great circles, that is,

yk(t)= e1 cos 2πkt+ e2 sin 2πkt, (1.10)
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wherek ∈ Z and e1, e2 ∈ RN are vectors such thatei · ej = δij . Their
critical values are

ESN−1(yk)= 2π2k2 (k ∈ Z). (1.11)

WhenN = 2, we set

ΣS1 = {u ∈ΛSN−1; the winding number ofu= 1}. (1.12)

Then it is clear that

inf
u∈Σ

S1
ES1(u)= 2π2 (1.13)

and it corresponds to the prime closed geodesicy1(t).
WhenN > 3, we set

ΣSN−1 = {σ ∈ C(SN−2,ΛSN−1); degσ̃ = 1
}
, (1.14)

where

σ̃ :SN−2× ([0,1]/{0,1})' SN−2× S1→ SN−1

is defined by

σ̃ (z, t)= σ (z)(t) for σ ∈C(SN−2,ΛSN−1)

and deg̃σ is its Brouwer degree.
We have

inf
σ∈Σ

SN−1
max
z∈SN−2

ESN−1
(
σ (z)

)= 2π2 (1.15)

and it corresponds to the prime closed geodesicy1(t). In fact, it is well
known that the minimax value

c= inf
σ∈Σ

SN−1
max
z∈SN−2

ESN−1
(
σ (z)

)
gives a non-zero critical value ofESN−1(u). Thusc = 2π2k2 for some
k ∈N. On the other hand, we find for a suitableσ0(z) ∈ΣSN−1

max
z∈SN−2

ESN−1

(
σ0(z)

)= 2π2. (1.16)

Thus we have (1.15). An example ofσ0(z) is
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σ0(z)(t)

=



(
2z1, . . . ,2zN−2,

√
4z2
N−1− 3cos 2πt,√

4z2
N−1− 3sin 2πt

)
if |zN−1|>

√
3/2,(2|zN−1|√

3
z1√

1−z2
N−1

, . . . ,
2|zN−1|√

3
zN−2√
1−z2

N−1

,√
3−4z2

N−1
3 ,0

)
if |zN−1|<

√
3/2.

(1.17)

Here we use notationz= (z1, . . . , zN−1) ∈ SN−2= {z ∈RN−1; |z| = 1}.

2. BREAK DOWN OF THE PALAIS–SMALE CONDITION AND
MINIMAX METHODS FOR E(u)

In what follows, we will give a proof of Theorem 0.3. We assume a
Riemannian metricg onR× SN−1 satisfies (g0)–(g1) and we are going
to prove the existence of a critical pointu ∈Λ of

E(u)= 1

2

1∫
0

gu
( •
u,
•
u
)
dt ∈C2(Λ,R).

First, we study break down of the Palais–Smale condition forE(u).

PROPOSITION 2.1. –Suppose that(uj )∞j=1 ⊂ Λ satisfies for some
c > 0

E(uj)→ c, (2.1)∥∥E′(uj )∥∥(Tuj Λ)∗ → 0. (2.2)

Then there is a subsequence—we still denote it byuj—such that one of
the following two statements holds:

(i) There is a non-constant closed geodesicu0 ∈Λ on (R× SN−1, g)

such that

uj → u0 in Λ, equivalently, ‖uj − u0‖H1(0,1;R×RN)→ 0.

(ii) There is a closed geodesicx0(t) ∈ ΛSN−1 on the standard sphere
SN−1 such that if we writeuj(t)= (sj (t), xj (t)), then

(1) sj (0)→∞ or sj (0)→−∞.
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(2) ũj (t)≡ (sj (t)− sj (0), xj (t))→ (0, x0(t)) in Λ, equivalently,

‖•sj‖L2(0,1)→ 0 and‖xj − x0‖H1(0,1;RN)→ 0.

We use the following property frequently in what follows:

DEFINITION. – For c ∈R we say thatE(u) satisfies(PS)c in Λ if and
only if any sequence(uj )∞j=1⊂Λ satisfying(2.1)and(2.2)has a strongly
convergent subsequence.

Recalling (1.10) and (1.11), we have

COROLLARY 2.2. –(PS)c holds forE(u) for c ∈ (0,∞)\{2π2k2; k ∈
N}. Moreover non-convergent sequence(uj )∞j=1= (sj , xj )∞j=1⊂Λ satis-
fying (2.1)and(2.2)with c= 2π2k2 has a subsequence—still denoted by
uj—such that

(1) sj (0)→∞ or sj (0)→−∞.
(2) ũj (t)≡ (sj (t)− sj (0), xj (t))→ (0, yk(t)) in Λ asj→∞, where

yk(t) is given in(1.10).
(3) E(uj)→ 2π2k2.
(4) lim infj→∞ indexE′′(uj )> (N − 2)(2k − 1), whereindexE′′(uj )

denotes the Morse index ofE′′(uj ).

To prove Proposition 2.1, we first observe

LEMMA 2.3. –Under the assumption(g1), there are constantsm1,
m2> 0 such that

m1
(
ξ2+ |η|2)6 gu((ξ, η), (ξ, η))6m2

(
ξ2+ |η|2) (2.3)

for all u = (s, x) ∈ R × SN−1 and (ξ, η) ∈ Tu(R × SN−1) = R ×
TxS

N−1= {(ξ, η)∈R×RN; x · η= 0}.
Proof of Proposition 2.1. –Assume that(uj )∞j=1 = (sj , xj )∞j=1 ⊂ Λ

satisfies (2.1) and (2.2). By Lemma 2.3, we see for some constantC > 0
independent ofj

‖•sj‖2L2(0,1)+‖
•
xj‖2L2(0,1) 6C for all j. (2.4)

Thus we have

‖sj (t)− sj (0)‖L∞(0,1) 6 ‖•sj‖L2(0,1) 6C ′ for all j. (2.5)

We may assume that limj→∞ sj (0) ∈ [−∞,∞] exists and consider two
cases:
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Case 1: lim
j→∞ sj (0) ∈ (−∞,∞),

Case 2: lim
j→∞ sj (0)=±∞.

Case 1: limj→∞ sj (0) ∈ (−∞,∞).
In this case,(sj , xj ) stays bounded asj→∞ by (2.4), (2.5). Thus we

can show the statement (i) of Proposition 2.1 in a standard way.
Case 2: limj→∞ sj (0)=±∞.
Settingũj (t)= (sj (t)− sj (0), xj (t)) ∈Λ, we get from (2.5) and (g1)

(1) ũj stays bounded inΛ asj→∞,
(2) ‖E0′(ũj )‖(Tũj Λ)∗ → 0 asj →∞. Hereg0 is the standard product

metric defined in (0.9) andE0(u) is a functional corresponding to
closed geodesics on(R× SN−1, g0):

E0(u)= 1

2

1∫
0

g0
u

( •
u,
•
u
)
dt = 1

2

1∫
0

|•s|2+ | •x|2 dt

for u= (s, x) ∈Λ.
Thus, we can extract a subsequence—still we denote it byũj—such that
for someũ0= (s̃0, x̃0) ∈Λ

ũj → ũ0 in Λ.

Clearly ũ0 is a critical point ofE0(u), that is,ũ0 is a closed geodesic on
(R× SN−1, g0). Thus we have

(1) s̃0(t)≡ p is a constant,
(2) x̃0(t) is a closed geodesic on the standard sphereSN−1,
(3) xj→ x̃0 in Λ ands̃j (t)≡ sj (t)− sj (0)→ p in H 1(0,1;R). Since

s̃j (0)= 0,p must be 0.

Therefore we get the statement (ii).2
Proof of Corollary 2.2. –It suffices to show (4). Sincẽuj (t) =

(sj (t)− sj (0), xj (t))→ (0, yk(t)) andE′′(uj )→ E0′′(0, yk), it suffices
to show indexE0′′(0, yk)> (N − 2)(2k − 1). Let e1, . . . , eN ∈ RN be an
orthonormal basis ofRN and assumeyk(t) = e1 cos 2πkt+ e2 sin 2πkt .
Then we can easily see

E0′′(0, yk)
(
(0, v), (0, v)

)
< 0 for all v ∈ V \ {0},
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whereV = span{ei cos 2πjt, ei sin 2πjt; i = 3,4, . . . ,N, j = 0,1, . . . ,
k− 1}. Thus indexE0′′(0, yk)> dimV = (N − 2)(2k − 1). 2

Next we define two minimax values to find a critical point ofE(u).
Our methods are inspired by the argument of Bahri and Li [5] in which
the existence of positive solutions of semilinear inhomogeneous elliptic
equations inRN is studied. See also Bahri and Lions [7]. In what follows,
we mainly deal with the caseN > 3. The caseN = 2 will be studied in
Section 5.

To define our first minimax value, we need the following definitions:
for a (N − 2)-dimensional compact manifoldM , we set

Γ (M)= {γ ∈C(M,Λ); γ (M) is NOT contractible inΛ
}
. (2.6)

We consider the following class of compact manifolds:

MN−2= {M; M is a(N − 2)-dimensional compact connected

manifold such thatΓ (M) 6= ∅}. (2.7)

We remark thatSN−2 ∈MN−2 andMN−2 6= ∅ because of the existence
of σ0(z) given in (1.17). ForM ∈MN−2, we set

b(M)= inf
γ∈Γ (M) max

u∈γ (M)E(u) (2.8)

and

b = inf
M∈MN−2

b(M). (2.9)

To define our second minimax value, we consider the following class of
mappings:

Γ = {γ ∈C(R× SN−2,Λ);γ (r, z)(t)= (r, σ0(z)(t))

for sufficiently large|r|}, (2.10)

whereσ0(z) is defined in (1.17). We remarkγ0(r, z)(t)= (r, σ0(z)(t)) ∈
Γ andΓ 6= ∅. We define

b= inf
γ∈Γ

sup
u∈γ (R×SN−2)

E(u). (2.11)

Two valuesb andb play an important role to show the existence of critical
point ofE(u). b andb have the following properties:
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PROPOSITION 2.4. –

(i) 0< b6 2π2.
(ii) 2π26 b.

To prove Proposition 2.4, we need

LEMMA 2.5. –Let M be a compact(N − 2)-dimensional manifold
such that

ΓSN−1(M)= {σ ∈C(M,ΛSN−1);σ (M) is not contractible inΛSN−1

}
is not empty. Then

inf
σ∈Γ

SN−1(M)
max
x∈σ(M)ESN−1(x)> 2π2, (2.12)

whereESN−1(x) ∈C2(ΛSN−1,R) is defined in(1.9).

Proof. –First we show that

inf
σ∈Γ

SN−1(M)
max
x∈σ(M)

ESN−1(x) > 0.

If not, for anyε > 0 we can findσ ∈ ΓSN−1(M) such that

ESN−1(x)6 ε for all x ∈ σ (M).
Thus we have forx = σ (z), z ∈M

max
t1,t2∈[0,1]

∣∣x(t1)− x(t2)∣∣6 1∫
0

| •x|dt 6√2ESN−1(x)6
√

2ε.

Therefore forε ∈ (0, 1
2)∣∣(1− τ)x(t)+ τx(0)∣∣> |x(t)| − τ ∣∣x(t)− x(0)∣∣> 0

for all τ ∈ [0,1], x ∈ σ (M), t ∈ [0,1]. Thus

στ(z)(t)= (1− τ)σ (z)(t)+ τσ (z)(0)
|(1− τ)σ (z)(t)+ τσ (z)(0)| : [0,1] ×M→ΛSN−1

is well-defined. We remark thatσ1(z)(t) is independent oft and it can be
regarded as a map fromM to SN−1. Since dimM =N −2, σ1 is not onto
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andσ1(M) is contractible to a point inSN−1. Thusσ (M) is contractible
in ΛSN−1 and this contradictsσ ∈ ΓSN−1(M). Therefore

inf
σ∈Γ

SN−1(M)
max
x∈σ(M)ESN−1(x) > 0.

Since the Palais–Smale condition holds forESN−1(u) ∈ C2(ΛSN−1,R),
we can see that infσ∈Γ

SN−1(M)maxx∈σ(M) ESN−1(x) is a positive critical
value ofESN−1(x). (For a similar argument, see the proof of Proposi-
tion 2.6 below.) Since critical points ofESN−1(x) correspond to closed
geodesics on the standard sphereSN−1, we can see that the least positive
critical value is 2π2. Thus we get (2.12). 2

Proof of Proposition 2.4. –(i) For M ∈MN−2 and γ (z) = (s(z),
x(z)) ∈ Γ (M) we setγ̃ ∈C(M,ΛSN−1) by

γ̃ (z)= x(z) for z ∈M.
We can easily see thatγ̃ ∈ ΓSN−1(M). Thus by Lemma 2.5

max
x∈γ̃ (M)

ESN−1(x)> 2π2.

On the other hand, by (2.3) we have foru= (s, x) ∈Λ

E(u)= 1

2

1∫
0

gu
( •
u,
•
u
)
dt > m1

2

1∫
0

|•s|2+ | •x|2dt

> m1

2

1∫
0

| •x|2 dt =m1ESN−1(x).

Thus we have

max
u∈γ (M)E(u)>m1 max

x∈γ̃ (M)
ESN−1(x)> 2π2m1.

Therefore

b= inf
M∈MN−2

inf
γ∈Γ (M) max

u∈γ (M)E(u)> 2π2m1> 0.

To show b 6 2π2, we recall SN−2 ∈MN−2 and we setγ`(z)(t) =
(`, σ0(z)(t)) for ` ∈ R andz ∈ SN−2. Thenγ`(SN−2) is not contractible
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in Λ and

b(SN−2)6 max
z∈SN−2

E
(
γ`(z)

)= max
z∈SN−2

E
(
`, σ0(z)

)
.

Letting `→∞, we get by (g1) and (1.16)

b(SN−2)6 2π2.

Thusb6 b(SN−2)6 2π2. Thus (i) is proved.
To prove (ii), we remark that for anyγ (r, z) ∈ Γ there exists aR > 0

such that

γ (r, z)(t)= (r, σ0(z)(t)
)

for |r|> R.
Thus,

sup
(r,z)∈R×SN−2

E
(
γ (r, z)

)
> lim sup

r→±∞
max
z∈SN−2

E
(
r, σ0(z)

)= 2π2.

Therefore we obtainb> 2π2. 2
By the above Proposition 2.4, it occurs one of the following four cases:

Case A: 0< b < 2π2.

Case B:b /∈ {2π2k2; k ∈N}.
Case C:b ∈ {2π2k2; k ∈N \ {1}}.
Case D:b= b= 2π2.

In each case, we will show thatE(u) has a critical point. Actuallyb is a
critical value ofE(u) in cases A, D andb is a critical value in cases B, C.

The cases A, B are easy to deal with and we can see thatb or b is a
critical value ofE(u) rather in a standard way.

PROPOSITION 2.6. –

(i) If b ∈ (0,2π2), thenb is a critical value ofE(u).
(ii) If b /∈ {2π2k2; k ∈N}, thenb is a critical value ofE(u).

To prove the above proposition, we need the following deformation
lemma.

LEMMA 2.7. –Assume that(PS)c holds at levelc for E(u) ∈ C2(Λ,

R) and c is not a critical value ofE(u). Then for anyε > 0 there exist
ε0 ∈ (0, ε) andη(τ, u) ∈C([0,1] ×Λ,Λ) such that
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(1) η(0, u)= u for all u ∈Λ.
(2) η(τ, u)= u for all τ ∈ [0,1] if E(u) /∈ [c− ε, c+ ε].
(3) E(η(τ, u))6E(u) for all τ ∈ [0,1] andu ∈Λ.
(4) E(η(1, u))6 c− ε0 if E(u)6 c+ ε0.

Proof. –See Appendix A of Rabinowitz [20].2
Proof of Proposition 2.6. –(i) By the assumptionb ∈ (0,2π2), there

exists a sequence(Mj)
∞
j=1⊂MN−2 such that

b(Mj ) ∈ (0,2π2) for all j ,

b(Mj )→ b asj→∞.
First we show thatb(Mj ) is a critical value ofE(u). If not, we choose
ε > 0 so that(b(Mj)−ε, b(Mj)+ε)⊂ (0,2π2) and apply Lemma 2.7 to
obtainε0 ∈ (0, ε) andη(τ, u) ∈ C([0,1]×Λ,Λ). We chooseγ ∈ Γ (Mj)

such that

max
u∈γ (Mj )

E(u)6 b(Mj )+ ε0.

We can easily see thatγ̃ (z)≡ η(1, γ (z)) belongs toΓ (Mj) and by (4) of
Lemma 2.7

max
u∈γ̃ (Mj )

E(u)6 b(Mj )− ε0.

This is a contradiction andb(Mj) is a critical value ofE(u). Since
(PS)c holds in (0,2π2) and b = limj→∞ b(Mj) ∈ (0,2π2) is an accu-
mulation point of critical values,b is also a critical value ofE(u).

(ii) By the assumptionb /∈ {2π2k2; k ∈N}, b > 2π2 and(PS)b follow
from (ii) of Proposition 2.4 and Corollary 2.2. Thus we can prove (ii) in
a similar way to (i). 2

Thus we can find at least one critical point in cases A, B. The following
two sections will be devoted to study cases C, D.

3. CASE C: b ∈ {2π2k2; k ∈N \ {1}}

Here we supposeb= 2π2k2
0 (k0= 2,3, . . .). We use the Morse indices

to deal with this case. We refer to Fang and Ghoussoub [14] for a related
argument.
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SinceE(u) does not satisfy the Palais–Smale compactness condition,
we introduce a perturbed functionalEν(u) :Λ→R (ν ∈ [0,1]) by

Eν(u)= 1

2

1∫
0

(
gu
( •
u,
•
u
)+ ν(e2s + e−2s)(|•s|2+ | •x|2))dt (3.1)

for u(t)= (s(t), x(t)) ∈Λ. This perturbation is introduced to obtain the
Palais–Smale condition(PS)c for all c > 0. The corresponding argument
for singular Hamiltonian systems is developed in [22].

First we have

PROPOSITION 3.1. –For ν ∈ (0,1], the functionalEν(u) satisfies
(PS)c for all c > 0. That is, if(uj )∞j=1⊂Λ satisfies

Eν(uj )→ c > 0, (3.2)

E′ν(uj )→ 0 asj→∞. (3.3)

Then(uj )∞j=1 has a strongly convergent subsequence.

Proof. –By (2.3), we have

m1

2

1∫
0

|•s|2+ | •x|2 dt 6Eν(u) for all u ∈Λ. (3.4)

Thus under the condition (3.2) we can see
•
uj = (•sj , •xj ) is bounded in

L2(0,1) and there exists a constantC > 0 such that

max
t∈[0,1]

∣∣sj (t)− sj (0)∣∣6C for all j ∈N. (3.5)

Remark that|xj (t)| = 1 for all t . To obtain boundedness ofuj = (sj , xj )
in Λ, we show that|sj (0)| remains bounded asj→∞.

Arguing indirectly, we assume thatsj (0)→∞. The casesj (0)→−∞
can be treated similarly. By (3.5), mint∈[0,1] sj (t)→∞. Thus by (3.2) and
the definition ofEν(u), we have( •

sj ,
•
xj
)→ (0,0) strongly inL2(0,1). (3.6)

We remark that (3.6) and (2.3) imply

E(uj)= 1

2

1∫
0

guj
( •
uj ,

•
uj
)
dt→ 0.
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Thus

c= ν
2

lim
j→∞

1∫
0

e2sj
(|•sj |2+ | •xj |2)dt. (3.7)

On the other hand, we have from (3.3) thatE′ν(uj )(1,0)→ 0, i.e.,

E′(uj )(1,0)+ ν
1∫

0

(
e2sj − e−2sj

)(|•sj |2+ | •xj |2)dt→ 0.

Remarking that (3.6) impliesE′(uj )(1,0)→ 0, we have

1∫
0

e2sj
(|•sj |2+ | •xj |2)dt→ 0. (3.8)

Combining (3.7) and (3.8), we getc = 0. But this contradicts the
assumption (3.2). Thusuj = (sj , xj ) remains bounded asj →∞ and
we can show the existence of a strongly convergent subsequence in a
standard way. 2

Next we study an asymptotic behavior of critical points(uν)ν∈(0,1] of
Eν(u) asν→ 0.

PROPOSITION 3.2. –Suppose that forν ∈ (0,1] there exists a critical
pointuν ∈Λ ofEν(u) such that for somec > 0

Eν(uν)→ c > 0 asν→ 0. (3.9)

Then it occurs one of the following two cases:

(i) There exists a strongly convergent subsequence(uνj ) (νj → 0) in
Λ.

(ii) There exist a subsequenceuνj = (sνj , xνj ) andk ∈N such that

(1) sνj (0)→±∞.
(2) Setũνj (t)= (sνj (t)− sνj (0), xνj (t)), then

ũνj (t)→
(
0, yk(t)

)
in Λ, (3.10)

whereyk(t)= e1 cos 2πkt+ e2 sin 2πkt (k ∈ N, ei · ej = δij )
is a closed geodesic on the standard sphere.

(3) Eνj (uνj )→ 2π2k2.
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(4) lim infj→∞ indexE′′νj (uνj )> (N − 2)(2k − 1).

Proof. –Suppose that a sequence of critical points(uν)ν>0 satisfies
(3.9). As in the proof of Proposition 3.1, we can see that

•
uν = (•sν, •xν) is bounded inL2(0,1). (3.11)

Thus,

max
t∈[0,1]

∣∣sν(t)− sν(0)∣∣6C for all ν ∈ (0,1] (3.12)

and we can see that(uν)ν∈(0,1] has a strongly convergent subsequence if
|sν(0)| remains bounded asν→ 0.

We suppose that

sν(0)→∞ asν→ 0. (3.13)

The casesν(0)→−∞ can be treated in a similar way. By (3.11)–(3.13)
and (g1), we have

E′(uν)(1,0)

=
1∫

0

d

dη

∣∣∣∣
η=0
g(sν(t)+η,xν(t))

(
(
•
sν,
•
xν), (

•
sν,
•
xν)
)
dt→ 0 asν→ 0.

Thus we have fromE′ν(uν)= 0 that

ν

1∫
0

e2sν(t)
(|•sν|2+ | •xν |2)dt

=E′ν(uν)(1,0)−E′(uν)(1,0)− ν
1∫

0

e−2sν(t)
(|•sν |2+ | •xν|2)dt

→ 0 asν→ 0. (3.14)

Thus we see

E(uν) = Eν(uν)− ν2
1∫

0

(
e2sν(t)+ e−2sν(t)

)(|•sν |2+ | •xν |2)dt
→ lim

ν→0
Eν(uν)= c asν→ 0, (3.15)
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Therefore by (3.13)

lim
ν→0

E(uν)= lim
ν→0

1

2

1∫
0

(|•sν |2+ | •xν|2)dt = c > 0. (3.16)

Using (3.14) again, we get from (3.12), (3.16) that

νe2sν(0)→ 0 asν→ 0. (3.17)

We also have from (3.11), (3.12), (3.17)∥∥E′(uν)−E′ν(uν)∥∥(TuνΛ)∗
= sup

(ξ,η)∈TuνΛ,‖ξ‖2+‖η‖261

(
ν

1∫
0

ξ(t)
(
e2sν(t)− e−2sν(t)

)

× (|•sν |2+ | •xν |2)dt + ν 1∫
0

(
e2sν(t)+ e−2sν(t)

)

× ( •sν · •ξ + •xν · •η )dt
)
→ 0 asν→ 0. (3.18)

Similarly we can see also from (3.11), (3.12), (3.17) that∥∥E′′(uν)−E′′ν (uν)∥∥→ 0 asν→ 0. (3.19)

By (3.15), (3.18), we can see that(uν) satisfies

E(uν)→ c > 0 and E′(uν)→ 0.

Thus we can apply Proposition 2.1, Corollary 2.2 and we have (3.10) for
a suitablek ∈ N. Now statements (3) and (4) follow from (3.15), (3.19)
and (3)–(4) of Corollary 2.2. 2

Now we use the above Propositions 3.1 and 3.2 to deal with the case
C: b= 2π2k2

0 (k0= 2,3, . . .).
We chooseL0> 2 such that

E
(
r, σ0(z)

)
6 3π2 for all |r|> L0 andz ∈ SN−2 (3.20)

and we set
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Γ 0= {γ ∈C([−L0,L0] × SN−2,Λ
); γ (±L0, z)= (±L0, σ0(z)

)}
,

b0= inf
γ∈Γ 0

max
(r,z)∈[−L0,L0]×SN−2

E
(
γ (r, z)

)
.

We have the following

LEMMA 3.3. –b0= b.

Proof. –For anyγ ∈ Γ 0, we set

γ (r, z)=

γ (r, z) for |r|6 L0,

(r, σ0(z)) for |r|>L0.

Then we seeγ ∈ Γ . By (3.20) andb= 2π2k2
0 > 8π2, we have

sup
(r,z)∈R×SN−2

E
(
γ (r, z)

)= max
(r,z)∈[−L0,L0]×SN−2

E
(
γ (r, z)

)
.

Thus we getb 6 b0.
Conversely, for anyγ ∈ Γ we can findL> L0 such that

γ (r, z)= (r, σ0(z)
)

for |r|> L.

We setγ0 ∈ Γ 0 by

γ0(r, z)=



(−(|r| −L0+ 1)L0

− (L0− |r|)L,σ0(z)) for r ∈ [−L0,−L0+ 1],
γ
(

L
L0−1r, z

)
for |r|<L0− 1,

((|r| −L0+ 1)L0

+ (L0− |r|)L,σ0(z)) for r ∈ [L0− 1,L0].

Then we have

max
(r,z)∈[−L0,L0]×SN−2

E
(
γ0(r, z)

)= sup
(r,z)∈R×SN−2

E
(
γ (r, z)

)
and we obtainb06 b. 2
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Next we set forν ∈ (0,1]

bν = inf
γ∈Γ 0

max
(r,z)∈[−L0,L0]×SN−2

Eν
(
γ (r, z)

)
.

Then we can easily see

b= b06 bν for all ν ∈ (0,1], (3.21)

bν→ b0= b asν→ 0. (3.22)

By Proposition 3.1, we can see

PROPOSITION 3.4. –For anyν ∈ (0,1], bν is a critical value ofEν(u)
and there exists a critical pointuν ∈Λ such that

Eν(uν)= bν, (3.23)

E′ν(uν)= 0, (3.24)

indexEν ′′(uν)6N − 1. (3.25)

Proof. –Sincebν > b > 8π2 and (PS)c holds forEν(u) at the level
c= bν , we can see thatbν is a critical value ofEν(u). Thus there exists a
critical pointuν ∈Λ such that (3.23) and (3.24) hold. We can get (3.25)
as in [21] (see also [6,9,17,24]).2

Proof of Theorem 0.3 in case C. –By Proposition 3.4, we can find a
sequence(uν)ν∈(0,1] ⊂Λ such that (3.21)–(3.22) and (3.23)–(3.25) hold.
Applying Proposition 3.2, we can extract a subsequenceuνj (νj → 0)
such that either the statement (i) or (ii) of Proposition 3.2 occurs.

Suppose that (ii) occurs. Then by (ii)(3), (4), we have

lim inf
j→∞ indexE′′νj (uνj )> (N − 2)(2k0− 1).

Sincek0 > 2 andN > 3, this contradicts (3.25). Thus (i) takes a place
andu= limj→∞ uνj satisfiesE(u)= 2π2k2

0 andE′(u)= 0. 2

4. CASE D: b= b= 2π2

Here we supposeb= b= 2π2 and we show that 2π2 is a critical value
of E(u).

First we assumeb= 2π2 and we findM ∈MN−2 andγ ∈ Γ (M) with
special properties.
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PROPOSITION 4.1. –Assumeb = 2π2. Then for anyε > 0 there exist
M̂ ∈MN−2 and γ̂ ∈ Γ (M̂) such that

max
u∈γ (M̂)

E(u)6 2π2+ ε, (4.1)

s(0) ∈ [0,1] for all u(t)= (s(t), x(t)) ∈ γ̂ (M̂). (4.2)

Proof. –Sinceb= 2π2, for anyε > 0 there exists aγ ∈ Γ such that

sup
(r,z)∈R×SN−2

E
(
γ (r, z)

)
6 2π2+ ε.

Approximatingγ by aC∞-mapping, we may assume thatγ ∈ C∞(R×
SN−2,Λ) ∩ Γ . We writeγ (r, z)(t)= (s(r, z)(t), x(r, z)(t)) and consider
aC∞-mapping

f (r, z)= s(r, z)(0) :R× SN−2→R.

By the Sard’s theorem, we can findβ ∈ [0,1] such that

f (r, z)= β implies
(
fr(r, z), fz(r, z)

) 6= (0,0). (4.3)

By (4.3), f −1(β) is a (N − 2)-dimensional submanifold ofR × SN−1.
Sincef (r, z) = r for sufficiently large|r|, f −1(β) is compact and we
can write

f −1(β)=M1 ∪M2 ∪ · · · ∪Mn,

whereM1,M2, . . . ,Mn are (N − 2)-dimensional compact connected
submanifolds ofR× SN−2. Later we show that

there exists aj0 ∈ {1, . . . , n} such thatMj0 ∈MN−2

andγ |Mj0
∈ Γ (Mj0). (4.4)

We setM̂ =Mj0 andγ̂ = γ |Mj0
. Then we have (4.1) and (4.2).2

To prove (4.4) we need

LEMMA 4.2. –For anyγ ∈ Γ , a mapping

γ̃ (r, z, t)= γ (r, z)(t) :R× SN−2× [0,1] →R× SN−1

is onto.
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Proof. –We identify [0,1]/{0,1} ' S1 and we compute the mapping
degree of

γ̃ :
([−R,R] × SN−2× S1, {−R,R}× SN−2× S1)
→ ([−R,R] × SN−1, {−R,R}× SN−1).

We can see easily that degγ̃ =±1 for largeR. Thus[−R,R] × SN−1 ⊂
γ̃ ([−R,R] × SN−2× [0,1]) for all R > 0. Thereforeγ̃ is onto. 2

Proof of (4.4). –It suffices to show thatγ (Mj) is not contractible in
Λ at least for onej ∈ {1,2, . . . , n}. Arguing indirectly, we suppose that
γ (Mj) is contractible inΛ for all j .

By (4.3) for someδ > 0, there exist neighborhoodsNδ(Mj) of Mj and
diffeomorphisms

φj :Nδ(Mj )→ (−δ, δ)×Mj

such thatNδ(Mi)∩Nδ(Mj) 6= ∅ (i 6= j ). We may assume thatγ (Nδ(Mj ))

is also contractible inΛ. We write γ (r, z)(t) = (s(r, z)(t), x(r, z)(t)).
Thenx(Nδ(Mj)) is contractible inΛSN−1. Thus there exists a contraction:

ηj :x
(
Nδ(Mj )

)× [0,1] →Λ

such that

ηj (y,0)(t)= y(t),
ηj (y,1)(t)= pt ∈ SN−1 for all y ∈ x(Nδ(Mj )) andt ∈ [0,1].

We define for(r, z) ∈Nδ(Mj )= φj ((−δ, δ)×Mj) andτ ∈ [0,1]

fτ(r, z, t)=
(
(1− τ)s(r, z)(t)+ τs(r, z)(0),

ηj

(
x(r, z), τ

δ − |a(r, z)|
δ

)
(t)

)
,

wherea(r, z) ∈ (−δ, δ) is a unique number such that(r, z)= φj (a(r, z),
m) for somem ∈Mj .

For (r, z) ∈ (R× SN−1) \⋃nj=1Nδ(Mj), we set

fτ (r, z, t)= ((1− τ)s(r, z)(t)+ τs(r, z)(0), x(r, z)(t)).
We can see

fτ (r, z, t) : [0,1] ×R× SN−2× [0,1] →R× SN−1
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is well-defined andfτ ∈ Γ for all τ ∈ [0,1]. Moreover

f1
(
R× SN−2× [0,1]) ∩ ({β} × SN−1)= f1

((⋃
Mj

)
× [0,1]

)
= (β,pt).

Thusf1 :R × SN−2 × [0,1] → R × SN−1 is not onto. This contradicts
Lemma 4.2 and at least oneγ (Mj) is not contractible inΛ. 2

To obtain the existence of a critical point, we need the following
version of Ekeland’s principle.

LEMMA 4.3. –LetM ∈MN−2 and suppose thatγ ∈ Γ (M) satisfies
for someε > 0

b(M)6 max
u∈γ (M)

E(u)6 b(M)+ ε.

Then there existsv ∈Λ such that

distΛ
(
v, γ (M)

)
6 2
√
ε, (4.5)

‖E′(v)‖(TvΛ)∗ 6
√
ε, (4.6)

E(v) ∈ [b(M)− ε, b(M)+ ε]. (4.7)

Proof. –Arguing indirectly, we assume that

distΛ
(
u, γ (M)

)
6 2
√
ε and E(u) ∈ [b(M)− ε, b(M)+ ε]

implies ‖E′(u)‖(TuΛ)∗ >
√
ε.

Choose a smooth functionϕ :R→R such that

ϕ(τ)= 0 for τ ∈R \ [b(M)− ε, b(M)+ ε],
ϕ(τ)= 1 for τ ∈ (b(M)− ε/2, b(M)+ ε/2),
ϕ(τ) ∈ [0,1] for all τ ∈R.

We consider the flowη :R×Λ→Λ defined by

dη

dτ
=− ϕ(E(η))

‖E′(η)‖(TηΛ)∗
E′(η), (4.8)

η(0, u)= u. (4.9)

We can see that

(1) for eachu ∈ γ (M) the solutionη(τ, u) of (4.8)–(4.9) exists for
τ ∈ [0,2√ε],
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(2) γ̃ (z)≡ η(2√ε, γ (z))∈ Γ (M),
(3) E(γ̃ (z))=E(η(2√ε, γ (z)))6 b(M)− (ε/2) for all z ∈M .

This contradicts the definition ofb(M). 2
Proof of Theorem 0.3 in case D. –By Proposition 4.1, under the

assumptionb = 2π2, for any ε > 0 there exist aMε ∈MN−2 and
γε ∈ Γ (Mε) satisfying

max
u∈γε(Mε)

E(u)6 2π2+ ε, (4.10)

s(0) ∈ [0,1] for all u(t)= (s(t), x(t)) ∈ γε(Mε). (4.11)

Sinceb= 2π2, we have

2π2= b6 b(Mε)6 max
u∈γε(Mε)

E(u)6 2π2+ ε6 b(Mε)+ ε.

Applying Lemma 4.3, there existsuε = (sε, xε) ∈Λ such that

distΛ
(
uε, γε(Mε)

)
6 2
√
ε, (4.12)∥∥E′(uε)∥∥(TuεΛ)∗ 6√ε, (4.13)

E(uε) ∈ [b(Mε)− ε, b(Mε)+ ε]⊂ [2π2− ε,2π2+ 2ε
]
. (4.14)

By (4.12), we find for somev = (s, x) ∈ γε(Mε)∣∣sε(0)− s(0)∣∣6 distΛ
(
uε, γε(Mε)

)
6 2
√
ε.

It follows from (4.11) that|s(0)| ∈ [0,1]. Thus,

|sε(0)|6 2
√
ε+ 1. (4.15)

Since (4.13) and (4.14) hold, we have

E(uε)→ 2π2, E′(uε)→ 0 asε→ 0

and we can apply Proposition 2.1. By (4.15), the statement (ii) of
Proposition 2.1 cannot take a place. Therefore there exists a strongly
convergent subsequenceuεj (t) (εj → 0) and the limitu0 = limj→∞ uεj
is a critical point ofE(u) with E(u0)= 2π2. 2
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5. THE CASEN = 2

We give an outline of a proof in case ofN = 2. We study the existence
of closed geodesics on(R×S1, g). We use the winding number ofu ∈Λ
in an essential way.

We denote the winding number ofu : [0,1]/{0,1} ' S1 → S1 by
wind(u) and set

Λ1= {u ∈Λ; wind(π ◦ u)= 1
}
,

whereπ :R× S1→ S1; (r, z) 7→ z is the projection.
As to the break down of the Palais–Smale condition for the restricted

functionalE(u) : Λ1→R, we have

PROPOSITION 5.1. –Suppose that(uj )∞j=1 ⊂ Λ1 satisfies for some
c > 0

E(uj)→ c > 0,

‖E′(uj )‖(Tuj Λ1)
∗ → 0 asj→∞

for somec > 0. Then there is a subsequence—still denoted byuj—such
that one of the following two statements holds:

(i) There is a non-constant closed geodesicu0 ∈ Λ1 on (R× S1, g)

such that

uj → u0 in Λ1.

(ii) We writeuj(t)= (sj (t), xj (t)). Then we have

(1) sj (0)→∞ or sj (0)→−∞;

(2)
•
sj (t)→ 0 in L2(0,1);

(3) xj (t)→ (cos 2π(t−θ),sin2π(t−θ)) inH 1(0,1) for someθ ;
(4) E(uj )→ 2π2.

In particular, (PS)c holds inΛ1 for c ∈ (0,∞) \ {2π2}.
Proof. –We remark that(cos 2πk(t− θ),sin 2πk(t − θ)) /∈ Λ1 for

k ∈ Z \ {1}. The proof can be given just as in Proposition 2.1.2
We defineb andb as follows:

b= inf
u∈Λ1

E(u), b= inf
γ∈Γ

sup
u∈γ (R)

E(u),

where
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Γ = {γ ∈C(R,Λ1); γ (r)(t)= (r, (cos 2πt,sin 2πt)
)

for large|r|}.
Then we have

(i) 0< b 6 2π26 b.
(ii) If b < 2π2, thenb is a critical value ofE(u).

(iii) If b > 2π2, thenb is a critical value ofE(u).

Lastly we can also show that 2π2 is a critical value in caseb = b = 2π2

as in Section 4. (M= {pt} in this case.) We remark that the case C does
not need to study forN = 2. 2

REFERENCES

[1] A. A MBROSETTI and U. BESSI, Multiple periodic trajectories in a relativistic
gravitational field, in: H. Berestycki, J.-M. Coron and I. Ekeland (Eds.),Variational
Methods, Birkhäuser, 1990, pp. 373–381.

[2] A. A MBROSETTI and V. COTI ZELATI , Closed orbits of fixed energy for singular
Hamiltonian systems,Arch. Rat. Mech. Anal.112 (1990) 339–362.

[3] A. A MBROSETTIand V. COTI ZELATI , Periodic Solutions of Singular Lagrangian
Systems,Birkhäuser, Boston, 1993.

[4] A. A MBROSETTIand M. STRUWE, Periodic motions for conservative systems with
singular potentials,NoDEA Nonlinear Differential Equations Appl.1 (1994) 179–
202.

[5] A. BAHRI and Y.Y. LI, On a min-max procedure for the existence of a positive
solution for certain scalar field equations inRN , Revista Mat. Iberoamericana6
(1990) 1–15.

[6] A. BAHRI and P.L. LIONS, Morse index of some min-max critical points. I.
Application to multiplicity results,Comm. Pure Appl. Math.41 (1988) 1027–1037.

[7] A. BAHRI and P.L. LIONS, On the existence of a positive solution of semilinear
elliptic equations in unbounded domains,Ann. Inst. Henri Poincaré, Analyse Non
Linéaire14 (1997) 365–413.

[8] V. BANGERT, Closed geodesics on complete surfaces,Math. Ann.251 (1980) 83–
96.

[9] V. B ENCI and D. FORTUNATO, Subharmonic solutions of prescribed minimal period
for autonomous differential equations, in: Dell’Antonio and D’Onofrio (Eds.),
Recent Advances in Hamiltonian Systems, World Scientific, Singapore, 1986.

[10] V. BENCI and F. GIANNONI , Periodic solutions of prescribed energy for a class of
Hamiltonian systems with singular potentials,J. Differential Equations82 (1989)
60–70.

[11] V. BENCI and F. GIANNONI , On the existence of closed geodesics on noncompact
Riemannian manifolds,Duke Math. J.68 (1992) 195–215.

[12] V. COTI ZELATI , Periodic solutions for a class of planar, singular dynamical
systems,J. Math. Pure Appl.68 (1989) 109–119.



K. TANAKA / Ann. Inst. Henri Poincaré 17 (2000) 1–33 33

[13] V. COTI ZELATI and E. SERRA, Collisions and non-collisions solutions for a class of
Keplerian-like dynamical systems,Ann. Mat. Pura Appl.166 (4) (1994) 343–362.

[14] G. FANG and N. GHOUSSOUB, Morse-type information on Palais–Smale sequences
obtained by min-max principles,Comm. Pure Appl. Math.47 (1994) 1595–1653.

[15] C. GRECO, Remarks on periodic solutions, with prescribed energy, for singular
Hamiltonian systems,Comment. Math. Univ. Carolin.28 (1987) 661–672.

[16] W. KLINGENBERG, Lectures on Closed Geodesics, Grundlehren der Math. Wiss.
230, Springer, Berlin, 1978.

[17] A.C. LAZER and S. SOLIMINI , Nontrivial solutions of operator equations and Morse
indices of critical points of min-max type,Nonlinear Analysis: T.M.A.12 (1988)
761–775.

[18] L. PISANI, Periodic solutions with prescribed energy for singular conservative
systems involving strong force,Nonlinear Analysis: T.M.A.21 (1993) 167–179.

[19] E. SERRAand S. TERRACINI,Noncollision solutions to some singular minimization
problems with Keplerian-like potentials,Nonlinear Analysis: T.M.A.22 (1994) 45–
62.

[20] P.H. RABINOWITZ , Minimax Methods in Critical Point Theory with Applications to
Differential Equations, CBMS Regional Conf. Ser. in Math., Vol. 65, Amer. Math.
Soc., Providence, RI, 1986.

[21] K. TANAKA , Morse indices at critical points related to the symmetric mountain pass
theorem and applications,Comm. Partial Differential Equations14 (1989) 99–128.

[22] K. TANAKA , A prescribed energy problem for a singular Hamiltonian system with
a weak force,J. Funct. Anal.113 (1993) 351–390.

[23] K. TANAKA , A prescribed-energy problem for a conservative singular Hamiltonian
system,Arch. Rational Mech. Anal.128 (1994) 127–164.

[24] C. VITERBO, Indice de Morse des points critiques obtenus par minimax,Ann. Inst.
Henri Poincaré, Analyse non Linéaire5 (1988) 221–225.

[25] G. THORBERGSSON, Closed geodesics on non-compact Riemannian manifold,
Math. Z.159 (1978) 249–258.


