Ann. Inst. Henri Poincaré, Analyse non linéare 17, 1 (2000) 83-118
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

A hierarchy of hydrodynamic models
for plasmas. Zero-electron-mass limits
in the drift-diffusion equations
by

Ansgar JUNGEL?21, Yue-Jun PENG2

@ Fachbereich Mathematik, Technische Universitat Berlin, StraRe des 17. Juni 136,
D-10623 Berlin, Germany
b | aboratoire de Mathématiques Appliquées, CNRS UMR 6620, Université Blaise
Pascal, F-63177 Aubiére Cedex, France

Manuscript received 4 February 1998, revised 23 November 1998

ABSTRACT. — A model hierarchy of hydrodynamic and quasi-hydro-
dynamic equations for plasmas consisting of electrons and ions is
presented. The various model equations are obtained from the transient
Euler—Poisson system for electrons and ions in the zero-electron-mass
limit and/or in the zero-relaxation-time limit. A rigorous proof of the
zero-electron-mass limit in the quasi-hydrodynamic equations is given.
This model consists of two parabolic equations for the electrons and
ions and the Poisson equation for the electric potential, subject to initial
and mixed boundary conditions. The remaining asymptotic limits will be
proved in forthcoming publications.

Furthermore, the existence of solutions to the limit problem which can
be of degenerate type is proved without the assumptions needed for the
zero-electron-mass limit (essentially, positivity of the particle densities).
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Finally, the uniqueness of solutions to the limit problem is studied.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — Une hiérarchie d’équations hydrodynamiques et quasi-
hydrodynamiques pour les plasmas constitués d'électrons et ions est
présentée. Les équations des modeéles résultent du systéme Euler—Poisson
non stationnaire pour les électrons et ions par une limite de masse
d’électron (“zero-electron-mass-limit”) et/ou par une limite de relaxation
(“zero-relaxation-time-limit”). Une démonstration rigoureuse de la limite
de masse d'électron dans les équations quasi-hydrodynamiques est
donnée. Ce modele consiste en deux équations paraboliques pour les
densités des électrons et ions et I'équation de Poisson pour le potentiel
électrique, completées par des conditions aux limites mélées. Les autres
limites asymptotiques seront démontrées dans des publications a venir.

En outre, on montre I'existence de solutions du probleme limite qui
peut étre du type “dégénéré”, sans les hypothéses utilisées pour la
limite de masse d'électron (essentiellement, positivité des densités des
particules). Finalement, l'unicité de solutions du probléme limite est
étudiée.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

The mathematical study of Euler—Poisson systems for plasmas has
attracted a lot of attention in the mathematical literature since several
years (see, e.g., [4,5,20-25]). In order to perform numerical simulations
of the hyperbolic equations, a lot of computing power and special
algorithms are needed [9,12]. In some situations, however, the model
equations can be approximated by simpler equations, like drift-diffusion
models, in the sense that a small parameter appearing in the hyperbolic
equations is set equal to zero. Considering a plasma composed of
electrons and ions, the small parameters are, e.g., the electron mass
(“zero-electron-mass limit”) or the relaxation time (“zero-relaxation-time
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limit"). Therefore, letting the small parameters tend to zero we obtain a
hierarchy of hydrodynamic and quasi-hydrodynamic plasma models

We want to present this model hierarchy, make precise the connections
between the corresponding systems, and prove rigorously the asymptotic
limits as the small parameters tend to zero. In this paper we are concerned
with the zero-electron-mass limit in the drift-diffusion equations and
with the existence and uniqueness of solutions of the limit equations.
The zero-relaxation-time limits and the zero-electron-mass limit in the
hydrodynamic equations will be proved in forthcoming publications [10,

17].
We consider an unmagnetized plasma consisting of electrons with
massm, and chargegq, = —1 and of a single species of ions with

massm; and chargey; = +1. Denoting byn, = n.(x,t), u, = u.(x,t)
(respectivelyp;, u;) the scaled density and mean velocity of the electrons
(respectively, ions) and by = ¢ (x, ¢) the scaled electric potential, these
variables satisfy the following scaled Euler—Poisson sygte¢bBtEl) :

ong +div(nguy) =0, (1.2)
800 (ngtty) + 8o dV(nglty ® Uug) + V py(ng)
Nglly
= —gun Vo — 8, , (1.2
—22A¢ =n; —n,, (1.3)

wherea = e,i and(x, 1) € R? x (0, 00). This system is complemented
by initial conditions forn, and u, and by a boundary condition for
¢. Here,u, ® u, denotes the tensor product with componentsu,
for j,k=1,...,d, » > 0 is the scaled Debye length, and> 0 and
7; > 0 are the scaled relaxation time constants for electrons and ions,
respectively.
The pressure functions are usually of the form

2
Da(Ng) = aang", ng =0,

wherey, > 1 anda, > 0. The fluid is calledsothermalif y, =1 (@ = e
or @ = i) andadiabaticif y, > 1. In this paper we only assume that
is a strictly increasing function, which includes both cases. The system
(1.1)—(2.3) is studied in [4,20,22,24] whén= 1.
The dimensionless parametégsare given by

Sd:kBTOs (X:e,i,
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wherek is the Boltzmann constant amgandT; are typical velocity and
temperature values for the plasma. We refer to Appendix A for details of
the scaling and the physical assumptions.

Usually, the ions are heavy compared to the electronsm,es m.,.
Therefore, ifv? is equal tok To/m;, we get

=1 .1
Letting (formally)s, — O in Eqg. (1.2), we obtain
0=Vp.(n,)—n,Vo =n,V(h.(n,)— ),
whereh, (¢ = e, i) are the enthalpy functions defined by
R.(s)=pL(s)/s, s>0, he(1)=0. (1.4)

Hence, ifn, > 0, we conclude that.(n,) = ¢ or, introducing the
function f, = 1,1, n, = f.(¢). The integration constant can be set equal
to zero by choosing a reference point for the applied potential. Therefore,
the system (HD-EI) reduces in the lindit — 0 to the mode(HD-I):

Ong +div(nguy,) =0, a=e,li, (1.5)
80, (nitt;) + 8:AN (1t ® ;) + V pi () = —n;Vep — 8t (1.6)
—22Ap=n; — fo($). (1.7)

This zero-electron-mass limit will be proved rigorously in [10]. The
existence of global weak entropy solutions to (1.5)—(1.7) is shown in [5,
23] whend = 1.

Another set of equations is obtained in the zero-relaxation-time limit
of the model (HD-EI). Indeed, introduce a scaling of time- ¢ and
define

Ny(x,s) =ne(x,s/7), Ug(x,5) = (I/T)ua(x, s/7),
P(x,5) =¢(x,5/7), (1.8)
wheret = 7, = 7; (for simplicity). Then Eq. (1.2) becomes, fer=e, i,
28005 (NaUs) + 728, dIV(NoUq ® Uy) + V po(No)
= —gu Ny V® — 8, N,y U,,.

Letting (formally) T — 0 and setting again=s, n, = N,, u, = U, and
¢ = @, we obtain the systerfbD-EIl):
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8a0ing — div(Vpy(ng) + qune V) =0, a=e,i, (1.9)
—22A¢ =n; — n,. (1.10)

Equations of this type are studied in [13,16]. Furthermore, using the
relaxation-time scaling (1.8) far =i andt = 7; in EqQ. (1.6) and letting
T — 0, we get the mod€gDD-I):

8;0:m; — le(Vp,(nl) —I—n,V¢) =0, (111)
—22Ap =n; — f.(@). (1.12)
The rigorous proofs of these zero-relaxation-time limits will be presented

in [17].

This paper is devoted to the asymptotic lindits—> 0 ands; — 0 in the
models (DD-EI) and (DD-I). The plasma is considered to be in a bounded
domains2 C RY (d > 1) whose boundar§ 2 consists of two disjoint sets
I'p and I'y. The model (DD-EI) is complemented by mixed Dirichlet—
Neumann boundary conditions and initial conditions, i.e., we assume that
the densities and the electric potential are given on the Barof the
boundary and that the remaining pai = 92 \ I'p is insulating:

Ne =Npe, ni=np,;, p=¢p onlpx(0,T), (1.13)
Vpe(n,) - v=Vp;n;)-v=Ve-v=0 onlyx(0,T), (1.14)
ne(-,00=ns,, ni(-,00=n;; ing. (1.15)

The vectorv(x) is the exterior unit normal which is assumed to exist a.e.
Performing the zero-electron-mass lidit— 0 in Eq. (1.9) gives

n.V(h.(n.) — ¢) = const

The constant vanishes if we prescribe boundary conditions being in
thermal equilibrium (see Section 2). Thén(n.) — ¢ is constant (in time

and space). The integration constant can be chosen to be zero by defining
a reference point for the electric potential. Hence

he(n,) = ¢ or n,= fe(¢)a (116)

and we get the system (DD-I) (see (1.11)—(1.12)) with boundary and
initial conditions (1.13)—(1.15) forn;, ¢. In particular, the limitsz, =
; = 0, 8, = 0 and the limitss, — 0, r; — 0 are commutative (see
Fig. 1).

Finally, let us consider the limit§, — 0 and § — 0 in the system
(DD-EI). Under the condition that the boundary conditions are in thermal
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me — 0
(HD-EI) > (HD-I)
. — 0
e 7, — 0
7 — 0
me — 0
(DD-EI) (DD-T)

Me %\
m; — 0
mi — 0 (NPE)

Fig. 1. A hierarchy of plasma models.

equilibrium and choosing a reference point for the electric potential, these
limits in (1.9) imply

he(ne) — ¢ = 0, hi(n;) + $=c, (117)

wherec € R is a constant. Therefore, the system (DD-EI) reduces to the
following nonlinear Poisson equatigNPE):

—A2Ap = fi(c—¢)— f.(¢) ing, (1.18)
¢$=¢p onlp, Vg-v=0 only. (1.19)

This equation can also be obtained from the system (DD-I) by letting
(formally) §; — 0 in Eqg. (1.11). We observe that the one-dimensional
equation (NPE) is studied in [25]. In particular, the existence and
uniqueness of solutions have been shown. A summary of the above
models and limits is presented in Fig. 1.

The plan of this paper is as follows. In Section 2 we make precise
the zero-electron-mass limits and present the main results. We need three
main assumptions to make the limits rigorously: the strict monotonicity
of the pressure functions, a positivity condition for the boundary and
initial densities, and the compatibility conditions (1.16) or (1.17) on
the Dirichlet boundary part. The first assumption is necessary to define
the inverse functionf,. From the positivity condition follows, by the
maximum principle, that the electron and ion densities are strictly
positive in2 x (0, T). Notice that for adiabatic plasmas, the parabolic
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equations (1.9) are of degenerate type and in general, solutions may exist
which vanish locally.

The main results are proved in Section 3. The proofs are based on two
ideas. Let us consider a soluti¢e?, n?, ¢°) to (1.9)—(1.10) subject to the
boundary and initial conditions (1.13)—(1.15). First, we deriva aniori
estimate independent 8ffrom the entropy inequality. From this estimate
we get the strong convergence/ofin’) — ¢° in L2(0, T; H(2)). The
main difficulty then consists in showing the strong convergence’of
in L2(Q7) in order to identify the nonlinear function. Usually, this is
done by applying Aubin’s lemma which requires an estimate for the
time derivative ofn’. However, such an estimate is not available. To
overcome this difficulty, we employ the monotonicity of the limiting
Poisson equation (1.12) to get the strong convergenge,dfom which
we can conclude the strong convergencefThis result is related to a
compactness-by-convexity argument [3,29] (see Section 3).

The zero-electron-mass limif — 0 in the system (DD-EI) provides
an existence result for the model (DD-1) under the condition ploaitive
boundary and initial conditions are prescribed. We prove in Section 4 the
existence of solutions to the model (DD-1) undgmeralassumptions on
the boundary and initial conditions. The proof is based on appropriate
L estimates fom; and¢ by using Stampacchia’s truncation method.
Section 5 is devoted to the proof of the uniqueness of solutions to (DD-
) for isothermal pressure functions(s) = a?s or for general pressure
functions, but assuming positive boundary and initial densities. In the
last case, the parabolic equation (1.11) is quasilinear and we employ a
dual method in the uniqueness proof. Finally, in Appendix A we give the
details of the scaling for the system (HD-EI).

2. ASSUMPTIONS AND MAIN RESULTS

This section is devoted to the study of the limits— 0 ands; — 0
in the drift-diffusion models (DD-EI) and (DD-I). We recall the model
(DD-EI):
8e9n, —div(Vp,(n,) —n,V¢) =0, (2.1)
8;0n; — le(Vpl (n,) + anQS) =0, (22)
—22Ap=n;—n, in2x(0,T), (2.3)

Ne=nNp,, n;=~np;, ¢p=¢p onlpx(0,T), (2.4)
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Vpe(n,) - v=Vp;n;)-v=vVe-v=0 onlyx(0,T), (2.5
ne(-,0)=ny,, ni(-,0)=n;; in$. (2.6)
For convenience, we introduce the abbreviations
Or=2x(0,7T),
V=Hj(R2UTIy)={ueH(2): u=00nTp}
[28, p. 67] and
W™P(X)=W™P(0,T; X)

if X is a Banach space. The normWf"7(£2) is denoted byl - ||, -
We write Vi € L?(£2) instead ofVu € L?(£2; R?), etc. Furthermore, we
set

LY(2)={uel™(2): u>0a.e.inR}.

We say that(n,, n;, ¢) is a weak solutionto (2.1)—(2.6) ifn,.,n; €
HY(V*NLY(Qr),

Pa(y) — pa(npo) €LAV),  ¢—¢pe Ll V), a=e,i,

Egs. (2.1)—(2.3) are satisfied in the usual variational formulation, and the
initial condition is satisfied in the sense Bf.

In [13,16] the existence of global weak solutions to (2.1)—(2.6) is
shown under the following assumptions:

(A1) Domain 2 C RY (d > 1) is a bounded domain with Lipschitzian
boundaryo2 =I'pUTy, I'pNI'y =@, meas_1(I'p) >0, and
Iy is openinds2.

(A2) Pressure functionsp,, p; € C([0,00)) are non-decreasing
functions.

(A3) Initial and boundary data:

npo € CO[0, T1; LT(2)) NHY(Qr), npq€LT(R2),
wherea =e,i; ¢p € L(Q7) N HYO, T; HX(R2)).

THEOREM 2.1. — Let the assumption@1)—(A3) hold and letT > 0.
Then there exists a weak solution,, n;, ¢) to (2.1)—(2.6)

If, additionally, 32 = I'p, € C?*¢ (¢ > 0), ¢p € L®(W?>9) for some
g > d, p. and p; are strictly increasing, and either

() pL(s)=po>O0foralls>0a=e,i,or
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(i) npo=>n>00nIpx(0,T), nja=>n>0in2,a=e,i,
holds, then there exists anique solution to(2.1)—(2.6)in the class of
weak solutions satisfying € L>°(W?24). Furthermore, it holds:, > n
a.e.inQr,a=e,i.

For the main results of this section, we need the following additional
assumptions:

(A4) Positivity assumptiamp, >n>00n I x(0,T),n; 4 >n >
Oin,a=e,i.
(A5), Strictly increasing pressuren,,(s) > g > 0 for all s € [n, 00).
(A6), Compatibility conditionnp . = h,(¢p).
(AB); Compatibility conditionn; = h; *(c — ¢p) and

c=h,np,) + hi(np;) = const

The assumption (A4) is necessary to show that the electron and ion
densities are strictly positive. From (A5Yollows that 4, is strictly
positive on[n, oo) and hencep, is a Ci-diffeomorphism on[n, co).

The condition (A6) means that the boundary density is in thermal
equilibrium. Indeed, in thermal equilibrium it holds

0= vpot (ng) + qana¢ = notv(ha (ng) + 6]a¢),

recalling thati, (s) = p. (s)/s (see (1.4)) anad, > n (see Theorem 2.1).
Therefore s, (ny) + g.¢ = const. inQr. By choosing a reference point
for ¢, we get

he(ny) —¢p=0 and h;(n;))+¢=ceR, (2.7)

orn, = h,1(¢) andn; = hl-_l(c — ¢). Adding Eq. (2.7), we see that it
must holdh, (n,) + h;(n;) = ¢ = const.
Now we can state the main theorems.

THEOREM 2.2 ((DD-El}—(DD-I)). — Let the hypothese@1)—(A6)
for « = e hold. Let(n%, n?, ¢°) be a solution ta(2.1)—(2.6) Then there
exists a subsequence’’, n?', ¢*') of (n’, n?, $°) such that, a$’ — 0,
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n’ — f.(¢) inL*Qr),

nd —n; inL%Qp),

!

n? —~n; weaklyinL*(HY) N HY(V*),
¢" — ¢ inLA(HY,
where (n;, ¢) € L*(Qr)? solves the initial-boundary value problem
(1.11)—(1.12)(2.4)—(2.6)for n; and ¢.
In the case, where this limit problem is uniquely solvglbe instance,

if p;(s) =s; see Sectiom), the above convergence results hold for the
whole sequencé:®, n?, ¢°).

THEOREM 2.3 ((DD-El}~(NPE)). — Let the hypothese§A1)—(A6)
for @ = e,i hold and let(for simplicity) § = 8, = &;. Let(n3, n?, ¢°) be a
solution to(2.1)—(2.6) Then, ass — 0O,

n)— f.(¢) in LX(Qr),
n’ — filc—¢) inL*Qy),
¢’ —¢ inL*HY,
whereg¢ is a solution of the nonlinear Poisson equati@dnl18)—(1.19)

THEOREM 2.4 ((DD-I)—(NPE)). — Let the hypothesd#&1)—(A6) for
o =i hold and let(n?, ¢°) be a solution to(1.11)—(1.12) (2.4)—(2.6)
Then, ass — 0,

n?— filc—¢) inL*Qr),
¢’ — ¢ inL*HY,

where¢ is a solution of the nonlinear Poisson equati@dn18)—(1.19)

3. PROOFS OF THE MAIN RESULTS

We prove first Theorem 2.2. The proofs of Theorems 2.3 and 2.4 are
very similar. To simplify the presentation, we set §,, §; = 1 andi = 1.
The following lemma provides uniform priori estimates for the solution
of (DD-EI).

LEMMA 3.1. — AssumgAl)—(A4). Then there exist positive constants
7, ¢ and K, which are independent éf such that



A. JUNGEL, Y.-J. PENG / Ann. Inst. Henri Poincaré 17 (2000) 83—-118 93

O<n<ny(x, )< (x=e,i), lp(x,0)| < ¢ inQr,
Inellrzcany + Inill p2cany + 10 ll gy + 1@l L2y < K,
wheren > 0 is defined inA4) (see SectioR).

Proof. —It is shown in [16] that the condition (A4) implies the
positivity of n, andn; in Q7. Thereforen,, n; € L>(HY), and we can use
(ne — M) =max0,n, — M), (n, — M)™ as test functions in Eqgs. (2.1)
and (2.2), respectively, with

M =max{|Inp allo,co,rpx©.1), IMrallocco: @ =e€,i}.
Then we get, using (2.3),
/me MY (02 + 5 /bu My 0+ [ P |V = i
o
+/¢MMWm_Mﬁ|

= /(ne —M)V¢-V(n,—M)" +M/V¢ -V, —M)"
o o

/(n, MYV -V(n, — M)+ — M/V¢ V(n; — M)*
——/muﬂw<m MY — (n; — M)*2)

—M/m—mmm—Mﬁ—m—Mﬁ)
[on
<0.

Therefore, we get the upper bound for and n; with » = M. Using
(ny —n)~ =min(0, n, — n) for « = ¢, i as test functions in (2.1)—(2.2),
respectively, we get similar as above the inequality

%mewouf+%!mr@)afga

from which we conclude the lower bound. This estimate follows from
the monotonicity of the function — %(s n)2+n(s —n)” 2(s —
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n) (s +n), s > 0. The L* bounds om, immediately provide bounds
ong, i.e., there exisp > 0 andK > 0, independent of, such that

lp(x,0)| <P for(x,0) € Or,  lollrzmy < K.

To derive the remaining bounds, we usg— np . as test function
in (2.1):

8 2 / 2
; / (e —np.)%(0) + / pL(n,)|Vn,|
2 o

8 2
= /p;(ne)vng . VnD,e + 5 / (nl,e - nD,e(O))
O 2

s / (e — np.)npe + / 0V -Vin —npo). (3.1)
o o

To estimate the last integral on the right-hand side, we use Eq. (2.3):

/ 1V - V(e —np.)
o

1
=5 [ 86 =np. )+ [ 15 V6 Vin.=np.)
O O

1
= _E /(ne - ni)(ne - nD,e)2 - /nD,e(ne - ni)(ne - nD,e)
(on (on

- /VnD,e V(e —np.).
[on

Using the L> bounds onn,, n; and the L2(H') bound for¢ and
employing Young'’s inequality, we obtain from (3.1) the bound

Inell 201y < K,

whereK > 0 is independent of. We get an analogous bound forin
the spacd.?(H%). Finally, we have
10:1i 1l L2¢v+y S NIV pi(n) —n; Vol 1212
<N pim) Lo IVrill 2z + Inill s IVl 1212
<K,
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which proves the lemma.n

Now, we define thentropy(or free energy) of the system (2.1)—(2.6):

ng (1)

Lo®y | ( / (ha<a>—ha(nu,a(r))>da>
o=e Q

np.q(r)
1
+5 [IV@® -]
2

The enthalpy functions,, are defined in (1.4). It hold&(z) > 0. The key
estimate for the zero-electron-mass limit is contained in the following
lemma.

LEMMA 3.2.— There exists a constant > 0, independent of, such
that forallr >0

1
L)+ E/neW(he(ne) _¢)f<an
(o7}

Proof. —It can be shown that (see, e.g., [15, p. 513])

L@t)—LO)=) / <<3tna(s)aha(na(s)) —ho(npo(s)))

a=e
ng (s)

—/ / h;(nD,a(s))B,nD,a(s)da> ds

2 np(s)

+ /atw — ) - V(b — ¢,
(o2}

sinceg € HY(H%). Using

t

/a,w V(b — ) =/<at(ni 1) — do).
[on 0
we get

t

L(t) — L(O) = / (00, he(ne) — & — (he(npe) — ¢p))

0
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+ /<a,nl~,h,-<m> 4 — (hi(np) + ép))
0

-3 / 1, (1) 300 (M — 1)
“=¢9,

- / 8, Vn - V(P — dp). (3.2)
[on

Employing Egs. (2.1) and (2.2) and the condition {A@he first two
integrals on the right-hand side of (3.2) are equal to

1
—g/neW(he(na—¢)!2—/niW(hi(n,->+¢)!2
0O (o2}

+ /niV(h,(ni) + ) V(hinp.) +ép)
(o2}

1 1
< —EQ/”E‘V(he(”e) _¢) = EQ/ni‘v(hi(ni)—i_(p)‘z

1
+§/ni’V(hi(l’lD,i)+¢D)‘2
o
1 2
<=5 [ ne|V(he(ne) — ¢)[" +c,
o

wherec > 0 denotes a constant independentsofUsing the uniform
L bounds om, andn;, the remaining integrals on the right-hand side
of (3.2) are bounded by a constant independe#t ®herefore, we obtain
from (3.2)

1
L0~ LO < =5 [l - )+
(o

The lemma follows. O
We are now able to prove Theorem 2.2.

Proof of Theorem 2.2. —First stepet (n’,n?, ¢°) be a solution
to (2.1)—(2.6). Thanks to the uniform bounds ef, n’ and ¢’ of

i
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Lemma 3.1, the following convergence results are valid, after passing
to a subsequence:

n® —~n, weaklyinL2(Hb),

n® —~n; weaklyinL?(H) and inH(V*),
¢” —~ ¢ weakly inL?(H") and inL?(Q7) ass’ — 0.

The boundedness af in L2(HY) N H*(V*) implies, by Aubin’s lemma
[26, p. 85, Corollary 4], the compactness of the sequerice the space
L?(Q7), i.e., there exists a subsequence (not relabeled) such that

nd —n; in L%(Qrp). (3.3)
We use the uniforni.® bound omv?’ to conclude that
pin?) = pi(ni) in LA(Qr).

The uniform lower bound om? from Lemma 3.1 and the entropy
inequality from Lemma 3.2 imply

esEh.(n®) —¢* >0 inL%(Qr) ass — 0. (3.4)

Here we have used the compatibility condition (A6Jhe main difficulty
is to show that, = f.(¢).
Second step: We claim that

nd — f.(¢°) - 0 inL*Qr)ass — 0. (3.5)

Recall thatf, is the inverse function df,. Indeed, there existg between
¢° and¢’® + &5 (for fixed (x, ) € Q) such that

nS — f.(9°) = f.(¢° +e5) — fo(¢°) = fl(Es)es.

Sinceh, is a C!-diffeomorphism on[z, co) and the sequence®’® +
&5)s = (h.(n%)); and (¢°)s are bounded iIlL.>°(Q7), there is a constant
¢ > 0 independent of > 0 (and independent af, 7)) such that

[(h,) &)] < e
Hence

11 = fe@)lo2.0, <clesllozor =0 ass— 0.
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This proves (3.5).

In order to identifyn, and f,(¢) we need the strong convergence in
L?(Qr) of one of the sequenceé' or ¢*. However, since we do not
have an appropriate bound for the time derivaﬁué/at in some space,
we do not get the strong convergenceng)f like for n?', by application of
Aubin’s lemma. We prove instead the strong convergen(w ddy using
the Poisson equation (2.3).

Third step We use¢® — ¢ as test function for the Poisson equa-
tion (2.3) to obtain

/ Vo' V(e — )

= / (n — £.(#) (" — ) — / (n® = £.(¢"))@" — ¢)

QT QT
- [ (6"~ )&~ 9)
or
< [0 = f@)@ -0 - [ 0 - 1.6 @7 - )
or or

where we have employed the monotonicity fof Hence

/|V¢ < [ v V¢+/ L)@ — )

- /(ni — L)@ — ).
or

Observing that the last two terms tend to zeréd’as- 0, thanks to (3.3),
(3.5) and the weak convergencegsf to ¢ in L2(Q7), we get

Ilmsup Vg |2 </|V¢| (3.6)

§'—0
Since the weak convergence §°® gives

[ 19912 <timint [ 19912
or Or
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we obtain, together with (3.6),

im [ v = [ 1992
or or

The convergence of the? norms and the weak convergence imply the
strong convergence of the sequeiag’:

V¢® — V¢ inL*(0r).

Note that this result is related to a compactness-by-convexity argument;
indeed, the weak convergence$® and the inequality (3.6) imply the
strong convergence &f¢® in L1(Q7), since the functiory (w) = |w|?,
w € R?, is strictly convex (see [29, Theorem 3] or [3, Theorem 1)).

By Poincaré’s inequality, we get’ — ¢ in L2(Qr). Therefore, in
view of the L* bounds forg?®

f(¢%) = fu(p) in L2(Q7).

Thus

/ ’I/lg, - fe(¢)’2
or
<2 [ (0 = @[ +17.6") — f@)f) > 0
or

asé’ — 0. We conclude that, = f.(¢).

Fourth step The above convergence results are sufficient to perform
the limit 8 — 0 in Egs. (2.2) and (2.3). Unigueness of solutions to
the limiting problem implies, as usual, the convergence of the whole
sequencén®, n®, ¢%). O

Proof of Theorem 2.3. ket § = §, = §;. Since we are looking for
estimates independent 8f and §; we only obtain uniform bounds for
n; in L®(Qr) andL?(HY). Furthermore, the entropy estimate in Lemma
3.2 has to be replaced by

1
5 / (ne|V (he(ne) — ) [° + ni |V (hi(ni) + ¢)[7) < cx.
(o7}
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As in the proof of Theorem 2.2 we show that
n’ — filc—¢®) >0 InL?*Qr)ass -0

employing the assumption (A6)Therefore, using’ — ¢ as test function
in the Poisson equation (2.3) we obtain

[ve-@ -9

= / (nj = file = ¢")(¢" —¢) — / (e = fe@")(@" = ¢)
Or

[ (=)= fic= )@ - )

= [ (16 = £ @)@ - )
or

+ [ (=)= £ @)@ - ).

Using the monotonicity of’, and f; and the weak convergencesf n?
and¢’, we obtain as in the proof of Theorem 2.2 the inequality

Ilmsup Vo2 < /|V¢| (3.7)

§—0

from which we conclude that¢® — V¢ in L?(Q7). The remaining part
is analogous to the proof of Theorem 2.23

Proof of Theorem 2.4. Fhis proof is very similar to the proofs of

Theorems 2.2 and 2.3. We get uniform boundspin L>*(Qr) and
L?(H%Y). Furthermore,

1
g/ni’v(hi(ni) +¢)’2 <a
(o

Thusn® — fi(c — ¢®) — 0 in L?(Qr). The monotonicity off; implies
the inequality (3.7) and the rest is as in the proof of Theorem 2.
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4. EXISTENCE OF SOLUTIONS

In this section we prove the existence of solutions to the problem

dn —div(Vp(n) +nVe) =0, (4.1)
—Ap=n—f(¢p) INnQr=82 x(0,7), (4.2)

n=np, ¢=¢p onlpx(0,T), 4.3)
Vpn)-v=Ve¢-v=0 onlyx (0,T), (4.4)
n0=n; Iing. (4.5)

Here,n denotes the ion density, the electric potentialp (n) the pressure
function for the ions, and (¢) is the inverse of the enthalpy function for
the electrons.

We impose the following assumptions:

(A2)) p e CY(]0, o0)) is non-decreasing oj), 0o).
(A3) f e COY(R) isincreasing oiR and f (s) — oo ass — oo.
(A4) np € L(Qr) N HYQ71), ¢p € L¥(HYH N L>(Q7), n; €
L2(£2).
The notion of weak solution is as in Section 2, i@, ¢) is aweak
solutionto (4.1)—(4.5) ifn € H*(V*) N LY (Q07),

p(n) — pnp) € LA(V), ¢ —¢pe L*(V), (4.6)

Egs. (4.1) and (4.2) are satisfied in the usual variational formulation, and
the initial condition is satisfied in the senselof.

THEOREM 4.1. — Let T > 0. Under the assumptionfAl), (A2)—
(A4’) there exists a weak solutiofx, ¢) of (4.1)—(4.5) satisfying the
bounds

O<n<Mr, f (@) < My, p=2¢, inQr, (47)

where ¢ dzef—MT — c(£2) max0, £ (0)), c(£2) > 0 only depends o2,

and M7 is defined by

My =max(lnpllo,co,rpx©.1), f (100 ll0.00,rpx0.1)) s 11 1l0,00,2) -

Furthermore, ifT = oo in (A4’) there exists a weak solution for alk- 0
and the above bounds hold uniformly drprovided that7 = oo in the
definition of M.
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Proof. — First stepAn approximate probleniet T > 0, setM = M7,
let K > M, sy = max(0, min(s, K)), sy = max0, min(s, M)) and

px(s)=p(sg) +es, seR, ¢>0.

First we solve the approximate problem

an —div(Vpg(n) + ngVeg) =0, (4.8)

—Ap=ny— f(¢) InQr (4.9)
subject to the initial and boundary conditions (4.3)—(4.5). To solve this
uniformly parabolic initial-boundary value problem we use Schauder’s
fixed point theorem. For this, let € L?(Q) and let¢(r) € HX(£2) for
a.e.r € (0, T) be the unigue solution of
—Ap(t) =u®)y — f(p@) In 2,
¢(t)=¢p(t) onlp, Vo(@)-v=0 only. (4.10)

The existence and uniqueness of the solution follow from the monotonic-
ity of f (cf. [19, Lemma 3.2.1, p. 36]). Thehis (Bochner-)measurable
in (0, T) and¢g € L?(H%). The maximum principle implieg € L>*°(Q7).
Now we solve the linear problem
dn —div((pk) (u)Vn) =div(ug Ve) in Qr,
n=np onlpx(0,T), Vn-v=0 onlyx (0,T). (4.11)

Since diug Vo) € L?(V*) there exists a unique solutiene H*(V*) N
L?(HY) of this problem [30, Theorem 23.A, p. 424]. Therefore, the fixed
point operatorS: L?(Q7) — L?(Qr),u — n, is well defined. Taking

¢ — ¢p as test function in (4.10) and using Young's inequality and the
monotonicity of f, we get

1 r 1 "
5/ |V(¢—¢D>|2<§/|V¢D|2+/ (urs — £ 0)) (b — dp).
or or or
which implies
/|V¢|Z<c<M, é0).
or

Usingn —np as test function in (4.11) gives after standard manipulations

1
EQ/(” )0 + %Q/ IV(n = np)|?
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<@ (1972w + 1VRD T2 2) + K2 IVBZ22))
<cle, K, M).

Therefore;n = S(u) lies in a bounded subset @f°(L?) N L?(H') and
d,n lies in a bounded subset 68f(V*). Hence

Sup{”S(u)”LZ(Hl)ﬂHl(V*): ue LZ(QT)} < 0.

In view of standard compactness results [30, p. 450], this implies that
S(L?(Qr)) is precompact inL?(Q7). Standard arguments show the
continuity of S (see, e.g., [13]). The existence of a solutiorf, ¢¢)
to (4.8)—(4.9), (4.3)—(4.5) is a consequence of Schauder’s fixed point
theorem.

Second stepL® estimates. This is the main step of the proof. For
convenience, we omit the indexin (n?, ¢¢). We show first that

¢o(x,1) <k a.e.inQr, (4.12)

wherek € R is such thatf (k) = M. The existence ok follows from
(A3'). Use (¢(r) — k)™ = max(0, ¢ (1) — k) as test function in (4.9) to
get, fora.er € (0, 7),

/\V(¢(t)—k)+!2=—/(f(¢(t)) — ) ($0) — k)
+ [ 0O = r )60 -1

< [ (= rw)w -k
2
=0.

This implies (4.12). In particular, we get
f(p)<M ae.inQr. (4.13)

To find a lower bound forg, let m > ||¢pllo.co.rpx.r) and use
(—p(t) —m)* in (4.9):

[19(=6w—m)f
2

—_ / (F(p®) = F(=m)) (® (1) — (=m))~

2



104 A. JUNGEL, Y.-J. PENG / Ann. Inst. Henri Poincaré 17 (2000) 83-118

+ / (nu — f(=m)) () — (—m))~
2

< —/(nM — f(=m)) (= ¢() —m)+

2

< f(=m) / (— @) —m)*
2

< max(0, £(0)) (meag—o(t) > m))?||(— ¢ (t) — m)+||1,2,rz’
(4.14)

employing Hélder’'s inequality. Let > 2 be such that the embedding
HY(£2) — L"(£2) is continuous. It is well known that for all > m

(meag — ¢(1) > p)) " (u—m) < c(D)||V(=o) - mﬁ”o,z,g

holds [27, Chapter 4]. Therefore we get from (4.14) and Poincaré’s
inequality, forp > m,
c(£2)"max(0, f(0))"

= (meag — ¢ (1) > m))"”?.

meag — ¢ (1) > 1) <

Sincer/2 > 1, we can apply Stampacchia’'s Lemma (see [28, Chapter
2.3] or [27, Chapter 4]) to get

—¢ (1) < l¢pllo.co.rpx0.7) + c(§2) max(0, £(0))
a.e.inf2, t €(0, 7).

Next we claim that
0<nkx,n)<M forae.(x,t)e Qr. (4.15)

The lower bound is easily obtained by using = min(0,n) as test
function in (4.8). To obtain the upper bound use — M)™ € L?(V)
as test function in (4.8). Since

def

G(s) & ((sx — M)™)?

NI

/(‘L’K — M) dt >
0

we get for a.et € (0, T) [16, p. 91]
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t

/(8tn, (nk = MY*),. = / (G(n(D)) — G (n(0)))

0 o
1
>3 Q/ (nx — M)*(1)2.

and therefore,

1

5/(n,< 0% +s/|V<nK —my*[?

2 0O

<—/(n,<—M>V¢>-V(n,<—114>+—M/V¢-V<n,<—M)+

(o7} (o7}

1
=—§/v¢-V(n,<—M)+2—M/v¢-V(n,<—M)+.

O (on
Now use Eq. (4.9) fop and the estimate (4.13):

1
; Q/ (nx — MY*(1)?

1
<3 Q/ (f (@) — nu)(ng — MY + M Q/ (f (@) — ) (ng — M)Y*

1
< 5/(M ) — M>+2+M/(M ) (ng — MY
[on [on
:O,

sinceM —ny =0in{n > M} for all K > M. Thus, the estimate (4.15)
is proved.

With theseL* bounds fom and¢ independent oK (ande), we can
remove the cut-off functions, and4 ¢°) solves

an® —div(Vp®(n®) + n°Ve¢°) =0, (4.16)

—A¢*=n"— f(¢°) InQr (4.17)
with the initial-boundary conditions (4.3)—(4.5), whepé(s) = p(s) +
ES.
Third step Further a priori estimates independentafTakingn® —np
as test function in (4.16) gives
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1
; / (n° — np)?(1) + / (p°) () |V’ 2
2 0O
1
- / (P ()" - T+ / (n° — np)%(0)
[on 2

— /(ng —np)onp — /n8V¢8 -V(n® —np). (4.18)
o 0
Since the last integral is equal to

- / (n° — np)Ve* - V(n® —np) — / Ve - V(' —np)
0O (o}

1
=3 [ a6t —n?+ [npagtnf —no)
0 0
+ [ Vo948 —np)
o)
and since th&.*>°-bounds fom® and¢® imply, by using (4.17),

/ VP < 1 (4.19)
[on

for somec; > 0 independent of, we get thes-independent estimate

— /n5V¢8 -V(n® —np) <ec.
o

Here and in the followinge denotes a positive constant independent of
¢, with values varying from occurrence to occurrence. Therefore, we get
from (4.18)

1 1
5 [0 =00 @? 4+ 5 [ @) P < et [ —np)?
2 (on O
and, employing Gronwall’s lemma, we conclude

/ (n° —np)(1) + / (p") (n) |V > < (T,
2 (o7}
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wherec(T) > 0 depends off’, but not one. The Lipschitz continuity of
p in [0, M] implies

/ IV pE ()2 < c(M) / POV R <. (4.20)
or or
Furthermore,

||3t”5||L2(v*) < vag(ns)HLz(Lz) + ||n8”L°°(L°°)”V(bg”LZ(LZ) <c. (4.21)

Fourth step The limite — 0. From the estimates (4.19)—(4.21) and the
second step follows the existence of a subsequence (not relabeled) such
that

n® —~n weakly*in L*(Qr),
an® — d,n  weakly inL2(V*),
Vpé(n®) = Vp weaklyinL3(Qr),

V¢® — V¢ weakly inL?(Qr) ase — 0,

for some functionsn € L>®°(Q7) N HYV*), p € L?(HY), and ¢ €
L?(H%Y). The identificationo = p(n) follows from the usual monotonic-
ity argument. Indeed, settingy, (s) = min(p(M), max(0, p(s))), the op-
eratorP : L*(Qr) — (L*(Q7))*, (P(u),v) = [,, pu(u)v, is monotone
(thanks to (A2) and hemicontinuous (since, is continuous and
bounded), hence maximal monotone. Siite®) is bounded inL>°(L?)
and in H1(V*) and the embedding?(£2) — V* is compact, we infer
from Aubin’s lemma [26] that

n—n inC%[0,T]; V*).
The strong convergence of to n in L?(V*) and the weak convergence

of p*(n®) to p in L2(V) together with the monotonicity gf¢ applied to
the inequality

T
/ (n® —v, p*(n®) — p*(V))y. , =0 forallve CF(Qr) +np
0



108 A. JUNGEL, Y.-J. PENG / Ann. Inst. Henri Poincaré 17 (2000) 83-118
give
(n—v,p—P®)),2,,>0 forallveL*(Qr)+np.

Since P is maximal monotone, we concluge= p(n).
Next we show that

V¢® — V¢ in L%(Q7). (4.22)

We proceed similarly as in the proof of Theorem 2.2. We &i5e- ¢ as
test function in Eq. (4.17) and use the monotonicityfai obtain

[1vse= [ v vo+ [ - r@)e -9
or or or

- [ @) - 1) -0
or

g/v¢8-v¢+/(n8—n)(¢8—¢)
or or

+ [ = 1) -9,
or
The strong convergence of in L2(V*) and the weak convergence ¢f
in L2(V) give

limsup [ [V¢*|2 < / V2.
e—0

or or
Therefore, together with the inequality

[ 19912 <timint [ 1ve'P?
e—
or or
which follows from the weak convergence %%° in L2(Qr), we get

”mo/ Vo2 = / V2.
£—>
or or

The convergence of the norms and the weak convergence imply the strong
convergence, i.e., (4.22).
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Now we can pass to the limit— 0 in the weak formulation of (4.16),
using the weak convergencesgfto n and p®(n®) to p(n) in L>(Qr)
and the strong convergence (4.22), to conclude thap) solves (4.1)—
(4.2). Furthermoren, ¢) satisfies the boundary conditions (4.3)—(4.4) in
the sense of (4.6), and0) = n; sincen € C°([0, T]; V*). O

We end this section by proving some positivity results:omhich are
needed for the uniqueness result. We ¢allp) alimit solutionof (4.1)—

(4.5) if it is obtained as thel(?-weak) limit of approximate solutions
(n®, ¢°) € (L=(Qr) N L2(HYH N Hl(V*))Z of the problem (4.16)—(4.17)
subject to the initial-boundary conditions (4.3)—(4.5).

We show now that the ion density (of every limit solution) remains
positive (at least for finite time), if the initial and boundary densities are
positive, even in the adiabatic case. Let us suppose in the following that
the assumptions (Al), (AR-(A4’) hold.

PROPOSITION 4.2. — Suppose that there exist constamgs> 0, 1g >
0 such that

ni(x)=ng IN2,  npx,t)=nee ™ onlpx(0,T),

whereT = oo is admissible. Then there exists a constant: Ao > 0
such that for every limit solution it holds

n(x,t) =nee ™ in2x(0,T7).

Proof. —Let (n®, ¢°) be a solution to the approximate problem (4.16)—
(4.17), (4.3)—(4.5) such that — n weakly in L>(Q7). In the proof of
Theorem 4.1 we have shown that (see (4.7))

0<n®(x,1) < Mg, ¢°(x,t)=>¢ inQr. (4.23)
Let z = ngexp(—Ai1t), where Ay > Ag will be specified later. Using

(n® —z)~ € L?(V) as test function in (4.16) and employing (4.17), we
get

1
é/m%wyaf+/@mevm“wrF
2 [on

=M /Z(ns —27) - /(ns —2)V¢© -V —2)~
0 0
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B /zv(/)s V(n®—2)~
o,

=i [z =) +2/A¢ (n° — )72 +/zA¢ (" —2)”
O

/f(¢> Y — 2) 2+/ (a+ F@) —n®)z(n® —2)

MT /(n *2+/(xl+f(@ — Mp)z(nf — 2

M
< 7T /(ng —2)7%,
o

if we take A1 > max(io, M7 — f(¢)). Now, Gronwall's lemma implies
(n®—z)"(t)=0in 2, for a.e.r € (0, T). Thereforep®(x,t) > zin Or,
and the conclusion follows after lettirg— 0. O

The above proposition can be improved if the functjpis uniformly
positive, including the casg¢ = exp.

PrROPOSITION 4.3. — Suppose thaf (s) > Ofor all s € R and that
ny>=ng inS$2, np=ng onrlp x(0,00),

for someng > 0. Then there exists a constamt>- 0 such that, for every
limit solution,
nx,t)=n in 2 x(0,00).

Proof. —Let (n?, ¢¢) be as in the proof of Proposition 4.2. From (4.23)
follows that f (¢%) > f(¢) > 0in Q7. Setn = min(ng, f(¢)) > 0. Using
(n* —n)~ as test function in (4.16) and proceeding as in the proof of
Proposition 4.2, we obtain

% Z (n° — ) (12 < %Q/ AG*(n° —n) 2 +n / AGE(n° — )~
=% / (f(@°) —n*) (n° +m)(n — )~

< % / (f(@) —n)(n®+n)(n°* —n)~ <O.
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Thereforen® > n in O, from which we conclude the assertion

5. UNIQUENESS OF SOLUTIONS

We present two results on the uniqueness of solutions to (4.1)—(4.5).
For both results we need additional assumptions. First, we prove the
uniqueness of solutions in the class of weak solutions (as defined in
Section 4) if isothermal states are assumed, p.€:) = n.

For nonlinear pressure functions, the problem becomes quasilinear,
which is more delicate. We show the uniqueness of solutions in the class
of weak solutions satisfying € L>°(W>), where we have to exclude
mixed boundary conditions. Indeed, it is well known that in the case
of mixed Dirichlet-Neumann boundary conditions, we get, in general,
at mostg (r) € W243-¢(2) for everye > 0 [2], even for smooth data.

For the second result, we also have to assume that gitkeris strictly
positive or the initial and boundary densities are strictly positive. This
condition implies that the problem (4.1)—(4.5) is uniformly parabolic.

We cannot present a general uniqueness result for degenerate prob-
lems. The reason lies in the fact that we are not able to deal with both
the degeneracy of the functign and with the nonlocal drift term. It is
possible to prove unigueness of solutions of the degenerate problem for
giveng (see, e.g., [13] for a related result) or of the nondegenerate prob-
lem coupled self-consistently to the Poisson equation (Theorem 5.2). In
semiconductor modeling and in the hydrodynamics of immiscible flu-
ids through a porous medium, similar difficulties occur and no general
uniqueness results are available (see [1,7,8]). We refer to [7] for related
results for the degenerate case under special conditions (also see Remark
5.3).

We assume throughout this section that the conditions (A1);){A2
(A4’) hold.

THEOREM 5.1. — Let p(s) = s for s > 0. Then there exists a unique
weak solution(n, ¢) of (4.1)—(4.5)

Proof. —Let (n1, ¢1) and(n,, ¢,) be two solutions to (4.1)—(4.5). Then
ni, no € L(HYH N HYV*) — C°([0, T1; L%(£2)). Usingn1 — n, as test
function in the difference of Eqgs. (4.1), satisfied &y, ¢1), (n2, ¢2),
respectively, we obtain
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) |
§/<n1—nz><r>2+/ V(11— n2)[?
2 0O
- / (11— n2)Vy - V(n1—nz) + / 12V (1 — b2) - V(1 — o)
0O (o}
1 1
< EQ/ (n1— £ (D) (1 —n2)® + EQ/ V(n1—ny)?

1
+§/n§yw¢l—¢z>yz
[on

for everyr € (0, T). Here, we have used Eq. (4.2) and Young'’s inequality.
Observing that, thanks to the monotonicity fof

/\V(asl — e’ < /(nl —n)?,
O 0O

and taking into account the*> bounds (4.7), we get

17 1
E!("l—nz)(f)z-i' EQ/|V(”1—”2)’2

1
<5 [(Mr = @) + M2 [ =2
(o}

We conclude from Gronwall’'s lemma that; — n,)(r) =0 a.e. in §2 for
everyre (0, 7). O

THEOREM 5.2. — LetdR2 = I'p € C¥ (¢ > 0), ¢pp € L®°(W?9) for
g > d (d being the space dimensign) is strictly increasing,f is locally
Lipschitz continuous iR, and either

(i) p'(s) = po>0foralls>0,or

(i) np=ng>00nTp x(0,T), ny >no>0in 2.
Then there exists a unique weak solution(4fl)—(4.5)satisfying¢ e
L®(W?29),

Proof. —Let (n1, ¢1) be a limit solution to (4.1)—(4.5) (see the defini-
tion before Proposition 4.2) and let,, ¢,) be another weak solution. Us-
ing elliptic regularity theory [28], we conclude that(r) € W24 (£2) and
V¢ € L=(Qr) fori =1,2,sinceq > d. Setn =ny — np, ¢ =1 — ¢2,
and lett > 0. We get for every test functiogr € C*°(Qy) satisfying
Vlse =0andy (r) =0in £
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—/na,w—/(p(nl)—p(nz))A¢

0O+ 0~

__ / (1Y - VY + 12V - V). (5.1)
0~

Now set
1

A(x,t):/p/(9n1+(1—9)n2) do.
0

If the condition (5.2) is satisfied then it holds > pg > 0 in Q7. In
the case of condition (5.2) we get the existencencof 0 such that
ni(x,t) > nin Qr, by Proposition 4.2, and therefore,

1
AZ /P/(Qﬂ) do = (p(n) — p(0))/n>0 in Q7.
0

Furthermore, we get the regularity, n, € C°([0, T1; L(2)).
There exist sequences,, B, € C3°(Qr) such that

Ay— A INL*Qr),  suplA,lloee: 0 >0} < o0,
inf{A,: n> 0} >0,
B, — V¢1 inL*(Qr)asn— 0,
sup(l| B, llo,e0: 1 > 0} < o0.
We rewrite Eq. (5.1):

—/n(a,w + A,AY — B, - V)
0:
= /n(A — A)AY — /n(wpl —B,) -V — /n2V¢ V. (5.2)
0c 0c 0:
Let ¥ = v, € C*(Q) be the unique solution of the retrograde
uniformly parabolic problem
oy + Ar/Aw - Br/ VY = —&8n in Q-,
v =0 onds2 x (0, 1), v(t)=0 ing, (5.3)

whereg, € C5°(Q,) satisfiesg, — n in L%(Q,). The existence offr,
follows from standard parabolic theory [18]. Multiplying the differential
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equation (5.3) byAyr,, we easily get the following estimate (see, e.g.,
[13] for details):

||V1//n||L0°(L2) + ||A‘/’n||L2(L2) < CO||gn||L2(L2),

wherecg > 0 depends oy in case (i) or ornx in case (ii). Observing that

IV¥allo2.0. < VTNV llowa),

we get from Eq. (5.2)

/ ngy < llnfloollA — Apllo2l Ay llo.2 + lInlloe | V1
0-

= Byllo2 V¥ llo2 + cov/TIn2ll0.00 [ VO 021l gy ll0.2-
Performing the limity — 0 yields

/ n2 < coM T Vlloz.0. Inll02.0.. (5.4)
[P

whereM = ||n2llo.~,0, - The differencep = ¢1 — ¢, satisfies, sincef is
monotone, the equation

/ Vo2 < / n¢ < cilnllozo, 1Velozo., (5.5)
[0 [P

which implies, together with (5.4),

2 2 2
17115.2.0, =/n gcoclM«/?H””o,z,Qg
(23

Choosingr < 1/(coc1M)?, we conclude that, — n, =0 a.e. inQ.. In
particular,(n; — n,)(r) = 0 in the sense oV *. Thanks to (5.5) we infer
thatg, — ¢ =0 a.e. inQ,. Applying the above method to the problem
(4.1)-(4.5) in2 x (t,27), we getny —npy=0and ¢ — ¢, =0 a.e. in
2 x (t, 2t) with (u1 — u»)(2t) = 0 in the sense oV *, etc. Finally, after

a finite number of steps we arrivet@ = n, and¢, = ¢, a.e. inQry. O

Remark5.3. — Itis possible to prove the uniqueness of solutions of the
mixed boundary-value problem in one or two space dimensions, provided
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that the boundary 2 is Lipschitzian and that; ¢ W7 (£2) andnp,
¢p € L®°(WLP) for somep > 2. This result can be proved as in [11].

Furthermore, it is possible to relax the hypothesis @ is strictly
increasing. Indeed, we get uniqueness of solutions, provideghthais
only non-decreasing and that the inequality

V- v<0 onlpx(0,T)

is satisfied for some solutiofn, ¢). This inequality can be interpreted
as an entropy-type condition, since Eq. (4.1) becomes hyperbolic if
p(s) = const. The proof of this result is analogous to the corresponding
proof in [6].

ACKNOWLEDGEMENTS

The first author acknowledges partial support from the DAAD-
PROCOPE Program, from the Deutsche Forschungsgemeinschaft, grant
numbers MA 1662/-1 and -2, and from the TMR Project “Asymptotic
Methods in Kinetic Theory”, grant number ERB-FMBX-CT97-0157.
The research of the second author was patrtially supported by the TMR
network of the project “Hyperbolic Systems of Conservation Laws”
(HCL), grant number ERB-FMRX-CT96-0033. The first author would
like to thank Naoufel Ben Abdallah (Toulouse, France) for valuable
discussions.

APPENDIX A

The hydrodynamic plasma equations including the physical parameters
read as follows:

ong +divinyuy,) =0, a=e,i, (A.2)
at(manaua)+div(manaua ®MU)+Vpa(na)

— Qung Ve — altalle, (A.2)
—e0Ap =qg(n; —n,), (A.3)

where Q. = —¢q, Q; = +¢q, g is the elementary charge, angl is the
permittivity constant. For the scaling, we assume that the electron mass
m,., the ion massn; and the relaxation times,, r; are constant. Let

L denote the diameter of the domain, &t andv, be typical density
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and velocity values for the electrons and ions, respectively: ¢, i).
Furthermore, we set

70 = L /vy, 00 =L/vy, a=e,li,

whereuyg is a velocity constant, and we define the scaled Debye length

- ok To
V g2L2max(N,, Ny’
whereTy is a temperature constant. Then, performing the scaling
x — Lx, r — 7o, To = T0,aTa>
Ng —> Nanou Uy = VglUy, pa(na) - kBTONapol(na) s

¢ — (kgTo/q)9,

in the system (A.1)—(A.3), we get the equations for the dimensionless
variables and parameters

0ng + (Uot/UO)diV(notuot) =0,
8o (V0/Ve) 0 (ngUe) + ‘Sadiv(naua ®uy) + Vpu(ng)

n
= _(I(xnav(p - 80( ol s

—)\ZAff’ =Yili = Yelle.
Here,g. = -1, ¢; = +1, y, = N,/ max(N,, N;), and

My v2

" kgyTo’

8a

a=e,li.

In order to obtain the model (HD-EI) of Section 1, sgt= v, = v; and
N, = N; such thaty, =y, = 1.
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