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ABSTRACT. - We study a non-linear integro-differential equation
describing the evolution of a gas of Bosons interacting with a heat bath.
The solution is shown to exist globally. A family of Liapunov functionals
is constructed and used to prove convergence to equilibrium. The linearized
equation determines a semi-group of contractions. The nature of approach
to equilibrium (exponential at low density, but not in the two-phase region)
is studied in relation to the spectral properties of the generator of the
semi-group.

RESUME. - Nous etudions une equation integro-diiferentielle non lineaire
decrivant 1’evolution d’un gaz de Bosons en interaction avec un bain

thermique. Nous montrons l’existence globale de la solution. On construit
une famille de fonctionnelles de Liapounov, et l’on s’en sert pour demontrer
la convergence vers 1’equilibre. L’equation linearisee definit un semi-groupe
de contractions. La vitesse de convergence vers 1’equilibre (exponentielle
en basse density mais non dans la region diphasique) est reliee aux proprietes
spectrales du générateur de ce semi-groupe.
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§ 1. INTRODUCTION

In this article, we study the kinetic equation which governs the evolution
of a gas of Bosons interacting with a heat bath. This is one of the very
few models where the dynamical aspect of a phase transition in a continuous
system can be analysed rigorously. This provides a testing ground for the
predictions of phenomenological theories concerning the occurence and
the nature of critical slowing down.
We concentrate here on the analysis of the mathematical properties

of the equation, and the physical consequences of these. The actual deri-
vation of the equation from first principles is given in a related article [1 ]
(although for a slightly simplified model involving an energy cut-on).
An outline of this derivation is given in section 2 together with the relevant
physical background.
Our kinetic equation is a non-linear integro-differential equation for

the function which gives the population of the various energy levels of
the Bose gas at time t (see (16)). Since the integral of this function is related
to the density of the system, the natural mathematical framework for the
problem is a Banach space of The first question is the existence
and uniqueness of the solution, and we treat it in section 3. As the right-
hand side of the equation is given by an unbounded non-linear operator,
even the existence of a local solution is a non-trivial matter. To deal with
this problem, we note that the operator can be split into a bounded non-
linear part and a linear part which, although unbounded, generates a
contraction semi-group (Proposition 1). This remark, together with further
regularity properties of the non-linear part (Lemma 1), yields local existence
and uniqueness of the solution (Proposition 2).

Moreover, the linear semi-group is positivity-preserving (Proposition 1),
and we can use this property to show that the local solution of the full

equation is positive for positive initial conditions (Theorem 1). This feature
does not only ensure that if the initial condition is physically acceptable
so is the corresponding local solution ; it yields also (using the conservation
of the overall density) an a priori bound on the local solution, and this
implies that the solution exists globally (Theorem 1). The method of proof
is similar to that used by Arkeryd in his study of the classical Boltzmann
equation [2] ] [3 ]. -

The next step consists in investigating the asymptotic behaviour of our
solution (section 4). As in most comparable problems (see [2] ] [~] ] j~] ]
for instance), physical considerations suggest both a fixed point and a
Liapunov functional for our equation. The fixed point is of course the
Bose distribution at the temperature of the bath, whereas the Liapunov
functional qJ is related to the free energy density of the Bose gas (see (83)
and remark (i) at the end of section 4). One expects that all physical initial
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415ON THE DYNAMICS OF BOSE-EINSTEIN CONDENSATION

conditions will be attracted by the fixed point. However, it turns out that
the « natural » Liapunov functional qJ does not suffice to prove this fact.
This is essentially because qJ fails to be continuous on the whole of the phy-
sical domain (i. e. the positive cone of L1). However, 03C6 is continuous on
a restricted physical domain, consisting of those positive functions in L 1

which have finite first and second moments (i. e. the mean and variance
of the energy density are finite). But this does not solve the difficulty:
even if one is willing to restrict one’s attention to such initial conditions,
there is no a priori guarantee that the finiteness of the second moment
will be preserved by the evolution.

In order to prove that the restricted physical domain is invariant under
the evolution (Proposition 5), we construct a new Liapunov functional H2
(Proposition 4). We can then use the continuity of cp (Lemma 6) and various
other technical results (Lemmas 5, 7) to prove that every initial condition
in the restricted physical domain is attracted by the physical fixed point
(Theorem 2). We can also generalize our Liapunov functional to obtain
the convergence of arbitrary moments. The result is of the following type :
assume that the moment of order n + 1 is finite for the initial condition ; then
the time-dependent moments of order 1, 2, ..., n converge to the corres-
ponding equilibrium moments (see Corollary 2 and remark (ii) in section 4).
We turn finally to the linearized equation, which we analyse in a Hilbert

space framework (section 5). The phase transition manifests itself through
a change in the spectral properties of a certain self-adjoint operator (see
Theorem 3). At low density, there is a gap in the spectrum of this operator,
and this ensures that the approach to equilibrium is exponentially fast
(Theorem 4). But the gap disappears in the two-phase region, so that the
relaxation cannot be exponential in that regime (Theorem 5), and our
model exhibits critical slowing down. Moreover, we can control the way
in which the gap closes up as the parameters of the system tend to their
critical value (Corollary 4). This gives a rate of divergence of the relaxation
time of the form i = O((T - Tc)-2) which is compatible with the predic-
tions of the Ginzburg-Landau theory (see remark (ii) at the end of section 5).
Our proof of the existence of a spectral gap in the low density regime

is based on an argument previously used by W. G. Sullivan in a probabi-
listic context [5 ].
As a final comment, we mention that our full non-linear equation fits

in the scheme recently put forward by Alicki and Messer [6 ].

§ 2 . A HEURISTIC DERIVATION
OF THE KINETIC EQUATION

In this section, we outline a programme leading to the deduction of
our dynamical equation. In a related article [1 ], this programme is carried
out in full detail (though for a technically simpler model).
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A convenient framework for obtaining kinetic equations is provided
by the well developed theory of master equations (see [7] ] [8 ]). In this
scheme, a finite system (here the Bose gas) is coupled to an infinite heat
bath. By tracing out the variables of the bath, the unitary evolution of the
total system is turned into a closed equation of motion for the reduced
state of the Bose gas. This is the so-called generalized master equation,
which contains memory effects. The leading Markovian behaviour is
then extracted by going to the weak coupling limit, in which the strength ~,
of the interaction with the bath tends to zero, whereas the time variable
is rescaled by a factor i~ - 2. After the weak coupling limit, the evolution
of the state of the Bose gas is governed by a semi-group type law. The
explicit form of the generator of this semi-group is known once the inter-
action between the system and the bath is specified (see [7]).

In our case, the main requirement is that the coupling should allow
for energy (but not for particles) to be exchanged between the Bose gas
and the reservoir ; for this we need an interaction which is quadratic in
the Bose creation and annihilation operators. Moreover, separate inde-
pendent baths are attached to the different energy levels of the (finite volume)
Bose gas. The interaction mechanism is then idealized as follows : particles
are created and destroyed in the n-th energy level of the Bose system while
elementary excitations are destroyed and created in the corresponding
bath. We take (for simplicity) these elementary excitations to be all described
by a fixed (but arbitrary) wave function f.
Once the above framework has been agreed upon, the corresponding

Hamiltonian is fairly unique (see [1 ]) ; inserting this in Davies’ formula,
we get an explicit form for the dynamics of the open Bose gas in the weak
coupling limit : the average of an arbitrary gauge-invariant observable Xv
in the state cw obeys the equation (see [1 ]) 

"

In (1) we introduce the following notation:
EY, i = 0,1, 2, ... denote the increasing energy levels of the free Bose

gas and the creation and annihilation operators for Bosons in the

corresponding eigenstates. The function C(x) is the Fourier transform of
the bath correlation function ; there is a certain degree of arbitrariness
in C(jc) because of the unspecified wave function f, but one can show
(see appendix A in [1 j) that for a wide class of functions C is continuous
and satisfies :
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where ~ is the inverse temperature of the baths. Formula (3) is merely
the K. M. S. relation.

If one puts for the observable XV in (1) an occupation number Nk = atak
one finds that the right hand side involves Thus we do not
have yet a closed dynamical description of the average occupation numbers,
except if the state 03C9vt has no correlation :

Property (6) is extremely restrictive as such, but it becomes a reasonable
condition if it is only required to hold asymptotically as V ~ Go (one has
then to be more careful about the formulation of this decorrelation pro-
pert~~ because the energy spectrum becomes continuous ; see (36) in [1 ]
for a proper statement). The decorrelation property becomes then merely
the statement that the occupation numbers do not have abnormally large
fluctuations and cross-fluctuations ; this is known to hold for instance
for canonical Gibbs states of the free Bose gas, although it fails for grand
canonical ones (see [9 ]). This should not be confused with the much stronger
property of quasi-freeness of the state. Of course, the decorrelation pro-
perty is useful only if one can prove that it is preserved by the evolution
equation (1). The proof of this fact given in [1 ] for a related model is of
combinatorial nature (see theorem 1 and lemma 1) ; here we assume that
the same holds. The closed equation that we obtain from (1) reads

with the following notation :
h(x) is an arbitrary bounded continuous function, the fixed measure

F(dx) is given by (see remark (i) at the end of the section)

and the time-dependent measure Gt(dx) describes the energy distribution
of the Bose gas at time t ; more precisely, if we introduce the distribution
function 

_
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and its associated measure then Gt(dx) is defined to be the limit
of Gi"(dx) as v -~ oo (we assume the existence of this limit, weakly with
respect to the class of bounded continuous functions).

There are two properties that eq. (7) ought to display if it is to provide
a consistent dynamical description of the infinite free Bose gas: first the
overall density should be a conserved quantity, and second the Bose distri-
bution at the temperature of the bath should be a fixed point. The first
property is readily checked by putting h(x) = 1 in (7). For the second,
recall that the measure on [0, 6o) describing the population of
the energy levels of an infinite Bose gas at inverse temperature j8 and overall
density p is given by

where F(dx) is as in (8), is the Dirac measure at the origin, and J1
and pc are defined respectively by (note that p x 0) :

It is straightforward to check that the right hand side of (7) vanishes
when Geq.(dx) is substituted for Gt(dx).

So far our dynamical description of the open Bose gas is in terms of a
non-linear differential equation for a measure, and this is not an easy
object to handle. On the other hand, we expect on a physical basis that the
relevant class of measures Gt(dx) is of the following type: a sum of an
absolutely continuous part and of an atom at the origin. Hence we seek
a solution of eq. (7) in the form:

where G(dx) is the continuous part of Geq.(dx) namely as in (11)):

If we insert (13) in (7), we obtain two coupled differential equations
for the time-dependent occupation function and the time-dependent
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condensate p°. Note that the second equation is in fact superfluous, because
by virtue of density conservation we have:

Thus all the relevant information is contained in the equation governing
the occupation function gt(x) :

and ê(x), J.1 as before.
The non-linear integro-differential equation (16) is our final kinetic

equation, and the remaining part of the paper is devoted to studying its
properties. Note that the physical fixed point (10) is now given by 1.

To check this directly on (16), it is enough to notice that one at least of

the two terms p and p - G(dx) vanishes ; indeed there are only
three possibilities : °

We end this section with some comments.

i) The reason why the measure (8) appears in the problem is that it is
the limit of the Stieltjes measures associated to the energy spectrum of
the finite Bose gas. In terms of the corresponding distribution function
(sometimes called the integrated density of states) one has, see [1 D ] :

ii) We see from (2), (3) that the function D(x, y) defined in (18) obeys :
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iii) At first sight, the occupation function seems to describe only
the uncondensed part of the Bose gas : but we stress again that once 
is known, the condensate density can be deduced using (15):

fr) Finally the reader should not be misled by the that the same
function geq.(x) = 1 is a fixed point of (16) for all values of the density ;
its interpretation differs according to p  p~ or p > pe since the condensate
is absent in the first case and present in the second (see (19)).

§ 3 . EXISTENCE AND UNIQUENESS OF THE SOLUTION

We write our differential equation (16) in the form

where the operators L (linear) and N (non-linear) act on the real Banach
space ~ = L1([R+, G(dx)) in the following way:

with ~, A(x), D(x, y) as in (11), (17), (18).
We investigate the properties of these operators ; the non-linear part

is very regular :

LEMMA 1. - i) The operator N is bounded: there exists constants

Ki, K2 > 0 such that (with C as in (4), (5))

ii) The operator N satisfies a local Lipschitz condition: for every go
in f!4 and E > 0 there exists a constant K3 such that

iii) The operator N is continuously Frechet-differentiable ; namely
for every f in PJ the operator {DN){ f ~) is bounded and moreover the mapping
j - (DN)(/) is continuous.
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Proof. - All three points of the lemma are simple consequences of the
following inequalities (see (4), (5)):

and of the fact that the non-linearity in N is merely quadratic. ~j
We turn now to L ; this is an unbounded operator (see remark (i) at

the end of this section) so that the formal expression (25) does not suffice to
define an operator. We consider first the two domains

and we denote the corresponding operators by L and L respectively. One
~

can check that L contains L and that the latter is dense in B, so that
both L and L are densely defined. Moreover, L is a closed extension of L :

LEMMA 2. 2014 The operator L is closed.
N ~-~

P~oof be a sequence in ~f such that g~ --~ g and -~ f ,
both in L1-sense. Then (see Theorem 1.12 and Corollary in [11 ]) there
exists a subsequence {gni} of {gn} such that

Using (35), (37) together with the inequality

we deduce, using the dominated convergence theorem:

Comparing (36) and (39), we see that g belongs to ~f and that f = Lg
so that L is closed. /
The domain .P might be too big for L itself to generate a contraction
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semi-group. However there exists a restriction of L which has this pro-
perty :

PROPOSITION 1. - Let L (with domain ~) be the closure of L ; then L
generates a semi-group of positivity-preserving contractions on

Proof - We use the Lumer-Phillips theorem (see [12 Theorem 2 . 25)
which states that the following set of conditions on L is sufficient for its
closure L to generate a contraction semi-group:

a) For every g in if there is an element 1 of fJI* = G(dx)) such that

To show that conditions a (i), (iii) are fulfilled, we exhibit an explicit
element I of PJ*:

Properties (i), (ii) are readily checked. For (iii), note that:

The last formula is deduced from the previous one by using Fubini’s
theorem and the definition (34) of ~f. Now (46) is clearly non-positive
because D(x, y) and A(y) are non-negative (see (21), (17)).
We prove condition (b) by contradiction. If Ran (I - L) is not dense

in f1ù there must exist (by the Hahn-Banach theorem) an element k ~ 0
in f1ù* = G(dx)) such that

To see that this is impossible, consider the following family of elements
of L:

We have
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On the other hand

The first two terms in the right hand side of (50) are obviously non-positive;
moreover one can check that the last term tends to zero as a - oo, so that

Comparing (47), (49) and (51), we obtain the desired contradiction. Thus
L generates a contraction semi-group on ~‘.
To see that etL preserves positivity, consider for g fixed but arbitrary

in 2 the function :

This function is non-negative ; moreover it is non-increasing: indeed the
first term is non-increasing because etL is a contraction and the second
is constant in time (because the integrand of L is skew-symmetric). Hence
if c~(o) = 0 (i. e. if g(x) > 0 a. e.) one has = o for all t > 0 (i. e. (etLg)(x) > 0
a. e. for all t > 0). /

Because of lemma 1 and proposition 1, the equation (24) falls into the
class of semilinear differential equations (see [13]). The importance of
proposition 1 is apparent if one considers the integral equation associated
to (24) :

Existence and uniqueness of the local solution of (53) follows from
lemma 1 (ii) by a standard fixed point argument (see [13 ]). To prove that
this is also a local solution of (24), one has to check that it remains in J~f.
This follows from the additional regularity of N stated in (iii) of lemma 1
(see theorem 3 . 2 in chapter 8 of [13]). We thus have :

‘ PROPOSITION 2. - Equation (24) admits a unique local solution. Namely
every initial condition go in Ef gives rise to a unique solution g~, 0 ~ t x T,
and T depends only on !! go .

We note immediately two properties of the local solution.
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LEMMA 3. -

The proof is a simple application of Gronwall’s lemma, and we omit
it (see lemma 2 in [~ ] for a hint and [14 ] for further details). The importance
of lemma 3 (besides its physical interpretation, see remark (iv) at the end
of the section) is that if we can prove that gt remains non-negative we
shall have the a priori bound

Such an a priori bound on the local solution yields immediately global
existence because the local solution starting at gT exists on T ~ t  2T,
and so on. Moreover, the physical interpretation of gt as the time-dependent
occupation function requires that it remains non-negative if the initial
condition go is so. To prove this property, we proceed in a way similar
to Arkeryd’s study of the Boltzmann equation [2] ] [3 ]. The positivity-
preserving property of etL is an essential ingredient of the proof.

THEOREM 1. If the initial condition go in J~f is non-negative, so is
the solution gt of (24) for some time interval [o, T ] ; consequently the
solution exists globally in time.

Proof As mentioned above, global existence is an immediate conse-
quence of the positivity-preserving property. To prove this last property
we write (24) as ,

with

In the above, K is some constant larger than 2C (see (4), (5)), and Fgo(t)
stands for :

where gt is the local solution of (24) (known in principle) corresponding
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to the initial condition go in ~. Note the inequalities (see (29), (30) and
lemma 3):

The integral equation corresponding to (55) reads:

Clearly, a solution of this equation is also a solution of (53), and thus
of (24) (see proposition 2). We prove now that if go is non-negative, so is
the solution of (62). For this we construct (as in [2] ] [3]) a sequence of
non-negative functions which converges to the solution gt of (62) ;
this sequence is obtained by iterating (62) :

When go is non-negative, the sequence is non-negative, pointwise
increasing, and bounded in norm for t x T, T small enough:

These properties are proved by induction. The first two are straight-
forward because

preserves positivity just as etL does (see proposition 1), and N’(t, . ) preserves
positivity and pointwise order, namely (see (57)-(61)):

To prove (64 c), note that because both L and N have skew-symmetric
integrands we have
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Using these relations, together with (63a), (57), (64 a) we obtain

where we have set

Now, we can always take the constant K large enough to have

Moreover, we can also restrict the time interval [0, T ] on which we work
in such a way that

Gathering (71), (72) and (73) we have

so that the proof of (64 c) is complete.
By the monotone convergence theorem, equations (64 a, b, c) imply

that ~ g(~)t in L1-sense, with 0 a. e. As both N’ and etL’
are continuous operators, is the solution of equation (62) and thus
of (24)..
We conclude this section with a few remarks.

i) To see the origin of the unboundedness of the operator L, we can
look separately at its multiplicative part and at its integral part.
First of all, the multiplicative part is clearly unbounded because,
see (8), (14), (18), (25) :

The integral part is also unbounded, because if we put

we have
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so that, taking - 2  oc  - 3/2, we see that go belongs to B but that
its image does not.

ii) The point of Lemma 2 is the following : it ensures that the generator L
of the semi-group (see Proposition 1) is included into L, and consequently
that L is given by formula (25) on the whole of its domain J~.

iii) The set of non-negative elements of Ef with norm smaller than p
is invariant under the evolution generated by (24). This shows the consis-
tency of the interpretation of gt(x) as the time-dependent occupation

function and p - as the time-dependent condensate.

iv) Lemma 3 shows that the qualitative feature of presence or absence
of condensate in the initial condition is preserved for all finite times. This
does not mean that these features are shared by the asymptotic occupation
function, but rather it places restrictions on the nature of convergence
to equilibrium when p > Pc, see theorem 2.

§ 4 . ASYMPTOTIC BEHAVIOUR OF THE SOLUTION

In this section, we show that under mild restrictions every physically
meaningful initial condition go is driven by the evolution (24) to the fixed
point geq.(x) = 1. The corresponding problem for a finite energy range [0, b ]
was treated in [1 ]. We were dealing there with the equation

where Lb and Nb are characterized as follows : first define two operators
Lb, Nb are replacing in L and N (see (25), (26)) the measure G(dy) by

Put then

The main ingredient of the proof of approach to equilibrium for eq. (79)
was the fact that the following functional has the Liapunov property (namely
it is bounded from below and it decreases along the trajectories of (79)) :
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with

A similar result holds for the infinite energy range : the functional ~,
defined as qJb but with G(dx) in place of Gb(dx), is a Liapunov functional
for eq. (24). This can be seen from the result of the cut-off case, with the
help of the following property:

LEMMA 4. - Let go be a non-negative element of J~, and let gt be the
corresponding solution of eq. (24). Put go(x) = and denote

by gf the corresponding solution of (79). Then for any T  00

The proof of Lemma 4 is not particularly enlightening, and we omit it ;
the techniques involved are similar to those used in [4]. The decrease
in time of is then obtained as follows ; we know that

Moreover, one can check (see eq. (103) in (1 ]), that the right hand side of (86)
can be written as the integral of a non-negative function. On the other
hand, we deduce from Lemma 4 that there exists a sequence bi ? o0

such that

Supposing that go is such that  oo (see (100), (102) below for suffi-
cient conditions) we can apply Fatou’s lemma to obtain from (86)

which is the desired result. -

But in fact, the decrease in time of cp(gt) is not sufficient to prove approach
to equilibrium for equation (24). The main reason is that, because of the
infinite energy range, we face the additional difficulty that a fraction of
the mass of the or xgt(x)G(dx) might flow out to infinity.
In order to exclude this depletion phenomenon, we have to prove that
both gt(x)G(dx) and xgt(x)G(dx) are s tochastica lly bounded, namely (see [15 )):
for every E > 0, there exists a > 0 (independent of t) such that

(note that (90) implies (89)).
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In fact, using the decrease in time of one can show the following
implication :

The physical interpretation is the following : if the initial energy distri-
bution has a finite mean, this mean remains uniformly bounded in the
course of the evolution (even though it need not decrease). This property
implies immediately (89), but not (90). This suggests that in order to

prove (90), one should construct an alternative Liapunov functional, in

which the second moment plays a role analogous to that

of the first moment in 03C6. In fact, we can construct a whole

family of Liapunov functionals. This is done as follows, let f : ~ --~ L~
be a continuous increasing function such that f(x) = 0 iff x = 0. Put

and define (formally) the functional H on the positive cone of

by

We first give a formal argument which indicates why H( gt) should be
a decreasing function of t. For that purpose, it is useful to write the dyna-
mical equation (24) in the form

where

With the same notation, we have

so that formally
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Inserting (94) in (97), we obtain

which is non-positive by inspection (remember that f is increasing).
This argument can be made rigorous (see Proposition 4). From now on

we restrict ourselves to the following class of functions f :

The corresponding h( y, x) and H(g) see (92), (93) are denoted by hn( y, x)
and Hn( g) respectively. Note that the functional (defined as in (83)
but with G(d x) instead of Gb(dx)) coincides with Hi(g) up to a constant :

Our first task is to find a suitable domain for Hn. Define, with J~f as
in Proposition 1

PROPOSITION 3. - Let g belong to ~p ; then

Proof 2014 a) First note that since  is non-positive, so is and thus

(see (93))

Moreover, the function y --~ hn(y, x) takes its minimum at y = b(x),
so that the right hand side of (103) is minimum when g = 1 ; hence
Hn{g) ~ 

b) To get a lower bound on Hn(l) we note the following inequalities :

Combining (104) and (105) we have
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This implies (see (92))

And thus, using (103)

c) To conclude the proof, we show that Hn(g) is finite. Note that

Since f n is increasing, this implies

Using (106) and (110), we obtain (see (92))

which yields (see (93))

This is clearly finite since g belongs to ~p (see (101)) ; note that

Now that the functionals Hn are properly defined, we can consider
their time behaviour.

PROPOSITION 4. - Let go be an element and gt be the corresponding
solution of (24). Then

with

where is as in (95) and

Proof - We only sketch the proof, because it does not involve any
new idea. The first step is to prove the equivalent of (114) for the truncated
functionals defined as Hn but with Gb(dx) (see (80)) in place of G(dx),
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gb being the solution of the truncated equation (79). The case n = 1 is
treated in appendix C of [l ] (note that == ~~, - and a similar

proof works for arbitrary n. In the second step, one uses lemma 4 to deduce
(114) by virtue of Fatou’s lemma, as in (87), (88)..
The domains ~P have a further crucial feature : each of them is invariant

under the evolution generated by eq. (24). We know already that the first
two conditions in (101) are preserved by the evolution (see Theorem 1

and Lemma 3). It turns out that the third condition is also preserved in
the following strong sense :

PROPOSITION 5. - Suppose that the initial condition go belongs to 
then there exists a constant En(go)  oo such that

Proof - We define the function

Then d(x) has the following properties, see (14), (17):

Consider the function hn( y, x) in the region where y > d(x)b(x) ; if we split
the range of integration [o, y ] into three parts [o, b(x)], (b(x), d(x)b(x))
and [(d(x)b(x), y ], we obtain using (107), ( 110), ( 119), (121):

This implies

We have thus, using (120)
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We obtain now a bound for the third term on the right hand side of (124).
First of all we obtain from the time-decrease property of Hn(gt) (see Pro-
position 4 and (93)) :

This yields, using successively (111) and (120):

Finally, we treat the region where d(x) ; this is immediate because

Putting (124), (127) and (128) together we obtain the stated result (117) II

COROLLARY 1. - Let the initial condition go belong to ~P ; then for every
e > 0 there is a number a such that for all t > 0

which gives (129) if we take

The corollary reduces to (89), (90) when n = 2 ; we mentioned earlier
that once these stochastic boundedness properties are established, the
proof of approach to equilibrium for the solution of eq. (24) is essentially
reduced to that given in [1 ]. We explicitate now the various steps involved,
but to avoid repetition we give only those proofs which were omitted in [7 ].
We stress again that the functional cp (defined as in (83) but with G(dx)
instead of Gb(dx)) is essentially identical to Hi (see (100)). The point of
Lemmas 5, 6, 7 is to establish various connections between the convergence
of cp(gt) as t - oo and that of gt itself.
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LEMMA 5. - Let ~ t,~ ~ be a sequence tending to + oo, such that

lim = 0 with I"i as in (115); then for every b > 0

LEMMA 6. - Let the initial condition go belong to Then either of

the following conditions implies that --~ as t --~ oo :

f) There exists a sequence {tn} tending to + oo such that

ii) p > pc and for every 6 > 0 there exists a sequence {tn} tending
/*oo

to + ©o such that 03B4 G(dx) 1| ( ~ 0 oo .

Proof. - First notice that since cp(gt) is monotone decreasing in t, it
suffices to prove that (t) or (ii) implies -~ cp(1) oo . Define
for u, v positive : .

One can check the following properties:

Moreover we see from the definition of cp that

We split the integrals in the right hand side of (137) into two domains :
one in which 1, and the other where 1. Using (136) we
obtain in the first case the upper bound:

which tends to zero if assumption (i) holds. For the second case, we use (135)
to get the upper bound
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By virtue of corollary 1, it is enough to prove that for every « > 0

tends to zero (indeed the complementary integral can be made arbitrarily
small uniformly in time). But (140) has the obvious upper bound

so that the proof of the first part of the lemma is complete.
When p > pc. one has Jl = 0 and the only additional information needed

to prove the second part of the lemma is that

can be made arbitrarily small (uniformly in n) for 03B4 small enough. To prove
this result, we use

which implies for (142) the upper bound

which, in view of the form of F(dx) (see (8)), can be made arbitrarily small
by choosing 6 small enough.

ii) If in addition p  p~, then
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Note that the second term in the right hand side of (137) is always non-
negative ; indeed this term is either zero (when p = 0) 
(when J1  0), see Lemma 3. Using this fact and (134), (137) we have:

and

Now the function k(u, v) (see (133)) can be shown to obey

so that (146) implies :

Moreover we have for b(x) the bound (see (84))

On the other hand we can use the Schwarz inequality to deduce

Taking (150) and (151) into account in (149), we have

proving that if the left hand side of (152) converges to zero, so does the
right hand side.
To deal with the other term, we use the following inequalities:
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Putting these in (147) we have

with a2 = [4(1 + 1 (see (150)). But Schwarz’s inequality implies

which together with (156) yields

with 0(3 = a2 min ~ 1, p-1 ~ . This completes the proof of part (i) of the
lemma.

ii) Note that all the above statements hold for all values of the density,
so that the only additional proof needed is that when p  p~, ~ can be
taken to be zero. This is straightforward since then J1  0, so that a 1 remains
finite when we put 03B4 = 0, see (150)..
We are now in a position to formulate the main result of this section :

the fixed point geq.(x) = 1 is a global attractor (in the appropriate technical
sense) for eq. (24).

THEOREM 2. - Let the initial condition go belong to ;, (see (101)).
Then for every 6 > 0

If in addition p  p~, then

Proof - We only sketch the proof, because it is substantially the same
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as that of theorem 3 in [1 ]. Let gt be the solution of (24) determined by
the initial condition go, be a divergent sequence of distinct
integers. Using proposition 4 we see that for every integer k

As the left hand side of (161) is finite, this implies that for some subsequence
°f 1 

so that by lemma 5 we have for every b > 0

and by corollary 1 this yields

On the other hand we have when p  p~ (see lemma 4 and for-
mulas (15), (19))

which can be put in the form

Using lemmas 6 (i) and 7 (ii), we see that formulas (164), (166) yield the
desired conclusion (160).
To complete the proof we have to show that when p > pc. for every 5,

b > 0 one can find a subsequence { such that
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Using (24) one can prove that for > 0

where tl, t2, (t2 > t 1) are arbitrary times, Ci, C~, C3 are positive constants and

One can then use the facts that S(t + pi) converges to zero (see (163))
and that A(6) can be made arbitrarily small (for 6 small enough), to prove
that the uniform bound (168) implies that T(t + qi) converges to zero
for some subsequence { We refer to theorem 3 in [1 ] for further
details. II
The assumption of Theorem 2 guarantees also the convergence of the

first moment ; more generally we have, with ~P as in (101) :

COROLLARY 2. - Let the initial condition go belong to ~p ; then for all
values of the density the moments of order 1, 2, ..., n - 1 converge to

their equilibrium value, namely :

converges to zero, see (159). On the other hand the integrals over [b, o~)
and [0, 5 ] can be made arbitrarily small if b is chosen large enough and 03B4
small enough (using Corollary 1 and m > 0)..
We conclude this section with some remarks.

i) The form of the functionals cP (see (83)) was dictated by the fact
that is the expression representing the free energy density for the
class of quasi-free states of the Bose gas [16] ] [17]. On the other hand,
our generalized Liapunov functionals Hn have no direct physical inter-
pretation.

ii) Corollary 2 can be improved in several ways. First it is clear that in
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order to obtain the convergence of the moment of order n > 0 it is enough
to assume that the moment of order n + E is finite initially, for some E > 0.
Next, by choosing the function f in (92) in an appropriate manner, we
can obtain the following convergence result (valid for any 03B4 > 0) :

iii ) We see from (160) that gt converges to equilibrium in L1-sense
when p  pc. When p > p~ we have the somewhat weaker result (159),
which is however optimal, see [1 ] section 3 . 2, remarks (iii) and (iv).

§5 THE LINEARIZED PROBLEM

In this section we obtain finer details on the process of approach to
equilibrium. For this purpose, we linearize the kinetic equation (24) about
its fixed point geq,(x) = 1. We obtain in this way the following equation
for the deviation from equilibrium ht(x) :

where all integrals are on (0, uJ).
As a first remark, we note that when p  pc the second term in (174)

vanishes (see (19)) and that the equation of motion for can

be solved explicitly. This gives us the linearized motion of the condensate
density (see (23)):

y

The fact that p° tends to zero when p  pe is no surprise, but it is interesting
to not that the condensate relaxation time y -1 blows up when p approaches
p~ (because then II goes to zero, see (11), ( 12)). This is the germ of the pheno-
menon of critical slowing down that we shall discuss further in the sequel
(see Theorem 5, Corollary 4 and remark (ii) at the end of the section).
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As our subsequent investigations rely mainly on spectral analysis, we
find it more convenient to use a Hilbert space framework. We introduce
the complex Hilbert space

where the finite measure M(dx) is defined by (see (8), (14), (17)):

The key object is the operator R defined formally by

A formal calculation gives

so that there is some hope to associate with (179) a negative self-adjoint
operator.

Consider the two domains

and define Q and Q to be the quadratic forms determined by the right
hand side of (180) on 2 and 2 respectively. One can check that c: i and
that is dense in ~f. Moreover Q is closable; in fact:

PROPOSITION 6. 2014 The quadratic form Q is closed.
Proof. 2014 Let { fn} be a sequence of elements of 2 such that for some /

in ~f: -

We have to prove (see [11 ] section VIII. 6)
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If to every function g : (l~ + -~ ~ we associate defined by

and if we put

we see that (184) reads

where ( ( . ) ( . is the norm of ~’. Hence there exists a function h(x, y) such that

Now, (183), (191) imply that for some subsequence {fni} of { we

have (see ] Corollary in section 1. 3) :

This implies

so that the desired results (185), (186) are just reformulations of (190), (191).

Proposition 6 ensures that Q is closable, and that its closure Q is given
by the right hand side of (180) on the whole of its domain ; we do not have
an explicit characterization of this domain, but we can prove the following :

LEMMA 8. - Let Q, (with domain ~), be the closure of Q. Then the
function 1/A(x) belongs to f2 when p  pe. -

Proof - The restriction to p  pc comes from the fact that when J1 = 0
the function 1/A(x) does not belong to Jf (see (17), (178)).

Putting " ,

we have

Using (3),’ (4), (17), (18) we can prove
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On the other hand

so that (198), (199) imply

But since Q is closed this implies that there exists ’P in f2 such that

As each term in (201) must go to zero separately, we see by (199) that
~=~. N
The closed negative quadratic form Q defines a unique self-adjoint nega-

tive operator R with domain ~ c f2 (see [11 Theorem VIII. 15) which is
thus the generator of a contraction semi-group. Some properties of R
are easily extracted from those of Q:

COROLLARY 3. - Let R (with domain be the self-adjoint operator
defined by Q. Then :

i) every element of Yf which has compact support belongs to 
ii) when p  pc the function cp(x) = 1/A(x) belongs to £% and is a zero-

eigenvector of R.
iii) the operator R is given by formula (179) on the whole of 

Proof - The domain R is related to 2 by (see formula (5 . 23) in [1c3 ])

and one has, with the same notation

All three points of the corollary follow from (202), (203) because, when g
has compact support, the exchange of integrals needed to go from (179)
to (180) is justified by Fubini’s theorem. /
Now that the self-adjoint negative operators R is defined in an unambi-

guous manner, we can proceed and obtain more details on its spectral pro-
perties. It turns out that the nature of the spectrum of R in the neighbourhood
of the origin changes drastically at the critical point:

THEOREM 3. - i) When p  pc. zero is a non-degenerate eigenvalue
and an isolated point of the spectrum of R.

ii) When p > Pc, zero is not an eigenvalue of R, but it belongs to its
essential spectrum. In fact, the spectrum of R consists of the whole 

Proof. 2014 f) The fact that zero is an eigenvalue of R was proved in Corol-

Vol. 1, n° 6-1984.



444 E. BUFFET, PH. DE SMEDT AND J. V. PULE

lary 3 (ii). The non-degeneracy is immediate because, since ~ 

Next we prove that zero does not belong to the essential spectrum of R.
In preparation for this, we note that R is formally the difference of the
integral operator with kernel D(x, y) and of the multiplication operator
by the non-negative continuous function (see (179)) :

When p > 03C1c, we have  = 0 and thus m(0) = A(0) = 0 (see (17)), whereas
when p  pc the function m(x) is strictly positive with (,u  0) :

The following comparison function plays an important role in our argument:

One can show that m(x) is ultimately larger than s(x); more precisely,
there exists b  oo such that, with A as in (206)

This is because

whereas

and the right hand side of (210), (which may be infinite), is largen than that
of (209).
Next we introduce the operator K defined by

where

with b as in (208). This is a Hilbert-Schmidt operator with

Annales de l’Institut Henri Poincaré - Analyse non linéaire



445ON THE DYNAMICS OF BOSE-EINSTEIN CONDENSATION

where C is as in (4), (5). Moreover we have, for every h in 1 (see (174)):

As 2 is a core for Q, this proves that the spectrum of the self-adjoint
operator R - K is located on the left hand side of - A. In particular,
since A > 0, zero does not belong to the spectrum of R - K. But since
K is compact, Weyl’s theorem implies that zero cannot belong to the essen-
tial spectrum of R (see [10 ]).

ii) The fact that zero is not an eigenvalue of R follows again from (204),
and from the fact that 1/A(x) does not belong to Yf when p > pc (see (17),
(178)). The final statement is a special case of our proposition 7, see below.

We now use theorem 3 to discuss the behaviour of the solution of the
linearized kinetic equation. We treat first the regime p  Pc; in that case (174)
becomes

where we have set

The corresponding evolution has the exponential decay property:

THEOREM 4. - There exists a number K; > 0 such that for every initial
condition in the solution of (217) obeys

where K(ho) depends only on the initial condition ho.

Proof - a) We discuss first the case where the initial condition ho
is orthogonal to k ; this property corresponds physically to the absence
of condensate, and it is preserved in time because (175), (176) read
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Moreover, it follows from theorem 3 (i) that there exists 6 > 0 with

This implies

b) For the general case, we note that using (221) we can write (217) as

which has for solution

But, because k is a fixed point of etR, this can be put in the form

Now, because of (222), we see that in (227) both functions on which the semi-
group etR acts are orthogonal to k, so that we can use (224) to get:

This gives the stated result (220) if we put

Before we treat the regime p > pc. we note an interesting property of
the class of operators of the form (179): even though their integral part
is not compact (not even bounded), it cannot decrease the essential spec-
trum of the multiplicative part. More precisely we have:

r

PROPOSITION 7. - Let m(x) be as in (205) and u(x) be a bounded real
continuous function ; define

Then every point in the range of the function p~x~ belongs to the essential
spectrum of the self-adjoint operator R + U, where R is as in Corollary 3.

Proof - We begin with two simple remarks.
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i ) The set of functions in :~ with support in [a, a + s] can be identified
with the Hilbert space

ii) The operators S and P defined by

are bounded when considered as operators from to ff.

In fact S is even compact, because it satisfies the Hilbert-Schmidt condition
with

Now let pta) be a point in the range of the continuous function p(x).
One can construct a sequence such that:

But because of (236) we have

and, since S is compact, we obtain from (238), (239), (240):

Gathering (237), (239), (241), we see that Weyl’s criterion for p(a) to be
in the essential spectrum of the self-adjoint operator R + U is satisfied, [1~ ].

We turn finally to the regime p > pc. In that. case, J1 = 0 and the linearized
kinetic equation (174) reads :

where N is the operator of multiplication by the bounded non-negative
function

The operator R - N, defined on P/l, is again self-adjoint and negative

Vol. 1, n° 6-1984.



448 E. BUFFET, PH. DE SMEDT AND J. V. PULE

and generates accordingly a contraction semi-group. But in contrast

with the low density regime, there is no exponential relaxation in this
case (see statement (ii) below).

THEOREM 5. - i) For every element h of £*

ii) For every I > 0, there exists an infinite dimensional subspace ~~
of £* such that

Proof - i) Let

be the spectral resolution of the self-adjoint positive operator - (R - N).
We have for all h in ~ :

On the other hand, since - N is negative, it follows again from (204)
that zero is not an eigenvalue of R - N. Hence the measure (h, E(dx)h)
does not have an atom at the origin, and (244) follows from (247) by virtue
of the dominated convergence theorem.

ii) To prove (245), we note that since p > pc we have p = 0, and thus
m(0) = n(0) = 0 (see (205), (17), (243)). Consequently, zero belongs to the
essential spectrum of R - N (see Proposition 7). Thus for every À > 0,
the subspace

is infinite dimensional. Moreover, for every g in ~~,

A comparison between the results of theorems 4 and 5 reveals the quali-
tative difference between the processes of approach to equilibrium below
and above the critical density. In order to understand the transition between
the two regimes, it is interesting to know the rate at which the relaxation
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time K - blows up as p -~ Pc - 0 - ). The following result provides
a lower bound on the relaxation time (see also remark (ii) below).

COROLLARY 4. - For every number A such that

there exists infinitely many linearly independent initial conditions in ~
such that the corresponding solution h~ of (217) obeys

Proof - If we choose an initial condition orthogonal to k, we see by (221)
that the equation (217) reduces to

The result follows then, as in Theorem 5, from the fact that m(0) belongs
to the essential spectrum of R (see Proposition 7). ~
We conclude this section with some remarks.

i ) When p = vanishes so that (175), (176) give pg = constant,
in contradistinction with the result of the exact non-linear theory (160).

ii) There is an extensive literature dealing with the dynamical properties
of physical systems near the critical region (see [79] ] [20] ] for reviews) ;
the approach is generally of phenomenological nature, and the connection
with first principles rather loose. In particular, the dynamics is obtained
by an ad hoc method (the time-dependent Ginzburg-Landau theory)
rather than derived from the underlying Hamiltonian formalism. One
of the results of the theory is that the relaxation time of the system should
blow up at the critical point (this is called the phenomenon of critical
slowing down) ; moreover the rate at which it blows up as T -~ T~ (the
so-called dynamical critical exponent) is predicted by these methods. The
result of the time-dependent Ginzburg-Landau theory, (as it can be extracted
from [20 ]), is the following: the rate of divergence of the relaxation time
of the order parameter coincides with that of the static susceptibility.

In our model, the result of non-exponential relaxation in the two-phase
region is obtained on a purely microscopic basis. We also have an explicit
expression for the relaxation time y" ~ of the condensate density (see (176))
and a lower bound for the global relaxation time K-1 (see (252)). If we

specialize these to the region p ~ Pc - (i. 0 - ) we obtain
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Moreover, it is not difficult to see that if we fix the density and use the tempe-
rature as a variable we have

so that the right hand sides of (255), (256) behave like O((T - Tc)-2) as
T - Tc +. This supports the Ginzburg-Landau prediction because the
« susceptibility » of the free Bose gas is (see [21 ]j
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