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ABSTRACT. - In this paper a globally convergent computational scheme is
established to approximate a topological multivortex solution in the recently
discovered self-dual Chern-Simons theory in R2. Our method which
is constructive and numerically efficient finds the most superconducting
solution in the sense that its Higgs field has the largest possible magnitude.
The method consists of two steps: first one obtains by a convergent
monotone iterative algorithm a suitable solution of the bounded domain
equations and then one takes the large domain limit and approximates the
full plane solutions. It is shown that with a special choice of the initial
guess function, the approximation sequence approaches exponentially fast
a solution in R2. The convergence rate implies that the truncation errors
away from local regions are insignificant.
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Nous presentons dans cet article un algorithme qui converge
globalement vers une solution qui est un multi-tourbillon topologique
dans la theorie auto-duale de Chern-Simons sur R~. Notre methode,
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qui est constructive et numeriquement efficace fournit la solution la plus
superconductrice, en ce sens que son champ de Higgs a norme maximum.
Nous procedons de la maniere suivante : nous obtenons d’ abord une solution
appropriee des equations dans le cas d’un domaine borne en utilisant

une iteration monotone convergente, puis en passant a la limite du grand
domaine, nous approximons la solution dans tout le plan. Nous montrons que
pour un choix particulier de la fonction initiale, la suite d’ approximations
converge exponentiellement vers une solution dans R2. La rapidite de la
convergence entrfine que les erreurs dues a la troncation hors des regions
locales sont negligeables.

1. INTRODUCTION

It is well-known that unlike magnetic monopoles, which admit electrically
charged generalizations called dyons, there are no charged finite-energy
(static) vortices in the classical Yang-Mills-Higgs (YMH) models, according
to the study of Julia and Zee [12]. Since charged vortices are important
in problems such as high-temperature superconductivity, proton decay, and

quantum cosmology, an effort has been made to modify the YMH models
in order to accomodate finite-energy charged vortex solutions. A consensus
has now been reached that the correct framework should be the YMH

models with a Chern-Simons (CS) term added. It has been argued by
Paul and Khare ([14], [15]) and de Vega and Schaposnik [2] that with the
addition of a CS term in the modified models (both abelian and nonabelian),
there exist well-behaved finite-energy charged vortices. More recently, the

quantum-mechanical meaning of these solutions has also been explored
by several authors including Frohlich and Marchetti ([3], [4]). The main

ingredient in the work ([14], [ 15], [2]) is a reduction of the field equations
of motion through the use of a Nielsen-Olesen type [13] radial ansatz to a

coupled system of ordinary differential equations. The nonzero CS coupling
constant and the structure of the equations imply that a vortex-like solution
must carry both magnetic and electric charges. However, a mathematically
rigorous existence result for such solutions has not been established due to
some difficulties involved in the equations ([14], [2]). Thus the existene of

charged vortices in the full YMH-CS models is still an open question.

Recently, the studies of Hong, Kim, and Pac [6] and Jackiw and Weinberg
[10] shed new light on the existence problem. It has been argued that in
the strong CS coupling limit (x -~ oo), the influence of the Maxwell term
can be neglected from the action and the dynamics is still preserved at
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large distances. The new model admits an interesting reduction similar to
that of Bogomol’ nyi [1] for the Nielsen-Olesen vortices when the coupling
parameters verify a critical condition and the Higgs potential energy density
function takes a special form. The equations of motion now become a
Bogomol’nyi-type system of the first-order equations which allows the
existence of topological solutions. See Wang [18] for a variational proof
of existence.

One of the problematical mathematical issues in the vortex models (both
classical and CS) is that, unlike monopoles and instantons, there are no
known explicit nontrivial solutions. Therefore we have undertaken in this
paper to provide a convergent approximation scheme to compute such
vortex-type solutions. We will present a monotone iterative method for the

computation of the self-dual CS vortices in R2.

The main feature in our approach is that, when the initial function is

suitably chosen, the iterative sequence approximates exponentially fast an
exact multivortex solution of the CS-Bogomol’nyi system. More precisely,
we shall study the scalar semilinear elliptic equation (with source term
characterizing the location of the vortices) which is equivalent to the CS-
Bogomol’ nyi system. In the first stage of our algorithm, we show that over
a bounded domain, a solution may be found as the monotone decreasing
limit of an iterative sequence. The sequence has the additional property that
it decreases the natural energy functional associated to the scalar semilinear

elliptic equation. This property is the key to proving the strong convergence
of the sequence and is related to the work of Wang [18]. Next, we show
that as the domains are made bigger, the solutions on bounded domains
will decrease to a solution in the full R2. In other words, bigger domains
provide better approximations. It is interesting to note that the solution
obtained this way is "maximal". For example, it gives rise to the largest
possible magnitude of the Higgs field (hence we may call such a solution
"most superconducting"). This by-product may also give some insight into
the uniqueness of the solutions. Since we are approximating a solution in
the entire plane, some control of the sequence at infinity must be achieved.
For this purpose it is essential to know the asymptotic behavior of finite
energy topological solutions in R2. It will be seen that the physical field
strengths all approach their limiting values exponentially fast. Such a result
is not surprising due to the Higgs mechanism in the model. However it
has many important implications including the quantization of flux and
charge and has not been discussed in detail in literature. Our convergence
result thus obtained is global in R2. It is hoped that the method here
might also be applied to the models with larger gauge groups or with
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more fields coupled together, proposed in various latest developments of
the subject.
The rest of the paper is organized as follows. In Section 2 we make a short

description of the self-dual CS vortex equations and fix most of the notation
and state our main result. In Section 3 we present our monotone iterative
scheme for computing topological CS vortices and establish the basic

properties of the scheme including its uniform convergence. In Section 4
we show that the limit of the finite domain solutions converges strongly
to a solution in R2. In particular, we establish that the global solution
gives rise to a finite-energy solution of the CS self-dual equations and
that the approximating fields converge exponentially fast. In Section 5 we
make a short discussion of some numerical solutions of the self-dual CS

system.

2. THE SELF-DUAL TOPOLOGICAL VORTICES

The Minkowski spacetime metric tensor g,v is diag ( 1, - l, -1 ) . In

normalized units and assuming the critical coupling, the Lagrangian density
is written

where D~ _ i E R is nonzero, is totally skew-symmetric
with ~~12 = 1, A,~ - o~~ AQ. From the equations of motion of
(2.1), we see that the vector j03B1 = i (03C6 [D" 03C6]* - 03C6* [D" 03C6]) = (p, j) is the
conserved matter current density and B = Fi2 the magnetic field. In the
rest of the paper we assume that the field configurations are static. Then
the modified Gauss law of the equations of motion of (2.1) reads

As a consequence, there holds the flux-charge relation

From calculating the energy-momentum tensor of (2.1) and using the
above mentioned Gauss law, we see that the energy density is
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It was first found in ([6], [ 10]) that the equations of motion in the static
limit (the CS equations) can be verified by the solutions of (2.2) coupled
with the Bogomol’nyi system

which saturate various quantized energy strata. Solutions of (2.2) and (2.5)
are called self-dual CS vortices. If A) is a solution so that the energy

J’ ~ is finite where £ is as defined in (2.4), then

The latter is called topological while the former non-topological. This paper
concentrates on topological solutions.
The following is our main result.

THEOREM 2.1. - Suppose that A) is a finite-energy topological solution
of the CS vortex equations (2.2) and (2.5). Then the physical energy terms
satisfy the following decay properties at infinity:

where ml = 22/|k|, m2 = ( , and ~ E (0, 1) is arbitrary. Besides,
there is a non-negative integer N which is the winding number of 03C6 at a

circle near infinity so that the energy E = ~ and the magnetic flux ~
and the electric charge Q defined in (2.3) are all quantized:

The integer N is actually the algebraic number of zeros of the Higgs field
03C6 in R2. Conversely, let p1, ..., p?,.t E R2 and nl , ..., nm E Z+ (the
set of positive integers). The equations (2.2) and (2.5) have a topological
solution A) so that the zeros of ~ are exactly pl, ..., p?.,.L with the

corresponding multiplicities nl , ..., nm and the conditions in (2.8) are

fulfilled with N = ~ nl. The solution is maximal in the sense that the

Higgs field 03C6 has the largest possible magnitude among all the solutions
realizing the same zero distribution and local vortex charges in the plane.
Furthermore, the maximal solution may be approximated by a monotone
iterative scheme defined over bounded domains in such a way that the
truncation errors away from local regions are exponentially small as a
function of the distance.

Vol. 12, nO 
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The decay property (2.6) follows from the finite-energy condition and the
self-dual CS equations (2.5). In fact, (2.5) is an elliptic system. Using an
iterated L2-estimate argument as in ([11], [17], [21]), we can prove (2.6).
By (2.6) and the maximum principle, the exponential decay estimates (2.7)
for topological solutions may be established without much effort. Then the
quantization condition (2.8) can be directly recognized. All these details are
skipped here for brievity. The existence part will be worked out in this paper
as a by-product of our approximation scheme. In the paper [18], it appears
that the author has found a topological solution. Unfortunately, however, no
elaboration on the finiteness of the CS energy or the asymptotic behavior
is made there to verify that the solution is indeed topological. Hence we
will present our approach in such a way that the construction to follow
does not rely on the result in that paper.

3. THE ITERATIVE COMPUTATIONAL SCHEME

In this section we present an iterative method for the computation of
the CS vortices in R2. We discuss the basic properties of the scheme and
then prove its convergence. To obtain an N-vortex solution with vortices

at pi, ..., pm G R2 and local winding numbers nl, ..., nm G Z+ so that

~ nl = N, we are to solve the equation

Conversely, if u is a solution of (3.1), then we can construct a solution
pair A) for (2.2) and (2.5) so that |03C6|2 = e" and the zeros of 03C6 are
exactly pi, ..., pm with the corresponding multiplicities (or local vortex
charges) n1, ..., nm. Thus we need only to concentrate on (3.1).

Define Uo:

Then the substitution v = ~c - uo changes (3.1) into the form
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where

Our monotone iterative scheme can be described as follows.
Let Ho C R 2 be a fixed bounded domain containing the prescribed zero

set Z (~) _ {pi, ..., pm) of the Higgs field § and let H D S2o be a
bounded domain with sufficiently regular (Lipschitzian, say) boundary. Let
K > 0 be a constant verifying K > 8//~~. We first introduce an iteration
sequence on S2:

LEMMA 3.1. - Let {vn~ be the sequence defined by the iteration scheme
(3.3). Then

Proof. - We prove (3.4) by induction. It is easy to verify that
(0394 - K)(03C51 - 03C50) = 0 in 03A9 - {p1, ..., pm} and VI E 

m

..., p~.,.t~). For c > 0 small, set SZ~ _ ~ - ]  ~~.
l=l

If ~ > 0 is sufficiently small, we have vl - vo  0 on Hence the
maximum principle implies vl  vo in Therefore vi  vo in H.

In general, suppose there holds vo > v1 > ~ ~ . > vk . We obtain from (3.3)

Since = 0 on the maximum principle applied to (3.5) gives
Vk+1  vk in H. This proves the lemma. D
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Now let

be the natural functional associated to the Euler equation (3.2). Then the
iterates ~vn~ enjoy the following monotonicity property.
LEMMA 3.2. - There holds F (vn )  F (vn_ 1 )  - - -  F (vl )  C where

C depends only on SZo.

Proof - Multiplying (3.3) by and integrating by parts give

Now observe that for uo + v  0 and K > 4/~2, the function

is concave in v. Hence

Using (3.6)-(3.7) and ( ~ vn ~ V ]  1/2 ( 12 ~ ~ ~ I2),
we finally obtain

which is a slightly stronger form of the required monotonicity.
Next we show that can be bounded from above by a constant

depending only on In fact, since + 0, we have

1)2 C (~o _~_ vl)2. Therefore
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and it suffices to prove that II >  C, where C > 0 depends only
on no. To see this, assume 0 ~ C°° (R2) be such that fo = Uo outside SZo.
Then Afo = -g + f where f is smooth and of compact support. Hence
vl + 0 on ~03A9 and

Multiplying the above equation by vl + fo, integrating by parts, and using
the Schwarz inequality, we obtain ~03C51~W1,2 (03A9)  C, where C > 0 depends
only on K, IIL2 (R2), ~u0~L2 (R2), and I 1 110 (R2). .

Using Lemmas 3.2 and a refinement of the argument of Wang [18], we
can control the W1,2 (R~) norm of the sequence.

PROPOSITION 3.3. - There (0)  C, n = 1, 2, ..., where

C depends only on S~o.

Proof. - We show that F (v) controls the norm of v. Given

v E W1,2 (H) with v = - uo on define

Then 5 E Wu2 (R 2) and we have the interpolation inequality

This implies

with uniform constant C approaching zero as 52 tends to R2.
To estimate F (v) from below we use (3.9) to get
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where (and in the sequel) C > 0 is a uniform constant which may change
its value at different places and E > 0 will be chosen below. Now

From (3.10)-(3.11) we obtain the lower bound

Again using (3.9) we can estimate

Hence,

Finally, we obtain from (3.12)-(3.13)
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Let e be so small that e (C + 1)  1. Thus (3.12) and (3.14) imply the
desired bound

The proposition now follows from (3.15) and Lemma 3.2. a

An immediate corollary of Proposition 3.3, Lemma 3.1 and standard
elliptic regularity is the uniform convergence of the iteration scheme (3.3)
to a smooth solution in any topology. We summarize this basic result as
THEOREM 3.4. - The sequence (3.3) converges to a smooth solution v of

the boundary value problem

The convergence may be taken in the (S2) n (52) topology.
It is worth mentioning that all the results above are valid without change

for the limiting case H = R 2. To clarify this point, we note that in such a
situation the problem (3.16) becomes

Therefore, (3.3) must formally be replaced by the following iterative scheme
in R2 1

In analogy to Theorem 3.4, we have

THEOREM 3.5. - The scheme (3.18) defines a sequence in W 2~ 2 (R2 ~
so that (3.4) is fulfilled in R2. As n - oo, vn converges weakly in the space

(R2) for any k > 1 to a smooth solution of (3.17). In fact this solution
is maximal among all possible solutions of (3.17).

Proof - We proceed by induction. When n = 1, (3.18) takes the form

Vol. 12, n ° 1-1995.



86 J. SPRUCK AND Y. YANG

Since uo, 9 E L2 (R2 ) and A - K : W2,2 (R2 ) -~ L2 (R2 ) is a bijection,
therefore (3.19) defines a unique vl E W2,2 (R2 ) . Thus we see in particular
that vl vanishes at infinity as desired. On the other hand, there holds

( a - K ) (vi - Vo) = 0 in the complement ..., Hence the

argument of Lemma 3.1 proves that Vo  vl.
We now assume for some 1~ > 1 that the scheme (3.18) defines on R2

the functions VI, ..., v~ so that

We have, in view of (3.20), uo + vk  0. Thus  1 and

As a consequence, for n = k + 1, the right-hand side of the first equation
in (3.18) lies in L2 (R2) and thus the equation determines a unique

W2,2 (R2 ) . From the fact that vk+i - v~ verifies (3.5) and vanishes
at infinity, we arrive at  Therefore (3.20) is true for any k.

By virtue of (3.21), the functional F (v) is finite for v = v~, 1~ = 1, 2, ...
Thus applying Lemma 3.2 and Proposition 3.3 to the sequence ~vn~ here
yields the bound vn ~R,21  C, n = 1, 2, ..., where C > 0 is a

constant. Combining this result with (3.21) and using the £2-estimates in
(3.18), we get ]] vn (R2)  C. In fact a standard bootstrap argument
shows that in general one has ]] (R2)  C, n > some n ( 1~) > 1,
where C > 0 is a constant depending only 1. Therefore we see that

there is a function v so that vn converges weakly in (R~) for any
1~ > 1 to v and v is a solution of (3.17).

Finally we show that v is maximal. Let w be another solution of (3.17).
Since -Vo + w == 0 at infinity,

and -vo + w  0 in a small neighborhood of ... , p,".t~, applying the
maximum principle in (3.22) leads to Vo 2: w. From this fact we can use
induction as in the proof of Lemma 4.1 in the next section to establish the

general inequality vn > w, n = 0, 1, 2, ... Hence v = lim vn > w and
the theorem follows. D

The above theorem says that a solution of (3.2) on the full plane may
be constructed via our iterative scheme (3.18). However, from the point of
view of computation it is preferable to give a global convergence result so
that a full plane solution can be approximated by the solutions of the system
restricted to bounded domains. This will be accomplished in the next section.
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4. GLOBAL CONVERGENCE RESULTS

In this section we assume the notation used in Section 3. In particular,
H denotes a bounded domain.

LEMMA 4.1. - Let V E Cz (H) n C° (H) be such that

and be the sequence defined in (3.3). Then

Proof - We prove (4.2) by induction. Note that For such

an inequality already holds on ~SZ by the definition of vo and for small
c > 0, Uo --E- Y  0 on Hence, the result follows from the maximum

principle applied to the inequality

Suppose there holds vk > V (k = 0, 1, 2, ...). We need to show that
Vk+1 2 V. In fact, from (3.3) and (4.1), we get

Since for k + 1 = n = 1, 2, ... , the right-hand side of (3.3) always lies
in for any p  2, we see that E W 2 ~ P ( SZ ) . In particular

(0) ( c~ : 0  ex  1). On the other hand, we have
V > 0 on Thus (4.3) and the weak maximum principle

(see Gilbarg and Trudinger [5]) imply that V in SZ. The lemma
is proved. 0
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Next, let {03A9n} be a monotone sequence of bounded convex domains in
R2 satisfying the same properties as those for S2 in defining the iterative

o

scheme (3.3): SZ1 C SZ2 C ~ ~ ~ C Qn C ~ ~ ~, U Qn = R2.
n=1

LEMMA 4.2. - Let and be the solutions of (3.16) obtained
from (3.3) by setting SZ = SZ~ and SZ = SZ~ respectively, j, k = 1, 2, ...
If 03A9j C then

Proof. - By the construction of v ~~~ , we have in particular that

v(k)  -uo in Thus is a subsolution of (3.16) for Q = SZ~.
Thus by Lemma 4.1, we get > v(k) in 0

For convenience, from now on we extend the domain of definition of
each v(3) to the entire R2 by setting v(3) > _ - uo in R2 - 
is a sequence in W1,2 (R2).
From Proposition 3.3, we can obtain a constant C > 0 independent of

j = 1, 2, ... , so that ]] (R2)  C. As in Section 3, this leads to

THEOREM 4.3. - The sequence of solutions {03C5(j)} defined in Lemma 4.2
converges weakly in W 1 ~ 2 (R2 ) to the maximal solution of (3.17) obtained
in Theorem 3.5.

Proof. - Let w be the weak limit of the sequence {03C5(j)} in ( R2 ) .
Then w is a solution of (3.2) satisfying uo -f- w  0. Hence, as in the

proof of Theorem 3.5, the right-hand side of (3.2) now lies in L2 (R~).
But w G W1,2 (R2 ), so the £2-estimates applied in (3.2) give the result
w E W 2 ~ 2 (R~). Thus we see that w = 0 at infinity. In particular w is a
solution of the problem (3.17). On the other hand, let the maximal solution
of (3.17) be v. Then v > w. Recall that the proof of Theorem 3.5 has
given us the comparison uo ~- v = -vo -I- v  0 in R2. So v verifies (4.1)
on each H = Hj. As a consequence, Lemma 4.1 implies that > > v

in = 1, 2, ... Therefore w = lim ~ > > v. This proves the desired
result v = w. 0

In the sequel we shall denote by v the maximal solution of (3.17) obtained
in Theorem 3.5 or 4.3 and set u = uo + v. Therefore we can construct a

finite energy solution pair A) of (2.2) and (2.5) so that ~ ~ ~ 2 = e".
In fact we can state

PROPOSITION 4.4. - Let u = where v is a solution of (3.2) which
lies in W2~ 2 (R2). Denote by A) the solution pair of (2.2) and (2.5)
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constructed by the scheme in [ 11 ] so that ~ ~ ~ 2 = Then A) is of
finite energy.

Proof. - B y v E W2,2 (R~), we see that v ~ 0 at infinity. In particular,
) lim u = 0. Thus using the fact that u  0 in a neighborhood of

..., and the maximum principle in (3.1) we have u  0 in R2.
This implies ~ ~ ( 2  1.

Given 0  ~  1, choose t > 0 sufficiently large to make

Set m2 = 2/ ~ ~ ~ . . Then from (3.1) we arrive at

From (4.5) we can show by the maximum principle that there is C (e) > 0
so that

Hence ~ ~ ~2 - 1 = e" - 1 E L (R2).
Since (~, A) is a solution of (2.5), ~ verifies the equation

For any ab E (Q) where H C R2 is a bounded domain, we get by
multiplying both sides of the above and integrating the equation

Therefore, replacing ~ above ~, we arrive at

Vol. 12, n° 1-1995.
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Here TIt is defined by

where ~ E Co (R) is such that

Using ]  1 and a simple interpolation inequality, (4.6) leads to

where Ci, O2 > 0 are independent of t > 0. Letting t - oo in (4.7) we
see that Dj 03C6 E L2 (R2 ) .

Moreover, from (2.2) and (2.5), we have

Consequently A) is indeed of finite energy [see (2.4)]. a

Now let A ~j > ) be the solution pair of the truncated B ogomol’ nyi
equations

obtained from the function > described in Lemma 4.2. For convenience,
we understand that ] = 1, = 0 in R2 - Such an assumption
corresponds to the earlier extension of with setting = -uo in

R2 - 03A9j. In the sequel, this convention is always implied unless otherwise
stated.

Define the norm ] ] , where  E (0, 2/ |03BA|) by

This expression says functions with finite norms decay exponentially
fast at infinity. Our global convergence thereom for the computation of a

topological solution of (2.2) and (2.5) may be stated as follows.
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THEOREM 4.5. - Let A) be an artibrary topological solution of the
CS-Bogomol’nyi equations (2.2) and (2.5) with Z (~) _ ..., 

and the multiplicities of the zeros p1, ..., p?,.t are nl, ..., nm E Z+,
respectively, A~j~ ) ~ be the solution sequence of (4.8) described
above. Then (, A) = lim A~j>) is a topological solution of (2.2) and
(2.5) characterized by the same vortex distribution as A) and verifying
] ql ] > ] ql ] in R2. Furthermore, the physical fields have the following
convergence rate for any ~c E ( 0, 2 / ~ ~ ~ ) :

In particular,

where N == ?~i + ... + nm.

Proof - We have already seen in Theorem 4.3 and Proposition 4.4 that
the ?) = lim is the maximal solution of (3.17) which generates a finite- 

energy solution pair A) = lim Aj) of (2.2) and (2.5). We observe
that if A) is any finite energy topological solution of (2.2) and (2.5),
then ] == 1 at infinity. Thus v = In p - ~o verifies (3.17). Therefore
’U > 03C5 in R2. Consequently |03C6| ] ~ |03C6 | .

For  ~ (0, 2/|03BA |), choose ~ e (0, 1) to make (2/ |03BA j) (1 - ~) > p.
Then the fact (~~~~2014 !~~!~ -~ 0 as j -~ oo follows immediately
from the decay estimates (2.7) since

By virtue of the second equation in (2.5), it is straightforward that

I F12 - F12 t --~ 0 as j --~ oo.

The proof of Theorem 4.5 is complete. 0

Note. - An analogue of the above convergence theorem for computing
the classical self-dual abelian YMH vortices where the governing equations
assume a simpler form has been obtained earlier in Wang and Yang [19].
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5. NUMERICAL EXAMPLES

To test the efficiency of our iterative scheme for computing a topological
vortex-like solution of the CS-Bogomol’nyi equations (2.2) and (2.5),
here we present several numerical examples. For definiteness, we shall
fix the CS coupling parameter x : x = 2. A multivortex solution of

(2.5) on R2 will be obtained by using a solution sequence over bounded
domains as illustrated in Section 3. We shall take f2 to be a square domain:
f2 = ( - a, a) x ( - a, a) and discretize it by equidistant grid points, which
results in a finite-difference mesh. We then implement the standard five-
point approximation algorithm for the boundary value problems of elliptic
differential equations to obtain a numerical solution of (3.3) at each iteration
step k = n. As usual, the discrete approximation to vn in (3.3), and so
on, at the mesh point (xi ( i ) , x 2 ( j ) ) , will be denoted by vn . We choose
K in (3.3) to be K = 4 and compute a multivortex solution with vortices
concentrated at pi = - ( 15, 15) and p2 = B/15) with unit

local charges ?~i = n2 = 1. This is a two-vortex solution so that the

flux verifies 03A6/203C0 = 2. Since 15  4, we may choose a > 5 to

ensure that pi, P2 E O. When a is small, there is no need to discretize

the domain with a large number of mesh points and the computations
can be completed rather quickly. However, when a is large, we have to
discretize the domain with sufficiently many mesh points to achieve a

small discretization error which will result in a longer computing time. To
keep a suitable balance, in our range of numerical examples in this section
where a has the restriction 5  a  16, we use 450 points to discretize
the interval ( - a, a). Experiments show that such a choice already yields
satisfactory results. The vortex locations pi and p2 are singular points of the
scheme (3.3) at the initial step. Due to the smoothing effect in the continuous
equations, no problem arises in our theory. In the numerical implementation,
since pi and p2 are irrational which cannot be mesh points, so no problem
arises in the discretized version either. Throughout our computations the
stopping criterion of the iterative algorithm (3.3) is set to be

If the accuracy (5.1) is fulfilled at a certain step n = k , then the computation
will terminate and v~’ ~’ will be accepted as an approximation of the solution
of (3.16) stated in Theorem 3.4 at the mesh points. By virtue of the scheme
given in [ 11 ], an approximation to a multi vortex solution of the truncated
CS-Bogomol’ nyi equations (4.8) is obtained (with H = Finally, from
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the discussion in Section 4, a solution of (2.2) and (2.5) over the full plane
may be found in the large Q-domain limit. The examples in the sequel
confirm very well our analysis. For simplicity, we shall only present the
computer solutions of the magnetic field:

where v is a solution of (3.2) or (3.16). There holds 0  ~ ~ ~ ]  1. Therefore
0  Fi2  Ho with Ho = 0.125 [see (5.2)]. The magnetic field of all of
our computed solutions attains such a maximum value (Ho) in the domain.
Throughout this section, 7r is replaced by its approximation 7r ~ 3.1415926.

EXAMPLE 5.1. - We first compute the solution in S2 = (-a, a) x (-a, a)
with a = 6. The scheme stops after 36 iterations (k = 36) and yields a
solution with the flux = 0.928452, where

which is far away from the quantized value &#x26;/2 ~r = 2.0 in R2. Thus a = 6
cannot yet provide a good approximation to an R2 solution.

Figure 1 presents a solution with a = 8. The iteration terminates after
56 steps and turns out a very reasonable flux value: = 1.65714. It may
be expected that, as one increases a, the solution should stabilize in the
local regions around the vortex locations pi and p2 and an even better
approximation to the flux might be achieved.

EXAMPLE 5.2. - We now take a = 10. The computation stops at k = 59.
The space distribution of the magnetic field is as shown in Figure 2. It is
seen that the solution is indeed stabilized around the vortex concentrations
and in the regions some distance away from the centers of vortices the field
becomes quite flat. Such a result describes an early stage of the convergence
process (as one enlarges the domain) proved in Theorem 4.5. The flux is
now greatly improved to 03A603A9 = 1.91499.

EXAMPLE 5.3. - We have also found solutions for a in the range
10  a  16. The computations all stop after the same number of iterations:
k = 59. However, larger a always yields a better flux value. In particular, for
a  12, the solutions are nicely localized in the neighborhoods of vortices
and become almost flat in the regions away from these neighborhoods.
Different a’s can no longer give significantly different local behavior of the
solutions and the field only assumes zero numerical value in those regions
far away from the centers of vortices. Therefore we have observed a steady
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FIG. 1. - A two-vortex solution of the truncated CS-Bogomol’nyi equations. Vortices are

concentrated at x~ ) _ ~ ( 15, B/15) and carry unit local charges. The solution is

obtained after 56 iterations. The flux takes the values ~/2 ~r = 1.65714.

FIG. 2. - An early stage of the convergence of bounded domain solutions to a topological
solution in R2. The solution is obtained from the scheme (6.7) after 59 iterations. Vortices
have the same local properties as those in Figure 1. In the regions some distance away from
the centers of vortices, the field becomes insignificantly flat. The flux is ~/2 ~r = 1.91499.

convergence process of bounded domain solutions to a solution in R2 and
the conclusions in Theorem 4.5 is confirmed.

Figure 3 shows a solution with a = 14. The flux is = 1.96307. The

behavior of the field and the flux value suggest that the a = 14 solution
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might be accepted as an approximation to a full plane solution of the
CS-Bogomol’nyi system (2.2) and (2.5).

FIG. 3. - Convergence and localization of the two-vortex solution in the large domain limit. This
can be viewed as a numerical approximation of a topological solution in 6~2 with unit vortices
at (Xl, ~z ) _ B/15). The flux through the square region is ~/2 ~r = 1.96307. The
computation requires 59 iterations.

For a = 15, the flux takes the value = 1.96376, which slightly
improves that with a = 14.

Figure 3 also suggests that, when the vortices are far apart, a

multivortex solution could roughly be viewed as superimposed single-vortex
(symmetric) solutions.

The above examples illustrate exactly the established global convergence
results of the paper and thus show that our algorithm can be used as a
reliable and efficient computational tool in practice to obtain a topological
multivortex solution of the self-dual CS theory. According to Theorem 4.5,
the solutions found this way are "most superconducting" in the sense
that they give rise to the maximal densities of the Cooper pairs when § is
interpreted as an order parameter in the context of superconductivity theory.
The solutions exhibits themselves quite differently from those in the

classical abelian Higgs theory. One of the major distinctions is that in the
CS case the magnetic field cannot make any penetration through either the
normal or completely superconducting regions characterized = 0

or ] § 2 = 1 and the maximal magnetic excitations occur in the regions
in which ~ ~ ~ 2 = 1 /2. In fact, this phenomenon is already implied by
Vol. 12, n° 1-1995.
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the second equation in (2.5) or (5.2) due to the special form of the
potential energy density of the Higgs field, in which both the symmetric
and asymmetric vacua are present.

Note. - The solutions of the anti-self-dual CS system

can be obtained from the solutions of the self-dual equations (2.5) by
taking "conjugate" (1, ((~*, -A).
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