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ABSTRACT. – We prove that the global minimizer of the Ginzburg–
Landau functional of superconductors in an external magnetic field is,
below the first critical field, the vortex-less solution found in (S. Serfaty,
to appear).

RÉSUMÉ. – On montre que le minimiseur global de la fonctionelle
de Ginzburg–Landau en supraconductivité, avec champ magnétique
extérieur inférieur au premier champ critique est la solution sans vortex
trouvée dans (S. Serfaty, à paraitre).
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1. INTRODUCTION

We are interested in this paper in describing the minimizers of the
Ginzburg–Landau functional

J (u,A)= 1

2

∫
Ω

|∇Au|2+ |h− hex|2− h2
ex +

κ2

2

(
1− |u|2)2, (1.1)

that corresponds to the free energy of a superconductor in a prescribed,
constant magnetic fieldhex . Here,Ω ⊂ R2 is the smooth, bounded,
and simply connected section of the superconductor; and the unknowns
are the complex-valued order parameteru ∈ H 1(Ω,C) and theU(1)
connectionA ∈ H 1(Ω,R2). The inducedmagnetic fieldh is defined
by h = curl A. The order parameteru indicates the local state of the
material: |u| is the density of superconducting electron pairs, so that,
where|u| ' 1, the material is in its superconducting state, whereas where
|u| ' 0, it is in its normal state. Finallyκ = 1/ε > 0 is the Ginzburg–
Landau parameter depending on the material, and we are interested in
the case of superconductors with high kappa. We stress that no boundary
conditions are imposed on(u,A), the characteristics of the solutions to
the minimization problem are governed solely byhex .

Minimizers ofJ (u,A) solve the associated Euler equations,

 −∇
2
Au = κ2u(1− |u|2),

− ∗ dh = (iu, dAu).
(G.L.)

It turns out that a key physical feature of solutions to (G.L.) is the
existence, for a certain range of values ofhex , of vortices, i.e., isolated
zeros ofu at whichu has a nonzerodegree: u/|u| restricted to a small
circle around the zero has a non-zero winding number as a map to the
unit circle. Away from these zeros,|u| ≈ 1. Describing solutions to (G.L.)
then typically consists in describing thevortex structureof the solutions,
i.e., to determine the number, degree and position of vortices.

The difficulty here is that without boundary conditions, there is no
a-priori bound on the number of vortices. Even if boundary conditions
are imposed, the problem of defining mathematically and describing the
vortex structure of solutions is not an easy one. This was done in [3] for
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the functional

F(u)= 1

2

∫
Ω

|∇u|2+ 1

2ε2

(
1− |u|2)2 (1.2)

supplemented by a Dirichlet boundary conditiong : ∂Ω→ S1. There, a
vortex structure is shown to exist for minimizers (and even critical points)
of F(u) whenε→ 0. Moreover it is proved that there are exactlyd =
|deg(g)|vortices, and their position is determined. In [5] the functional
(1.1) is studied withhex set to zero and replaced by a gauge invariant
variant of the Dirichlet condition. There again the vortex structure is
shown to exist whenε is small, and results similar to those in [3] are
obtained about the number and position of the vortices.

In [13,14] and [15], the second author studied minimizers of (1.1)
without boundary condition. For more details on the notations and
physical description of superconductors, we refer to [13] and the
references therein. Let us just say that it is observed that for small values
of the applied fieldhex , the material is superconducting everywhere
(there are no vortices), the magnetic field does not penetrate it and
approximately satisfies the London equation −1h+ h = 0 inΩ,

h = hex on ∂Ω.
(1.3)

This state is called the Meissner state, corresponding to vortex-less
solutions in the terminology of [13] and [14], the corresponding solution
(u,A) to (G.L.) being called the Meissner solution. Forhex higher than
some critical valueHc1, the vortex-less solution is no longer energy
minimizing.

In [13], to replace the absence of boundary conditions and thus the
lack of a-priori estimates on the number of vortices, the functional
J (u,A) was minimized on a subdomain ofH 1(Ω,C) × H 1(Ω,R2).
More precisely, choosing some (large) numberM> 0, the minimization
was performed on

D =
{
(u,A)

∣∣∣∣ 1

2

∫
Ω

|∇u|2+ 1

2ε2

(
1− |u|2)2<M|log ε|

}
, (1.4)

and the following theorem was proved:
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THEOREM 1 [13]. –There existk1= 1/(2 max|ξ0|), kε2 =Oε(1) and
kε3 = oε(1), such that

Hc1 = k1|log ε| + kε2,
andε0(M) such that forε < ε0, the following holds:

– if hex 6Hc1, a solution of(G.L.) that is minimizing inD exists, and
satisfies1

2 6 |u|6 1;
– if Hc1 + kε3 6 hex 6 Hc1 + Oε(1), a solution of (G.L.) that is

minimizing inD exists, it has a bounded positive number of vortices
aεi of degree one, such thatdist(aεi ,Λ)→ 0 where

Λ= {x ∈Ω | |ξ0(x)| =max|ξ0|},
and∃C > 0, dist(aεi , a

ε
j )>C for i 6= j , i.e., theai ’s tend to distinct

points∈Λ.

In addition, it is proved in [15] that the Meissner solution found for
hex 6 Hc1 still exists forhex > Hc1 (even though it is then only locally
minimizing inD), and is unique among vortex-less solutions.
Hc1 is known as the first critical field. It is the value ofhex for which

the energy of the Meissner solution becomes equal to the energy of a
single-vortex configuration. Here, we wish to know whether or not, for
hex 6 Hc1, the Meissner solution is a global minimizer of the energy in
addition to being a minimizer inD.

This question arises naturally for all the vortex solutions found in [13]
and [14] that are minimizers inD, but that are all likely to be global
minimizers. However, the proof in [13] and [14] uses repeatedly the a-
priori bound on the number of vortices given by (1.4). Here, without this
upper bound, we are still able to prove a result about vortex-less solutions:

THEOREM 1. –There exists a valueH ′c1 'Hc1 (more preciselyH ′c1 =
Hc1 +O(|log |log ε||)), such that, for sufficiently smallε, if hex 6 H ′c1,
a globally minimizing solution of(G.L.) satisfies|u| > 3/4 on Ω , and
coincides with the solution found in Theorem1 of [13].

Thus, we answer positively the question, though we have an impreci-
sion onHc1 that we were not able to avoid.

In order to prove this theorem, we consider a minimizing solution
of (G.L.) and assume it has possible vortices. We use a technique of
R. Jerrard [7] to construct ballsBi = B(ai, r) of sizer ' 1/|log ε|α with
sufficiently highα, such that
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|u|> 3

4
onΩ\⋃

i

Bi, (1.5)

di = deg(u, ∂Bi), (1.6)

Fε(u,Bi) > π |di|log
r

ε
, (1.7)

where we use the notation

Fε(u,V )= 1

2

∫
V

|∇u|2+ 1

2ε2

(
1− |u|2)2.

The lower bound (1.7) was known to be true, see [3],under some
assumptions on the restriction ofu on ∂Bi . Here, adapting slightly the
techniques in [7], we are able to avoid making these assumptions and to
construct these balls even though, in contrast to [13,14] and [15], their
number is not bounded a priori independently ofε.

Then the key argument of the proof is to split conveniently the energy
in a way that is similar to, but slightly different from the one used in [13],
in order to obtain a lower bound of the energy onΩ\⋃i Bi . Precisely, we
find that for a minimizer(u,A),

J (u,A)> J0+ 2πhex
∑
i

diξ0(ai)+
∑
i

Fε(u,Bi)+ o(1), (1.8)

asε→ 0. In the above expansionJ0 is roughly the minimal energy of
a vortex-less configuration; andξ0 is a negative function depending only
on the domainΩ (see [13] or Section 2). Putting together (1.7) and (1.8),
and using the fact that the energy of a minimizer must be no greater than
J0 allows to conclude that vortices are not present ifhex is less than some
number

H ′c1 ≈
1

2max |ξ0| |log ε|,
the right-hand side is precisely theHc1 computed in [13].

The idea is the same as in [13]: a vortex of degreed “costs” almost
π |d||log ε| to make (see (1.7)), while it can decreaseJ (u,A) by at most
πdhexξ0(ai) (see (1.8)). Note that the choice ofr = 1/|log ε|α for the
size of the ballsBi is dictated by the fact that it is the largest radius for
which we can prove that the expansion (1.8) is valid.

Of course, the structure of global minimizers forhex > Hc1 is still
open. We study them in [11], give an estimate on their energy, and



124 E. SANDIER, S. SERFATY / Ann. Inst. Henri Poincaré 17 (2000) 119–145

we expect that the number of vortices is equivalent tohex as soon as
hex�Hc1.

2. PROOF OF THE THEOREM

2.1. Preliminary results and notations

We consider(u,A) such that

J (u,A)= inf
{
J (v,B) | (v,B) ∈H 1(Ω,C)×H 1(Ω,R2)

}
.

By a standard argument, this infimum is achieved and yields a solution of
the Ginzburg–Landau equations. We recall that, as in [13], for a suitable
choice of gauge, divA = 0, and there is a functionξ ∈ H 2(Ω,R) such
that

A=∇⊥ξ = (−ξx2, ξx1), ξ = 0 on∂Ω, (2.1)

thus

h=1ξ, (2.2)

and

|∇Au|2= |∇u|2− 2(iu, ξx2ux1 − ξx1ux2)+ |u|2|A|2.
Our solution(u,A) is easily seen to satisfy

∂u

∂n
= 0 on∂Ω,

h = hex on∂Ω.

In the sequel,C denotes any positive constant independent fromε.
Since the value ofHc1 computed in [13] is of the order of|log ε|, we

will assume from now on that

hex 6 C|log ε|. (2.3)

Considering the London equation (1.3), we are led as in [13] to introduce
ξ0, the solution of 

−12ξ0+1ξ0 = 0 inΩ,

1ξ0 = 1 on∂Ω,

ξ0 = 0 on∂Ω.

(2.4)
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The approximate minimal vortex-less configuration is(u0 ≡ 1,A0 =
hex∇⊥ξ0) and, as in [13], we let

J0= J (u0,A0)=−h
2
ex

2

∫
Ω

|∇ξ0|2+ |1ξ0|2. (2.5)

Note that(u0,A0) is only a solution to the second (G.L.) equation and
not to the first one, therefore it isnot the Meissner solution. However,
it is proved in [13] that the infimum of the energy among vortex-less
configurations inD is J0+ o(1) asε→ 0.

As in [13], we decomposeξ as

ξ = hexξ0+ ζ (2.6)

so that

ζ = 0, 1ζ = 0 on∂Ω.

We state some results borrowed from [13] that are going to be useful in
the sequel.

LEMMA 2.1. –Let (u,A) be a solution of(G.L.). The following holds:

‖∇u‖L∞(Ω) 6 C
ε
, (2.7)

‖∇ξ‖L∞(Ω) 6 Chex. (2.8)

If (u,A) is in addition a minimizer of the energy, then

J (u,A)6 J06Ch2
ex, (2.9)

‖∇u‖L2(Ω) 6 Chex. (2.10)

Proof. –All the assertions have been proved in [13] except the last one.
In view of (1.1) and (2.9),∫

Ω

|∇Au|26 Ch2
ex,

which is equivalent to∫
Ω

|∇u|2− 2(iu, ξx2ux1 − ξx1ux−2)+ |u|2|A|26 Ch2
ex .
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Hence,∫
Ω

|∇u|26 Ch2
ex +C‖∇ξ‖2L∞(Ω) +C‖∇ξ‖L∞(Ω)‖∇u‖L2(Ω).

Thus, in view of (2.8),

‖∇u‖L2(Ω) 6 Chex. 2
We then need to define the vortices ofu with their degrees, by defining

balls (Bi)i∈I , such that|u| > 3/4 onΩ\⋃i∈I Bi , anddi = deg(u, ∂Bi).
As already mentioned, we achieve this by adjusting a result of Jerrard
[7], to obtain the following proposition, the proof of which is deffered to
Section 3.

PROPOSITION 2.1. –Let u ∈ H 1(Ω,C) such that‖∇u‖L∞ 6 C/ε,
andF(u)6Ch2

ex . Then, for anyα > 0, there is anε0> 0 such that∀ε <
ε0 there exists a finite family of disjoint balls(Bi)i∈I = (B(ai, ri))i∈I such
that {

x/|u(x)|< 3

4

}
⊂⋃

i∈I
Bi, (2.11)

Fε(u,Bi)> π |di|(|log ε| −O
(∣∣log |log ε|∣∣)), (2.12)

wheredi = deg(u, ∂Bi) if Bi ⊂Ω , anddi = 0 otherwise,

ri 6 C|log ε|−α, (2.13)

CardI 6 Ch2
ex. (2.14)

Proof. –See Proposition 3.2.2

2.2. Splitting of the energy

Let

Ω̃ =Ω\⋃
i∈I
Bi,

where{Bi}i∈I is the family of balls given by Proposition 2.1. Recall that
they have radiiri less thanC|log ε|−α , whereα is to be chosen below.
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LEMMA 2.2. –We have following identity:

1

2

∫
Ω

|∇Au|2=
∫
Ω

(
1

2

∣∣∇u− i∇⊥ζu∣∣2+ 1

2
h2
ex|∇ξ0|2+ hex∇ξ0.∇ζ

)
+2πhex

∑
i∈I
diξ0(ai)+ o(1).

Proof. –From (2.2) and (2.6),

|∇u− iAu|2= ∣∣∇u− ihex∇⊥ξ0u− i∇⊥ζu
∣∣2

= ∣∣∇u− i∇⊥ζu∣∣2+ h2
ex |u|2|∇ξ0|2

+2
(∇u− i∇⊥ζu,−ihex∇⊥ξ0u

)
. (2.15)

Moreover, ∫
Ω

(∇u− i∇⊥ζu,−ihex∇⊥ξ0u
)

=
∫
Ω

(∇u,−ihex∇⊥ξ0u
)+ hex ∫

Ω

|u|2∇ξ0.∇ζ. (2.16)

To finish the proof of Lemma 2.2 we need the2
LEMMA 2.3. –If α > 5,∫

Ω

(∇u,−ihex∇⊥ξ0u
)= 2πhex

∑
i∈I
diξ0(ai)+ o(1). (2.17)

Proof. –We start with the same method as in [13]. First,∣∣∣∣ ∫⋃
Bi

(∇u,−ihex∇⊥ξ0u
)∣∣∣∣6 (CardI )hex‖∇u‖L2 max

i∈I ri 6 C|log ε|4−α,

where we used (2.3), (2.13), (2.14), and (2.10). It is here that the size of
the ballsBi is important. Then, letting̃Ω =Ω\⋃i Bi ,∫

Ω̃

(∇u,−ihex∇⊥ξ0u
)= hex ∫

Ω̃

(
iu, (ξ0)x2ux1 − (ξ0)x1ux2

)
.

Settingv = u/|u| and integrating by parts, we find, exactly as in the proof
of Lemma IV.3 of [13], that
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Ω̃

(
iu, (ξ0)x2ux1 − (ξ0)x1ux2

)
=
∫
Ω̃

(iv, dv ∧ dξ0)+ o
(|log ε|−1)

=∑
i∈I

∫
∂Bi

ξ0

(
iv,

∂v

∂τ

)
+ o

(|log ε|−1). (2.18)

We claim that, lettingJ = {i ∈ I/Bi ⊂Ω},

∀i ∈ J , hex

∫
∂Bi

ξ0

(
iv,

∂v

∂τ

)
= 2πhexdiξ0(ai)+ o

(|log ε|−2). (2.19)

To prove this claim, we use the same proof as in [13] (Lemma IV.3),
different from that of [5] which does not adjust to a possible divergent
number of balls. Let

Ui =
{
x ∈ Bi/|u|6 1

2

}
.

Ui does not intersect∂Bi and by Stokes’ theorem∣∣∣∣ ∫
∂Bi

(
ξ0− ξ0(ai)

)(
iv,

∂v

∂τ

)
−
∫
∂Ui

(
ξ0− ξ0(ai)

)(
iv,

∂v

∂τ

)∣∣∣∣
=
∣∣∣∣ ∫
Bi\Ui

dξ0∧ (iv, dv)
∣∣∣∣6 C‖∇ξ0‖L∞ri

( ∫
Bi\Ui
|∇v|2

)1/2

6C|log ε|1−α.
Hence, asα > 5,

hex

∫
∂Bi

(
ξ0− ξ0(ai)

)
(iv, dv)

= hex
∫
∂Ui

(
ξ0− ξ0(ai)

)
(iv, dv)+ o

(|log ε|−2). (2.20)

On the other hand,

hex

∫
∂Ui

(
ξ0− ξ0(ai)

)
(iv, dv)= hex

∫
∂Ui

(
ξ0− ξ0(ai)

)(iu, du)
|u|2 .
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But, by definition ofUi, |u| = 1/2 on ∂Ui , hence

hex

∣∣∣∣ ∫
∂Ui

(
ξ0− ξ0(ai)

)
(iv, dv)

∣∣∣∣
= 4hex

∣∣∣∣ ∫
∂Ui

(
ξ0− ξ0(ai)

)
(iu, du)

∣∣∣∣
= 4hex

∣∣∣∣ ∫
Ui

dξ0∧ (iu, du)+ (ξ0− ξ0(ai)
)
(idu, du)

∣∣∣∣
6Chexri‖∇u‖L2 +Chexri‖∇ξ0‖L∞

∫
Ω

|∇u|2

6C|log ε|3−α 6 o
(|log ε|−2). (2.21)

Combining (2.20) and (2.21), we conclude that

hex

∫
∂Bi

ξ0(iv, dv)= hex
∫
∂Bi

ξ0(ai)(iv, dv)+ o(|log ε|−2)

= 2πhexdiξ0(ai)+ o
(|log ε|−2),

and (2.19) is proved.
We now deal with the balls that intersect∂Ω . We claim that

∀i ∈ I\J , hex

∫
∂Bi∩Ω

ξ0(iv, dv)= o
(|log ε|−2).

The proof of this claim is almost the same as that of (2.19). Indeed, since
ξ0= 0 on ∂Ω, lettingUi = Bi ∩ {|u|6 1/2},

hex

∫
∂Bi∩Ω

ξ0(iv, dv)

= hex
∫

∂Ui∩Ω
ξ0(iv, dv)+ o

(|log ε|−2)
= 4hex

∣∣∣∣ ∫
Ui∩Ω

dξ0∧ (iu, du)+ ξ0(idu, du)

∣∣∣∣= o
(|log ε|−2).

Using (2.18) and (2.19), the above claim and the fact that CardI 6 Ch2
ex

prove the lemma. 2
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Proof of Lemma 2.2 completed. –Combining (2.15), (2.16) and (2.17),
we are led to

1

2

∫
Ω

|∇Au|2= 1

2

∫
Ω

∣∣∇u− i∇⊥ζu∣∣2+ 1

2
h2
ex

∫
Ω

|u|2|∇ξ0|2

+hex
∫
Ω

|u|2∇ξ0.∇ζ + 2πhex
∑
i∈I
diξ0(ai)+ o(1). (2.22)

From the upper bound (2.9), we know that

1

ε2

∫
Ω

(
1− |u|2)26 Ch2

ex, (2.23)

hence

h2
ex

∫
Ω

(
1− |u|2)|∇ξ0|26Ch2

ex

(∫
Ω

(
1− |u|2)2)1/2

6Cεh3
ex 6 o(1),

and similarly

h2
ex

∣∣∣∣ ∫
Ω

(
1− |u|2)∇ξ0.∇ζ

∣∣∣∣6 Cεh3
ex 6 o(1).

With (2.22), the lemma is proved.2
LEMMA 2.4. –We have the following identity:

1

2

∫
Ω

(|h− hex |2− h2
ex

)+ 1

2
h2
ex

∫
Ω

|∇ξ0|2+ hex
∫
Ω

∇ξ0.∇ζ

= J0+
∫
Ω

|1ζ |2.

Proof. –Using the decomposition (2.6),∫
Ω

(|h− hex |2− h2
ex

)
=
∫
Ω

|hex1ξ0+1ζ |2− 2hex(hex1ξ0+1ζ)
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= h2
ex

∫
Ω

|1ξ0|2+
∫
Ω

|1ζ |2− 2h2
ex

∫
Ω

1ξ0+ 2hex

∫
Ω

1ξ01ζ

−2hex

∫
Ω

1ζ.

But, from [13], Section 4 (using (2.4)),∫
Ω

|∇ξ0|2+ |1ξ0|2=
∫
Ω

1ξ0,

and ∫
Ω

∇ζ.∇ξ0+1ζ1ξ0=
∫
Ω

1ζ.

Therefore,

1

2

∫
Ω

(|h− hex |2− h2
ex

)+ 1

2
h2
ex

∫
Ω

|∇ξ0|2+ hex
∫
Ω

∇ξ0.∇ζ

=−h
2
ex

2

∫
Ω

|∇ξ0|2+ |1ξ0|2+
∫
Ω

|1ζ |2

= J0+
∫
Ω

|1ζ |2.

This completes the proof.2
Combining Lemmas 2.2 and 2.4, we obtain the following expansion of

the energy:

J (u,A)= 1

2

∫
Ω

∣∣∇u− iu∇⊥ζ ∣∣2+ 1

2ε2

(
1− |u|2)2+ ∫

Ω

|1ζ |2

+J0+ 2πhex
∑
i∈I
diξ0(ai)+ o(1). (2.24)

Notice that this expansion is quite similar to that of [13], but the terms in
ζ are treated differently and gathered in positive expressions.

We need a last lower bound:

LEMMA 2.5. –∫
Ω

∣∣∇u− iu∇⊥ζ ∣∣2>∑
i∈I

∫
Bi

|∇u|2+ o(1).
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Proof. –Indeed,∫
Ω

∣∣∇u− iu∇⊥ζ ∣∣2> ∫
⋃
i∈I Bi

∣∣∇u− iu∇⊥ζ ∣∣2
>

∫
⋃
i∈I Bi

|∇u|2+ ∣∣u∇⊥ζ ∣∣2− 2
(∇u, iu∇⊥ζ ).

But, ∣∣∣∣∣
∫

⋃
i∈I Bi

(∇u, iu∇⊥ζ )∣∣∣∣∣6 (CardI )‖∇ξ‖L∞‖∇u‖L2 max
i
ri

6C|log ε|4−α = o(1),

similarly to the beginning of the proof of Lemma 2.3. Hence,∫
Ω

∣∣∇u− iu∇⊥ζ ∣∣2> ∫
⋃
i∈I Bi

|∇u|2+o(1). 2

From this lemma, we deduce that

1

2

∫
Ω

∣∣∇u− iu∇⊥ζ ∣∣2+ 1

2ε2

(
1− |u|2)2

>
∑
i∈I

∫
Bi

1

2
|∇u|2+ 1

4ε2

(
1− |u|2)2

>
∑
i∈I
F (u,Bi), (2.25)

and this last expression can be bounded from below by (2.12).

2.3. End of the proof of the theorem

Considering our minimizing solution, we deduce from (2.24), Lemma
2.5, and (2.12), that

J (u,A)> J0+ 2πhex
∑
i∈I
diξ0(ai)

+π∑
i∈I
|di |(|log ε| +O

(∣∣log |log ε|∣∣)). (2.26)
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On the other hand, by minimality,

J (u,A)6 J0,

thus, asξ0 is negative,

π
∑
i∈I
|di |(|log ε| +O

(∣∣log |log ε|∣∣))6 2πhex
∑
i∈I
di
∣∣ξ0(ai)

∣∣
6 2πhex

(∑
i∈I
|di |
)

max|ξ0|.

If
∑
i∈I |di | 6= 0, we deduce that

hex >
1

2max |ξ0|
(|log ε| +O

(∣∣log |log ε|∣∣)) :=H ′c1.
But, in [13],Hc1 = k1|log ε| +O(1) with

k1= 1

2max |ξ0| ,

thus

H ′c1 =Hc1 +O
(∣∣log |log ε|∣∣). (2.27)

Consequently, ifhex < H ′c1, we must havedi = 0,∀i ∈ I . Then, with
(2.24) and Lemma 2.5,

J0> J (u,A)>
∑
i∈I
Fε(u,Bi)+ J0+ o(1),

implying ∑
i∈I
Fε(u,Bi)6 o(1). (2.28)

We conclude that|u|> 3/4 in Ω. Indeed, it is well known from [3] that
if |u(x0)|< 3/4, there exist constantsλ,µ > 0 such that

∀ε > 0,
1

ε2

∫
B(x0,λε)

(
1− |u|2)2>µ> 0, (2.29)

contradicting (2.28).
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Knowing thatu is vortex-less, one may re-use the computations of [13]
to find that

J (u,A)= J0+ F(u)+ Ṽ (ζ )+ o(1),

whereṼ (ζ )> 0. HenceF(u)6 o(1), and by definition(u,A) ∈D. This
proves that forhex < H ′c1, (u,A) coincides with the unique Meissner
solution found in [13] and [15].

The theorem is proved.

3. CONSTRUCTION OF THE BALLS

In this section, we use the method of R. Jerrard introduced in [7], in
order to construct balls containing all the zeros ofu, on which we have a
suitable lower bound onFε of the orderπ |d||log ε|. The size of the balls
has to be large enough so that most of the energyFε is concentrated in
these balls, but it has to be smaller than|log ε|−5 as we saw in Section 2.
We follow almost readily the proofs of [7].

3.1. Main steps

First, we include the set{x/|u(x)| < 3/4} in well-chosen disjoint
“small” ballsBi of radii ri > ε such that

Fε(u,Bi)>
C1ri

ε
,

whereC1 is a constant. This is possible according to the following lemma,
adjusted from [7]:

LEMMA 3.1. –Let u :Ω → C be such that|∇u| < C/ε. Then there
exist disjoint ballsB1, . . . ,Bk of radii ri such that

(1) ∀16 i 6 k, ri > ε,
(2) {|u|< 3/4} ⊂⋃i Bi and∀16 i 6 k, Bi ∩ {|u|< 3/4} 6= ∅,
(3) ∀16 i 6 k,

Fε(u,Bi ∩Ω)> C1ri

ε
.

Then the proof involves dilating the ballsBi into ballsB ′i . A lower
bound for Fε(u,B ′i) is obtained by combining the lower bound for
Fε(u,Bi) and a lower bound of the energy on the annulusB ′i\Bi :
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LEMMA 3.2. –∀r > s > ε, if Br andBs are two concentric balls of
respective radiir ands, and ifu :Br\Bs→C is such that|u|> 3/4, d =
deg(u, ∂Br), then

Fε(u,Br\Bs)> |d|
(
Λε

(
r

|d|
)
−Λε

(
s

|d|
))
, (3.1)

whereΛε is a function that satisfies the following properties:

(1) Λε(s)/s is decreasing onR+,
(2) sups∈R+Λε(s)/s 6 C1/ε,
(3) there existε0, t0> 0 such that ifε < ε0 andε < t < t0 then∣∣∣∣Λε(t)− π log

t

ε

∣∣∣∣6 C.
Thanks to this lemma, if

Fε(u,B)> π |d|log
r

ε
, (3.2)

whered = deg(u, ∂B), andr is the radius ofB, if B ′ is the dilated ball,
and if |u|> 3/4 onB ′i\Bi , then an estimate of the type (3.2) is still true
onB ′.

Thus we start with the ballsBi given by Lemma 3.1, then make them
grow progressively. Say the growth rate is governed by a parameters, we
thus construct a familyB(s) of disjoint balls. To keep this family of balls
disjoint, when some of them intersect, we merge them into a larger ball
of radius equal to the sum of the radii of the merged balls. If the growth-
rates of the balls have been properly synchronized, then the lower bounds
for the energy on each of the merged balls add up nicely so that a lower
bound of the type (3.2) is still true for the larger ball. We then resume the
dilation, etc., until we reach the size of balls that we wish.

The following proposition sums up the whole growth process:

PROPOSITION 3.1. –Let u :Ω → C be such that|∇u| 6 C/ε; and
{Bi}i be a family of balls of radiiri satisfying the results of Lemma3.1.
Let

di =
 deg(u, ∂Bi) if Bi ⊂Ω,

0 otherwise.
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Let also

s0= min{i|di 6=0}
ri

|di | .
Then, for everys > s0, there exists a familyB(s) of disjoint balls
B1(s), . . . ,Bk(s)(s) of radii ri(s) such that

(1) the family of balls is monotone, i.e., ifs < t then⋃
i

Bi(s)⊂
⋃
i

Bi(t),

(2) for everyi, Fε(u,Bi(s)) > ri(s)Λε(s)/s, whereΛε is defined in
Lemma3.2,

(3) if Bi(s)⊂Ω anddi(s)= deg(u, ∂Bi(s)), thenri(s)> s|di(s)|.
We then get as a consequence the following proposition, that was stated

as Proposition 2.1 in Section 2, and which yields the final balls that we
needed:

PROPOSITION 3.2. –Letu :Ω→C be such that|∇u|6 C/ε and that
Fε(u)6 C|log ε|2. Then, for anyα > 0 there exist disjoint balls(Bi)i∈I
of radii ri such that, for sufficiently smallε,

(1) {x/|u(x)|< 3/4} ⊂⋃i∈IBi ,
(2) CardI 6C|log ε|2,
(3) ri 6 C/|log ε|α,
(4) if Bi ⊂Ω anddi = deg(u, ∂Bi), then

Fε(u,Bi)> π |di |(|log ε| −O
(∣∣log |log ε|∣∣)). (3.3)

Proof. –We first consider the balls given by Lemma 3.1, and then
apply Proposition 3.1 to get bigger balls. We need to check thats0 is small
enough to be able to apply Proposition 3.1 fors large enough. Indeed,
s0=min{i|di 6=0}(ri/di), but from assertion (3) of Lemma 3.1,

C1ri < εFε(u,Bi ∩Ω)6 Cε|log ε|2,

so thats0 6 Cε|log ε|2. We can thus apply Proposition 3.1 for alls >
Cε|log ε|2. We choose in particular

s1= 1

|log ε|α+1
. (3.4)
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Proposition 3.1 yields final ballsB(s1) such that

∀i, if Bi(s1)⊂Ω, Fε
(
u,Bi(s1)

)
> Λε(s1)

s1
ri(s1), (3.5)

with

ri(s1)> s1
∣∣di(s1)∣∣. (3.6)

Therefore,

Fε
(
u,Bi(s1)

)
>Λε(s1)

∣∣di(s1)∣∣,
and from Lemma 3.2 (assertion (3)),

Fε
(
u,Bi(s1)

)
>
∣∣di(s1)∣∣(π log

s1

ε
−C

)
>π

∣∣di(s1)∣∣(|log ε| −O
(∣∣log |log ε|∣∣)).

We thus have the lower bound (4) onFε.
We then show that (3) is true. We know thatFε(u)6Ch2

ex 6C|log ε|2.
Combining this with (3.5), we get

ri(s1)
Λε(s1)

s1
6 C|log ε|2.

But, asΛε(s)' π log(s/ε), in view of (3.4),

Λε(s1)> π |log ε| −O
(∣∣log |log ε|∣∣).

Hence, ifε is sufficiently small,

ri(s1)6 C
s1

Λε(s1)
|log ε|26 C

|log ε|α+1

|log ε|2
|log ε| 6

C

|log ε|α ,

which is the desired estimate.
There only remains to show that (2) is true. This is easy since in

Lemma 3.1, each ball satisfiesFε(u,Bi∩Ω)> C1ri/ε, with ri > ε, hence
carries an energy that is bounded from below by a constant independent
from ε. As Fε 6 C|log ε|2, we see that the number of these balls has to
be bounded byC|log ε|2. Then, the procedure of Proposition 3.1 does not
increase the number of balls, so that property (2) is true.2
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3.2. Proof of Lemma 3.1

We use the notationS(x, r) for the circle inR2 of centerx and radiusr .
We begin with the following lemma, taken from [7]:

LEMMA 3.3. –Let u :St → C, whereSt is a circle of radiust in R2

such thatt > ε. Letm=minSt |u| and, ifm 6= 0, d = deg(u, St). Ifm= 0,
let d = 0. Then, assuming06m6 1,∫

St

1

2
|∇u|2+ 1

4ε2

(
1− |u|2)2>m2πd

2

t
+ (1−m)

C2

C2ε
, (3.7)

whereC2 is an absolute constant.

Proof. –See [7], Theorem 2.1.2
We also have the following variant of Lemma 3.3 (Lemma 2.4 in [7]):

LEMMA 3.4. –If u :Ω→ C, there existsρ(Ω),C(Ω) > 0 such that
∀x ∈Ω , ∀ε < r < ρ, lettingm=minSr∩Ω |u|,

Fε(u, Sr)>
(1−m)C
Cε

. (3.8)

Proof. –See [7]. 2
We then divide the proof of Lemma 3.1 in five steps.
Step 1. We wish to include{|u| < 3/4} in balls. Let S1, . . . , Sk be

the connected components of{|u|< 4/5} that intersect{|u|< 3/4}, and
x1 ∈ S1, . . . , xk ∈ Sk be such that|u(xi)|< 3/4. Also, for everyi let

ri = sup
{
r > 0 | S(xi, r)∩ {|u|< 4/5} 6= ∅}.

We claim that

Fε
(
u,B(xi, ri)∩Ω)> C1ri

ε
. (3.9)

Indeed from the hypothesis|∇u| < C/ε, we get as in (2.29) that
Fε(u,B(xi, ri)∩Ω)>C. Therefore ifri 6 2ε, the claim is true.

If ri > 2ε then, from Lemma 3.4, as∀t ∈ [ε, ri], minS(xi,t ) |u| < 4/5
by definition ofri ,

∀t ∈ [ε, ri ], Fε
(
u,S(xi, t)∩Ω)> C

ε
.
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We deduce that

Fε
(
u,Ω ∩B(xi, ri))> ri∫

ε

Fε
(
u,Ω ∩ S(xi, t))dt

> C(ri − ε)
ε

> Cri
ε
,

proving the claim in this case also.
Step 2. For simplicity, we writeBi for B(xi, ri). We claim that∀i 6= j ,

eitherBj ⊂ Bi (in this case, we dropBj ) or xj /∈ Bi .
Indeed, assume thatxj ∈ Bi . By definition of the ballsBi , ∂Bi ∩⋃
` S` = ∅, thus

Sj = (Sj ∩ {Bi)∪ (Sj ∩Bi).
Sincexj ∈ Bi, Sj ∩Bi 6= ∅, using the connectedness ofSj , Sj ⊂ Bi , and
we can dropBj .

The claim is proved.
Step 3. Dropping the unnecessary balls, we reduce to ballsBi such that⋃

i

Si ⊂
⋃
k

Bk and ∀i 6= j, xj /∈ Bi.

It follows from the Besicovitch covering lemma (see for instance [17],
p. 44), anyx ∈ ⋃Bi belongs to at mostN of the balls, whereN is an
absolute constant.

Step 4. NamingCi the connected components of
⋃
i Bi , this implies

that

∀i Fε(u,Ci)>
1

N

∑
j/Bj⊂Ci

Fε(u,Bj )> C
∑

j/Bj⊂Ci

rj

ε

>C diamCi
ε

, (3.10)

where we have used (3.9).
Step 5. EachCi can be included in a ballB ′i of radius

r ′i 6 diamCi . (3.11)

These ballsB ′i can be included in bigger ballsB ′′i the following way: if
B ′i andB ′j intersect, we merge them into a ball of radius no higher than
r ′i + r ′j , etc., until all intersecting balls are merged. Hence, we are left
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with a familyB ′′i of disjoint balls of radiir ′′i . This family satisfies

r ′′i 6
∑

j/B ′
j
⊂B ′′

i

r ′j . (3.12)

As theCi are disjoint, we have

Fε(u,B
′′
i )>

∑
j/Cj⊂B ′′i

Fε(u,Cj )>
∑

j/Cj⊂B ′′i
C

diamCj
ε

,

with (3.10). Using (3.11) and (3.12), we are led to

Fε(u,B
′′
i )>

∑
j/Cj⊂B ′′i

C
r ′j
ε
> C r

′′
i

ε
.

The family (B ′′i ) satisfies the desired conditions, hence the proof is
complete.

3.3. Proof of Lemma 3.2

Under the assumptions of Lemma 3.3,

Fε(u, St)> fε
(
t

|d|
)
, (3.13)

where

fε(s)= ab

(aq + bq)1/q , a(s)= π/s, b(s)= C2

ε
,

and 06 q 6 1 is a constant.
Indeed, using Lemma 3.3, we can bound the right-hand side of (3.7)

from below by

(
mC

′)π |d|
t
+ C2(1−m)C ′

ε
,

whereC ′ = max(2,C2) > 2. This uses the fact that 0< m < 1. Then
we minimize with respect tom ∈ [0,1]. This yields (3.9) withq =
1/(C ′ − 1).

We then define

λε(s)=min
(
fε(s),

C1

ε

)
, (3.14)
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whereC1 is defined in Lemma 3.1 Also, we let

Λε(t)=
t∫

0

λε(s) ds. (3.15)

We prove the properties onΛε. (1) is true becauseΛε is the primitive of
λε which is easily seen to be decreasing. From this, we deduce that

sup
s∈R+

Λε(s)

s
= λε(0)6 C1

ε
,

so that (2) is true. There remains to prove assertion (3). Recall that

Λε(s)=
s∫

0

a

((a/b)q + 1)1/q
dt, wherea = π

t
, b= C2

ε
.

Denoting byC,C ′ generic positive constants, ifC is large enough 1>
(1+ xq)−1/q > 1−Cx, wheneverx < 1/C. On the other hand, it is easy
to check that ift > C ′ε, with C ′ large enough, thena/b < 1/C. Thus we
may write

s∫
C ′ε

a

(
1−C a

b

)
dt 6

s∫
C ′ε

a

((a/b)q + 1)1/q
dt 6

s∫
C ′ε

a dt.

It is easy to check that
s∫

C ′ε

a2

b
dt < C,

and that ∣∣∣∣∣
s∫

C ′ε

a dt − π log
s

ε

∣∣∣∣∣<C, (3.16)

if s < t0. Finally, combining (3.16) with the fact that

C ′ε∫
0

λε(t) dt < C,
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the assertion is proved.
From (3.13), (3.14), and (3.15), we deduce that∀r > s > ε,

Fε(u,Br)−Fε(u,Bs)>
r∫
s

Fε(u, St) dt >
r∫
s

λε

(
t

|d|
)
dt

>Λε

(
r

|d|
)
−Λε

(
s

|d|
)
.

The lemma is proved.

3.4. Proof of Proposition 3.1

First of all, lettingB(s0) be the family of balls given by Lemma 3.3,
we check that properties (2), (3) are verified fors = s0. Indeed, from
Lemma 3.1,

Fε(u,Bi ∩Ω)> C1ri

ε

while
Λε(s)

s
6 C1

ε
.

Thus, the second property is true. Property (3) results directly from the
definition of s0. Notice that{|u|< 3/4} is contained in the initial family
B(s0).

Now we let I be the largest interval containings0 such that∀s ∈ I
there exists a finite family of disjoint ballsB(s) verifying properties (1)–
(3) above. We already knowI is not empty. We now prove thatI is open.

Suppose[s0, s1] ⊂ I . We wish to define a familyB(t) for t ∈ [s1, s1+
α], for someα > 0. Three cases occur.

Case 1. For the familyB(s1), all the inequalities in (3) arestrict, i.e.,
ri(s1) > s1|di(s1)|, ∀i such thatBi ⊂ Ω . In this case we letBi(t) =
Bi(s1), i.e., we do not change the balls. This defines a familyB(t) of
disjoint balls that verifies (1) trivially, (2) also since—by Lemma 3.2—
Λε(t)/t 6 Λε(s1)/s1 for t > s1. Finally (3) is verified at least when
t ∈ [s1, s1+ α], α > 0 not too large.

Case 2. There is equality in (3) for, say, ballsB1(s1), . . . ,B`(s1), but
all the balls have disjoint closures. In this case the familyB(t) for t > s1
is defined by:

– The ballBi(t), 16 i 6 ` has the same center asBi(s1) and its radius
ri(t) is such thatri(t) = t|di(t)| = t|di(s1)|, as long asBi(t) ⊂Ω ,
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which is true whent ∈ [s1, s1+α], α > 0 not too large. (The degree
remains constant as|u|> 3/4 onB(t)\B(s0),∀t > s0.) In particular
the balls aregrowing.

– The other balls remain unchanged.

The balls defined this way remain disjoint fort > s1 not too large.
Property (1) obviously is still true, (3) also. Property (2) remains true
in an obvious way for the static balls, asΛε(s)/s is decreasing. For the
increasing ones, we just use Lemma 3.2, which yields

Fε
(
u,Bi(t)

)
> Fε

(
u,Bi(s1)

)+ Fε(u,Bi(t)\Bi(s1) )
> ri(s1)

Λε(s1)

s1
+ ∣∣di(t)∣∣(Λε

(
ri(t)

|di(t)|
)
−Λε

(
ri(s1)

|di(s1)|
))
.

But, we know that for the growing balls, we haveri(s1)= s1|di(s1)|, and
ri(t)= t|di(t)|. Hence, with the constancy of the degree,

Fε
(
u,Bi(t)

)
> ri(s1)

Λε(s1)

s1
+ ri(t)

t
Λε(t)− ri(s1)

s1
Λε(s1)

> ri(t)
Λε(t)

t
.

Case 3. There is equality in (3) for some of the balls inB(s1) but, say,
B1(s1)∩B2(s1) 6= ∅. Then we modify the familyB(s1) as follows: group
B1(s1) andB2(s1) into a single larger ballB of radiusr1(s1)+ r2(s1). If
B intersects, say,B3, enlarge it so thatB1 ∪ B2 ∪ B3⊂ B and the radius
of B is r = r1+ r2+ r3, etc.

Thus, we have a new family of ballsB′(s1) whose closures are disjoint,
such that the union of the balls in this family contains the balls ofB(s1),
that verifies properties (2) and (3). This last statement is obviously true
for the balls that have not changed in the process. We verify it for a ball
B ∈ B′(s1) that results from groupingB1, . . . ,B` ∈ B(s1).

– Property (2) is verified since

Fε(u,B)>
∑̀
i=1

Fε(u,Bi)>
(∑̀
i=1

ri

)
Λε(s1)

s1
= r Λε(s1)

s1
.
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– If B ⊂ Ω and deg(u, ∂B)= d 6= 0 then d = ∑i di , wheredi =
deg(u, ∂Bi). Thus

r

|d| >
r∑

{i|di 6=0} |di |
> s1,

since for everyi such thatdi 6= 0, ri > s1|di |. Thus property (3) is
verified. If d = 0, then the property is empty.

Now, to defineB(t) for t > s1 we start fromB′(s1), and use case 1 or
case 2.

It remains to prove that the intervalI is closed. Indeed, suppose
[s0, s1) ⊂ I and thatB(s) is defined on this interval by the above
procedure. We wish to defineB(s1). First note that since the number
of balls in B(s) is nonincreasing, and since there is initially a finite
number of them, the number of balls is constant on some intervalA =
[s1− α, s1). On this interval, the ballsB1(s), . . . ,B`(s) are well defined,
have their centers fixed, their radius increases continuously withs, and
their degreedi(s) = deg(u, ∂Bi(s)) is constant fors ∈ A. Then we let
Bi(s1)=⋃s∈ABi(s). This defines a familyB(s1) of disjoint balls that are
easily seen to verify properties (1), (2). For (3), note that deg(u, ∂Bi(s1))

is either equal todi(s), s ∈A if Bi(s1)⊂Ω or to 0. In any case, (3) will
be verified.

The proposition is proved. This completes all the proofs.
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