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ABSTRACT. — In 1983, Jager and Kaul proved that the equator map
u*(x) = (ﬁ, 0): B" — S" is unstable for 3{ n < 6 and a minimizer for
the energy functionak (u, B") = [,. |Vu|?dx in the classH?(B", S")
with u = u* on dB"™ whenn > 7. In this paper, we give a new and
elementary proof of this Jager—Kaul result. We also generalize the Jager—

Kaul result to the case gf-harmonic maps.
© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — En 1983, Jager et Kaul ont demontrés que I'application
équateuriellex* (x) = (ﬁ, 0): B" — S" n'est pas stable sig n <6 et
gue c’est une minimisateur pour la fonctionelle d'energig:, B") =
[ |Vu|?dx dans la classé/'?(B", S") avecu = u* surdB”" sin > 7.
Nous donnons une preuve nouvelle, élémentaire de ce résultat de Jager—
Kaul. En plus nous généralisons le résultat de Jager—Kaul au cas des
applicationsp-harmoniques.
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1. INTRODUCTION

Let (M, g) be a compact Riemannian manifold with (possibly empty)
boundarydM and let(N, k) be another compact Riemannian manifold
without boundary. Letu be a map fromM to N which belongs to
HY2(M, N). We define the energy of by

E(u, M) :/|du|2dM, (1.1)
M

where|du| denotes the Hilbert—-Schmidt norm of the differentiald).

The critical point of E is called “harmonic”. In a fundamental paper
[4], Eells and Sampson established existence of smoothly harmonic maps
from M to N assumingVN has nonpositive section curvature. Let= 0

be an upper bound for the section curvatureNotind B,(¢) the open
geodesic ball inv with centerg and radiusp. Assuming essentially the
size restriction

u(0M) C B,(q), (1.2)

T

P < 2K’
Hildebrandt et al. [10] showed existence of “small” smooth harmonic
maps satisfying the condition (1.2) and also discovered that for3
the equator map* = (ﬁ,O):B" — S" is a weakly harmonic maps.
The uniqueness of harmonic maps in [10] was later proved by Jager and
Kaul [11]. Many important contributions on the regularity of minimizing
harmonic maps have been made since then. Schoen and Uhlenbeck [15,
16] obtained that the minimizer of in H%2(M, N) is smooth except
for a singular set, where the Hausdorff dimension of the singular set is
less than or equal te — 3. Meanwhile, Giaquinta and Giusti in [5,6]
also proved this result for the case when the image lies in a coordinate
chart (boundary regularity by Jost and Meier [13]). We would also
like to mention Simon’s deep works on the structure of singularity of
minimizing harmonic maps (e.g., [18]).

Let B" be the unit ball inR” with boundaryd B" = §"~*, wheres"—*
is the unit sphere ifR".

A mapu:B" — §" is called “weakly harmonic” i« € H>?(B", §")
and it is a critical point of the energf, |Vu|?dx, i.e.,

/Vu-V¢dx=/|Vu|2u-¢dx
BVL BVL
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for all ¢ € Hy?(B", R"1) N L®(B", R"*Y).
In 1983, Jager and Kaul [12] proved the following result:

THEOREM (Jager—Kaul). —

(i) When3 < n <6, the equator map* = (ﬁ, 0) is unstable.

(i) Whenn > 7, the equator map* is a minimizer of the energy
functional E(u, B") = [,. |Vu|? for all mapsu € HY%(B", S")
withu =u* ondB".

After this theorem, Giaquinta and Soucek [7] and Schoen and Uhlen-
beck [17] proved that the Hausdorff dimension of the singular set of min-
imizing harmonic maps into a hemisphere is less than or equaiH@.

For any p € R with n > p > 2, we define thep-energy of maps in
HYP(B", S") by

Ep(u,B")=/|Vu|pdx.
BVL
Amapu € H-?(B", S") is called “weaklyp-harmonic” if u satisfies

/|vu|ﬁ—2vu-v¢dx=/|vM|Pu-¢dx

Bn Bn

for all ¢ € Hy'” (B", R*™™1) N L>°(B", R"t1). Itis also easy to check that
the equator map* is a weakly p-harmonic map fromB” to S" for
2< p<n.

In this paper, we first generalize the Jager—Kaul theorem topthe
energy by the following:

THEOREM A. —Assume that > p > 2.

(i) For3<n <2+ p+2,/p, the equator map* = (ﬁ, 0) is an
unstablep-harmonic map fronB” to S”.

(i) Whenn > 2+ p +2,/p, thenu* is a minimizer of thep-energy
E, in the classHY?(B", §") with boundary value:* on dB”".
Moreover, ifn > 2+ p + 2,/p, u* is the unique minimizer.

We present a new proof of Theorem A(ii) and also point out that our
proof is different from and much simpler than the orginal proof by Jager
and Kaul.

Remarka.—-Whenp =2, n > 7> 4+ 24/2. Thus the proof of
Theorem A also extends the Helein theorem in [9, Theorem 3.1] fo©
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to the case when > 7, i.e., forn > 7, we have

E() — E") = Kyllu — u* 31250,
whereu is a map inH>?(B", §") which agree with:* on 3B”, andK,,
is a strict positive constant.

Remarkb Consider the case of maps froAt into $"~1. Then
u* = | | is a minimizer of E (u; B") for maps fromB” into $"~1. This
result has been proved by Brezis et al. [2] foe= 3, by Jager and Kaul
[12]forn>7 and by Lin [14] forn > 3. Moreover, Coron and Gulliver
proved that/* = | | is a minimizer of thep-energy functionak , (u; B")

for maps fromB” into §"~! for p < n — 1. Theorem A recovers the
partial result of Coron and Gulliver [3] for > 2+ p + 2,/p. Perhaps,
the uniqueness of the minimizer pfenergy functional of maps frol3”
into S"*forn>2+p+ 2,/p is also a new result.

Let M = B" again and letV be an ellipsoid ofR"+2, i.e.,
Z2
N = {u =,2): [v?+ — = 1} c R,
a

wherev e R", z € R, anda > 0 is a constant.
Baldes [1] in 1984 and Helein [8] in 1988 generalized the work of
Jager and Kaul wheN is an ellipsoid:

THEOREM. —

(i) (Baldes)Whena? > 1 and n > 7, the equator map:* is the
unique minimizer of the energy function&lin H%?(B"; N) with
boundary valugx, 0).

(i) (Helein) If 0 <a <1 and a? > 4(n — 1)/(n — 2)?, the equator
map u* is the unique minimizer of the energy functiorflin
H'2(B"; N) with boundary valugx, 0).

We would point out that all proofs of Baldes [1] and Helein [8] are
variants of the proof of Jager and Kaul [12]. After the first version of this
paper (CMA-Preprint, September 1996), the author was asked whether
one could recover and generalize the results of Baldes and Helein using
our proof of Theorem A. Here we generalize their resultg-foarmonic
maps withn > p > 2 by the following:
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THEOREM B. —

() Whena?>1andn>2+p+ 2,/p, the equator map* is the
unique minimizer of the-energy functionalE, in H-7(B"; N)
with boundary valu€x, 0). .

(i) f0<a <1anda>4(n —1)/(n — p)?, the equator map* is the
unique minimizer of the-energy functionalt, in H*(B"; N)
with boundary valugx, 0).

2. PROOF OF THEOREM A

LEMMA 1.—Foranyp < n, we have

<4/;@2
||P = e2lar
Bn

for all ¢ € Hol”’ N L*°(B", R) with r = |x| where that equality occurs
only if¢ =0.

(n—p) /|¢< 2

Proof. —The case ofp = 2 was proved in [1]. Integrating by parts and
using Cauchy’s inequlaity, we have

/|¢| = / j¢2r”_”_1drdw

lw|=1 0

= /¢a¢ " dr o

|w| 10

%// 2111 g ly
2 F g2
+ —- / /<—¢) Pl dr do
(n—p)? or
lw|=1 0

forall ¢ € Hol”’ N L*°(B", R). The above inequality becomes equality iff

2 3¢

¢:(n—p)8_r’

this is psossible ony i = 0. This proves our claim. O
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Remarkc. — Lemma 1 can be also proved in following way:

) an |V¢|2r’(1”2) dx

inf _ —

920, supppC B0} [pa 7P || dx
fC;L |g_? |2rn+l—l7 dr
= [ ~
$0, supppC(0,1] fol |p|2rn—1=rdr
Jo" 152 dr  (n — py?

520, supppc©.00) [3° [p12rn-t-rdr 4

>

This can be done by modifying a lemma taken from [17, Lemma 1.3].
2.1. Proof of Theorem A(ii)

Letu* = (ﬁ, 0) be the “equator map” fromB” — S”. It is easy to see

-1
*12

Let w € HY?(B", S") be any function with boundary value = u*

onodB",
By Lemma 1, we obtain

2
/|Vu*|"*2|V¢|2dx p) /|Vu 7¢2 dx.
BVL

Whenn > 2+ p + /4p, we have

(n — p)? S
4n -1

Whenn > 2+ p + /4p, we get
/|vu*|P*ZyV(u* — w)yzdx > / IVu*|P (u* — w)?dx (2.1)
B" B"

for all w e H-?(B", §*) with w = u* on 3 B". Moreover, we know

/|Vu*|”_2|V(u* —w)|?dx

Bn
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:/|Vu*|”dx—2/|Vu*|”_2Vu*-dex
B" B"
+/|W*|P*2|Vw|2dx

Bl’l

and

/|W*|P(u* — w)?dx =/|Vu*|”(2—2u* - w) dx.
B" B"

Notice thatu* is a weaklyp-harmonic map, i.e.,

/|W*|P*2w*-v¢dx=/|w*|1’u*-¢dx
Bn

Bl’l

for all ¢ € Hy'” (B", R"™1). By taking¢ = u* — w, we have

/qu*l”fZVu*-dex:/Wu*l”u*-wdx.
BVL

BVL

From (2.1)—(2.4), we get for > 2+ p + /4p

/|Vu*|”_2|Vw|2dx >/|vu*|f’dx.
Bn Bn

By the Holder inequaity, we have

41

(2.2)

(2.3)

(2.4)

(r—2)/p 2/p
/|W*|P*2|Vw|2dx < </|W*|P dx> (/|Vw|pdx) .
B" B" B"

Combing two above inequalities, we have

/|vu*|ﬂdx</|w|ﬂdx

B" B"

for all w e H*?(B", §") with boundary valuew = u* on dB" when

nz2+p+2/p.
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From Lemma 1, we know that (2.1) become equality only if= u*.
Ifn>2+p+2,/p, we have

/qu*V’dx < /lel”dx
B}’l B}’l

for all w € H%P(B", §") with boundary valuew = u* on dB" and
w # u*. It means that* is the unique minimizer fon > 2+ p +2,/p.
This proves Theorem A(ii).

Assume thatp = 2. Whenn > 7 > 4 + 2/2, one seesn — 2)?/(4
(n—1))>1.ByLemmal, we know

4
[1vopar> (1- 2 2)2)/|V¢| dx+/|w 22
B}’l

for all ¢ € Hy'?(B", R"*1). Taking¢ = w — u*, we have

24, _ %2 4n — >
B{leldx B[quldx}(l 22 /\V( u)\dx

wherew € H2(B", §") agrees withu* on d B". This proves our claim
in Remark 1.
For ¢ small we define:, : B" — S" by setting

(5. 19 (0)
(1 + l‘2¢2)1/2

u(x) =

for a smooth functionp on B” vanishing near 0 andB". A simple
calculation gives

RAY 9
LDl _(0,...,0,V6w),  —Ivu? =0
8t =0 8t =0
and
9°Vu, (x) _ (v- o)
02t =0 |x]
Now
1 92 AV, (x) |2 32Vu, (x
L ] =[PP (V0 g,
2 04t /=0 ot /=0 04t =0
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Then

2

@Ep(ut) ,

=/'|W*|P*2[|V¢|2—¢2|W*|2] v
=0
B}’l

Itis easy to check that* = (ﬁ, 0) is a weaklyp-harmonic map fronB”"
into S". If u* is stable, we have

/|VM*|"—2[|V¢|2 Vi 2 dx >0

B

for all smooth¢ vanishing near O andB”.
2.2. Proof of Theorem A(i)

Let us consider the following equation:

¢'(r) + " ¢( n+2—=""6(n =0,
¢(ro)=¢(1)=

(2.5)

forO<rg < 1.
By settingé (r) = ¢ ('), EQ. (2.5) becomes

"0+ —p)E')+n—1-e)&1)=0.
Let

v:=v(8)=%[n2—2(p+2)n+p2] +1+e.

When 3<n <24 p+2,/p, there exists a small such thatv < 0 and
we chooseq: 0 < rg < 1 such that,/—vInrg is a multiple of Zr. Then
it is easily checked (see [12]) that the function

50 rP2sin(/=v -Inr), forrg<r<1,
r =
0, forr <ro.
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solves Eq. (2.5). This means that fok3: < 2+ p + 2,/p, there exists
¢ small and a non-zerg (r) on[ro, 1], ¢ (1) = ¢ (rg) = 0, such that

1 1
/rz_p {W(V)z _e-h _2 H (/52} e = —/ ier—P(ern—l dr <O.
r r

0 0

In other words, we see that is unstable for 3 n <2+ p+2,/p. This
proves Theorem A(i).
From the proof of Theorem A, we have

COROLLARY 2. —Assume thai is a stablep-harmonic map fronB”"
into $" and the values af are on the equato¢S”—2, 0) of §”. Thenu is
a local minimizer of the energy functional, in H-7(B", S").

3. PROOF OF THEOREM B

In this section, letV be the ellipsoid oR"** defined in Section 1 and
suppose thap € R with n > p > 2. We define they-energy of maps in
HYP(B",N) by

Epv,zi B = [ (ol +192)" .
Bn

We writeu = (v, z) with v e R", z e R. Amapu = (v, z) € H-?(B", N)
is called “weaklyp-harmonic” if u satisfies in the sense of distributions
the following equations:

div(|VulP~2Vv) + |Vu|? i =0,
div(|Vul”~2Vz) + |Vu|? 2.~ =0,
a

where

|VZ|2) (14
a®v? + ZZ'

Proof of Theorem B. Let u = (v, z) be any function inH?(B", N)
with boundary valuegx, 0) on d B". Using Lemma 1 again, we have

X X
[l ()
A

Bl’l

A= <|Vv|2+

a2

2

dx

p—2




M.-C. HONG / Ann. Inst. Henri Poincaré 17 (2000) 35-46 45

_ (n=p)y? 2
4(”—1)/’ x| |x| 31)
and
X p—2 ) _p)z 2 |Z|2
B[\Vm vePds > R /‘ Wl et G2

(i) Assume that: > 1 andn > 2+ p +2,/p. Note the fact? + ;—i =1.
Thus using (3.1) and (3.2), the proof of Theorem A(ii) yields

/‘ x _ (n=p)? /’

|x] 4( -1 x|
for all u = (v, z) with same boundary valuds, 0). The same argument
in the proof of Theorem A(ii) gives tha(%l, 0) is the unique minimizer
of E,ifn>2+p+2/p.

(i) Assume that O< a < 1 anda® > 4(n — 1)/(n — p)?. Thus using
(3.1) and (3.2) again, we get

. X p—2 ) (n_ )2 2

An-1) —1)
for all u = (v,z) # (x‘ 0) with same boundary values. The same

argument in the proof of Theorem A(ii) gives tl(q% 0) is the unique
minimizer of E,,. This proves Theorem B.O

Remarkd. — It is obvious from the proof of Theorem A(i) to see that
(fi7- 0) is unstable forz,, whena? < 4(n — p)/(n — 2)°.
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