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ABSTRACT. — We consider the problem
?Au—u+ fu)=0 ing,
u>0 in£2, du/ov=0 o0nas,

where £ is a bounded smooth domain iRY, ¢ > 0 is a small
parameter and’ is a superlinear, subcritical nonlinearity. It is known
that this equation possesses boundary spike solutions such that the spike
concentrates, as approaches zero, at a critical point of the mean
curvature functionH (P), P € 952. It is also known that this equation
has multiple boundary spike solutions at multiple nondegenerate critical
points of H (P) or multiple local maximum points off (P).

In this paper, we prove that for any fixed positive intedérthere
exist boundaryK -peak solutions at a local minimum point off (P).
This implies that for any smooth and bounded domain there always exist
boundaryK -peaksolutions.
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We first use the Liapunov—-Schmidt method to reduce the problem
to finite dimensions. Then we use a maximizing procedure to obtain
multiple boundary spikes.
© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — Nous considerons le probléme

?Au—u+ fw)=0 ing,
u>0 ing, du/dv=0 o0nas,

ol £2 est une domaine bornée avec frontiére lisseR&n ¢ > 0 est un
parametre petit, ef est surlinéaire et souscritique. Il est bien connu que
cette équation possede des solutions avec pointe sur la frontiére telle que
la pointe se concentre (quanrdtend vers zero) & une pointe critique

de la courbure moyenn#& (P), P € 352. Il est aussi connu que cette
équation possede pleusieurs solutions avec pointes qui se concentrent
sur pleusieurs points critiques nondégéneré&/d€), ou sur pleusieurs
maxima locaux deH (P).

Dans ce papier, nous prouvons que, pour chaque entier positine,

il existe solutions ave& pointesla frontiére, situées sur un minimum
relatif de H (P). Ceci implique que pour chaque domaine qui est lisse et
bornée il existe toujours des solutions a¥e@ointes a la frontiére.

Nous utilisons la methode de Liapunov—Schmidt pour reduire le
probleme dans une espace de dimension finie. Ensuite, nous utilisons une
procédé de maximization pour obtenir les pointes sur la frontiére.
© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

The aim of this paper is to construct a family of multiple boundary
peak solutions to the following singularly perturbed elliptic problem

Au—u+u”=0 in £,

. (1.1)
u>0 inf2 and du/dv=0 o0nas2,
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where A = 37, (8%/9x?) is the Laplace operatos? is a bounded
smooth domain inR"Y, ¢ > 0 is a constant, the exponept satisfies
l<p<(N+2/(N—-—2forN>3and 1< p < oo for N =2 and
v(x) denotes the normal derivativeak 952.

Eg. (1.1) is known as the stationary equation of the Keller—Segal
system in chemotaxis. It can also be seen as the limiting stationary
equation of the so-called Gierer—Meinhardt system in biological pattern
formation, see [35] for more details.

In the pioneering papers of [18,21] and [22], Lin, Ni and Takagi
established the existence of least-energy solutions and showed that
for ¢ sufficiently small the least-energy solution has only one local
maximum pointP, and P, € 352. Moreover,H (P,) — MaXpcyo H(P)
ase — 0, whereH (P) is the mean curvature af at 2. In [23], Ni
and Takagi constructed boundary spike solutions for axially symmetric
domains. The second author in [35] studied the general domain case
and showed that for single boundary spike solutions, the boundary spike
must approach a critical point of the mean curvature; on the other
hand, for any nondegenerate critical point#f P), one can construct
boundary spike solutions whose spike approaches that point. The first
author in [11] constructed multiple boundary spike layer solutions at
multiple local maximum points off (P). Later the second and third
authors in [38] constructed multiple boundary spike layer solutions at
multiple nondegenerate critical points &f (P). Related results were
obtained independently by Y.Y. Liin [17]. Whem= (N + 2)/(N — 2),
similar results for the boundary spike layer solutions have been obtained
in [1-3,12,20,27-29,31], etc. We also note that multiple interior peak
solutions in general domain are obtained in [13].

In this paper, we study the existence of multiple boundary peak
solutions at a local minimum point df (P).

More precisely, we consider the problem

szAu—.u—l—f(u)zo in $2, | (1.2)
u>0 in2 and du/ov=0 ing.

We will assume thatf: RT™ — R is of classC'*’ and satisfies the
following conditions

(f) f()=0fort <O0andf(r) - +o0 ast — oo.
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(f2) There exist some constants<l pq, p2, p3 < (N + 4)/(N —
4), (=occif N<4,=(N+4)/(N -4 if N> 4 such that
f(© =0, f(0)=0and

f @) =0O(|ul™), f'@)=0O(jul>"t)  as|u| — oo,
Clg|»st if p3>2,

|fuu+¢) — fuw)] < _
C(lgl +lp|”*™h if ps<2.

(f3) The equation

Aw—w+ f(w)=0 inRY,
w>0, w(0)=maxczy w(z), (1.3)
w—0 atoo

has a unique solutiom (y) (by the results of [9]w is radial, i.e.,
w=w(r) andw < 0 for r = |y| # 0) andw is nondegenerate.
Namely the operator

L:=A-1+ f'(w) (1.4)

is invertible in the spacé&l?(R") := {u = u(|y|) € H*(RV)}.
Two important examples of are the following.

Example 1l (Chemotaxis and pattern formation)./<u) = u? where
l<p<((N+2)/(N—-2)(=c0if N=2,=(N+2)/(N—-2)if N >
2). Itis easy to see that satisfies (f1), (f2) and (f3). This problem arises
from the Keller—Segal model in chemotaxis and the Gierer—Meinhardt
system in pattern formation (see [21,22] and the references therein).

Example 2 (Population dynamics and chemical reaction thgory

J@)=u(w—a)d—u)

where O< a < 1/2. This is a famous model from population dynamics
and chemical reaction theory (see [5,15,30]WIK 8 then by the result
of [8], f satisfies (f1)—(f3).
Other nonlinearities satisfying (f1), (f2) and (f3) can be found in [6].
Let A C 32 be an open set such that

Fr)reuar} H(P) > g\elpH(P). (1.5)
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We now state the main result in this paper.

THEOREM 1.1. —Assume that conditio(i.5) holds. Letf satisfy as-
sumptiongfl1)—(f3). Then fore sufficiently small problerfl.2) has a so-
lution u, which possesses exactty local maximum point®)y, ..., 0%
withQ* = (05, ..., 0%) e I' x --- x I". Moreover

H(Q%) — minH (P), ('Qk Q") — 0,
Perl’ &

i,k,l=1,...,K, k#1, ase — 0. Furthermore, we have

bmini_1__ g (jx — Qfl)) (1.6)

&

u.(x)<a exp(—

for certain positive constants, b.
Theorem 1.1 can be derived from a more general theorem as follows.

THEOREM 1.2. —Letl}, i=1,..., K, be open sets iAs2 such that

min H(P)>minH(P), i=1...K

Let f satisfy assumptiondl)—(f3). Then fore sufficiently small problem
(1.2) has a solution:, which possesses exacttylocal maximum points
5, Q% WithQ® = (03, ..., Q%) € 1 x --- x I'x. Moreover

H(Qf) — min H(P), ('Qk i ') — 0,
Perl; &

i,k,1=1,...,K, k#1, ase — 0. Furthermore, we have

bmini—y g (]x — Qﬂ))

&

u(x)<a exp(— (1.7)

for certain positive constants, b.

More details about the asymptotic behaviorugfcan be found in the
proof of Theorem 1.2.
We have the following interesting corollary.

COROLLARY 1.3. —For any smooth and bounded domain and any
fixed positive integeK € Z, there always exists a boundary K-peaked
solution of(1.2)if ¢ is small enough.
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Theorem 1.1 is the first result in proving the existence of multiple
boundary spike solutions for problem (1.2) in any smooth bounded
domain. Note that the boundary spikes can approach the same point on
the boundary whem has a strictly local minimum point off (P). This
is new and interesting in its own right.

We shall only prove Theorem 1.2. To introduce the main idea of the
proof of Theorem 1.2, we need to give some necessary notations and
definitions first.

Let w be the unique solution of (1.3). It is known (see [9]) thais
radially symmetric, decreasing and

lim w(y)éy'|y|N%1 =co> 0.
|y|—00

Associated with problem (1.2) is the following energy functional

JS(M)Z%/(82|VM|2+MZ) —/F(u)

2 2

whereF (u) = [y’ f(s)ds andu € HX(2).
For any smooth bounded domalh we set Pyw to be the unique
solution of

{Au—u—i—f(w):O inU, (1.8)

ou/ov=>0 onU.
Let n > 0 be a small number. Ldt; be as in Theorem 1.2. Set

A={P=(P1,...,PK)€F1><---><FK,w<|PkE;PI|> < ne,
k,l=1,...,K, k;él}.
For P € 952, we set
2, ={y: ey € 2}, 2. p={y: ey+ P e 2}
Fix P= (P, P,, ..., Px) € A. We set

P P
Pwi()’)=P98,piw y_? 9 wl(y)=w y_? ) yegs’

K
u=>y Pw;+®P.pec H (L),
i=1



C. GUIET AL. / Ann. Inst. Henri Poincaré 17 (2000) 47-82 53

3 Pw;
/Cs,p=spar{ Yoi=1... K, j:l,...,N—l}CHZ(.Qg),

atpi,ij

3 Pw;
Cgp=Spal'{ Yii—1,.. K, j:l,...,N—l}cLz(.Qg),

’ aTPi,ij

Whererpi,l.j are the(N — 1) tangential derivatives a®; (without loss of
generality we assume that the inward normal derivativ®; das ey and
denoterp,, astp,; in the rest of the paper.)

J

We first solve for®, p in K up to C;5p by using the Liapunov—
Schmidt reduction method. This method evolves from that of [7,25] and
[26] on the semi-classical (i.e., for small paramefigrsolution of the
nonlinear Schrédinger equation

2

h
5 AU (V= E)U+U"=0 (1.9)

in RN whereV is a potential function andt is a real constant. The
method of Liapunov—Schmidt reduction was used in [7,25] and [26] to
construct solutions of (1.9) close to nondegenerate critical points of
for h sufficiently small.

Then we show thab, p is Ctin P. After that, we define a new function

K
M,(P) = J5<Z Pw; +q>s,p>. (1.10)

i=1

We maximize M,(P) over A. Condition (1.5) ensures tha¥/,(P)
attains its maximum insidet. We show that the resulting solution has
the properties of Theorem 1.2.

The paper is organized as follows. Notation, preliminaries and some
useful estimates are explained in Section 2. Section 3 contains the setup
of our problem and we solve (1.2) up to approximate kernel and cokernel,
respectively. We set up and solve a maximizing problem in Section 4.
Finally, in Section 5, we show that the solution to the maximizing
problem is indeed a solution of (1.2) and satisfies all the properties of
Theorem 1.2.

Throughout this paper, unless otherwise stated, the IEtteitl always
denote various generic constants which are independent, &r &
sufficiently small.s > 0 is a very small number.(d) meansgo(1)| — 0
ase — 0.
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2. TECHNICAL ANALYSIS

In this section we introduce a projection and derive some useful
estimates. Throughout the paper we shall use the Iéttes denote a
generic positive constant which may vary from term to term. We denote
RY ={(x',xy) | xy > O}. Letw be the unique solution of (1.3).

Set

1(w)=}/(|Vw|2+w2) —/F(w).
2RN RN

Let P € 0§2. We can define a diffeomorphism straightening the
boundary in a neighborhood &f. After rotation of the coordinate system
we may assume that the inward normalat@ at P is pointing in the
direction of the positivery-axis. Denotex’ = (xq, ..., xy_1),

B'(Ro) = {x' € R" | |x'| < Ro},
B(P,Ro) = {x € RV | |x — P| < Ro},
and

20=5 N B(P, Rp)
:{(.X’,XN) c B(P, RO) |xN _ PN = ,O(X/ o P/)}

Then, since §2 is smooth, we can find a constaRg > 0 such thab 2 N
20 can be represented by the graph of a smooth fungtjons’ (Rq) —
R wherepp(0) =0, Vpp(0) =0.

From now on we omit the use @ in pp and writep instead if this
can be done without causing confusion. The mean curvatur@® aft P
is

1 _l
H(P)= ii (0),
(P) n_lgpu
where
0
=P =1 N-1,
8x,»

and higher derivatives are defined in the same way. By Taylor expansion
we have

1 N1
p(x' — P = > Z pij (0 (x; — P)(x; — P))

i,j=1
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1 N
6 Z Pijik(0)(x; — P)(x; — Pj)(xx — Py)
k=1

+O(|x — P'|h.

Recall that for a smooth bounded domain the projection P, of
H?U) onto {v e H?(U) | 9v/dv =0 atdU} is defined as follows: For
v e H3(U) let w = Pyv be the unique solution of the boundary value
problem

Aw — =0 inU
w—w+ f(v) , 2.1)
dw/dv =0 onaU.
Let
-P - P
hs,p(x):w<x )_ngPu)(x ), x €S2,
& ’ &
where
Q.p={z€R"|ez+PeR}.
Thenh, p satisfies
2Av—v=0 in 2
g°Av—v , 2.2)
dv/dv = (d/dv)w((x — P)/e) o0oNnas2.

We denote
v]|2 = 87N/ [€2|Vu|? + v?].
2

Forx € £2p set now

!/ — / _ Pl’

&y =a o (2.3)
eyyn =xy — Py —p(x — P).

Furthermore, fox € 29 we introduce the transformatidah by

(2.4)

T(x)=x;, i=1...,N—-1,
Tn(x') =xy — Py — p(x = P’).
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Note that then

1
y=-T(x).
&
Let v; be the unique solution of

Av—v=0 in Ri’,
ov w 1 nN-1 (2.5)
—_— == l--O i Vi OnaRN,
dyw Iy 2= PO :

wherew’ is the radial derivative ofv, i.e., w’ = w,(r), andr = |(x —
P)/e|.

Note thatv, is an even functions i’ = (yy, ..., ynv_1). Moreover, it
is easy to see thab,| < Ce P! for some O< i < 1.

Let x(x) be a smooth cut-off function such that(x) =1, x €
B(0, 0.8Rp) andx (x) =0 for x € B(0, Rp)€.

In fact we setRq be such thatv(Ry/e) = 0.9ns.

Note that thisy is as good as the cut-off function in [35].

Set

he p(x) = ev1 () x (x — P) + %%, p(x), x €.
Then we have
PrROPOSITION 2.1. —

”"ljs,P”s < C.

Proof. —Proposition 2.1 was proved in [37] by Taylor expansion and
a rigorous estimate for the remainder using estimates for elliptic partial
differential equations. O

Similarly, we know from [37] that
PROPOSITION 2.2. —

ow 3PQS’PU)

x—P
5 }( >:w1(y))((x—P)+8w§(x), x €S2,
Tp; aTp, 3

whereegy = T (x) and w; satisfies
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Ay v—0 in RY,
v 1/w” w’ N-1
v =2~ o) s PO 26
w’ N-1 N
- m k=1 Pk (0) yi OnoRy

and [[ws|. < C.

Note that|w.| < Cexp(—u|y|) for someu < 1 and w is an odd
function iny’. Finally, letLo= A — 1+ f’(w). We have

LEMMA 2.3. -

Ker(Lo) N H(RY) =spa g—;vl e, %}
whereHZ(RY) = {u € H*(RY), du/dyy =00naRY}.
Proof. —-See Lemma 4.2 in [22]. O
Next we state some useful lemmas about the interactions ofita:o

LEMMA 2.4.—LetP=(Py,..., Px) € A. Then we have

| Py — Py
/f(wk)wzz(ykﬁo(l))w(f), k,l=1,....K, k#1,
¢

(2.7)
whereyy € X and X is defined as follows
r={ [rwone e’ bi=1}).  @8)
RN
Furthermore, ifw(| P, — P|/¢) = ne, we havey, € X1 where
1= { [ w0 dy [ b=bs.....bw € RY.
RN
by =0, |b| =1}. (2.9)

Proof. —Note that agP, — P;|/¢ — oo we have

_N-1
2

(P = (B et arow). @10)

& &
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Hence if we straighten the boundaryRtwe have

[ fwow= [ fwm)w(y- f _P")<1+o<1>)
. RY

&

—w <'P"8J> (1+0) [ £(w»)

< P — F%) l(lf% —'1ﬁ|>
xw(ly— —|w | —
g €

P — P
:w<L%?A>@+MDX/fWMMéMWy
RN

+

for some
e RY, |b| =1.

Note that ifw(| P, — P,|/¢) = ne, we haveP, — P, andby = 0 where
by is theNth component ob. O

Note —yu = -

Next we are going to show three technical lemmas.
The first lemma is about some relations of several integrals associated
with w in Ry_1.

Let
n=mrr [ Vel Pl (2.11)
N+1 ' '
RN—l
We have
LEMMA 2.5.—
N -3

/ / / 1 / /
con= [ Py Pay =3 [ iy, @12)
N-1

RN-1 R

N-1 / / /
(N+ Dy =" / w|2dy’ — / w2y’ 2dy
RN—l

RN-1

+ / Fawywly2dy’. 2.13)
RN—l
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Proof. —Let y = (y/, yy). The operatorsA and V below are with
respect toy € RY, and the integrations are with respectyto= (y’, 0) €
RM~1. We will also user for |y'|.

By straightforward computations we have

/ Y PAw(Vw - y) dy’
RN—l

= wN—z/ (w”(r) + —Nr_ 1w’(r)> w'(r)r¥ T dr
0
3

oy_z | ¥V (w’(r))zdr
/

N+ 1N -3
_ Lz()yl, (2.14)

and

/ |y,|2w(vw'y)dylszfz/U)/(I”)u)(r)rN"'ldr
0

RN-1

N+1 T N+1
=— ;_ coN_z/erzdr:—T+ / w?y'|?dy’ (2.15)

0 RN-1

and

/ 1Y 12f (w)(Vw - y)dy' = wN,Z/f(w)w/(r)rNH dr
RN-1 0

=—(N+ l)a)N_g/rNF(w) dr
0

— N+ / Fw)ly'2dy’. (2.16)
RN—l

Sincew satisfies
Aw—w+ f(w)=0, yeR", (2.17)

by multiplying (2.17) by|y'|>(Vw - y) and integrating it with respect to
y"in RN=1 we obtain (2.12).
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7 N-1
/ Iy [PwAwdy’ :a)N_z/w(r) (w”(r) + —u/(r))rN dr
RN-1 0 r

:—a)N,z/rN(w’(r))z—l— > a)N,z/erzwzdr
0 0

N-1
=—(N+1)J/1+T / w?dy

RN-1

Multiply (2.17) by|y’|?w and integrate it irRV—1. Then (2.13) is derived.
This proves Lemma 2.5. 0

LEMMA 2.6. — For any functionG(¢) in C*° ([0, co)) with G(0) =
G'(0) =0, we have

/ G(w(y))dy

QS.P

1
=/G(w(y>)dy—eH(P>§ / G(w(y.0)y'[2dy + o(e).

N N-1
RY R

Proof. —Sincew decays exponentially in at infinity, we have

/G(w(y)) dy = / G(w(y))dy +o(e)

Qe (20)e.p
= [ Gwoar- [ Gwm)dy+oe
B+ %0y B+(B0)\(2)..p
1o(ey)
=/G(w(y))dy— / / G(w(y', yn)) dyy dy’ 4 o(e)
kY <R 0
Loy
/ (w(y))dy — / / (w(y',0)) dyy dy’
IyI<

Iptey))
+ / / (G(w(y', yn) — G(w(y', 0))) dyy dy’ + 0(e)
[ 0

R,
yI<P2
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=/G(w(y)) dy — / G(w(y’,O))p(iy)dy’

RY vi<ie
p(ey) ,
+ lw(@y',0)|” dy + o(e)
ly< %o
N-1
- / G (w(y)) dy——e / (WG, 0) S pi (O)ysy; dy’
i< R b=t
+ / (€%1y'°) dy’ + o(e)
ly< Zo

1
=[G —sr )5 [ G(!,0)y P +o6e)

RY ly1< o
1
:/G(w(y))dy—eH(P)é / G(w(y',0))ly1>dy’
Rf RN-1
+0(¢), (2.18)
where

R R
B+(?°> = B< 80> mRN and (£29)e.p = {y ley+ P e Qo}-

Hence Lemma 2.6 is proven.O
LEMMA 2.7.—

/f(w)(PQg,,w w)—eH(P)— / wlZdy + o(e).
RN

Proof. —Using (2.5), (2.17) and the exponential decaycdindvy, we
have

/f(w(y))vl(y) dy = /(w — Aw)vy(y) dy

N N
RY RY
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N-1

2 / w(r)w(r)r lzpz/(o)yz)’/dy

i,j=1

N-1

=2 / w(r)w' (r)r- lZpl,<0>|yl| dy’

= }H(P)a)N_Z/w(r)w’(r)erdr

_ ——H(P) / (2.19)

In view of Proposition 2.1, Lemma 2.7 follows immediatelya
The next lemma is the key result in this section.
LEMMA 2.8.—ForanyP = (P4, ..., Px) € A ands sufficiently small

Jg(gpw,)

1(w>—e(n+o(1> ZH(P)

i=1

1 & P — P,
5 Z (Y +0(1))w (M) + 0(8)] , (2.20)
k=1, k#l £

wherey; is defined in2.11) yi; = yix € ¥ and X' is defined by2.8)and
vy is defined in(2.11)

Furthermore, ifw(| P, — P|/¢) = ne, we havey,, € ¥; where X, is
defined by(2.9).

Proof. —~We shall prove the case wheii = 2. The other cases are
similar.
SinceP = (P, P;) € A, we have thatw (| P, — P,|/¢) < ne.
First we look at the cas&k = 1. Note that by Proposition 2.1,
Lemmas 2.6 and 2.7 we have
X —
+/ P, pw ( )

a5

=&V [ f(w)Pg, ,w
|

2
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=s”< / Fwyw + / f(w)(Pgs,pw—w)>
2¢.p -Qa,P

=8N</f(w)w—8H(P)% / fywly'*dy
RY RN-1

N-1
+8H(P)T / lw|?dy’ + 0(8)). (2.21)

RN-1
Similarly we have

[r(ram(55)

:eN(/FOU)dH (F<Przafw>‘F(“’))dy)
2

QS.P

e, P

zeN(/F(w)dy—EH(P)% / fywly'[>dy’

N N-1
RY R

+8H(P)NT_1 / |w|2dy’+o(s)). (2.22)

RN-1

Then

1
JS(PQEYP w) = N (El(w) —y1H(P)+ o(e)).
For the cas&K = 2, we can write

/F(Pw1+sz)z/F(Pw1+Pw2)+/F(Pw1+Pw2)

2 21 §2
+ [ PP+ Puy
23
=L+ L+
wherel;,i =1, 2, 3, are defined at the last equality and
2={lx = P3P - Pal},  22={Ix— P <i|P.— Pil},

Q3= 2\(£21 U £25).

For I3, we have



64 C. GUI ET AL./ Ann. Inst. Henri Poincaré 17 (2000) 47—-82

P. — P 1+0.50
eV < C / (w1+w2)2+"=0(w<M) )

(£23)e §
— O(S l+0.50> .

For I, usingw(| P, — P>|/¢) = O(¢e) we have

e V= / (F(Pw1) + f(Pwy) Pwy) + O(¥05)
(£21)e
—/F(Pwl) + [ fwws+0(0%)

(£21)¢

:/F(w)—gH(Pl)<§ / F(w)]y'|*dy’

RN-1
-1 2 / 1+0.50
[ Wiy )+ [+ 0(o).
RN-1 (£21)e

Similarly,

1
= [ F(w)—eH(P2)<§ | Faolyray

RN RN-1

| |w|2dy/)+ | Fwaws+0(t0).

RN-1 (£22)¢
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- /F(Pw1+ Puws)
2

2 . .
=21) = yie 3 HP)+ [ fwnPua— [ o,
i=1 2

(821)¢

_ /f(wz)U)1+0(w<|P1;7P2|)+O(81+0.5<7))

(o)
2 Py — P,
=2I(w) —y1€ Y H(P) — (y12+0(1))w (lleiﬂ)

i=1

+0O(e1057), (2.23)

Here we have used Lemma 2.4

P, — P
/f(wl)wz = (y12+0(1))w <|1872|)
2
and similarly

P— P
/ f(w)wz = (y12+0(1)w <|1572|)’

(821)¢

P —P
/ f(wz)w1=(yzl+0(1))w<|1872|)

(822)¢

= (y12+0(1))w (“)127])2')

3. LIAPUNOV-SCHMIDT REDUCTION
In this section, we reduce problem (1.2) to finite dimensions by the

Liapunov—Schmidt method. We first introduce some notations.
Let H2(£2,) be the Hilbert space defined by

H{(2:) = {u € H*(%2,)

0
i =Oon8.(28}.
av

&
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Define
Se(u)=Au —u+ f(u)
for u € H2(£2,). Then solving Eq. (1.2) is equivalent to
S.(u)=0, ueH($,).

Fix P= (Py,...,Px) € A. To study (1.2) we first consider the
linearized operator

K
L.:ur Au —u+f/<ZPwi>u,
i=1
HE(82,) > L*(£2,).

It is easy to see (integration by parts) that the cokernél,afoincides
with its kernel. Choose approximate cokernel and kernel as

CS,P = ]Cs,P

i:L“qu:L“”N—l}

Let 7, p denote the projection fromi2(£2,) onto Cip. Our goal in this
section is to show that the equation

K
ns,POSs<Z Pw; +¢g‘p> =0

i=1

has a unique solutionp,p € K;p if ¢ is small enough and® =
(P]_,...,P]()EZ.

As a preparation in the following two propositions we show the
invertibility of the corresponding linearized operator.

PROPOSITION 3.1. —Let L,p = . p o L,. There exist positive con-
stantsg, A such that for alle € (0,%) andP = (Py,..., Px) € A

ILep®@llr2c,) = APl u2, (3.1)

forall @ € Cp.

PROPOSITION 3.2. —For anye € (0, &) andP = (P4, ..., Px) € A the
map

L 1
Lep=mepolL, 'ICS,P - Cs,P
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is surjective.

Proof of Proposition 3.1. ¥e will follow the method used in [7,25,
26], and [37]. Suppose that (3.1) is false. Then there exist sequences
{ec), (Pd={(Pri,.... Pr )}, and{@} (=1,2,....K, k=12,..)
with &, > 0, Px € A, &, € K p,_such that

& — 0, (3.2)
Pc — Pe A, (3.3)
”Lsk,Pkcpk”Lz(.st) — 0, (3.4)
|Pellnza, =1 k=12 ... (3.5)

Forj=12,...,N —1denote

a
ik = Pwi,k/‘ Pw; ,
T(Pip) T(Pip),; L2(82¢,)
where
P i
Pwii(y) =Pg, , w|y— - ) y € 2.
' k
Note that

(€ijr ks €injok) = 8igin8jyj + Olex) ask — 0o

by Proposition 2.2, the symmetry of the functian and the fact that
P e A (recall thatw(|P, — P;|/¢) < ne). Here §,,;, is the Kronecker
symbol. Furthermore, because of (3.4),

2

K N-1
ILe ®ellZ2 =D > ( / Lskcpkei‘/,k) -0 (3.6)
i=1 j=1 Qak

ask — co. Let 29, x, p andT be as defined in Section 2. (Note that we
allow Ry — 0 butRy/e — 00.) ThenT has an invers@& —* such that

T 1:T(B(P,Ry)N2)— B(P,Ro)N 2.

Recall thatsy = T (x). We use the notatiod ") if P is replaced byP;.
We introduce new sequencegs ;} by

1 . ,
0i(Y) =x <g<T“>>—1(sky>> & (T Hewy)) (3.7)
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for y € RY. SinceT® and(T)~* have bounded derivatives it follows
from (3.5) and the smoothness pfthat

”(Pi,k”HZ(Rﬁ) <C
for all k sufficiently large. Since also
Ikl 2r\Bo.R)) > O @SR — 00

uniformly in k for all k large enough there exists a subsequence, again
denoted by{g; x} which converges weakly im{2(Rf+V) to a limit ¢; », as

k — oo. We are now going to show that ., = 0. As a first step we
deduce

0
/(pl’ooa—wzo, J=1,,N_1 (38)
o Vi

This statement is shown as follows (note thatdl@&t= detDT 1 = 1)
dPw;; ((TD) L(ery)

/wi,k(y) [ - < & )] dy

N

at<Pi.k)j €k

Puw; — P
ZEEN/X(X—Pi,k)CDk(i)a ik <x ’k>dx

&/ ATppy; \ &k

RY

20

_N/CD <x > ani,k ()C— Pi,k)
¢ J &/ TPy, \ &k
x\ o0Pw;, /x— P
" [ ()i ()
Ek at(Pi,k)j Ek

2\820

x\o0Pw;x (x — P
—SkN/[l—X(x—Pi,k)]¢k<—) ’k< k>
&/ Tpy; \ &k

0 — P
=o- [ o) 5 ()
&/ LO(Pig); &k
2\

0

P, - P
() e fsonn )
8.L'(Pi‘k)j €k o

20

|: ow <X—Pi’k) ani,k (x—Pi,k)]
X [e—
(Pir); €k (Pir); €k
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) — P,
< [ snn, ()
e/ 9(Pi); €k
2\

0

9 P
—skN/[l—xoc—Pi,k>]a>k(:—k)a(P'_‘1) (x - "),
k)

o)

where £2q is as defined in Section 2. In the last expression the first two
terms tend to zero aks — oo sinces, N @, is bounded inL?(£2) and

the term in the square bracket converges to 0 strongly?{if2). The last
two terms tend to zero @s— oo because of the exponential decay of
dw/9(P;x); at infinity.

We conclude
: dPw; ;. (T2
imsup| [ soi,k<y)[ '”"‘(( ) (8’(”)} 0,
k— 00 8T(P,gk),. Ek
RY :

i=1....K, j=1,...,N—1. (3.9)

This implies (3.8).
Let Ko andCy be the kernel and cokernel, respectively, of the linear
operatorSy(w) which is the Fréchet derivative at of

So(w)=Av—v+ f(v),
So: Hy(RY) — L*(RY),

a

s :o}.
dyn
So(wyv=Av—v+ f'(w)v,

9
Kozcozspar{—w j=1,...,N—1}.
ay;

Eq. (3.8) implies thay; ., € K. By the exponential decay af and by
(3.4) we have after possibly taking a further subsequence that

where

HZ(RY) = {u e HZ(RY)

Note that

A@i o0 = Pioo + f/(w)(pi,oo =0,

I.e., ¢ 00 € Ko. Thereforep; ., =0.
Hence

¢ix — 0 weakly inH?(RY) ask — oc. (3.10)
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By the definition ofp; ; we get®, — 0 in H? and
”¢k”L2(ng) — 0 ask — oo.

Furthermore,

—0
L2(2:)

r(2 e

i=1

and therefore

(A =Dy — 0 ask — oo.

HLZ(.ng)
Since
/ IV | 4 @2 = / (A= 2)P D < CI|(A = DD 2,
-st ‘ng

we have that

In summary:
||A<bk||Lz<Q€k) — 0 and ||q>k||H1(Q€k) — 0. (3.11)

From (3.11) and the following elliptic regularity estimate (for a proof see
Appendix B in [37])

1Pl 2, < CUIAP 20, + 1 Pellire,)  (3.12)
for @, € H2(2,,) we deduce that
1Pl 2,y > 0 ask — oo.
This contradicts the assumption
”@k”HZ(.QSk) =1
and the proof of Proposition 3.1 is completeda

Proof of Proposition 3.2. We define a linear operatdr from L2(£2,)
to itself by

T =7Ts’pOL O T p.
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Its domain of definition isHZ (£2). By the theory of elliptic equations
and by integration by parts it is easy to see thas a (unbounded) self-
adjoint operator orL.?(£2,) and a closed operator. THe? estimates of
elliptic equations imply that the range ®fis closed inL?($2,). Then by

the Closed Range Theorem ([39], p. 205), we know that the ran@e of
is the orthogonal complement of its kernal which is, by Proposition 3.1,
KC..p. This leads to Proposition 3.2.0

We are now in a position to solve the equation
K
ns,Po&(Z Pw; +¢8,p> =0. (3.13)
i=1

SinceL.plxL  is invertible (call the inversé.; 5) we can rewrite

®=—(L, pon8p< (Zm))— 0 7ep)Ne p(P)

=G, p(P), (3.14)

where

K K K
Nep(P) =S5<2Pw,» +d>> — lSs(ZPw,) +S;<Z Pw,»)é
i=1 i=1

i=1

and the operatoG, p is defined by the last equation fdr € H2($2,).
We are going to show that the operat@y p is a contraction on

Bes={® € H*(2.) | |9 y2q,) < 8}

if 8 is small enough.
In fact we have the following lemma
LEMMA 3.3. —For ¢ sufficiently small, we have

N pl < C(1Pepl™ + | De pl ™), (3.15)
K

’ Ss (Z Pll),>
i=1

Proof. —(3.16) follows from the mean value theorem.

To prove (3.17), we divide the domain inf& + 1) parts: let2 =
UKt 2, where

4o
2

< Ces
L2(82)

(3.16)
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1-6
Q. = —P|<——min|P,— P, i=1,...,K,
i {|.X l| 2 k;éll k ll} l

K
2xa=2\J 2.
i=1

Note that

K K K
Se (Z Pwi> =f (Z Pw) =Y fw).
i=1 i=1

i=1

We now estimates, (3"~ , Pw;) in each domain.
In 2.1, we have

(5|

Hence, using also the fact tha{y) decays exponentially irv| we obtain
K

’ Ss (Z Pll),>
i=1

In2;,i=1,..., K, we have

(%)

w1+ -+ wp) T <O 7).

L2((2k+1)e)

<O (1w + [ f' ) (Pw; —w))])
J#i

+O( S (1Puy 7 + 1))
i
+O(|Pwl — wi|l+”).

Using Proposition 2.1 and the facts thatv, w andv; decay exponen-

tially, we obtain
K
| Ss (Z Pll),>
i=1

L2((2i)e)
Thus

||G&P(q§) HHZ(.QS)
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K
i=1 L2(£2¢)
<ALC(c(d)5 + 67,

wherei > 0 is independent of > 0 andc(§) — 0 as§ — 0. Similarly
we show

<A (H?Ts,p o Nep(®)|| 2o, +

|Gep(P) = Gep(P)]| 2, <A HCcOP — D'l 20,

where ¢(§) - 0 as§ — 0. ThereforeM,p is a contraction onB;.
The existence of a fixed poir@, p now follows from the Contraction
Mapping Principle and, p is a solution of (3.14).
Because of
Lz(fzg))

1D pll 22y < rl<||Ns,P(¢s,P>!|Lz<szg> + |

1to
<ATIC(e2 + O P pllp2a,))

we have
1to

|Pepllp2,) < Ce 2.
We have proved

LEMMA 3.4.—-There existg > 0 such that for everyN + 1)-tuple
e, P, ..., PxWithO<e <gandP = (Py,..., Px) € A there is a unique
@, p € Kp satisfyingS, (XK, Pw; + @.p) € C.p and

4o

1Pcpllpze,)<Ce 2. (3.17)

The next lemma is our main estimate.
LEMMA 3.5. -Let®, p be defined by Lemn®4. Then we have

K
Jg(z Pw; +q>g,p>

i=1

K K
=gV El(m—m;mm

Z (v +O(1))w<|Pkg;Pl|> +O(8)‘|, (3.18)

ki=1,...K, k#l

NI
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wherey, andy,, are defined in Lemm2.5.

Proof. —In fact for anyP € A, we have

K
eNJS<ZPwi + qbs,p)

i=1

K
= 87NJ8 (Z Pwl) + gs,P((pS,P) + O(”¢8,P”§{2(Qs))s

where
€P(¢€P)
K
—/Z(wwlwgﬁf’wl Pep) - /f(ZPwi>¢s,p
2 i=1 2 i=1
K K
[ (Ere )l
i i=1
K
(ZP >||Lz||q>sp
i=1 L2(£2)
<O(81+0)

by Lemmas 3.3 and 3.4.
Estimate (3.19) now follows from Lemmas 2.6 and 3.4

Finally, we show that, p is actually smooth irP.

LEMMA 3.6.—Let @, p be defined by Lemm&4. Then®,p € ct
in P.

Proof. —Recall that®, p is a solution of the equation

K
ns,po&(Z Pw; +q>8,p> =0 (3.19)

i=1
such that
®.pe ij. (3.20)

By differentiating Eqg. (3.19) twice we easily conclude that the functions
Pw; and 9°Pw;/(dtp,,d7p,) are C' in P. This implies that the
projections, p is C* in P. Applying 8/97p, ; gives
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K K
dPw; 09
ns,PODS8<2Pwi+¢s,P> (Z + 8’P>

i=1 o 9Te Ly

P K
+ P o5 (S P+ @6 ) =0, (3.21)
ITp, i—1

where
K K
DS5<Z Pw; + q>€,p> =A—1+ f’(Z Pw; + cbs,p>.
i=1 i=1
We decompos@d, p/dtp, ; into two parts:

acpa,P <8¢8,P> <8¢8,P)
= +
a'L'pl. 8‘[}7”. 1 8‘[}7”. 2

W

where(d®, p/d1p, )1 € K p and(d®, p/07p, )2 € K p.
We can easily show thab &, p/dtp, ;)1 is continuous irP since

9P
/qbg,pﬂ:o, k=1.. . K, I=1... N—1,
5 a'L'pk’l

and

0D, p dPwy / 82Pwk
a'lfpi’j 8‘[ka1

& &

kii=1,..,K, I,j=1...,N—1

We can write Eqg. (3.23) as

K Gl
ﬂs’pODS‘g ZPwl +¢8,P <( S’P) )
i=1 87:1’11;‘ 2
K K
dPw; P
+7TgypODSg<ZPwi+¢s’p><Z +( S,P) )
1

i=1 i=1 8”’::;‘ aTPi,j

9 K
+ﬂ058<2 Pw; +<bs,p> =0. (3.22)
i=1

a'L'pl.’j
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As in the proof of Propositions 3.1 and 3.2, we can show that the
operator

K
TTe PO DSs (Z Pwl- + ¢8‘p>

i=1
is invertible from K, to C;',. Then we can take inverse of,p o

DSg(Zl.K:1 Pw; + &, p) in the above equation and the inverse is continu-
ous inP.

Sinced Pw;/dtp, ;, (0@, p/dTp, ;)1 € K¢ p are continuous iP and so
is dm. p/dTp, ;, We conclude thatdd, p/dtp, ;)2 is also continuous in
P. This is the same as thé! dependence o®. p in P. The proof is
finished. O

4. THE REDUCED PROBLEM: A MAXIMIZING PROCEDURE

In this section, we study a maximizing problem.
Fix P € A. Let @, p be the solution given by Lemma 3.4. We define a
new functional

K
Mg(P):‘]€<ZPwi+¢g‘P> A — R. (4_1)
i=1

We shall prove

PROPOSITION 4.1. —For ¢ small, the following maximizing problem
max{M,(P): Pe A} 4.2)

has a solutiorP® € A.

Proof. —Since J.(3X ; Pe, , w + @, p) is continuous inP, the max-
imizing problem has a solution. Le¥, (P®) be the maximum where
P e A.

We claim thatP® € A.

In fact for anyP € A, by Lemma 3.5, we have

K
M (P)=¢" [gl(m —ey (ZH(P»)

i=1

P, — P,
Z (Y +0(D)w (lkgill> + 0(8)] )

ki=1,...K, k#l

NI



C. GUIET AL./ Ann. Inst. Henri Poincaré 17 (2000) 47-82 7

Since M, (P)¢ is the maximum, we have

VIZH(PH Z( Vkl+0(1)) (mje;m)

k;ﬁl
P.— P
nZH(P) += Z ( Vi + o<1>) ("‘8—") +0(1)
k;él

foranyP= (Py,..., Px) € A.
ChooseP; such that (P;) — minpcr; H(P) andw(| P, — P;|/¢) /e —
0. This implies that

| P — Pl
nZH(P )+ = Z yk, +0(1) Jw | ——
&
k;él
K
o .
< ylggweugH(P) +34
for any$ > 0.
Note thatdo A C {P; € oI; or w(| P, — P;|/¢) = en}. Hence ifP € 0 A,
we have that either
) > mi > mi
H(P) > min H(P) = min H(P)+ 2no

forsomei =1, ..., K andng > 0 (by condition (1.5)), or

1 <|Pk—P1|>
it (il S i R
& &

for somek #1.

Hence ifP € 0 A we have

Pf — Pf
nZH(P )+ = Z( yk1+o<1>) ("‘871')

ey
K
> Vlg min H(P) +min(yano, - min =~ yin).
Note that
min V= inf >8>0

k#l, w(|Py—P|/e)=ne TeXy
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since for anyr € Xy, we have

1
r:/f(w)e<b’y>:E/f(w)e“”y)>0.
RY RN

A contradiction to (4.3) if we choos&small enough.
It follows thatP® € A.
This completes the proof of Proposition 4.10

5. PROOF OF THEOREM 1.2

In this section section, we apply results in Sections 3 and 4 to prove
Theorems 1.1, 1.2 and Corollary 1.3.

Proofs of Theorems 1.1, 1.2 and Corollary 1.8y Lemmas 3.4
and 3.6, there exists such that fore < &o we have aC* map which,
to anyP € A, associate®, p € ICS{P such that

K ank
Sel D Pwi+Pep | = > o (5.1)
k=1

K
i=1 K 1=1,. ,N—1 TP

for some constants, € RKN-D,

By Proposition 4.1, we have® € A, achieving the maximum of the
maximization problem in Proposition 4.1. L@, = &, p- and u, =
>S4 Po_ . w + @, pe. Then we have

M, (P)=0, i=1,....K, j=1,...,N—1.
P=pP*

a'L'pl.’j

Hence we have

oK. Pw, + @
/[vusv (Qimy Pwi + Pe p)
afp.

I Pw; + Pep)
P—pPs ¢ 3Tp.

Q ij i,j P=pP¢
(T, Pwi + @.p)
— f(u,) 1 £ } =0.
atp, p=pe
Thus
0(Pw; + P 0(Pw; + &
/VMSV (Pw; + S,P) Fu, (Pw; + s,P)
aTp, P=P* atp, P=P*

2 L] -]
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I(Pw; + P, p)
—f(us)a—s =0
TP ; P=p*
fori=1,...,Kandj=1,...,N — 1.
Therefore we have
"dPw; 0(Pw; + P
> o wi dPwi+ Pep) (59
k=1..K;I=L..N-1 ¢ ITp,, Ly
Sinced, p € K, p, we have that
‘/8Pwk 3D, p ‘ 32Pw;
=|— | 7————%Pcp
o, 8‘[ka1 a'lfpi’j 2. aTPk,laTP,-,j €
82Pwl~
Sz N®Pepllr2
aTPk’laTPi‘j L2

=0O(s 2%,

Note that
dPw; 0 Pw; 1
. = by (A+0(D),
dtp, dtp; €

where

2
dy1
i

Thus Eq. (5.2) becomes a system of homogeneous equations for
oy and the matrix of the system is nonsingular since it is diagonally
dominant. Saxy,; =0, k=1,...,K,[=1,...N — 1.

Henceu, =Y, Po . w + ®. p:....p: is & solution of (1.2).

By our construction, it is easy to see that by the maximum principle
u., > 0in £2. Moreovere” J.(u.) — (K /2)I (w) andu, has onlyK local
maximum pointsQj, ..., Q% and Q¢ € 9§2. By the structure of., we
see that (up to a permutatiog)f — P’ = o(1). This proves Theorem 1.2.

Theorem 1.1 follows from Theorem 1.2 by takidig = 1", i = 1,

.., K.
Finally, we prove Corollary 1.3. O

.....

If £2 is not a ball, thenH (P) has a local minimum on some open set
I', Theorem 1.1 can be applied.
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If £ is a ball, Corollary 1.3 follows by minimizing energy in
symmetric spaces. See [21] and [23].
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