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ABSTRACT. — We study the existence of periodic solutions of singular
Hamiltonian systems as well as closed geodesics on non-compact
Riemannian manifolds via variational methods.

For Hamiltonian systems, we show the existence of a periodic solution
of prescribed-energy problem:

q+VV(g) =0,
1.,
lg1°+V(g) =0
2
under the conditions: (iV(g) < 0 for all g € RV \ {0}; (i) V(g) ~
—1/191? as|g| ~ 0 and|g| ~ occ.
For closed geodesics, we show the existence of a non-constant closed

geodesic orfR x S¥~1, g) under the condition:

8Gs.x) ™ ds? + hg ass~ Fo0,
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wherehg is the standard metric os¥ 1.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — Nous étudions I'existence de solutions p’eriodiques pour
des systémes Hamiltoniens singuliers, et de géodésiques fermées sur des
variétes Riemanniennes non-compactes par des méthodes variationnelles.

Pour les systemes Hamiltoniens, nouns montrons I'existence d'une
solution périodique pour un probl‘eme a énergie prescrite :

q+VV(g) =0,
1
;qﬁ+vw>=o

sous les conditions : (iy (¢) < 0 pour toutg € RV \ {0}; (ii) V(g) ~
—1/I¢1? quandig| ~ 0 et|g| ~ occ.

Pour les géodésigues fermées, nouns montrons l'existence d'une
géodésique fermée non-constante @i SV—1, ¢) sous la condition :

Sy ~ds®>+hy quands ~ o0,

oll hg est la métrique standard s&i 2.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

0. INTRODUCTION

In this paper we study the existence of periodic solutions of singular
Hamiltonian systems as well as the existence of closed geodesics on non-
compact Riemannian manifolds in a related situation.

As to periodic solutions of Hamiltonian systems, we consider the ex-
istence of periodic solutions of the so-called prescribed energy problem:

G+VV(q)=0. (HS.1)

§|q|2+V(q)=H, (HS.2)

whereg(t):R — RV \ {0} (N >2), VRV \ {0} - R and H € R. We
consider the situation whefé(g) has a singularity at O;

(VO) V(g) € C3(RN \ {0}, R).
(V1) V(g) <Oforallg e RN\ {0}.
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(V2) There exists arr > 0 such that

1
Vig) ~ _W nearg =0,
q o

more precisely, foW (¢) = V(g) + (1/|g]%)

1g1°W (@), 1q|*T'VW(q), lq|*T*V*W(q) — 0 as|g| — O.

The ordera of the singularity 0 plays an important role for the
existence of periodic solutions. For example, fgig) = —1/|q|%,
(HS.1)—(HS.2) has a periodic solution if and only if

H>0 fora>2, (0.2)
H=0 fora=2, (0.2)
H <0 forae(0,2). (0.3)

The situation which generalizes the case (0.1)—which is called strong
force—is considered by [2,10,15,18] and the existence of a periodic so-
lution is obtained via minimax methods. The situation which generalizes
the case (0.3)—which is called weak force—is also studied by [2,12,13,
19,22,23]. We also refer to Ambrosetti and Coti Zelati [3] and references
therein. See also [4] for generalization for the first order Hamiltonian
systems. However, it seems that the situation related to the border case
o = 2 is not well studied; The only work, we know, is Ambrosetti and
Bessi [1]. They considered potential&g) ~ —(1/]¢|%) — (1/|¢q|) and
proved the existence of multiple periodic solutions of (HS.1)—(HS.2) for
suitable range off < 0. See also [2,22,23] in which periodic solutions
are constructed foH < 0 andV (¢) ~ —(¢/|q]%) — (1/]¢|%) wheres > 0
is sufficiently small and € (0, 2). We remark that a perturbation of weak
force case is studied in these works and the ¢age = —1/|¢|%, H=0
is excluded.

In this paper we study a class of perturbations-af |¢|?> and we look
for periodic solutions of (HS.1)—(HS.2) fai# = 0. Our result does not
exclude the cas¥(¢) = —1/|q|°>, H =0.

Since (HS.1)—(HS.2) withV/ (¢) = —1/|¢|?> has a periodic solution
if and only if H = 0, it seems that the situation is rather delicate
and the problem (HS.1)—(HS.2) accepts only very restricted class of
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perturbations. However, we have the following existence result which
ensures the existence for rather wide clas¥ @f)’s.

THEOREM 0.1. —AssumgV0)—(V2) with @ = 2 and
(V3) SetW(q) =V (q) + (1/|q|?), thenW (¢) satisfies

lq1*W(q), 191°VW(q), lq|*V?W(q) — 0 as|q| — oc.

Then(HS.1)-(HS.2with H = 0 has at least one periodic solution.
The conditions (V2) and (V3) request
1
Vig) ~ R as|g| ~ 0 and|g| ~ oc.

This condition is necessary for the existence of periodic solutions of
(HS.1)—(HS.2) withH = 0 in the following sense; if

a
Vig)~——5 aslq|~0,
g1

b
Vig) ~ _W as|g| ~ oo

and a # b, then (HS.1)—(HS.2) withH = 0 does not have periodic
solutions in general. (Of course,df= b > 0, the existence of periodic
solutions is ensured by Theorem 0.1.) More precisely, we have the
following

THEOREM 0.2. —=Suppose(r) € C?([0, o0), R) satisfies

@' (r)y#0 forall r >0, (0.4)
o(r)—>a>0 asr—0, (0.5)
o(r)—>b>0 asr— oo (0.6)
and let
V(g) = _¢|(q|6|]2|)' (0.7)

Then(HS.1)—(HS.2with H = 0 does not have periodic solutions.
SinceR x SV~ andR" \ {0} are diffeomorphic through a mapping

Rx SV1 RN \ {0} (s,x) > e'x,
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we can reduce (HS.1)-(HS.2) to the existence problem for closed
geodesics on non-compact Riemannian manifold SV~ with a metric
gV defined by

g(‘;’x) = ezs(H — V(esx))gg,x). (0.8)

Hereg? is the standard product metric @x SV -1;

8o o (& m, & ) =167+ nl? (0.9)

for (s,x) e R x S¥"tand(&, n) € TR x S¥ 1) =R x T, SV, Here
we identify

7.8V 1={neR"; x.n=0}. (0.10)

We will give ono-to-one correspondence between periodic solutions of
(HS.1)—(HS.2) and non-constant closed geodesio&or SV~1, g") in
Section 1.

We study the existence of non-constant closed geodesicdRon
SN-1 ¢) in more general situation. Our main result for closed geodesics
is the following

THEOREM 0.3. —Let g be a Riemannian metric oR x S¥~! and
suppose that satisfiesg ~ g° ass ~ +o0. More precisely,
(90) g is aC?-Riemannian metric o x S¥1.
(91) g ~ g%ass ~ o0 in the following sensdet (£, ..., £V 1) be a
local coordinate of§¥ 1 in an open set/  SV~!and set? =s.
We write

N-1
g= > g;E%¢E .. £V hdE ®dtl.
i,j=0
We also writeg® = > g2 (€%, &%, ..., V"1 d&' @ d&/, whereg®

is the standard product Riemannian metric Bnx SV—1. We
remark thatgf’j (€9, &1, ..., €M) is independent of° = 5. We

assume
gij(s, &5 .. V) > gl (gh ... €YY inCA(U,R),
dgii .
j’ 5,61 VY 50 inCLU,R) as|s| - oo.
N

Then(R x SV, ¢) has at least one non-constant closed geodesic.
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Remark0.4. — We have a non-existence result for non-constant closed
geodesics on(R x SV¥~1 g) which is related to Theorem 0.2. See
Section 1.2.

We remark that if (¢) = —1/|¢q|? then the corresponding metgd is
the standard product metric, that i3, = g°. We can derive our Theorem
0.1 from Theorem 0.3.

Proof of Theorem 0.1.Ynder the conditions (V0)—(V3), we can
see that(R x SVt ¢V) is a Riemannian manifold and satisfies the
assumptions of Theorem 0.3. Thi®x S¥ 1, g¥) has at least one closed
geodesic by Theorem 0.3. As we stated before, non-constant closed
geodesics ofiR x S¥~1, ¢) are corresponding to periodic solutions of
(HS.1)-(HS.2). O

The existence of closed geodesics on compact Riemannian manifolds
is rather well studied (see for example [16] and references therein). For
non-compact manifolds, the existence of closed geodesics is studied
only in a few papers. Thorbergsson [25] obtains the existence of a
closed geodesic wheM is complete, non-contractible and its sectional
curvature is non-negative outside some compact set. Benci and Giannoni
[11] also shows the existence of a closed geodesic for non-compact
complete Riemannian manifold® with asymptotically non-positive
sectional curvature. We remark that our Theorem 0.3 ensures the
existence of a closed geodesic in a situation different from [25,11]. See
Section 1.2 below.

This paper is organized as follows: In Section 1, we study the relation
between periodic solutions of (HS.1)-(HS.2) and non-constant closed
geodesics onR x S¥~1, ¢") where gV is defined in (0.8). We also
give a proof to Theorem 0.2. Sections 2-5 are devoted to the proof of
Theorem 0.3. Here we use an idea form Bahri and Li [5] and our proof
uses the structure of closed geodesics on the standard spfiételosed
geodesics on the standard sph&te’ are great circles o§V 1.

1. PRELIMINARIES

In this section, we first study the relation between periodic solutions
of (HS.1)—(HS.2) and non-constant closed geodesicR ons™ ! with
a suitable metrig and we reduce our Theorem 0.1 to our Theorem 0.3.
Second, we give some reviews on the results due to Thorbergsson [25]
and Benci and Giannoni [11].
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1.1. Periodic solutions of (HS.1)-(HS.2) and closed geodesics on
(R x V1, g)

In this section, we assume thiatg) € C2(RN \ {0}, R) and H satisfies
H—-V(g)>0 forallg e R\ {0}. (1.1)
We introduce a metrié” onRRY \ {0} by
hy (v,v)=(H—V(g)lv]> forveR"=T,(RY\{0}).
Suppose that(7) is a non-constant closed geodesic@ \ {0}, "),

that is,u(7) is a non-constant critical point of the energy functional:

E(u) =

NI

1
/(H—unnﬂhﬂﬁm' (1.2)
0

acting on 1-periodic functions. Then(zr) satisfies for some constant
EQ >0

1 .
5 (H =V (u(@))u()® = Eo, (1.3)

%((H —V@w)u)+ %n’qzvvm) =0 forallz.  (1.4)

By (1.3) and (1.4), we get
}‘H— V() du
2| JVEy dr

H—-V@u) d (H —V(u)du

— — \YA% =0.
VJEg drt v Eo dr) + @)
Now we define

2
+Vwu)=~H,

mw=/—4ﬁ§—wn

" H —V(u(n))

and lett = t(¢) be the inverse of = t(r). Theng() = u(zt(?)) is
t(1)-periodic and satisfies (HS.1)-(HS.2). Conversely (if) satisfies
(HS.1)-(HS.2), we remark thatz) is not constant in because of (1.1).
We can also sea(t) = ¢(z(t)) is a non-constant closed geodesic on
(RN \ {0}, 1") after a suitable change of variable- 1 (7).
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SinceRM \ {0} ~ R x SV~ we can reduce our problem to the existence
problem for closed geodesics &1x S~ with a suitable metric.
Let gV be a metric oR x S¥~1 induced from:" by a mapping

Rx SV 15 RY\{0}; (s,x) > e'x.
That is,

g (Em, E ) =e*(H—-V(x)gh (& . E ), (L5)

whereg? is the standard product metric &x SV defined in (0.9).
Therefore there is a one-to-one correspondence between periodic
solutions of (HS.1)—(HS.2) and non-constant closed geodesi¢® on
SN—l gV)
We also remark thafR x SV—1, ¢V is complete under the condition:

inf ezs(H —V(e'x)) > 0.

(s,x)eRxSN-1

Especially(R x SV~1, ¢g") is complete if there exists a constafit> 0
such that

C
H>0 and —V(g) > P forallg eR¥\ {0}. (1.6)
q

1.2. Variational characterization of closed geodesics on
(R x SN¥-1, g) and non-existence result

From now on, we consider a complete Riemannian megrion
R x S¥~1. Closed geodesics ofR x SV, g) can be characterized as
critical points of the following functional:

E(u) =

NI

1
/gL,(ft,ﬁ)dt:AeR,
0

where A is a space of 1-periodic curves &x S¥1, i.e.,
A={ue HYO, LR x S¥™); u(0) =u(D)}.

It is known thatA is a C* Hilbert manifold and its tangent space at
u(t) = (s(t), x(t)) € A is given by
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T, A={(E@®),n@®) € HYO, L, R x RY); £(0) =£(1), n(0) = n(1),
(E@),n(t)) €R x TSV tforallr € [0, 1]}.

We will give a precise Hilbert structure ta later in Section 1.3.
Using this variational formulation, we can give a proof of Theorem 0.2.

Proof of Theorem 0.2. Fhe corresponding metrig” and functional
E(u) for V(¢q) = —¢(q)/I9|*>. H =0 are given by

g(‘;,x) :(p(es)g&x),
1

E(u) = %/q&(es(t))(|s.(t)|2+ 1X(0)|2)dt foru(r) = (s(t), x(1)) € A.
0

We setu, (t) = (s(t) + 7, x(t)) and we see

d
E'w)(1,0) = e

1
E() = / SO (@O (@2 + 1X(0)[?) dr.
= 0

Thus E’'(u) # 0 for all non-constant curvee € A under the condi-
tion (0.4). O

Remark1.1.—We have a similar non-existence result for closed
geodesics onfR x SV1 ¢ (e*)g) if ¢(s) satisfies the condition (0.4)—
(0.6).

In [11,25], the existence of closed geodesics on non-compact mani-
folds is studied. In Section 2 of [25] and Section 2 of [11], they consider
the case of a “warped product” Riemannian manifold;(eb, i) be a
compact Riemannian manifold and & = R x M,. We consider the
warped product metric om:

g(s,x)((g’ T’)’ (5’ T’)) = %‘2 + IB(S)hOx (TI’ T’)
for (s,x) e R x My, (¢§,n) € R x T M.

Here B:R — (0, 00) is a smooth positive function. They showed if
B'(s) #0 for all s € R, then(M, g) does not have non-constant closed
geodesics (see Proposition 2.2 in [11]). We can also modify their
arguments to prove our Theorem 0.2.

Their arguments and Remark 1.1 show that if a mefic) onR x My
satisfies
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8.y ~ a(ds® + ho) ass ~ oo, 1.7)
8(s,x) ™ b(ds® + ho) ass ~ —oo (1.8)

anda # b, then(R x M, g) does not have non-constant closed geodesics
in general. Conversely, whefM, ho) = the standard she®¥ 1, our
Theorem 0.3 ensures the existence of a non-constant closed geodesic
under the conditiona = b in (1.7)—(1.8). It seems that for general
compact Riemannian manifold94y, o) the existence of hon-constant
closed geodesics is not known under the conditieas in (1.7)—(1.8).
Besides non-existence result for a “warped-product” Riemannian man-
ifolds, [11,25] study the existence of non-constant closed geodesics on
non-compact complete Riemannian manifolds. In [25], the existence of
non-constant closed geodesics is proved for non-compact complete man-
ifolds whose sectional curvature is non-negative outside some compact
sets. ForN = 2, [25] also proves the existence for non-compact com-
plete surfaces which are neither homeomorphi®tmor R x S*. (See
also Bangert [8].) Benci and Giannoni [11] proves the existence for non-
compact complete Riemannian manifol#s with asymptotically non-
positive sectional curvature under a suitable condition on the topology of
the free loop spacd (M) on M.

1.3. A Hilbert structure on A
For later use, we define the spadeand fix a Hilbert structure om

precisely.
We embedR x S¥~1into R¥+1in a standard way:

R x SVt ={(s,x) e R xR"Y; x| =1} c RV*L.
We also identify
Tey@® x SV ={(¢E neRxRY; x-n=0}.

We introduce the free loop spageonR x SV~ by

A={u@) = (s@t),x(t)) € H'(0,; R x R");
(s(0), x(0)) = (s(1), x(1)) and
|x(t)| =1forallz € [0, 1]}.

We equipA with a Riemannian structure
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1
(€m0, o), = [ 162+ Dy Dinad
0

+£1(0)52(0) + 71(0) - 72(0)

for (&1, n1), (&2, m2) € Ts.)A and (s, x) € A. Here D7 is the covariant
derivative ofy(z), i.e., denoting byP (x(¢)) the projection froniR" onto

T.nSV™L, Din= P(x(1)) 7’7(:). We also denote by digt-, -) the distance
on A induced by the Riemannian structure-)7 ,. We have

(i) Foruj, uge A, disty(u;, ug) — 0 if and only if

llu; — uoll1(0,1;R xRNy — O
(ii)y For (uj)i2, CA, (up5 , Is a Cauchy sequence (@, dist, (-, -))
if and onIy if
lui —ujll g1 1rxryy) — 0 asi, j — oo.
(i) (A,dist, (-, -)) is a complete metric space.
Similarly for S¥=! = {x e R"; |x| =1}, we define
Agv1={x(t) € HY0, L, RY); x(0) = x(D), [x(t)| =1
forallz € [0, 11},
T, Asv-1={n(t) € H'(0, 1, R"); n(0) = (1), n(1) - x(1) =0
forallz €[0,1]} forx(r) € Agn-1,

(n1, n2) =/Dﬂ71-szdt+m(0) -12(0)  for ni(t), n2(t) € T, Agn-1.

(Asn-1, (-, -)ra,y,) has properties similar to the above (i)—(iii).

Finally in this section, we give a minimax characterization of closed
geodesics orsV~! with the standard metric. Closed geodesics on the
standard spher&"~! can be characterized as critical points of

1
17 .
Egva(n) =3 / IX|2dt € C2(Agn-1,R) (1.9)

and they are great circles, that is,

V(1) = e1 €COS 2 ki+ e5 Sin 27 k¢, (1.10)
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wherek € Z and ey, e, € RY are vectors such that - e; = §;;. Their
critical values are

Egv-1(y) =27%2 (ke 7). (1.11)
WhenN =2, we set
Yo = {u € Agn-1; the winding number ofi = 1}. (1.12)

Then it is clear that
inf Eq(u) =272 (1.13)

ueESl

and it corresponds to the prime closed geodesic).
WhenN > 3, we set

Zova={0eC(S" 2 Agn1); degs =1}, (1.14)

where
5:8V72 % (10,11/{0,1)) ~ "2 x §* — sV1
is defined by
6(z,t)=0(z)(t) foro e C(SV72 Agn-1)
and deg is its Brouwer degree.

We have
inf  max Egv-1(0(z)) = 272 (1.15)

0EXoN_17eSN-2

and it corresponds to the prime closed geodesic). In fact, it is well
known that the minimax value

c= inf max Exw-1(o(2)
oeEX(N-_17eSN-2 § ( )

gives a non-zero critical value dfgv-1(u). Thusc = 272k? for some
k € N. On the other hand, we find for a suitabigz) € X¢v-1

max Egv-1(00(z)) = 272 (1.16)

zes§N-2

Thus we have (1.15). An example &f(z) is
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(2Zl’ ey 2ZN725 \/ 4Z]2V,1 - 3COS 21’1‘,
\/42%_, — 3sin 2t¢) if |zy_1] > v/3/2,

= 2zy 2 (2.17)

21 lzv—1l _ zN-2
1

_1] N —
& gy T iy
3_ 9

1—
4212\/— .
=L 0) if |zv_1] < +/3/2.

o0(2) (1)

Here we use notation= (z1, ..., zy_1) € SV ?={z e RN 1; |z] = 1.
2. BREAK DOWN OF THE PALAIS-SMALE CONDITION AND
MINIMAX METHODS FOR E(u)

In what follows, we will give a proof of Theorem 0.3. We assume a
Riemannian metrig on R x SV~ satisfies (g0)—(g1) and we are going
to prove the existence of a critical pointe A of

E(u) =

NI

1
/gu(&,ﬁ)dtecz(A,R).
0

First, we study break down of the Palais—Smale conditiorEfar).

PROPOSITION 2.1. —Suppose thatu;)32; C A satisfies for some
c>0
E(uj) —c, (2.1)
|E'(u — 0. (2.2)

J')H(T,,jA)*
Then there is a subsequence—we still denote it y-such that one of
the following two statements holds

(i) There is a non-constant closed geodesje A on (R x S¥71, ¢)
such that

uj—ugin A, equivalently |lu; —uoll y10,1.rxrv) — 0.

(i) There is a closed geodesig(r) € Agv-1 On the standard sphere
SN=1 such that if we writer; (1) = (s;(¢), x;(t)), then

(1) 5;(0) — oo or s;(0) - —oo.



14 K. TANAKA / Ann. Inst. Henri Poincaré 17 (2000) 1-33

(2) u;(t)=(s;j(t) —s;(0),x;(t)) — (0, x0(2)) in A, equivalently,
1511220,y = O and [lx; — xoll 10, w4, = O.

We use the following property frequently in what follows:

DEFINITION. —For ¢ € R we say thatE («) satisfies(PS).in A if and
only if any sequence;)32; C A satisfying(2.1)and(2.2) has a strongly
convergent subsequence.

Recalling (1.10) and (1.11), we have

COROLLARY 2.2. —(PS).holds forE (u) for ¢ € (0, 00) \ {27%?; k €
N}. Moreover non-convergent sequen@g)$2; = (s;, x;)52; C A satis-
fying (2.1) and (2.2) with ¢ = 27 %k? has a subsequence—still denoted by
u j—such that

(1) s;(0) = oo ors;(0) - —o0.

(2) w;j(t) = (sj(t) —5;(0), x;(t)) = (0, y(2)) in A asj — oo, where

yi(2) is given in(1.10)

() E(u;) — 2m2k>.

(4) liminf;_, o indexE”(u;) > (N — 2)(2k — 1), whereindexE" (u ;)

denotes the Morse index &f'(u;).
To prove Proposition 2.1, we first observe

LEMMA 2.3.—-Under the assumptiofigl), there are constants:q,
m» > 0 such that

m1(E2 4+ n1?) < gu (€, m), (€, 1)) < ma(E2 + |n|?) (2.3)

for all u = (s,x) e Rx S and (¢,7) € T,(R x S¥ 1) =R x
TSV 1={¢E,neRxRY; x-n=0}.

Proof of Proposition 2.1. Assume that(u;)32; = (s;,x;)j2; C A
satisfies (2.1) and (2.2). By Lemma 2.3, we see for some conStand
independent of

15112200,1) + 1517204, < € forall ;. (2.4)
Thus we have
;) = 5;O) [l z=©) < 151201 <C' forall j.  (2.5)

We may assume that lim ., s;(0) € [—o0, co] exists and consider two
cases:
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Case 1: lims;(0) € (—o0, 00),
J—>0o0

Case 2: lims;(0) = £o0.
j—oo

Case 1: lim_, » 5;(0) € (—o0, 00).
In this case(s;, x;) stays bounded as— oo by (2.4), (2.5). Thus we
can show the statement (i) of Proposition 2.1 in a standard way.

Case 2: lim_, o 5;(0) = fo00.

Settingi; (1) = (s;(t) —5;(0), x;(¢)) € A, we get from (2.5) and (g1)

(1) u; stays bounded int asj — oo,

2 ||E°’(ﬂj)||<TﬁjA)* — 0 asj — oo. Hereg? is the standard product
metric defined in (0.9) and®(x) is a functional corresponding to
closed geodesics aiR x SV, g0):

1 1
1 L] L] 1 L] L]
Eo(u)zé/gg(u,u)dt=§/|s|2+|x|2dt
0 0
foru=(s,x) e A.

Thus, we can extract a subsequence—still we denoteiitbysuch that
for someiig = (5o, Xg) € A

Clearly iig is a critical point of E(u), that is,iig is a closed geodesic on
(R x S¥—1, g%, Thus we have
(1) 50(¢r) = p is a constant,
(2) %o(t) is a closed geodesic on the standard spl§ére,
(3) x; > Xpin Aands;(t) =s;(t) —s;(0) = pin HY(0,1; R). Since
§;(0) =0, p must be 0.
Therefore we get the statement (ii)O

Proof of Corollary 2.2. 4t suffices to show (4). Sincei;(r) =
(sj(t) — 5;(0), x;(1)) — (0, yx(r)) and E” (u;) — E°'(0, yy), it suffices
to show indext?” (0, y;) > (N — 2)(2k — 1). Lete, ..., ey € RN be an
orthonormal basis oR" and assumey () = e1 COS 2mkt+ e»Sin 2rkt.
Then we can easily see

EY (0, y)((0,v), (0,v)) <0 forallveV\ {0},



16 K. TANAKA / Ann. Inst. Henri Poincaré 17 (2000) 1-33

whereV = sparie; cos 2xjt, ¢sin2rjt; i =3,4,...,N, j=0,1,...,
k —1}. Thus indext®’ (0, y,) > dimV = (N —2)(2k —1). O

Next we define two minimax values to find a critical point Bfu).
Our methods are inspired by the argument of Bahri and Li [5] in which
the existence of positive solutions of semilinear inhomogeneous elliptic
equations iR" is studied. See also Bahri and Lions [7]. In what follows,
we mainly deal with the cas¥ > 3. The casaV = 2 will be studied in
Section 5.

To define our first minimax value, we need the following definitions:
for a (N — 2)-dimensional compact manifolt/, we set

I'(M)={y eC(M, A); y(M)is NOT contractible inA}.  (2.6)

We consider the following class of compact manifolds:

Mny-2={M; M isa(N — 2)-dimensional compact connected
manifold such thal™ (M) # #}. (2.7)

We remark thats¥ =2 e My_, and My_» # ¥ because of the existence
of op(z) given in (1.17). FoiM € My_», we set

b(M)= inf max E 2.8
( ) yel'(M)uey (M) (M) ( )
and
b= inf bM). 2.9
b= Jnf (M) (2.9)

To define our second minimax value, we consider the following class of
mappings:
T={yeCRxS"? A);y(r,2)(®) = (r,00() (1))
for sufficiently largelr|}, (2.10)

whereoy(z) is defined in (1.17). We remank(r, z) () = (r, 0o(z) (2)) €
I andI” # (. We define

b=inf  sup E(u). (2.11)

i
YEl yeyRxSN-2)

Two valuesh andb play an important role to show the existence of critical
point of E (u). b andb have the following properties:
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PROPOSITION 2.4. —

(i) 0<b<2n2

(i) 272 <b.

To prove Proposition 2.4, we need

LEMMA 2.5.-Let M be a compactN — 2)-dimensional manifold
such that

Tgv-1(M) = {0 € C(M, Agn-1); o (M) is not contractible inA gv-1 }
is not empty. Then

inf max E 272, 2.12
aeI‘SN 1(M) xeo (M) sN- 1(X) ( )

whereEgv-1(x) € C?(Agv-1, R) is defined in(1.9).
Proof. —First we show that

inf max Egv-1(x) > 0.
aeI‘ N—1(M) xeo (M)

If not, for anye > 0 we can findr € I'gv-1(M) such that
Egw-1(x) <e forall x € o (M).

Thus we have fok =0 (2),ze M
max ]x(tl) —x(tz)‘ /|x|dt ZESN 1(x) < <.
t1,12€[0,1]

Therefore fors € (0, 3)
|(L—o)x(1) + tx(0)| = |x(@)| — T|x(t) —x(0)| > 0
forallt €[0,1],x e (M), t €[0, 1]. Thus

_ (1-790@)(1)+710(2)(0) |
o.(2)(t) = 1 00@ 0 10 @0 [0, 1] x M — Agn-1

is well-defined. We remark that (z)(¢) is independent of and it can be
regarded as a map froM to S¥ 1. Since dimM = N — 2, o4 is not onto
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ando, (M) is contractible to a point is¥~1. Thuso (M) is contractible
in Agv-1 and this contradicts € I'gv-1(M). Therefore

inf max Egv-1(x) > 0.
aeI‘ N—1(M) xeo (M)

Since the Palais—Smale condition holds fv-1(u) € C*(Agn-1, R),
we can see that iggpstl(M) MaX.c,(m) Esv-1(x) iS a positive critical
value of Egv-1(x). (For a similar argument, see the proof of Proposi-
tion 2.6 below.) Since critical points af¢v-1(x) correspond to closed
geodesics on the standard sph&fe?, we can see that the least positive
critical value is 2r2. Thus we get (2.12). O

Proof of Proposition 2.4. ) For M € My_»> and y(z) = (s(z),
x(2)) € I'(M) we sety € C(M, Agn-1) by

7(@)=x(z) forzeM.
We can easily see th@te I'gv-1(M). Thus by Lemma 2.5

max Egv-1(x) > 272
x€P(M)

On the other hand, by (2.3) we have ip& (s, x) € A

1
E()=> /gu (%) dz>%/|§|2+|i|2dr
0

ml ® 2
}7/|x| dt =miEgn-1(x).

Thus we have

max E(u) > my max Egn-1(x) > 27%my.
uey (M) ey(M

Therefore

b= inf inf  max Eu) > 27%m, > 0.
MeMn-—2 yel'(M) uey(M)

To show b < 272, we recall S 2 € My_» and we sety,(z)(t) =
(£, 00(z) (1)) for £ e R andz € S¥~2. Theny,(SV~?) is not contractible
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in A and

b(SN?) < max E = max E (¢, )
(ST < max E(y(2)) = max E(¢.00(z))

Letting £ — oo, we get by (g1) and (1.16)
b(SV7?) < 272,

Thusb < b(S¥~2) < 272, Thus (i) is proved.
To prove (i), we remark that for any(r, z) € I there exists & > 0
such that
y (r, 2)(1) = (r,00(2) (1)) for|r| > R.
Thus,

sup  E(y(r,2)) =limsup max E(r, o0(z)) = 272

(r,z)eRx SN2 r—>4oo zeSN-2

Therefore we obtaid > 272. O

By the above Proposition 2.4, it occurs one of the following four cases:

Case A: 0< b < 272

Case B:b ¢ {21%k?; k € N}.

Case C:b € {2n%k%; k e N\ {1}}.

Case D:b=b =272,
In each case, we will show thét(u) has a critical point. Actually is a
critical value ofE (1) in cases A, D and is a critical value in cases B, C.

The cases A, B are easy to deal with and we can seethab is a
critical value ofE () rather in a standard way.

PROPOSITION 2.6. —

(i) If b e (0,272, thend is a critical value ofE (u).

(i) If b ¢ {272%k?; k € N}, thenb is a critical value ofE (u).

To prove the above proposition, we need the following deformation
lemma.

LEMMA 2.7.—-Assume thatPS). holds at levek for E(u) € C?(A,
R) andc is not a critical value ofE (1). Then for anyg > 0 there exist
g0 € (0,%) andn(zr,u) € C([0, 1] x A, A) such that
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Q) n(O,u) =uforall u e A.

(2) n(r,u) =uforall Tt €[0,1]if E(u) ¢ [c —E,c+E].
(3) E(n(r,u)) < E(u)forall r €[0,1] andu € A.

(4) Em(Lu)) <c—eoif E(u) <c+so.

Proof. —See Appendix A of Rabinowitz [20]. O

Proof of Proposition 2.6. {i) By the assumptiorb € (0, 2?), there
exists a sequena@;)52; C My—2 such that

b(M;) € (0,27?) forall j,
b(Mj)—b asj — oo.

First we show thab(M;) is a critical value ofE (u). If not, we choose
> 0sothatb(M;)—¢,b(M;)+%) C (O, 27?) and apply Lemma 2.7 to
obtaingg € (0,%) andn(t,u) € C([0, 1] x A, A). We choose € I'(M )
such that
max E(u) < b(M;) + ¢o.
uey(Mj) X
We can easily see that(z) = n(1, y (z)) belongs tol"(M;) and by (4) of
Lemma 2.7
max E(u) <b(M;) — eo.
uey(M;) :
This is a contradiction an@(M;) is a critical value ofE(u). Since
(PS).holds in(0,27%) andb = lim;_ . b(M;) € (0,27?) is an accu-
mulation point of critical valueg; is also a critical value of (u).
(i) By the assumptiorb ¢ {27%k?; k € N}, b > 212 and (P S); follow
from (ii) of Proposition 2.4 and Corollary 2.2. Thus we can prove (ii) in
a similar way to (i). O

Thus we can find at least one critical point in cases A, B. The following
two sections will be devoted to study cases C, D.

3. CASEC:b e {2n%?; ke N\ {1}}

Here we supposk = 2%k (ko = 2, 3, ...). We use the Morse indices
to deal with this case. We refer to Fang and Ghoussoub [14] for a related
argument.
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SinceE (1) does not satisfy the Palais—Smale compactness condition,
we introduce a perturbed functional, (1) : A — R (v € [0, 1]) by

E,(u) =

NI

1
/(gu(»'t,ﬁ)+v(e2‘+e*23)(|§|2+|£|2))dt (3.1)
0

for u(r) = (s(¢), x(¢t)) € A. This perturbation is introduced to obtain the
Palais—Smale conditiofP S). for all ¢ > 0. The corresponding argument
for singular Hamiltonian systems is developed in [22].

First we have

PropPosITION 3.1. —For v € (0, 1], the functional E, (1) satisfies
(PS). forall ¢ > 0. That s, if(u‘/)?‘;l C A satisfies

E,(uj) = c>0, (3.2
E (uj)—0 asj— oo. (3.3)
Then(u;)5Z, has a strongly convergent subsequence.
Proof. —By (2.3), we have

1
%/|s’|2+|)2|2dt<Ev(u) forallue A. (3.4)
0

Thus under the condition (3.2) we can see= (5;, x;) is bounded in
L?(0, 1) and there exists a constafit= 0 such that

max s;(1) —s;(0)| < C forall j eN. (3.5)

Remark thatx;(z)| = 1 for all z. To obtain boundedness of = (s;, x;)
in A, we show thats; (0)| remains bounded g5— ooc.

Arguing indirectly, we assume that(0) — oc. The case; (0) — —oo
can be treated similarly. By (3.5), mifp,1;s;(#) — oo. Thus by (3.2) and
the definition ofE, (1), we have

(5;,%;) = (0,00 strongly inL2(0, 1). (3.6)
We remark that (3.6) and (2.3) imply

1
1 L] L]
E(u;)= E/guj(”./"“/)dt — 0.
0
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Thus
1
c= % lim [ e (15,12 + 1%, 12) dr. (3.7)
J—>0o0
0
On the other hand, we have from (3.3) tH&{t(«;)(1,0) — 0, i.e.,

1
E'(u;)(1,0) + v/ (%1 — e 20)(I5,1? + |x,|?) dt — 0.
0

Remarking that (3.6) implieg’(«,)(1, 0) — 0, we have

1
/ezv (18,124 1%,2) df — O. (3.8)
0

Combining (3.7) and (3.8), we get = 0. But this contradicts the
assumption (3.2). Thus; = (s;, x;) remains bounded ag — oo and

we can show the existence of a strongly convergent subsequence in a
standard way. O

Next we study an asymptotic behavior of critical poiis),<(o.1; Of
E,(u) asv — 0.

PrRopPoOSITION 3.2. —Suppose that for € (0, 1] there exists a critical
pointu, € A of E, («) such that for some > 0

E,(u,) >c>0 asv—0. (3.9

Then it occurs one of the following two cases:

(i) There exists a strongly convergent subsequéngg (v; — 0) in
A.

(i) There exist a subsequeneg = (s,,, x,,) andk € N such that
Q) 5y, (0) — Fo0.
(2) Setit,, (1) = (s,,(t) = 5,,(0), x,, (1)), then

i, () = (0, (1)) in A, (3.10)
whereyy (1) = e1C0S 2mkt+ epSin2tkt (k €N, e; -ej = 6;;)

is a closed geodesic on the standard sphere.
Q) Ey, (uy) — 2%k,
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(4) liminf;_ o indengj (uy;) = (N —2)(2k - 1).

Proof. —Suppose that a sequence of critical poifis),.o satisfies
(3.9). As in the proof of Proposition 3.1, we can see that

u, = (s,,x,) is bounded in.2(0, 1). (3.11)

Thus,

max |s, (1) — s,(0)| < C forall v e (0,1] (3.12)
t€[0,1]

and we can see that, ), c.1) has a strongly convergent subsequence if
|s,(0)| remains bounded as— O.
We suppose that

5,(0) > 00 asv— 0. (3.13)

The case, (0) — —oo can be treated in a similar way. By (3.11)—(3.13)
and (g1), we have

E'(u,)(1,0)
1
- [=
0 nly

Thus we have fronE/ («,) = 0 that

Esuytnn) (50, X0), (51, %,))dt —> 0 asv — 0.
=0

1
» e - * 9
v/ezA <’)(|sv| + |x,|) dt
0

1
= E/(u,)(1,0) — E'(u,)(1,0) — v / e 2O (15,12 + |x,|?) dt
0

—0 asv—0. (3.14)

Thus we see

1
Vv . )
E(uv) = EU(“\)) _ E/(eZSV(I)+e—2§v(l))(|su|2+ |xv|2) dt
0

— IimOEv(uv) =c asv—0, (3.15)



24 K. TANAKA / Ann. Inst. Henri Poincaré 17 (2000) 1-33

Therefore by (3.13)
1 1
im Eu,) = |im0§/(|§v|2+ %2 di=c>0.  (3.16)
0

Using (3.14) again, we get from (3.12), (3.16) that
ve®©® 50 asy— 0. 3.17)

We also have from (3.11), (3.12), (3.17)
HE/(MU) - E\/;(Mv)‘

(T A)*

EmMETuy A, 1512 +1In12<1

1
= sup (u /g(z) (ezsv(f) — 672su<t))
0
1
x (15,12 + 13,1%) dt+U/(ezy\'([)_i_e—zw(t))
0

x(§v-§+£u-ﬁ)dz> —~0 asv— 0. (3.18)
Similarly we can see also from (3.11), (3.12), (3.17) that
|E"(uy) — E(u,)]| - 0 asv— 0. (3.19)
By (3.15), (3.18), we can see that,) satisfies
E(u,)—c>0 and E'(u,)— 0.
Thus we can apply Proposition 2.1, Corollary 2.2 and we have (3.10) for

a suitablek € N. Now statements (3) and (4) follow from (3.15), (3.19)
and (3)—(4) of Corollary 2.2. O

Now we use the above Propositions 3.1 and 3.2 to deal with the case
Cib=2n%3 (k=2,3,...).
We choosd. > 2 such that
E(r,00(z)) <372 forall |r| > Loandz € S¥—2 (3.20)

and we set



K. TANAKA / Ann. Inst. Henri Poincaré 17 (2000) 1-33 25

To={y eC([~Lo, Lol x S"72, A); y(£Lo,2) = (£ Lo, 00(2))},

bo= inf max E(y(r,2)).
yelp (r,z)€[—Lo,Lolx SN2

We have the following
LEMMA 3.3. —bg=0b.

Proof. —For anyy € I'g, we set

y(r,2) for |r| < Lo,
y(r,z) =
(r,00(z)) for|r|> Log.

Then we se& € I'. By (3.20) andh = 2723 > 872, we have

sup  E(¥(r,2) = max E(y(r,2)).

(r,z)eRxSN-2 (r,2)€[—Lo,Lo]x SN—2

Thus we geb < by.
Conversely, for any € I" we can findL > L, such that

y(r,z) = (r,00(z)) for|r|>L.
We sety, € T by
(—(rl = Lo+ DLo
—(Lo—|rL,00(z)) forre[—Lo,—Lo+1],
vo(r,2) = V(ﬁr, 2) for |r| < Lo —1,

((Ir] = Lo+ 1Lo

+(Lo—Ir)L,o0(z)) forre[Lo—1, Lol
Then we have

max E(yo(r,2))= sup E(y(r,2)

(r,2)€[—Lo,Lo]x SN—2 (r,z)eRx SN2

and we obtairbg < b. O
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Next we set fow € (0, 1]

b, = inf max E,(y(r,2).
yel (r,z)€[—Lo,Lolx SN2

Then we can easily see

b=by<b, forallve(,1], (3.21)
b, —bo=b asv— 0. (3.22)

By Proposition 3.1, we can see

PROPOSITION 3.4. —For anyv € (0, 1], b, is a critical value ofE,, ()
and there exists a critical point, € A such that

E,(u,) =b,, (3.23)
E (u,) =0, (3.24)
indexE,»(u,) < N — 1. (3.25)

Proof. —Sinceb, > b > 872 and (PS). holds for E, () at the level
¢ =b,, we can see thdt, is a critical value ofE, («). Thus there exists a
critical pointu, € A such that (3.23) and (3.24) hold. We can get (3.25)
as in [21] (see also [6,9,17,24]).0

Proof of Theorem 0.3 in case CBy Proposition 3.4, we can find a
sequenceéu,),co,1; C A such that (3.21)—(3.22) and (3.23)—(3.25) hold.
Applying Proposition 3.2, we can extract a subsequence(v; — 0)
such that either the statement (i) or (ii) of Proposition 3.2 occurs.

Suppose that (ii) occurs. Then by (ii)(3), (4), we have

liminf indexE; (u,,) > (N — 2)(2ko — 1).
Jj—00 J

Sinceko > 2 and N > 3, this contradicts (3.25). Thus (i) takes a place

andu =lim;_ . u,, satisfiesE (u) = 27%§ andE'(u) =0. O

4. CASED:b=b=2r?

Here we supposk = b = 272 and we show that 2%is a critical value
of E(u).

First we assumé = 272 and we findM € My_» andy e I'(M) with
special properties.
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_PropoOsITION 4.1. —Assumd? = 272. Then for any > 0 there exist
M e My_» andy € I'(M) such that

max E(u) < 27+ ¢, (4.1)
uey (M)
s(0) €[0,1] forall u(r) = (s(t), x(t)) € p(M). (4.2)

Proof. —Sinceb = 272, for anye > 0 there exists & e I" such that

sup  E(y(r,2) <27%+e.

(r,z)eRxSN-2

Approximatingy by aC°-mapping, we may assume thate C*° (R x
SN=2. A)NT. We writey (r, 2)(t) = (s(r, 2)(¢), x(r, 2)(¢)) and consider
aC*™-mapping

fr,2)=s(r,2)(0):R x S 2 > R.
By the Sard’s theorem, we can figde [0, 1] such that

f(r,z)=pB implies (f.(r,2), fo(r,2)) # (0,0). (4.3)

By (4.3), f~X(B) is a (N — 2)-dimensional submanifold dR x S¥-1.
Since f(r, z) = r for sufficiently large|r|, f~1(B) is compact and we
can write

AP =M UMU---UM,,

where M1, M5, ..., M, are (N — 2)-dimensional compact connected
submanifolds oR x S¥—2. Later we show that

there exists go € {1, ..., n} such thatM;, e My_»
andV|Mj0 € F(Mjo) (44)

We setM = M;, andy = y |y, . Then we have (4.1) and (4.2)0
To prove (4.4) we need

LEMMA 4.2.—Foranyy e I', a mapping
7z, )=y @) Rx S"2x[0,1] > Rx sV

is onto.
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Proof. —We identify [0, 1]/{0, 1} ~ S* and we compute the mapping
degree of
7i([—R, Rl x S 2 x S1, {—R, R} x S""2 x §%)
— ([—R, Rl x S 1 (=R, R} x S"71).

We can see easily that dg¢g= 41 for largeR. Thus[—R, R] x SV~ ¢
7([—R, R]1 x S¥=2 x [0, 1]) for all R > 0. Thereforey is onto. O

Proof of (4.4). Ht suffices to show thay (M;) is not contractible in
A at least for ongj € {1, 2, ..., n}. Arguing indirectly, we suppose that
y (M) is contractible inA for all ;.

By (4.3) for some’ > 0, there exist neighborhoodé; (M ;) of M; and
diffeomorphisms

¢ Ns(Mj) — (—8,8) x M,

such thatVs (M;) " Ns (M) # @ (i # j). We may assume that(Ns(M))
is also contractible inA. We write y (r, 2)(¢) = (s(r, 2)(¢), x(r, 2)(2)).
Thenx(N;(M;)) is contractible inAgv-1. Thus there exists a contraction:

nj:x(Ns(M;)) x [0,1] - A

such that

n; (v, 0(1) = y(),

n;(y, (1) = pt e SNt forally e x(N5(M;)) andt € [0, 1].
We define for(r, z) € Ns(M;) = ¢;((=6,8) x M;) andt € [0, 1]

fe(rz, 1) = ((1 —0)s(r, 2)(1) + Ts(r, 2)(0),

0 (x(r, 2), r%) (r)),

wherea(r, z) € (=4, 8) is a unique number such that z) = ¢; (a(r, 2),
m) for somem € M.
For(r,z) € R x S"H) \ Uj_; Ns(M;), we set

fo(r,z,0) = (L= 0)s(r, 2) (1) + T5(r, 2)(0), x (1, 2) (7).
We can see

folr,z, 1) [0, 1] x Rx S¥ 2 x [0,1] > R x V1
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is well-defined andf, e I" for all = € [0, 1]. Moreover

AR x Y25 [0,20) N (18} x s = A ((UM,) x[0,11)
= (B, p1).

Thus f1:R x S¥=2 x [0, 1] — R x S¥~1 is not onto. This contradicts
Lemma 4.2 and at least opgM ;) is not contractible iA. O

To obtain the existence of a critical point, we need the following
version of Ekeland’s principle.

LEMMA 4.3.-Let M € My_» and suppose that € I' (M) satisfies
for somes > 0

b(M) < max E(u) <b(M) + e.
uey (M)

Then there exists € A such that

dists (v, ¥y (M)) < 2V/e, (4.5)
IE" ()l (r, 4y < Ve, (4.6)
E(v) € [b(M) —&,b(M) +¢]. 4.7)

Proof. —Arguing indirectly, we assume that
disty (u, y(M)) <2/ and E(u) € [b(M) — &,b(M) + ¢
implies || E"(w)ll(7, 4+ > Ve.

Choose a smooth functian: R — R such that
p(r)=0 fort eR\ [b(M) —¢&,b(M)+¢],
p(r)=1 forte (b(M)—e/2,b(M)+¢/2),
¢(t) €[0,1] forall r eR.

We consider the flow): R x A — A defined by

dn p(EM)) ,
L= F'(n), 4.8
at = TEMlaa ™ (4-8)

n0, u) =u. 4.9
We can see that

(1) for eachu € y(M) the solutionn(z, u) of (4.8)—(4.9) exists for
T €0, 2\/¢],



30 K. TANAKA / Ann. Inst. Henri Poincaré 17 (2000) 1-33

(2) 7@ =n@Je, y() e "'(M),
() EF () =EmRJe,y(2) <b(M) —(¢/2) forall ze M.
This contradicts the definition éf(M). O
Proof of Theorem 0.3 in case DBy Proposition 4.1, under the

assumptiond = 272, for any ¢ > 0 there exist aM, € My_» and
v € I'(M,) satisfying
max E(u) <2r%+e¢, (4.10)
ucys(Me)

s(0) €[0,1] forallu(r) = (s(2), x(t)) € ve(M,). (4.11)

Sinceb = 272, we have

272 =b < b(M,) < m%)E(u) <2n%+ e < b(M,) +e.
ueye(Me

Applying Lemma 4.3, there exists = (s., x,) € A such that

dist, (Ms, VS(MS)) < 2\/5’ (4.12)
1E @o)| g, a- < Ve (4.13)
E(u.) € [b(M,) — &,b(M,) +¢] C [2n% — &, 272 + 2¢]. (4.14)

By (4.12), we find for some = (5, X) € y.(M,)

|5:(0) —5(0)| < disty (us, v (M,)) < 24/e.
It follows from (4.11) thats(0)| € [0, 1]. Thus,

s:(0)] < 2V/e + L. (4.15)

Since (4.13) and (4.14) hold, we have

E(u.) — 272, E'(u))—0 ast—0
and we can apply Proposition 2.1. By (4.15), the statement (ii) of
Proposition 2.1 cannot take a place. Therefore there exists a strongly

convergent subsequengeg () (¢; — 0) and the limituo = lim; o u,,
is a critical point ofE () with E (1) = 272. O
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5. THECASEN =2

We give an outline of a proof in case df = 2. We study the existence
of closed geodesics aiR x S*, g). We use the winding number ofe A
in an essential way.

We denote the winding number of:[0,1]/{0,1} ~ S* — S* by
wind(x) and set

Ay ={u € A; wind(w o u) = 1},

wherer : R x St — S§'; (r, z) — z is the projection.
As to the break down of the Palais—Smale condition for the restricted
functional E (1) : A; — R, we have

PROPOSITION 5.1. —Suppose thalu;)32; C A, satisfies for some
c>0

E(;)— c>0,

||E/(”j)”(ﬂ¢j/\1)* —-0 aSj — 0
for somec > 0. Then there is a subsequence—still denoted jsy+such
that one of the following two statements holds

() There is a non-constant closed geodasgic= A; on (R x S, g)
such that

uj—ug inAj.
(i) We writeu () = (s;(t), x;(¢)). Then we have
(1) s;(0) - oo ors;(0) - —o0;
(2) 5;(1) = 0in L%, 1);

(3) x;(t) > (cos2n (t—0),sin2r (¢t —0)) in H1(0, 1) for somey;
(4) E(u;) — 2n2.

In particular, (PS). holds inA; for ¢ € (0, 00) \ {272}.

Proof. -We remark that(cos2wk(r— 0),sin2tk(t — 0)) ¢ A, for
k € Z\ {1}. The proof can be given just as in Proposition 2.1

We defineb andb as follows:

b= inf E(u), b= inf sup E(u),
ueAq vel uey(R)

where
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I'={y e CR, Ay); y(r)(t) = (. (cos 2t Sin 211))
for large|r|}.

Then we have

(i) 0<b<2n?<D.
(i) If b <272, thenb is a critical value ofE (u).
(iii) If b > 27?2, thenb is a critical value ofE (u).

Lastly we can also show thatr2 is a critical value in casg = b = 22
as in Section 4.1 = {pt} in this case.) We remark that the case C does
not need to study fov =2. O
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