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1. INTRODUCTION

We are interested in this paper in describing the minimizers of the
Ginzburg-Landau functional

2

1 K 2
J(u,A):E/|VAu|2+|h—hex|2—hfx+E(l—|u|2) . (LD
2

that corresponds to the free energy of a superconductor in a prescribed,
constant magnetic field,,. Here, 2 c R? is the smooth, bounded,
and simply connected section of the superconductor; and the unknowns
are the complex-valued order parametee H'(£2,C) and theU (1)
connectionA € H1(£2,R?). The induced magnetic field: is defined
by h = curl A. The order parameter indicates the local state of the
material: [u| is the density of superconducting electron pairs, so that,
where|u| >~ 1, the material is in its superconducting state, whereas where
lu| >~ 0, it is in its normal state. Finally = 1/¢ > 0 is the Ginzburg—
Landau parameter depending on the material, and we are interested in
the case of superconductors with high kappa. We stress that no boundary
conditions are imposed ofx, A), the characteristics of the solutions to
the minimization problem are governed solely/y.

Minimizers of J (u, A) solve the associated Euler equations,

(G.L)
—xdh = (iu,du).

{ ~Vau = kPud— uP).
It turns out that a key physical feature of solutions to (G.L.) is the
existence, for a certain range of valueshgf, of vortices, i.e., isolated
zeros ofu at whichu has a nonzerdegree u/|u| restricted to a small
circle around the zero has a non-zero winding number as a map to the
unit circle. Away from these zeroBy| ~ 1. Describing solutions to (G.L.)
then typically consists in describing thiertex structureof the solutions,
i.e., to determine the number, degree and position of vortices.

The difficulty here is that without boundary conditions, there is no
a-priori bound on the number of vortices. Even if boundary conditions
are imposed, the problem of defining mathematically and describing the
vortex structure of solutions is not an easy one. This was done in [3] for
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the functional

1 1
Fa =3 [ 19ul+ 55 (1~ )’ (1.2)
2

supplemented by a Dirichlet boundary conditipnd2 — S*. There, a
vortex structure is shown to exist for minimizers (and even critical points)
of F(u) whene — 0. Moreover it is proved that there are exaafly=

| deg(g)|vortices, and their position is determined. In [5] the functional
(1.2) is studied withz,, set to zero and replaced by a gauge invariant
variant of the Dirichlet condition. There again the vortex structure is
shown to exist wher is small, and results similar to those in [3] are
obtained about the number and position of the vortices.

In [13,14] and [15], the second author studied minimizers of (1.1)
without boundary condition. For more details on the notations and
physical description of superconductors, we refer to [13] and the
references therein. Let us just say that it is observed that for small values
of the applied fieldk,.,, the material is superconducting everywhere
(there are no vortices), the magnetic field does not penetrate it and
approximately satisfies the London equation

—Ah+h =0 in $2,
{ + (1.3)

h=h, O0nJs2.

This state is called the Meissner state, corresponding to vortex-less
solutions in the terminology of [13] and [14], the corresponding solution
(u, A) to (G.L.) being called the Meissner solution. Fgt higher than
some critical valueH,,, the vortex-less solution is no longer energy
minimizing.

In [13], to replace the absence of boundary conditions and thus the
lack of a-priori estimates on the number of vortices, the functional
J(u, A) was minimized on a subdomain #f1(£2,C) x H(£2,R?).

More precisely, choosing some (large) numidr> 0, the minimization
was performed on

_ Lo L .22
D_{(u,A)’2(Z|Vu| + 5 (1) <M|Iogs|}, (1.4)

and the following theorem was proved:
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THEOREM 1 [13]. —There exisk; = 1/(2 max|&|), k5 = O.(1) and
k§ = 0.(1), such that

H., = kil|log | + k5,

and eg(M) such that fore < gq, the following holds

— if h,x < H,,, a solution of(G.L.) that is minimizing inD exists, and
satisfies} < |u| < 1;

—if H,, + k5 < h.x < H;, + O,(1), a solution of (G.L.) that is
minimizing inD exists, it has a bounded positive number of vortices
a? of degree one, such thdtst(a;, A) — 0 where

A={x €82 ||éx)|=maxél},

and3C > 0O, dist(a’, a;) > C fori # j, i.e., theg;’s tend to distinct
pointse A.

In addition, it is proved in [15] that the Meissner solution found for
hey < H,., still exists forh,, > H,, (even though it is then only locally
minimizing in D), and is unique among vortex-less solutions.

H,, is known as the first critical field. It is the value bf, for which
the energy of the Meissner solution becomes equal to the energy of a
single-vortex configuration. Here, we wish to know whether or not, for
hex < H,,, the Meissner solution is a global minimizer of the energy in
addition to being a minimizer id.

This question arises naturally for all the vortex solutions found in [13]
and [14] that are minimizers i, but that are all likely to be global
minimizers. However, the proof in [13] and [14] uses repeatedly the a-
priori bound on the number of vortices given by (1.4). Here, without this
upper bound, we are still able to prove a result about vortex-less solutions:

THEOREM 1. —There exists a valu#l =~ H., (more preciselyH =
H., + O(llog |log ¢l])), such that, for sufficiently smadl, if h., < H,
a globally minimizing solution ofG.L.) satisfies|u| > 3/4 on §2, and
coincides with the solution found in Theorérof [13].

Thus, we answer positively the question, though we have an impreci-
sion onH,, that we were not able to avoid.

In order to prove this theorem, we consider a minimizing solution
of (G.L.) and assume it has possible vortices. We use a technique of
R. Jerrard [7] to construct balB; = B(q;, r) of sizer ~ 1/|log ¢|* with
sufficiently higha, such that
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3
= - 2 B, 1.5
ul =7 on \L,J (1.5)
d; = degu, 9B)), (1.6)
F.(u, B) > 7|d;|log- (1.7)
&

where we use the notation

1r 1 2
R V) =3 [19aP+ 55 (1= luf?)”
\%4

The lower bound (1.7) was known to be true, see [Bjder some
assumptions on the restriction ofon d B;. Here, adapting slightly the
techniques in [7], we are able to avoid making these assumptions and to
construct these balls even though, in contrast to [13,14] and [15], their
number is not bounded a priori independently of

Then the key argument of the proof is to split conveniently the energy
in a way that is similar to, but slightly different from the one used in [13],
in order to obtain a lower bound of the energy@n | J; B;. Precisely, we
find that for a minimizer(u, A),

J(u, A) = Jo+2mhe Y difo(a) + > Fo(u, B)+0(1),  (1.8)

ase — 0. In the above expansios is roughly the minimal energy of

a vortex-less configuration; argg is a negative function depending only

on the domain? (see [13] or Section 2). Putting together (1.7) and (1.8),
and using the fact that the energy of a minimizer must be no greater than
Jo allows to conclude that vortices are not present, jfis less than some
number

H ~ ;llog el,
2max |§|
the right-hand side is precisely ti#&., computed in [13].

The idea is the same as in [13]: a vortex of degietcosts” almost
m|d||log €] to make (see (1.7)), while it can decrea@, A) by at most
ndh..&o(a;) (see (1.8)). Note that the choice o= 1/|log ¢|* for the
size of the ballsB; is dictated by the fact that it is the largest radius for
which we can prove that the expansion (1.8) is valid.

Of course, the structure of global minimizers flof, > H,., is still
open. We study them in [11], give an estimate on their energy, and
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we expect that the number of vortices is equivalenk tp as soon as
hex > H,.

2. PROOF OF THE THEOREM
2.1. Preliminary results and notations
We considenu, A) such that
J(@u, A)=inf{J(v,B) | (v, B) € H}(2,C) x HY(£2,R?}

By a standard argument, this infimum is achieved and yields a solution of
the Ginzburg-Landau equations. We recall that, as in [13], for a suitable
choice of gauge, did = 0, and there is a functiof € H2(£2, R) such

that

A=VYE=(-£,,&,), E£=00n3%, (2.1)
thus
h = AE, (2.2)
and
IVaul? = Vul? = 20, &ty — Equy,) + lul?| A%,
Our solution(u, A) is easily seen to satisfy

0
ou =0 onas2,
on

h =h, 0Nas2.

In the sequelC denotes any positive constant independent from
Since the value of,, computed in [13] is of the order dfog ¢|, we
will assume from now on that

hex < Cllog g]. (2.3)

Considering the London equation (1.3), we are led as in [13] to introduce
£o, the solution of

— A%+ A& =0 ing,
Aég=1 0nog, (2.4)
& =0 onoas.



E. SANDIER, S. SERFATY / Ann. Inst. Henri Poincaré 17 (2000) 119-145 125

The approximate minimal vortex-less configuration(ig = 1, Ag =
he.V+&p) and, as in [13], we let

h2
2

Jo=J (o, Ag) = — / VEol2 + | Akol2. (2.5)
2

Note that(ug, Ag) is only a solution to the second (G.L.) equation and
not to the first one, therefore it isot the Meissner solution. However,
it is proved in [13] that the infimum of the energy among vortex-less
configurations inD is Jo + 0(1) ase — 0.

As in [13], we decomposé as

g :heng"'{ (26)

so that
=0, A¢z=0 onas2.

We state some results borrowed from [13] that are going to be useful in
the sequel.

LEMMA 2.1.—Let(u, A) be a solution ofG.L.). The following holds

C
Vullpe2) < p (2.7)
V&l Lo2) < Chex. (2.8)
If (u, A) is in addition a minimizer of the energy, then
J(u, A) < Jo < Ch?,, (2.9)
I1Vull 2y < Chey. (2.10)

Proof. —All the assertions have been proved in [13] except the last one.
In view of (1.1) and (2.9),

/|vAu|2<Ch§x,
2

which is equivalent to

/ IVul? = 20iu, &vttn, — Evits—2) + 2 AP < CH2,.
2
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/ Vul? < ChZ, + ClIVE 1) + ClIVE 1@ | Vutll 2(0)-

Thus, in view of (2.8),
IVull22) < Chex. O

We then need to define the vorticesuolvith their degrees, by defining
balls (B;);cs, such thafu| > 3/4 on 22\ J,., B, andd; = degu, 0B;).
As already mentioned, we achieve this by adjusting a result of Jerrard
[7], to obtain the following proposition, the proof of which is deffered to
Section 3.

PROPOSITION 2.1. —Let u € HY(£2,C) such that||Vu| .~ < C/s,
andF(u) < Chfx. Then, for anyx > 0, there is angg > 0 such thatve <
go there exists a finite family of disjoint bali8;);<; = (B(a;, r;));e; SUCh
that

{x/|u(x)| <§1}CUBi, (2.11)

iel
Fe(u, B;) > m|d;|(|log ¢| — O(|log [log £1|)), (2.12)
whered; = deg(u, 9B) if B; C £2, andd; = 0 otherwise,

r; < Cllog e| ™, (2.13)

Card/ < Ch?.. (2.14)

Proof. —See Proposition 3.2.0

2.2. Splitting of the energy

Let
2=\JB.
iel
where{B;};¢; is the family of balls given by Proposition 2.1. Recall that
they have radi; less thanC|log ¢| =, wherex is to be chosen below.
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LEMMA 2.2. —We have following identity

1 1 1
é/|vAu|2:/ (E\vu—ivigu12+§h§x|vgo|2+hnggo.w>
2 2

+2mhex Y digo(a;) 4 0(D).

iel

Proof. —From (2.2) and (2.6),

\Vu — i Aul? = |V — ihey V' equ — iV cul
=|Vu —iVieul + h2 u)2| V|
+2(Vu —iV*teu, —ih, V*iEou). (2.15)

Moreover,

/ (Vu —iV*eu, —ih,, V*'&ou)

2
=/(w,—ih%vigou) +hex/|u|2vso.v;. (2.16)
2

2
To finish the proof of Lemma 2.2 we need the

LEMMA 2.3.—If o > 5,

/ (Vit, —ihey VVEEou) = 2he, > dio(a;) + 0(1). (2.17)

Q iel

Proof. —We start with the same method as in [13]. First,

< (CardD)h, || Vull 2 maxr; < Cllog e[,
IAS]

‘ / (Vi, —iho V> Eou)
Us:

where we used (2.3), (2.13), (2.14), and (2.10). It is here that the size of
the ballsB; is important. Then, letting2 = 2\ U, B;,

/ (Vit, —ihex Vo) = e / (1, Eo)nyity — (EO)xyng)-

ko) 2

Settingv = u/|u| and integrating by parts, we find, exactly as in the proof
of Lemma IV.3 of [13], that
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/ (iu, (fo)xZMxl - (SO)Xlu)Q)

2

= /(iv, dv A d&o) +0(llog | )
2

=Z/§o<iv, g-:) +o(lloge|™). (2.18)

"6133,-

We claim that, letting7 = {i € I/B; C 2},

VieJ, he | & <iv, Z—”) = 27 hoydiEola;) + O(Jlog €] 2). (2.19)
T

9B;

To prove this claim, we use the same proof as in [13] (Lemma IV.3),
different from that of [5] which does not adjust to a possible divergent
number of balls. Let

1
Ui = {x € B./lu| < 5}.

U; does not intersed@B; and by Stokes’ theorem

L Z (60— £ola) (iv,g—:) - [ (60— &otan) (iv, 3—:)‘

i

172
=] [ dzon v.av) <C||V§o||L°°ri< / |Vv|2>

Bi\U; Bi\U;
< Cllog gt
Hence, as > 5,
her | (80— &o(a))) (v, dv)

d0B;
=her | (0~ &o(a))(iv,dv) +o(lloge|?).  (2.20)
aU;
On the other hand,

iu,d
e [ (60— 0@ v, dv) = hev [ (0= o) 5

|u|?
aU; aU;
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But, by definition ofU;, |u| =1/2 on dU;, hence

hex / (80 — £o(a) (iv, dv)

B'U i

=4h,,

/ (80 — Eo(a)) Giu, du)

B'U i

/ dgo A Giu, du) + (8 — Eo(ar)) (idu, du)
Ui

=4h,,

< Chori |Vl 2 + Cheyri Vo 1 / IVul?
2

< Cllog e[*~ < o(|log e| ~?). (2.21)
Combining (2.20) and (2.21), we conclude that

hev | &o(iv,dv)=h,, | &(a;)(iv,dv)+o(|loge|~?)
/ /

= 27 hoydiEo(a;) + 0o(|log e]72),

and (2.19) is proved.
We now deal with the balls that intersec®2. We claim that

VieI\T, he / £o(iv, dv) = o(|log | ~2).

IBiNS2

The proof of this claim is almost the same as that of (2.19). Indeed, since
&=00n 08, lettingU; = B; N {|u| < 1/2},

hex / £o(iv, dv)

aB;N2

=h,, / £o(iv, dv) +o(|log e| 7?)
aU;NS2

/ dto A (iu, du) + Eo(idu, du)| = o(|log £|2).
U;N$

Using (2.18) and (2.19), the above claim and the fact that CagdCh?,
prove the lemma. O

= 4hex
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Proof of Lemma 2.2 completed Goembining (2.15), (2.16) and (2.17),
we are led to

2/|vAu| Z/WM—NWI +2 ex/|u| IVEo|2

ey / PV ELVE + 2hey S dio(ar) +0(D). (2.22)

iel

From the upper bound (2.9), we know that

1
—2/ —ul®)" < ChZ,, (2.23)
2
hence
1/2
2, [ (1= ) Vel < ca?, (/ e )
2 2
< Ceh3 <o),

and similarly

2
hex

/ (1- |u|2)V§0.V§‘ < Ceh <o(D).
2

With (2.22), the lemma is proved.O

LEMMA 2.4. —We have the following identity

1 2 2
5/(|h—hm| +2hex/|vso| +hex/vso Ve
2

2

=Jo+/|A§|2-
2

Proof. —Using the decomposition (2.6),

[ h=ha?=2)

2

= / |hexA$0 + A§|2 - 2hex(hexA$0 + A;)
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=hfx/ |A€o|2+/ IACIZ—ZhEX/AéoJFZhM AEgAL
2 2 2 2
_Zhex A{
2
But, from [13], Section 4 (using (2.4)),

[ 19s? + 18602 = [ Ao
2

2
and
/Vg.V§o+A§A,§0:/A§.
2 2
Therefore,
1
5/ 1 — hoe 2 — h2,) +2h§x/|vso| +hm/vsovz
2

h2
=—§/|vso|2+|Aso|2+/|A;|2
2 2

=Jo+/|A§|2-
2

This completes the proof.O

Combining Lemmas 2.2 and 2.4, we obtain the following expansion of
the energy:

J(u, A== /\vu—mvig\ + = (1 — ul?) +/|A;|

+Jo+ 2mh,y Zdifo(ai) +0(1). (2.24)
iel
Notice that this expansion is quite similar to that of [13], but the terms in
¢ are treated differently and gathered in positive expressions.
We need a last lower bound:

LEMMA 2.5. —

/yw—mvig\z /|Vu| +0(1).

Q leIB
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Proof. —Indeed,

/|w-mv%]2> / Vu —iuvie|?
@ Uies B
> / |Vu|2+yuvi;yz—z(w,mvig).
Uie; Bi
But,

< (Card) | V& || L~ I Vul| L2 maxr;

| / (Vu,iuv*e)
UielBi

< Cllog e[*~* =0(1),

similarly to the beginning of the proof of Lemma 2.3. Hence,

/]Vu—iuVLﬂz} / |Vul?+o0(1). o

$2 Uiel Bi

From this lemma, we deduce that

1 . 1.2 1 12
§/|Vu—luV Z| +?(1—|u|)
2

1 1 2
> Y [ Iul+ 451 lu?)

iel B;
> Fu, B (2.25)
iel

and this last expression can be bounded from below by (2.12).
2.3. End of the proof of the theorem

Considering our minimizing solution, we deduce from (2.24), Lemma
2.5, and (2.12), that

T(u, A) = Jo+27he, »  digo(a;)
iel

+7 Y _|di|(lloge] + O(|log |log £]])). (2.26)

iel
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On the other hand, by minimality,
J(u, A) < Jo,

thus, astg is negative,

7y |di|(llog e| 4+ O([log [log &[|)) < 2 hex Y _ di[Eo(ar)]
iel iel
<2nhe, (Y lail) maxiol
iel
If >, 1di] # 0, we deduce that
ox 2 (llog e| +O(|log |log ¢])) := H.

c1°

2max ||

But, in [13], H,, = ka|log €| + O(1) with

1
ki=5——,
2max |&|
thus
H! = H. +O(|log [log ¢||). (2.27)

Consequently, ifi,, < Hél’ we must haveld; = 0,Vi € I. Then, with
(2.24) and Lemma 2.5,

Jo=J(u, A) =Y F.(u, B}) + Jo+0(1),

iel
implying
> Fo(u, B;) <o(1). (2.28)
iel
We conclude thalu| > 3/4 in £2. Indeed, it is well known from [3] that
if lu(xg)| < 3/4, there exist constants p > 0 such that

Ve > 0, (1= [u]®)?>pn>0, (2.29)

g2
B(xq,A¢)

contradicting (2.28).
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Knowing thatu is vortex-less, one may re-use the computations of [13]
to find that

J@, A) = Jo+ F(u) + V() +o(D),

whereV(;) > 0. HenceF (1) < 0o(1), and by definition(u, A) € D. This
proves that fori,, < Hc/l, (u, A) coincides with the unique Meissner
solution found in [13] and [15].

The theorem is proved.

3. CONSTRUCTION OF THE BALLS

In this section, we use the method of R. Jerrard introduced in [7], in
order to construct balls containing all the zerospbn which we have a
suitable lower bound o, of the orderr|d||log ¢|. The size of the balls
has to be large enough so that most of the endtgis concentrated in
these balls, but it has to be smaller tHig |~ as we saw in Section 2.
We follow almost readily the proofs of [7].

3.1. Main steps

First, we include the setx/|u(x)| < 3/4} in well-chosen disjoint
“small” balls B; of radii r; > ¢ such that

Crri
FS(MsBi)> )
&

whereC; is a constant. This is possible according to the following lemma,
adjusted from [7]:

LEMMA 3.1.—-Letu:£2 — C be such thaiVu| < C/s. Then there
exist disjoint ballsB4, . .., By of radii r; such that

(1) V1<i<k, ri>e¢,
(2) {lul <3/4} cU; B; andV1<i <k, B; N{lu| <3/4} #0,
() V1<i <k,

Cyr;

Fe(u, BN §2) =

Then the proof involves dilating the balls; into balls B;. A lower
bound for F,(u, B}) is obtained by combining the lower bound for
F.(u, B;) and a lower bound of the energy on the annubisB;:
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LEMMA 3.2.-Vr > s > ¢, if B, and B, are two concentric balls of
respective radiir ands, and ifu : B,\ B, — C is such thatu| > 3/4, d =
deg(u, 0RB), then

Fou, BB > |d|<Ag<|;—|) - A<|51—|)> (3.1)

where A, is a function that satisfies the following properties
(1) A.(s)/s is decreasing ofR .,

(2) SURcR, Ag(s)/s < Cy/e,
(3) there existy, 1o > 0 such that ife < ¢g ande < r < 1o then

t
A1) —nlog—‘ <C.
&

Thanks to this lemma, if
,
F.(u, B) > m|d|log —, (3.2
&

whered = dequ, dB), andr is the radius ofB, if B’ is the dilated ball,
and if lu| > 3/4 on B/\ B;, then an estimate of the type (3.2) is still true
onB’.

Thus we start with the ballB; given by Lemma 3.1, then make them
grow progressively. Say the growth rate is governed by a parameter
thus construct a famil8(s) of disjoint balls. To keep this family of balls
disjoint, when some of them intersect, we merge them into a larger ball
of radius equal to the sum of the radii of the merged balls. If the growth-
rates of the balls have been properly synchronized, then the lower bounds
for the energy on each of the merged balls add up nicely so that a lower
bound of the type (3.2) is still true for the larger ball. We then resume the
dilation, etc., until we reach the size of balls that we wish.

The following proposition sums up the whole growth process:

ProOPOSITION 3.1. —Let u: 2 — C be such thatVu| < C/e; and
{B;}; be a family of balls of radii; satisfying the results of Lemn3al.
Let

g dequ,dB;) if B; C £2,
l 0 otherwise.
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Let also

so= min —.
{ild; 70} |d; |
Then, for everys > so, there exists a family3(s) of disjoint balls
B1(5), ..., Bis(s) of radii r; (s) such that
(1) the family of balls is monotone, i.e. sif< ¢ then

UBis) clJBi).

(2) for everyi, F.(u, B;(s)) = r;(s)A.(s)/s, where A, is defined in
Lemma3.2,
(3) if B;(s) C £2 andd;(s) =dedu, dB;(s)), thenr;(s) > s|d; (s)|.

We then get as a consequence the following proposition, that was stated
as Proposition 2.1 in Section 2, and which yields the final balls that we
needed:

PrROPOSITION 3.2. —Letu : 2 — C be such thatVu| < C/¢ and that
F.(u) < C|log ¢|?. Then, for anyx > 0 there exist disjoint ball§B;);.;
of radii r; such that, for sufficiently smadl

(1) {x/lu@x)| < 3/4} C Uier Bi,

(2) Cardl < Clloge|?,

(3) i< C/llogel®,

(4) if B; c £2 andd; =deg(u, dB), then

Fy(u, B;) > m|d;|(|log ¢| — O(|log |log ¢]|)). (3.3)

Proof. —We first consider the balls given by Lemma 3.1, and then
apply Proposition 3.1 to get bigger balls. We need to checkghatsmall
enough to be able to apply Proposition 3.1 fdlarge enough. Indeed,
S0 = MiN 4,20 (r; /d;), but from assertion (3) of Lemma 3.1,

Cir; <&F,(u, B;N 2) < Cellog ¢,

so thatso < Cellog ¢]2. We can thus apply Proposition 3.1 for al>
Cellog ]°. We choose in particular

1

= —. A4
||Og 8|0t+1 (3 )

§1
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Proposition 3.1 yields final ball8(s;) such that

- A,
Vi, if Bi(s1) C 2, F:(u, Bi(s1)) > (51)

r,~(s1), (35)

with
ri(s1) = s1|d; (s1)|. (3.6)

Therefore,
Fe (u, Bi(s1)) = Ay (s1)|d; (s1)

and from Lemma 3.2 (assertion (3)),

’

Fe(u, Bi(s1) = |d;(s1)] (nlogse—l — C)

> n|d;(s1)|(]log ] — O(|log |log ).

We thus have the lower bound (4) éh.
We then show that (3) is true. We know thfatu) < Ch?_ < Cllog ¢|2.
Combining this with (3.5), we get

Ag(s1)
S1

ri(s1) < Cllog ]2

But, asA,(s) >~ wlog(s/e), in view of (3.4),
A(s1) = m|loge| — O(]log [log ¢]|).
Hence, ife is sufficiently small,

§1

2 C  logel? C
ri(s1) < C llog e]” < < ;
Ae(s1) llog g|*** Jloge| ~ |log el
which is the desired estimate.

There only remains to show that (2) is true. This is easy since in
Lemma 3.1, each ball satisfi&s(u, B;N$2) > C1r; /e, withr; > ¢, hence
carries an energy that is bounded from below by a constant independent
from . As F, < C|log ¢|?, we see that the number of these balls has to
be bounded by |log |?. Then, the procedure of Proposition 3.1 does not
increase the number of balls, so that property (2) is true.
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3.2. Proof of Lemma 3.1

We use the notatiofi(x, r) for the circle inR? of centerx and radius-.
We begin with the following lemma, taken from [7]:

LEMMA 3.3.-Letu:S, — C, wheres, is a circle of radiust in R?
suchthat > ¢. Letm = ming, |u| and, ifm # 0, d =dedu, S;). Ifm =0,
letd =0. Then, assuming <m < 1,

d2 1— Co
2 (1—m)
t Cre

1 1
[ 5vu o1 iy NCNG
£

whereCs is an absolute constant.
Proof. —See [7], Theorem 2.1. O

We also have the following variant of Lemma 3.3 (Lemma 2.4 in [7]):

LEMMA 3.4.—If u: 2 — C, there existso(£2), C(£2) > 0 such that
Vx € 2,Ve <r < p, lettingm = ming,ng |u|,

(1-m)°

Fo(u,S,) 2
e, Sr) Co

(3.8)

Proof. —-See [7]. O

We then divide the proof of Lemma 3.1 in five steps.

Step 1 We wish to include{|u| < 3/4} in balls. Let Sy, ..., S, be
the connected components {0f| < 4/5} that intersect{|u| < 3/4}, and
x1 € S1,...,x; € S, be such thatu(x;)| < 3/4. Also, for everyi let

ri =sup{r > 0| S(x;,r) N{lu| <4/5} #0}.
We claim that

Fo(u,B(x;,r)N§2) > Clr".

(3.9)

Indeed from the hypothesi$Vu| < C/e, we get as in (2.29) that
F.(u, B(x;,r;) N §2) > C. Therefore ifr; < 2¢, the claim is true.

If r, > 2¢ then, from Lemma 3.4, a#r < [e,r;], Ming, ) [u| < 4/5
by definition ofr;,

Re!

Viele,ril, Fe(u, S(xi,0)N2) > —.
P
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We deduce that
Fo(u, 2N B(x;, 1)) > / Fo(u, 2N S(x;, 1)) dt

&

> C(ri—¢) > Cr;
€ €

’

proving the claim in this case also.

Step 2 For simplicity, we writeB; for B(x;, r;). We claim thatvi # j,
either B; C B; (in this case, we dro;) or x; ¢ B;.

Indeed, assume that; € B;. By definition of the ballsB;, 9B; N
UE S¢ =0, thus

S;=(S;NCB;)U(S; N By).

Sincex; € B;, S; N B; # 4§, using the connectedness$f S; C B;, and
we can dropB;.

The claim is proved.

Step 3Dropping the unnecessary balls, we reduce to tlisuch that

USiclUB: and Vi#j, x; ¢B;.
i k

It follows from the Besicovitch covering lemma (see for instance [17],
p. 44), anyx € |J B; belongs to at mosW of the balls, whereV is an
absolute constant.

Step 4 NamingC; the connected components bj; B;, this implies
that

) 1 r;

Vi FwC)>L Y RwBp>C Y 2
Jj/B;CCi Jj/B;CCi
diamc;

>C , (3.10)
&

where we have used (3.9).
Step 5Each(; can be included in a baB; of radius

r{ < diamC;. (3.11)
These ballsB; can be included in bigger balB the following way: if

B; and B’ intersect, we merge them into a ball of radius no higher than
r; + rj, etc., until all intersecting balls are merged. Hence, we are left
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with a family B;” of disjoint balls of radiir’. This family satisfies

> or (3.12)

Jj/B,cB]
As the(; are disjoint, we have

di ;
R B)> Y Racys> Y 29

. . &
Jj/CicB! Jj/CicB!

with (3.10). Using (3.11) and (3.12), we are led to

//

/
Fou,B)> Y C;f

j/CicB!

The family (B]) satisfies the desired conditions, hence the proof is
complete.

3.3. Proof of Lemma 3.2

Under the assumptions of Lemma 3.3,

Fou, S) > fs<|d|> (3.13)

where

ab
(a4 + b9)Ya’
and 0< ¢ < 1is a constant.

Indeed, using Lemma 3.3, we can bound the right-hand side of (3.7)
from below by

C
fols) = a(s) =m/s, b(s) = f

wld]  Co(l—m)C

(mc/) + ,

t &

where C’ = max(2, C,) > 2. This uses the fact that @ m < 1. Then
we minimize with respect ton € [0, 1]. This yields (3.9) withg =
1/(C'-1).

We then define

Ae(s) = min <f8(s), %), (3.14)
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whereC; is defined in Lemma 3.1 Also, we let

t

Ay (1) :/.)\S(s)ds. (3.15)

0

We prove the properties an,. (1) is true becausd, is the primitive of
A Which is easily seen to be decreasing. From this, we deduce that

Ag C
sup 2 5 0 <&,
seRy S &

so that (2) is true. There remains to prove assertion (3). Recall that

A (s) = h=—2.

&

b Cz
dt, wherea = ~

" a
0/ ((a/b)i + H)¥a

Denoting byC, C’ generic positive constants, d is large enough
(1+x9)~Y2 > 1 — Cx, whenever < 1/C. On the other hand, it is easy
to check that it > C’¢e, with C’ large enough, thea/b < 1/C. Thus we
may write

[a(a-ct )dt\/m /d

C’e

It is easy to check that

2
/;dl‘ < C
C/
and that

S

adt —mlogl| <, (3.16)
&

C'e
if s < 19. Finally, combining (3.16) with the fact that
C'e

/ks(t)dt <C,
0
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the assertion is proved.
From (3.13), (3.14), and (3.15), we deduce tat- s > ¢,

r g I3
Fg(u,B,)—Fg(u,Bs)>/Fs(“’St)d’>/'\s(m> &

»a(5)-4(3)

3.4. Proof of Proposition 3.1

The lemma is proved.

First of all, letting B(sg) be the family of balls given by Lemma 3.3,
we check that properties (2), (3) are verified foe so. Indeed, from
Lemma 3.1,

Crr;
&

Fe(u, BiN§2) =

while
A:6) _ Cu
N &
Thus, the second property is true. Property (3) results directly from the
definition of sg. Notice that{|u| < 3/4} is contained in the initial family
lg(SO).

Now we let/ be the largest interval containing such thatvs € I
there exists a finite family of disjoint ballS(s) verifying properties (1)—
(3) above. We already knowis not empty. We now prove thdtis open.

Supposdsg, s1] C I. We wish to define a familys(¢) for 7 € [s1, s1 +
a], for somex > 0. Three cases occur.

Case 1 For the family5(sy), all the inequalities in (3) arstrict, i.e.,
ri(s1) > s1ldi(s1)|, Vi such thatB; C £2. In this case we le; (1) =
B;(s1), i.e., we do not change the balls. This defines a farfiily) of
disjoint balls that verifies (1) trivially, (2) also since—by Lemma 3.2—
A (t)/t < A (s1) /sy for t > s1. Finally (3) is verified at least when
t € [s1, 51 +a], @ > 0 not too large.

Case 2 There is equality in (3) for, say, balB,(s1), ..., B¢(s1), but
all the balls have disjoint closures. In this case the faBily) for ¢ > s,
is defined by:

— TheballB;(r), 1 <i < £ hasthe same center BSs1) and its radius
r;(t) is such that; (t) = r|d; (t)| = t|d; (s1)|, as long asB; () C £2,
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which is true when € [s1, s1 +a], a > 0 not too large. (The degree
remains constant ds| > 3/4 onB(¢)\B(so), Vt > sg.) In particular
the balls argrowing

— The other balls remain unchanged.

The balls defined this way remain disjoint for> s; not too large.
Property (1) obviously is still true, (3) also. Property (2) remains true
in an obvious way for the static balls, as (s)/s is decreasing. For the
increasing ones, we just use Lemma 3.2, which yields

Fs(u, Bl(l)>
> F.(u, Bi(s1)) + Fe (u, Bi(t)\Bi(s1) )

>rio0 2 )|< <|:1(<2|) _A<|:1$)>|)>

But, we know that for the growing balls, we haxés,) = s1|d; (s1)|, and
r;(t) = t|d; (¢)|. Hence, with the constancy of the degree,

s(sl) 'v(t) l(sl)

Fe(u, Bi(1)) > ri(s1) Ag (1) —

Ag(s1)

> () 8(”

Case 3 There is equality in (3) for some of the ballsfiis,) but, say,
B1(s1) N Ba(s1) # @. Then we modify the family5(s,) as follows: group
B1(s1) and B,(s1) into a single larger balB of radiusry(s1) + r2(s1). If
B intersects, sayBs, enlarge it so thaB; U B, U Bz C B and the radius
of Bisr =r1 +ry+r3, etc.

Thus, we have a hew family of bal% (s;) whose closures are disjoint,
such that the union of the balls in this family contains the ball8@f),
that verifies properties (2) and (3). This last statement is obviously true
for the balls that have not changed in the process. We verify it for a ball
B € B/(s1) that results from groupin@, ..., B, € B(s1).

— Property (2) is verified since

¢ ¢
Fa(%B)?ZFg(u,B,’)?(Z )A(m p A1),
i=1

— S1
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— If B c 2 and deg(u,dB)=d # 0 thend =Y, d;, whered; =
dequ, 0B;). Thus

r r

— 2= =1
ld] ™ > a0 1di]

since for everyi such thatd; # 0, r; > s1|d;|. Thus property (3) is
verified. Ifd = 0, then the property is empty.

Now, to define3(¢) for r > s; we start from3’(s1), and use case 1 or
case 2.

It remains to prove that the intervdl is closed. Indeed, suppose
[s0,s1) C I and thatB(s) is defined on this interval by the above
procedure. We wish to definB(s;). First note that since the number
of balls in B(s) is nonincreasing, and since there is initially a finite
number of them, the number of balls is constant on some interval
[s1 — a, s1). On this interval, the ball®,(s), ..., B.(s) are well defined,
have their centers fixed, their radius increases continuously swiimd
their degreed; (s) = deg(u, dB(s)) is constant fors € A. Then we let
B;(s1) = U,ea Bi(s). This defines a familyB(s1) of disjoint balls that are
easily seen to verify properties (1), (2). For (3), note thatde®B; (s1))
is either equal t@/; (s), s € A if B;(s1) C £2 orto 0. In any case, (3) will
be verified.

The proposition is proved. This completes all the proofs.
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