
Some constancy results
for nematic liquid crystals

and harmonic maps

Kai Seng CHOU

Department of Mathematics,
The Chinese University of Hong Kong,

Shatin, Hong Kong.

Xi-Ping ZHU

Department of Mathematics,
Zhongshan University,
Guangzhou, P. R. China.

Ann. Inst. Henri Poincaré,

Vol. 12, nO 1, 1995, p. 99-115. Analyse non linéaire

ABSTRACT. - Uniqueness results for nematic liquid crystals and harmonic
maps with constant boundary data are established. Nonsolvability on
non-starshaped domains for a semilinear elliptic equation is also given.
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Des resultats d’ unicite pour les cristaux liquides nematiques et
pour les applications harmoniques avec des conditions aux bords constantes
sont etablis. Un resultat de non-existence pour une equation semilineaire
elliptique dans des domaines qui ne sont pas etales est egalement presente.
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1. INTRODUCTION

A liquid crystal is a mesomorphic phase of a material which occurs
between its liquid and solid phases. Frequently, molecules comprising the
material are relatively rigid and rod-like. The equilibrium configuration of
the liquid crystal may be described in terms of its optical axes, a unit vector
field n defined on the region H in R~ occupied by the material. For a
nematic liquid crystal, the Oseen-Frank free energy density W is given by

where the ki are material constants, ki > 0 for z = 1, 2, 3 and 1~2 > ~ 1~4 ~ .
In the special case 1~1 = k2 = k3 = 1 and k4 = 0,

which is the integrand for a harmonic mapping from a domain H in R~
into S 2 .

Let us set

In this paper we shall study the following question: Suppose n is a

stationary point for the bulk energy E (n) which is equal to a constant
on the boundary of H. Is it necessary that n becomes a constant throughout
H? Note that n being constant is always a solution of the Euler-Lagrange
equation associated with the bulk energy. So a constancy result is in fact a

uniqueness theorem for the solution of a Dirichlet problem.
To our knowledge this question has not been studied in general before.

But there are results for the special case (1.2). For instance, Lemaire [9],
Wood [13], Karcher and Wood [8] established constancy results for smooth
harmonic maps from an n-dimensional bounded, star-shaped domain (into
a general target manifold). On the other hand, R. T. Smith constructed
nonconstant harmonic maps from an annulus to the 2-sphere with constant

boundary data. See Section 11.7 (c) in [14]. Other related results can be
found in [3]. So constancy results do not always hold.
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In this paper, we shall obtain a Pohozaev identity (ef [11] ] and [12])
for smooth stationary points of the liquid crystal bulk energy (1.3). As
a consequence of this identity, we show that no non-constant smooth

stationary points can exist in a star-shaped domain H having prescribed
constant boundary values (Theorem 1). Next, we take into account the
effects of magnetic fields and get a similar constancy result (Theorem 2).
We also study Ericksen’s model [10] on nematic liquid crystals with variable
degree of orientation, and deduce a constancy result (Theorem 3).
So far constancy results have been known on balls or star-shaped domains.

A similar situation holds in the study of the semilinear Dirichlet problem:
for H in > 3,

When p > (n + 2)/(n - 2), Pohozaev’s identity [11] implies that no
positive solution can exist when 52 is a bounded, star-shaped domain.
However, when p = (~ + 2)/(?~ - 2) and S2 has certain non-trivial topology,
Bahri and Coron [1] ] showed that (1.4) admits a positive solution. On the
other hand, Ding [4] has recently produced a contractible S2 over which
(1.4) is solvable for p = (n + 2)~(7a - 2). In the final section of this work
we shall construct a non-starshaped, ball-like domain over which (1.4) is
not solvable for p > (n + 2~~(7a - 2). A constancy result for harmonic
maps over this domain will also be obtained.

Throughout this paper, we use summation convention where repeated
indices are understood to be summed from 1 to 3.

2. CONSTANCY RESULTS ON A STAR-SHAPED DOMAIN

Let S2 C 1R3 be a bounded domain with smooth boundary aS2, and let
v = (vI, v2, v3) be the outer normal at 0Q. Recall that S2 is called star-
shaped if there exists a point xo E 52 such that the line segment xxo is
contained in S2 for all x E S2.

Set

and

where no : 1 ,S’2 is the boundary datum.
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Oseen-Frank’s model

For a nematic liquid crystal, the Oseen-Frank free energy density W is
given by (cf [6]).

where ki > 0, i = 1, 2, 3, 1~2 > ~ 1~4 (, and n E HI (H; S2 ) . As Oseen and
Erickson [5] have observed, the last term is a surface energy density which
does not contribute to the equilibrium system. In fact, by [7],

Thoughout this paper, we always choose

The bulk energy is

We consider a stationary point n of (2.2) in Hno (H; S2),

for ( E HJ (S2; R~) n L°°. Then

Thus the Euler-Lagrange equation for a stationary point of (2.2) is
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Now, let’s assume the stationary point n of (2.2) is smooth on H and is
equal to constant on For any x E H, we have, by (2.3),

in S2. Since = 1,

Therefore,

We integrate this identity over the domain H. It follows from the divergence
theorem that
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Using the condition n = const. on we have, for = 1, 2, 3,

So

Thus (2.5) becomes

By quadratic dependence of W on p we can use Euler’s identity
p~ Wp~ = 2 W on the both sides of (2.7) yielding the following Pohozaev’s
identity :

It leads to the following constancy result directly.

THEOREM l. - Assume that SZ is star-shaped. Then any smooth stationary
point of (2.2) which is constant on ~03A9 is constant in Q.

Proof - We have

On the left hand side of (2.8), since H is star-shaped with respect to
some point x in H, we have (x - ~) ~ v > 0. Therefore,

So it follows at once that n - const. in Q..
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Effects of magnetic fields

For a given smooth divergence free magnetic field H, which is usually a
constant, the magnetization vector is given by M = (xo I n) H,
where xo and xa are real numbers (cf [6]). The energy contributed to the
system is F (n) = M ~ H = (Xo H, H ) + Xa (( rz, H ))2 and the energy
density in the magnetic field is

where W (~a, V n) is the free energy density given in (2.1) for nematic
liquid crystals.

Since the term ( xo H, H ) in F (n) is irrelevant in the energy, without
loss of generality we may assume xo = 0. The total energy for (2.9) is

Let n be a stationary point of (2.10) in (H, S2), that is,

for ( E Ho (H; 1R3) n L°°. Hence the Euler-Lagrange equation for (2.10) is

k = 1 , 2, 3, in H-1 (SZ; 1~3). From now on, we assume H = H2, H3)
is a constant vector in Q.

PROPOSITION 1. - If n is a constant solution of (2.11 ), then either
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Proof. - Since

it follows from the above Euler-Lagrange equations that either 

(H ~ n)nk, i.e., 
Now let’s assume that n is a stationary point of (2.10) which is smooth

on nand n = no - Const. on ~SZ satisfying H J.. no or no on 

For any fixed x E H,

which, by (2.11) and Euler’s identity,

Then, by the fact that I =1,

As above, since F - xa (no . H)2 = 0 on ~SZ we get

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



107CONSTANCY RESULTS

Since n = no - const. on we deduce the following Pohozaev’s
identity as before:

THEOREM 2. - Assume that SZ is star-shaped and n is a smooth stationary
point of (2.10) with = n0 ~ const. Suppose also that either ~a ~ 0
and H 1 no on or xa  0 and no on Then n is constant in Q.

Proof - From the proof in Theorem 1 we know

And, in the case 0 and H ~- no on we have

In the case xa  0, and on we have

On the left hand of (2.13), we fix x such that 52 is star-shaped with respect
to x E H. Then

So it follows at once that n - const. in Q..

Erickson’s model

In Erickson’s model [10], the equilibrium configuration of a liquid
crystal is described by a pair, (~ ?~), where ~ : H-~ !’~ ~sa
real-valued function which represents the variable degree of orientation
of the liquid crystal and n : 03A9 ~ S2 denotes the axes of otpical
directions. It is a stationary point of the following bulk-energy functional

f-~ l1 x ~Y
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where k5, k,6 > 0, W (n, is the free energy density (2.1), and Wo (s)
is a positive C2 functions in (-1 2, 1 ) satisfying

Let’s assume the stationary points (s, n) is smooth in n. As above
the pair (s, n) satisfies the following Euler-Lagrange equation of (2.14).
According to

for ( E Ho (H; R3) n L°°, and ~ E Ho (H; R) n L°°, we have

where
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To derive a Pohozaev’s identity, for any x E S2 and S E -1 2 ~ 1 ), ,
we compute

Then, by the fact that ~n~ I =1,

Now, consider (s, (so, no) - const. so that
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Fixing s = so and using the fact that W is quadratic in V n and

k5|~ s|2 + k6|~ s . is quadratic in ~ s, by Euler’ s identity, it yields

Before giving a constancy result, we want to remark that the boundary
value so is necessary a critical point of function Wo (s) when (s, n) is a
constant stationary point of (2.14). In fact, this can be easily checked the
Euler-Lagrange equation (2.15).

THEOREM 3. - Assume that S2 is star-shaped and (s, n) is a smooth

solution for (2.15) with s|~03A9 = s*, and n|~03A9 = const. Then ( s, n) is

constant in Q.

Proof. - The desired result follows easily by taking so = s*, and x G S2
such that H is star-shaped with respect to x in (2.17). N

3. NON-STARSHAPED DOMAINS

To make all the subsequent discussion simpler, we shall focus on the
special case (1.2) which is the integrand for a harmonic mapping from a
bounded smooth domain Q in R~ into S2. (In fact, it is possible to replace
the target S2 by a Riemannian manifold. However, we shall not consider
this general case here.) The bulk energy functional is

and the equilibrium state satisfies

It was shown in [3] that there exist nonconstant smooth harmonic maps
from H into S2 if ~03A92 is not connected. This result seems to suggest that
the constancy theorems only hold for star-shaped domains. Nevertheless, in
this section, we shall prove the following result:
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THEOREM 4. - There exists a non-starshaped bounded domain SZ on which
any solution n of (3.2) is identically equal to a constant if it is constant
on ~SZ.

Let’s consider a smooth solution n of (3.2). Denote by h = h2, h3)
a smooth vector field on Q. Following [12], we compute, by (3.2),

1, it follows that

Now, if we assume n = const. on then

As in Section 2, applying the divergence theorem, we get

The conformal group of the Euclidean space is spanned by translations,
rotations, dilatations and inversions. So far we have only used the
translations and dilatations. They yield constancy theorems on star-shaped
domains respectively. Now let’s look at the inversions, = 1, 2, 3,

Let’s just consider ç-1. Setting h = ~1 in (3.3), we get
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Therefore, if we can find a domain H contained along
whose boundary 03BE1 . 03BD > 0, we get a constancy result.

Such a domain can be constructed as follows. Let’s consider the system
of differential equations

in (xl, x2)-plane. A first integral of this system is given by

where k is a parameter; when k --> 0+, x2 (1) ~ 0, and when k ~ 1 2,
x2 (1) ~ 1. Each integral curve hits the diagonal xi = X2 vertically at
(1/2 k, 1/2 k).

Let’s fix four constants: k E (0, 1/2), R E (1/2 k, oo), a E (0, 1), and
/3 E (1/2 k, R). Consider an arc and two line segments in the (xl, x2)-plane,

Connect B with C and D with E by straight line segments. Together with
the x 1-axis, and the two vertical lines (through points A and F respectively),
this curve bounds a domain w in the (xl, x2)-plane. See the figure below.
Now we smooth out the comers at A, B, C, E, F to get a domain

w’ such that

(i) contains a straight line segment in BC and a straight line segment
in DE;

(ii) The outer normal v = y2) at the curves which smooth out the
comers A, E satisfies y1  0, v2 > 0;

(iii) The outer normal v = (y1, y2) at the curves which smooth out the
comers B, F satisfies vl > 0, v2 > 0;

(iv) The outer normal v = y2) at the curves which smooth out the
comer C satisfies (x i - x2 ) 03BD1 + 2 x1 x2 v2 > 0. Then one easily checks that
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We rotate the domain w’ around the in 1R3 to get a smooth domain
S2 in R3 which satisfies H ~ {x E 1R3 : xi > 0 } and

i. e. , ~ 1 ~ v > 0 on 

Moreover, from (i) above, we know that the domain H is non-starshaped.
Hence we conclude that Theorem 4 holds.

Remark 1. - Many non-starshaped domains with similar property can
be constructed. For instance, fix a point C’ on the line segment FR and
draw C’ D’ E’ F’ R’ like CDEFR where C’ D’ is also a portion of an
integral curve of (3.4). Then ABCDEFC’ D’ E’ F’ R’ forms a new w.
After smoothing and rotating w we get a new non-starshaped domain over
which constancy results hold. In fact by taking a point C" on F’ R’ we
may again form another w. By doing this repeatedly we obtain many such
non-starshaped domains.

Remark 2. - Our construction also yields a non-starshaped domain in ~n,
n > 3, such 0 along its boundary where ~ 1 is the inversion

along the xl-direction: çl = xl - and £/ = 2 xl xi, i = 2, ..., n.
j>1

One simply has to rotate the domain w’ around IRn-1.
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Now we turn to the Dirichlet problem (1.4). The equation therein is the
Euler-Lagrange equation for the Lagrangian

Let u be a C2-solution of (1.4). According to [12] the following identity
holds:

where h is a vector field and a is a smooth function. We claim that no

positive solution can exist in a domain as described in Remark 2. For, take
h to and a to be a linear function ~ ~1 in this identity and then
integrate it over H. By the divergence theorem we have

By the fact that u vanishes on the boundary on n, we get

and, for j = 1, 2, ..., n,

So

Thus, we deduce the following Pohozaev’s identity:

The second term on the right hand side of this identity can be dropped by
choosing A = 2 n/(p + 1). It follows that no positive solution can exist
when p > (n + 2) / (n - 2). In conclusion we have established
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THEOREM 5. - There exists a non-starshaped bounded domain SZ over

which (1.4) has no solution.
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