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ABSTRACT. - In this paper, using global variational methods, we prove
existence and multiplicity results for geodesics joining two given events
of a product Lorentzian manifold Mo x R, where Mo is a complete
Riemannian manifold.
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RESUME. - Dans cet article, avec des methodes variationnelles globales,
on demontre des resultats d’ existence et de multiplicite de geodesiques
joignant deux points dans une variete de Lorentz Mo x R, ou Mo est une
variete de Riemann complete.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let M be a Lorentzian manifold, i. e. a smooth manifold equipped with
a non-degenerate symmetric (0,2)-tensor field g (z) ~- , -~ (z E .I1~!) having
index 1. (This means that every matricial representation of g has exactly
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28 F. GIANNONI AND A. MASIELLO

one negative eigenvalue). The points of M are called events. A geodesic
on M is a smooth curve ~ : [a, b] -> M solving

where a  b e R, ~y (s) is the derivative of ~y (s) and DS ~y (s) is the
covariant derivative of 03B3 (s) with respect to the metric tensor g.

It is well known that a geodesic is a critical point of the "energy"
functional

and, is a geodesic on M , there exists a constant E, e R such that

A geodesic 7 is called timelike, null or spacelike if E-y is less,
equal or greater than zero respectively. In General Relativity a timelike
geodesic represents the trajectory of a free falling particle. Null geodesics
represent the light rays, while spacelike geodesics have a more subtle
interpretation: for a suitable local observer they represent "Riemannian"
geodesics consisting of simultaneous events.

During the last few years, the existence of geodesics joining two given
events in static and stationary Lorentzian manifolds, has been widely studied
by global variational methods (cf. [2] and references therein).
The aim of this paper is to prove, always by global variational methods,

existence and multiplicity results for timelike and spacelike geodesics
joining two given events of a product Lorentzian manifold Mo x R, in
general situations in which the Lorentzian metric of M depends on the
time variable and has mixed terms.

The results of this paper are different from those of [3] (where the
case without mixed terms is considered) and are obtained using different
methods. In particular we get a priori estimates for the critical points of
the energy functional, using suitable test functions in the weak equation of
the critical points and, using the relative category (see [6]), we get also a
multiplicity result for timelike geodesics.
One of the main difficulties of a global variational approach to the

problem is the study of the Palais-Smale compactness condition (cfr
Definition 2.1) for the energy integral f. We bypass this difficulty having a
set of assumptions which allow to get a priori bounds for the critical points
and the Palais-Smale condition, for a suitable penalization functional of f.
The proofs of the existence results use a Saddle Point Theorem which

is a slight device of the classical Saddle Point Theorem of Rabinowitz
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29GEODESICS ON LORENTZIAN MANIFOLDS

(cf. [15]), while the multiplicity results use the topological concept of
Relative Category (cf [4], [6], [7], [17]).

Relative category gives a topological approach which seems simpler
than the relative cohomology used in [1] to get infinitely many spacelike
geodesics joining two given events, and it allows also to obtain a multiplicity
result for timelike geodesics.

Let Tz M = Tx M o x R be the tangent space to M at z = (x, t). Assume
that the metric tensor g on M , for any ( = (~, T) E Tz M , has the form

where (- , -)x is a Riemannian metric on (z) [.] = a (x, t) [.] is a

smooth, symmetric, positive linear operator on Tx is a smooth vector

field and ~3 is a smooth, positive scalar field. Denote by at, bt and ,~t the
derivative with respect to the variable t of a, b, ,~3 respectively.

In order to get a priori bounds on the critical points of the energy
functional we shall make assumptions on g (on the compact subsets of R,
globally and at infinity) as follows.

Define

Moreover set
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30 F. GIANNONI AND A. MASIELLO

The global assumptions on g are the following:

(Mo, ( ~ , ~ ~ x ) is a complete Riemannian manifold,

About the behavior of g (x, t) on the compact subsets of R we make
the following assumptions:

A+, A- , D and B are bounded on the compact subsets of IR, (1.5)

A first reasonable assumption about the behavior of g at infinity is the

following:

As observed in Remark 3.5, assumptions (1.2)-(1.6) are sufficient to

prove a priori estimates about timelike geodesics. Unfortunately they are
not sufficient to prove a priori estimates for spacelike geodesics having
energy bounded from above, that we need for the study of the geodesic
connectedness (also (1.2)-(1.7) are not sufficient). Indeed the a priori
estimates (for spacelike geodesics) do not hold for the Anti-de Sitter

space-time, i.e. ~-/ 2, [ with the Lorentz metric

But, by a suitable change of variable, the Anti-de Sitter space-time becomes
R~ with metric

which satisfies assumptions (1.2)-(1.7).
Therefore, in order to study the geodesic connectedness of M and the

multiplicity of spacelike geodesics we reinforce (1.7) in the following way:

In order to prove existence and multiplicity results we also need

some assumptions assuring the topological nontriviality of the sublevels
of the energy functional. To this aim we assume that there exist
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31GEODESICS ON LORENTZIAN MANIFOLDS

The first result concerns the existence of a timelike geodesic joining two
given events. Let zo = (xo, to), zi = t1) E M and

We shall prove the following:
THEOREM 1.1. - Let (M , g) satisfying (1.2)-(1.7) and (1.9). Assume that

where

Then there exists a timelike geodesic in M joining zo and zl.
About the geodesic connectedness of M we have

THEOREM 1.2. - Let (M , g) satisfying (1.2)-(1.7), and ( 1.8)-( 1.9). Then
M is geodesically connected, i.e. for every zo, zl E M there exists a

geodesic in M joining zo and zl.
Theorem 1.2 does not generalize Theorem 1.1 of [3], only because of

the assumptions of Indeed here we assume 0, while in
[3] it is assumed {3t bounded.

Since (Mo, ( ~ , ~ ~ x ) is complete, the uniform estimates in x of assumptions
(1.3), (1.5), and (1.6) imply that M is globally hyperbolic (for the definition
cf. e.g. [12]). Then by a theorem of Geroch (cf. [8]), there exist coordinates
such that M is a product manifold with metric tensor g in (1.1) having
b - 0. However in our proofs we can not use the Geroch result to reduce
us to the case 8 == 0, because it is not known how the coefficients a and
~3 become after the change of coordinates.

Vol. 12, n° 1-1995.



32 F. GIANNONI AND A. MASIELLO

Eventhough in our case M is globally hyperbolic, our results are

motivated by the fact that, as far as we know, on globally hyperbolic
Lorentz manifolds only existence results for time-like geodesics have been
proved (cf. [2]), while here we deal also with multiplicity results about
timelike geodesics and existence and multiplicity results about spacelike
geodesics. Moreover it is physically relevant to consider product Lorentzian
manifolds not satisfying (1.2) (cf e.g. [9] for Lorentzian stationary product
manifolds), and therefore not necessarily globally hyperbolic, and we hope
that the techniques used here (in particular the a priori estimates for the
critical points of f, based on the choice of suitable test functions) can be
useful in many cases.

Whenever Mo has a rich topology multiplicity results for spacelike
geodesics and timelike geodesics joining two given events hold.

THEOREM 1.3. - Assume that (M, g) satisfies (1.2)-(1.7), and (1.8)-(1.9)
and Mo is not contractible.

Then there exists a sequence of spacelike geodesics joining za
and z1 in M such that

THEOREM 1.4. - Assume that (M, g) satisfies (1.2)-(1.7) and ( 1.9), and
denote by N (xo, x1, to, tl) the number of time like geodesics joining to)
with (x1, tl). Moreover assume that Mo is not contractible. Then, for any

E Mo,

The paper is organized as follows. In section 2 we describe the functional
tools used for the proofs of the theorems above. In section 3 we prove the
a priori estimates for the critical points of the energy functional and the
Palais-Smale compactness condition for a suitable penalization of such a
functional. In section 4 we prove Theorems 1.1 and 1.2, while in section 5
we prove Theorems 1.3 and 1.4.

2. TECHNICAL PRELIMINARIES

Let M = Mo x R and g as in (1.1) with (Mo, (-, .)x) complete,
connected Riemannian manifold. By the well known embedding Theorem
of Nash (see [11]) we can assume that Mo is a submanifold of (with N
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33GEODESICS ON LORENTZIAN MANIFOLDS

sufficiently large) and ~ ~ , ~ ~ x is the Riemannian structure on Mo inherited
by the Euclidean metric of 
We shall prove Theorems 1.1-1.4 by looking for critical points of the

energy functional

(where (., .) denotes the Euclidean structure of ~~) on the set of the

sufficiently smooth curves joining zo = (xo, to) and 2~1 = (xl, tl). More
precisely set

It is well known that SZ1 is a smooth, complete Hilbert manifold (cfr e.g.
[16]) with Riemannian structure given by

(where V~ denotes the covariant derivative with respect to the Riemannian
structure (. , .)), while the tangant space to 521 at x is given by

where is the tangent bundle of Mo.
Moreover W~ (R, to, ti) is an affine manifold, that we equip by the

Riemannian structure

Vol. 12, n° 1-1995.
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and whose tangent space is

We shall look for critical points of the functional (2.1) on the Hilbert
manifold

Using the Young inequality in R (to control the effects on the weak
equation satisfied by the critical points of f due to the mixed term

(6 (x), a;~ t), classical regularization arguments show that any critical point
of f on Z is a (smooth) geodesic in M joining zo = (xo, to) with
zi = (xl, tl).

Consider now a functional I e C~ (X, R) where X is a Hilbert manifold.
Let c E R. We recall the following

DEFINITION 2.1. - I satisfies (P.S.)c on X (the Palais-Smale condition at
the level c) if any sequence C X such that

has a converging subsequence (in X).
The following classical Deformation Lemma (cfr. e.g. [13], [15]) is

needed to prove the next Lemma 2.3.

LEMMA 2.2. - Let X be an Hilbert manifold, I E C2 (X, I~) and c E (~.
Assume that I satisfies ( P . S . ) ~ on X.

Then, if c is not a critical level of I (i.e. I’ (x) ~ 0 for any x E (c) ),
there exist numbers 0  S1  b2  b and a homeomorphism r~ : X -~ X
such that

and

The following Lemma on the existence of critical points (which will be
used to prove Theorem 1.1 ) is a slight variant of a well known Saddle Point
Theorem of Rabinowitz (see [14]). The proof is based on Lemma 2.2 and
it is the same of Rabinowitz Theorem.

LEMMA 2.3. - Let X = SZ x H where SZ is a complete Hilbert manifold and
H is an affine space with dim H  +00. Let I E C2 (X, R). Assume that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(i) there exist ~ E SZ, e E H and an open neighborhood U of e in H
such that

(ii) I satisfies ( P . S . ) ~ on X for all c E b2 ~ .
Then I has a critical value c E ~b2, sup I] and c can be characterized

(x~ U>
as follows:

Then

Actually we do not know if f satisfies the Palais-Smale condition. For
this reason, we consider, for any e G 0, 1] a penalized functional defined
as follows.

Let x E C~ (R, [0, 1]) such that x (Q~ = 0 for any cr ~ 0, x = 1 for

any 0- ~ 1 and x’ (cr) > 0 for any 0- e 0, 1 [. For any e > 0 set

(which is finite by (1.5) and (1.6)), and

Moreover consider

and for any ~ > 0 set

Finally, for any c > 0 define the penalized functional

Vol. 12, n° 1-1995.
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In section 3, the Palais-Smale condition for the functional (2.11) and a

priori estimates (independently of c) on its critical points will be proved.
The following properties of the function ~ (a) will be used:

for every p > 0, there exists two positive constants ap and bp, such that
for every 03C3 ~ 0:

for every s E R+:

3. PALAIS-SMALE CONDITION AND A PRIORI

ESTIMATES FOR THE FUNCTIONAL (2.11)

We begin this section studying the Palais-Smale sequences for the

functional fe.

PROPOSITION 3 .1. - Let M = x (~ and g as in ( 1.1 ). Assume that

( 1.3)-( 1.7), are satisfied. Let {zn}n~N C Z such that

and

where ( 03B6~2 = 03BE, 03BE>1+ t, t>1, ~n n 0+ and C is a constant independent
of n .

Then, 10 xn, xn> ds and 10t2n ds aYe bounded independently of n.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Let

and

By (3.2)-(3.5), since Tn E 

Now by (1.5) and (1.7) there exists A > 0 (independent of n) such that

Moreover, by (1.5)-(1.7), there exists D > 0 such that

where 80 is defined at (1.6), while by (1.5) and (1.6), there exist m~ and
M~ such that

Vol. 12, n° 1-1995.
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Therefore

Now, by (1.3) and the Young inequality,

Annales de l’Institut Henri Poincaré - Analyse non 
linéaire
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and

hence there exists a positive constant Ni (independent of n) such that

Combining (3.6), (3.7) and (3.8) gives

Vol. 12, n ° 1-1995.



40 F. GIANNONI AND A. MASIELLO

Now, by (2.11),

for any positive real number r~ and for a suitable positive constant N2
independent of n and ~.

Therefore, by (3.10), (1.3) and (3.1), choosing such that

gives,

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Combining (3.9) and (3.11) gives

Since

and is bounded, (3.12), (2.14) and (2.15) imply that 10 tn ds is

bounded independently of n. Moreover by (1.5), (3.1), (2.11), and (1.3)
also 10 xn, xn> ds is bounded independently of n. D

Proposition 3.1, and standard arguments (cf e.g. [1], [9]) allows to get
the following

PROPOSITION 3.2. - Under the assumptions of Proposition 3.1, if ( 1.2)
holds, then f ~ satisfies (P.S.)c for any c and for any e > 0.
Now we shall prove the a priori estimates on the critical points of f ~

starting with an a priori estimate in L°° for the time variable.

PROPOSITION 3.3. - Let M = Mo and g as in ( 1.1 ). Assume that
( 1.2)-( 1.6) and (1.8) are satisfied. Let z = (x, t) - z~ _ te) be a

Vol. 12, nO 1-1995.
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critical point of f ~ such that

where C is a constant independent of e.
Then t (s) == tê (s) is uniformly bounded on e > 0 and s E [0, l~ .
In order to prove Proposition 3.3 the following Lemma is needed.

LEMMA 3.4. - Let ~p E C1 (R+, R+) and L > 0 such that

and

Let t E I~+ and consider

the following inequality holds :

where ~9 is a positive number such that

Then there exists a constant S _ S (p, L, ~, t~ such that

Proof. - Set, for any t E r (~, c.p, f),

Assume, by contradiction, that there exists {tn}n~N c r (, 03C6, t) such that

and let [an , bn~ be an interval satisfying the properties in (3.16). By (3.14),
Holder inequality and (3.16),

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Therefore, by (3.19) and (3.17) we get a contradiction, proving (3.18). D

Proof of Proposition 3.3. - If z = (x, t) - z~ _ t~) is a critical

point of f~, it satisfies the differential equation

where 0 is the null vector in Tx Mo and I is the second derivative of t.
Multiplying by i and integrating give the existence of Ez such that

where

Moreover, integrating (3.21) in the interval [0, 1], give

By (1.8), for any ~c > 0, there exists t+ = t+ > max (to, t1) such that

Vol. 12, n° 1-1995.
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If, by contradiction, tf: is not uniformly bounded from above, there exist a
critical point (x, t) - (~~, tf:) of f ~ and an interval I C [0, 1~ , such that

Now, by (2.9),

Then putting, in (3.3),

(where 03C9 E R+B{0}), (3.23) give

Now, by (3.21) and (3.22),

Combining (3.26) and (3.27) gives

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Therefore, by the choice of

Moreover, by (1.3)

Then, since

choosing 03C9 such that

(3.28), and (3.29) give

hence by (3.13), (1.4), and the choice of ,~~ [cf. (2.9)], if

we have

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Finally by (1.8),  and 03C9 can be chosen so small that

hence, by Lemma 3.4, t is uniformly bounded from above

(independently of ~) . Analogously the uniformly boundeness from below
can be obtained using the analogous of Lemma 3.4 in concluding the
proof of Proposition 3.3. D

Remark 3.5. - By the proof of Proposition 3.3 it turns out that the a

priori estimate in L°° for the timelike geodesics requires only assumptions
(1.7) instead of (1.8), because, in this case, C  0.

Moreover, about the geodesic connectedness, it is clear that (1.8) can be
weakened, asking that the constant in (1.8) are small with respect to the
smallest critical level C of the energy functional.

PROPOSITION 3.6. - Let =Mo x R and g as in (1.1). Assume that
(1.2)-(1.6) are satisfied. Let z = (x, t) - z~ _ (x~ , tt:) be a critical point
of f ~ such that

where C is a constant independent of ~, and

t~ is uni f orml y bounded (independently o~ ~) . (3.32)

Then ds, and 10 t2~ ds are bounded independently of ~.
Proof. - Consider

where t* is defined by (3.4) and 03C9 e R+B{0} will be chosen later. By
(3.32), (1.5), (1.6), and the definition [cf. (2.9)], choosing in formula
(3.3) T as defined in (3.33), give the existence of A, Di, B1 E R+ such that

Vol. 12, n° 1-1995.
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Combining (3.27) and (3.34) gives

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Since

1

obviously we can assume that ~ t2 ds is large as we want. Then, (3.14),

(3.35) and {3.36) give

Moreover by (3.32), (1.5), (1.6) and (1.3), there exists a positive constant
D2 such that

Vol. 12, n ° 1-1995.
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for any > 0, while by (1.3)

Then, since

choosing r~l such that

and w such that

(3.37), (3.38) and (3.39) give

Now, by (3.32), (1.5) and (1.6) there exists a positive constant B2 such that

therefore,

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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for any r~2 > 0, and, choosing r~2 such that

[cf. (1.4)], and 03C9 such that

combining (1.4), (3.40) and (3.41), gives

Therefore by (3.31) there exists a real constant

such that

Finally, by (3.32) and (3.42), since cosh ~ 1 for any o-, there exist a

constant H independently of e such that

Moreover, (2.11), (3.32), (1.3), (1.5), (1.6), (3.33) and (3.43) imply also

that 10x, x) ds is bounded independently of ~. 0

Remark 3.7. - By remark 3.5 and Proposition 3.6, the a priori estimates
in for timelike geodesics can be obtained assuming only (1.7) instead
of (1.8).

Remark 3.8. - By the choice of ~~ [cf (2.10)], under the assumptions
of Proposition 3.6, if z~ is a critical point of fe and e is sufficiently small,
then Ze is a critical point of f.

Vol. 12, nO 1-1995.
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4. PROOF OF THEOREMS 1.1 AND 1.2

Since the functional f ~ is unbounded both from below and from above, to
overcome these difficulties we shall use a finite dimensional approximation
on the space of the time variable.

For k ~ N we set

where t* (s) = Wk, o = span ~sin q= 1, ..., 1~~.
Following the proof of Proposition 3.1 and the ideas of the proof of

Lemma (3.4) of [1] give the following result which allows us to look

for critical points of f ~ on a manifold which is finite dimensional in the
variable t.

LEMMA 4.1. - For any k ~ N let zk G Zk be a critical point of 
Assume that there exists c1, c2 E R, independent of k such that

Then contains a subsequence which converges in Z to a critical
point z of f ~ and

Remark 4.2. - By the same proof of Propositions 3.1 and 3.2 we see that
for all c E R and for all kEN, satisfies (P . S . ) ~ .
Now we are ready to prove Theorem 1.1.

Proof of Theorem I .1. - Fix and put f/ = where Zk is

defined by (4.1). By assumption (1.10) there exists x E QI, Ai, ~2 > 0
(independent of k ~ N and E ] 0, ~0], co > 0) such that

while

Moreover by (2.11 ) and assumption (1.9), there exist an open subset Ak
of Wk such that t,~ E Ak and

where ~2 is defined at (4.3).

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Then assumption (i) of Lemma 2.3 is satisfied with e = t*, bi 
-~2, b2 > -~2 and U = Ak.
Moreover, by Remark 4.2, also assumption (ii) of Lemma 2.3 is satisfied.

Then, by Lemma 2.3, for all k E N, f/ has a critical point Zk == tk)
in ,~~ such that

with Ai and A 2 independent of k and c.

Therefore, by Lemma 4.1, f~ has as critical point z~ in Z such that

Finally, Remarks 3.7 and 3.8 gives that, for c small enough, z~ is a critical
point of f, i.e. a geodesic joining the given events zo and zi , such that

This concludes the proof of Theorem 1.1. D

Proof of Theorem 1.2. - The proof of Theorem 1.2 is the same of

Theorem l.l taking account of Propositions 3.3, 3.6 and Remark 3.8. D

5. PROOF OF THEOREMS 1.3 AND 1.4

In order to get the multiplicity results we use the concept of Relative
Category (cf. [4], [6], [7], [17]), which is an extension of the classical

Lusternik and Schnirelmann category (cf e.g. [ 16]). We recall the definition
for the convenience of the reader.

DEFINITION 5.1. - Let X be a topological space, A, Y subsets of X,
A ~ ~ . The relative category of A in X, with respect to Y [denoted by

p

cat x, y (A)] is the smallest integer p (possibly -f-oo) such that A ~ ~Ai
i=o

where the Ai ’s have the following properties:

Vol. 12, n° 1-1995.
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there exists h E C° (~0, 1~ x Ao, X) such that

Remark 5.2. - If Y is a strong deformation retract of A, then

catx, y (A) = 0.
Remark 5.3. - If Y = ~, catx, y (A) is the Lusternik and Schnirelmann

category of A in X.

Remark 5.4. - The use of Relative Category, together with a

Galerkin approximation argument is used in [6] to get interesting
results about multiplicity results of critical points for strongly indefinite
functionals. Unfortunately, to prove Theorem 1.3, we can not directly apply
Theorem 6.3 of [6] for four reasons. First in our case assumption 6.3 b)
does not hold. Secondly the presence of the penalization term in (2.11)
requires estimates independently of c on the critical levels. Moreover we
also need a sequence of critical values of the functional (2.1) going to
+00 and we can not, in general, use the cuplenght of S21 to estimate the
relative category. Indeed, whenever Mo is not contractible it is not known,
in general, if the cuplenght of 03A91 is infinite.

For any k E N, we use the relative category on the manifold

[cf. (4.1)], to get multiple critical levels for the functional

Fix k ~ N and, for any R > 0, put

[where t* is defined at (4.1)]. Moreover, for any ~c E R, put

Assumptions (1.3), (1.5) and (1.6) imply that

The constant d plays a crucial role in the proofs of Theorems 1.3 and 1.4,
and, in particular in the definition of the following class of subsets of Z k .
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For any m ~ N, k ~ N, R > 0 and ~ ~ ] 0, 1], put

The following Lemma holds:

LEMMA 5.5. - Assume M0 non contractible and I-connected. Then for
any there exists a compact subset Km of Zk and Rm > 0 such that

Proof. - Fix Let D~ and be the unit disk in Wk and its
boundary respectively. Since Mo is not contractible and 1-connected, by
a recent of Fadell and Husseini (cf [5]), there exists Cm, compact subset
of x D ~ such that

Now let

Moreover, by assumptions (1.4) and (1.9) and the compactness of Om,
there exists Rm (independent of k and ~) such that

concluding the proof of lemma 5.5. D

We shall need the following Lemma about the invariance of the class
(R, c) with respect to the flow generated by the curves of maximal

slope of the functional f ~ .

LEMMA 5.6. - Let (R, c) 7~ Q.~ and c be a regular value for f , c >_ d
[cf (5.5)].

Vol. 12, n° 1-1995.
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Then there exists ao = ~o (c) > 0 such that for any a E ~0, ~o~ there

exists a homeomorphism ~~ : Zk, satisfying

and,

Moreover, for any B E T,n (R, ~),

Proof. - Since c is a regular value for f ~ and (P. S.) c holds, there exists

uo E 0, 1/4 [, such that [c - c + consists of regular values for f~.

Now let a ~] 0, 03C30 [ and let 03A603C3 be the homeomorphism given by the

solution (at the instant 2 a) of the Cauchy problem

[i.e. (z) (2 r, z)], where x. is a Lipschitz continuous real function

with values on [0, 1], such that x~. (s) = 1 if s E ~c-o~, and x~ (s) = 0

if [c - 2 ~, c+ 2 ~] (cf [15]). Clearly satisfies (5.11)-(5.13).

It remains to prove (5.14). To this aim let Ao, ..., Ak be closed 
sets

covering ~Q B , satisfying (5.1)-(5.3), and consider Bo = (Ao) n

B, ..., (Ak) n B. Clearly, Bo, ..., Bk are closed subsets

covering B and satisfying (5.1)-(5.2). Then it remains to prove that Bo

satisfies (5.3).
Towards this goal, note that by (5.13) and (5.6), (setting Y =

S~1 x B~ (R)) ~

Then, if h : [0, 1] x Ao ---~ .~~ is the homotopy satisfying (5.3) relatively
to An, h : fO, 11 x Bo --~ Zk, defined by

satisfies (5.3) relatively to Bo. [cf. (5 .11 )-(5 .13)] . 0
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Now for any ~ ~] 0, 1], 1  k E 1  m E define
,_ , _

where rm = rm (Rm).
The following Lemma holds.
LEMMA 5. 7. - Assume M0 non contractible and 1-connected. Then

(i) c~ (m) > d, for any ~, k, m, where d is defined at ( 5.5
(it) there exists two positive real constant al , a2 such that, for anyc E ~, there exists m~ E ~I, such that

where ~ is defined at (1.3).
(iii) there exists c (m), independent of k and ~ such that

Proof - If, by contradiction, ck~ (m)  d, by (5.17) and (5.5) there existsB ~ r~ (R, e) such that B n {(~, ~) : ~ e = 0. Then

proving (i).
Fix c e R and put

~

and

Let B E r~ (R, e). Suppose

Then

and, since catzk, 03A91 Bk R> (Zk)((z, t*), z e 03A91}) = 0, if B satisfies(5~j8), 
’ 

’

Vol. 12, n ° 1-1995.



58 F. GIANNONI AND A. MASIELLO

Moreover by a well known result EC is a strong deformation retract of

a finite dimensional manifold whose dimension depends on c (cf. [10]).
Therefore by the properties of the Lusternik and Schnirelmann category
(cf. e.g. [16]) there exists me such that

Then by (5.18) and (5.19), if m > me,

hence, [by assumptions (1.3), (1.5), (1.6)], there exists two positive real
constant al and a2 such that

Therefore, for any B e T m ( l~, ~) ,

proving (ii).
In order to prove (iii) choose B = Km and Cm as in Lemma 5.5. Then

by (5.17) and (5.4)

where TFi is the projection on SZ 1. Therefore, (since Cm is compact) by (1.4)
and (1.9) we get (iii), because t - t* E Wo ’ 2 and, in (1.9),  2, ~yl  1.

Since (R, 6-) C (R, 6-), (iv) follows immediately. In order to

prove (v) assume by contradiction that c~ (m) is not a critical value of f ~ .
Then, since c~ (m) > d, we can use Lemma 5.6 with c = c~ (m).
Now let B E r~ (R, 6-) such that
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If a- is sufficiently small, by Lemma 5.6, E rm ( R, ~ ) , in

contradiction with (5.27), because sup f~ (I> 0" (B))  ck~ (m). D

Now we are finally ready to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. - Assume Mo 1-connected. Choose c such that

and me as in (ii) of Lemma 5.7.

Then, by (v) of Lemma 5.7, c~ (me ) is a critical value of f/ . Moreover
by (iii) of Lemma 5.7, and Lemma 4.1, there exists a critical point z~ of
f E: such that

Finally by Proposition 3.6, if ~ is sufficiently small z~ is a critical point
of ~~. (cf also Remark 3.8), such that

giving the proof of Theorem 1.3 when is simply connected. If the
fundamental group of is finite, the proof of Theorem 1.3 can be got
using the universal covering, while if it is infinite the proof can be got
working on the connected components of SZ1 which are infinite. D

Proof of Theorem 1.4. - Recalling the conclusion of the proof of
Theorem 1.3 we can reduce ourselves to prove Theorem 1.4 whenever

Mo is 1-connected. The same proofs of Propositions 3.1 and 3.2 and
Lemma 4.1 show that f~ satisfies the following condition of Palais and
Smale (uniformly with respect to k) at every level c E R (cf [6]):

possesses a subsequence which converges in Z

to a critical point of f~ .

Fix m ~ N and let Km as in Lemma 5.5. The proof of (iii) of Lemma 5.7
shows that, if ti - to is sufficiently large (depending only by m) the critical
values c~ (1) ~ c~ (2) ~ ... c~ (m) are ~ -1.

Using (5.20) it is possible to show (cf. [6]) that, if there exists a sequence
such that 

,
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for some i ~ j, then c~ (i) is a critical value of f ~ reached by infinitely
many critical points of 

Therefore there exists c~ (1), c~ (2), ..., c~ (m) e] - oo, -I], critical
values of IE: such that, if c~ (i) = cg ( j ) for some i ~ j, then IE; has infinitely
many critical points at the level c~ (i) . Then, by (2.11) and Remark 3.7,
for any fixed m there exists Am such that, if

and c is sufficiently small, f has at least m critical points z~ , ..., where

f is negative, i.e. m timelike geodesics joining (xo, to) with (~1, tl). 0
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