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256 C. E. KENIG, G. PONCE AND L. VEGA

REsuME. — On montre que le probléme de Cauchy pour I’équation de
Schrédinger non linéaire

du=iAu+P(u, Vou, u,V,u), teR, xeR"

ou P(.) est un polynéme sans termes constants ou lin€aires, est bien posé
pour une classe de « petites » données u,,.

Les ingrédients principaux de la démonstration sont des nouvelles esti-

mations qui décrivent I’effet régularisant de type de Kato pour le groupe
{e"*}. La méthode admet des extensions aux systémes et aux autres

modéles dispersifs.

1. INTRODUCTION

Consider the initial value problem (IVP) for nonlinear Schrodinger
equations of the form

O, u=iAu+P, V u, u, V_u), teR, xeR"
u(x, 0)=u(x) }
where u=u(x, 1) is a complex valued function,
P: CZn+ 2 — C
is a polynomial having no constant or linear terms and

V,u=(0,,u,...,0,u).

(1.1)

The main purpose of this paper is to establish a local existence theory
for the IVP (1.1) with “small” data u, (.).

In the semilinear case P=f (Ju|)u [with f(.) a real valued function]
the IVP (1.1) has extensively studied. In particular local and global
theories and blow up results have been proven. These depend upon the
regularity and size of the data, the degree and sign of f(.) and the
dimension n ([3], [8], [9], {12], [18], [34], [36], 37], for a complete list of
references see [2]).

The general IVP (1. 1) has been mainly treated when one of the following
hypothesis hold:

— energy estimates are available
or

— analytic data (analytic solutions).

Annales de I'Institut Henri Poincaré - Analyse non linéaire



NONLINEAR SCHRODINGER EQUATIONS 257

Energy estimates for the equation in (1.1) can be established when
using integration by parts one can show that

Y J P, Vou, i, Vou) %udx|Sc,(1+||u|lf D flulll . (1.2)
la|<s JR"
for any ue H*(R") with s>n/2+1 and p=p(P)eZ".

It is clear that the estimate (1.2) can only be guaranteed if P (.) exhibits
an appropriate symmetry. For example:

n=1 and P=0.(|ulfu), keZ* (see [38], [39]), (1.3)
and
nzl and D, ,P, D, ;P for j=1,...,n

are real valued functions (see [27]-29]).

When P(.) satisfies (1.2) the proof of the local existence theory in
H* (R") with s> n/2+ 1 follows the argument used for quasilinear symmetric
hyperbolic systems (see [17]). Indeed, for those P’s the same proof works
if one removes the term involving the Laplacian from the equation in (1. 1).
In other words, this local result does not use the dispersive structure of
the equations.

It is interesting to remark that the case k=2 in (1.3) was treated by
D. J. Kaup and A. C. Newell [21] using an appropriate version of the
inverse scattering method.

The other approach uses analytic functions techniques to overcome
the loss of derivatives introduced by the nonlinearly P(.). Thus under
appropriate assumptions on the analytic data u, and the nonlinearity P(.)
local and global analytic results have been obtained (see [13], [16], [30]).

Our approach here is quite different. It is based on the dispersive
character of the associated linear equation. More precisely, it relies in a
crucial manner on new estimates for the smoothing effects in the group

eilA }u_ooo
In [19] T. Kato showed that solutions of the Korteweg-de Vries equation
ow+d3w+wd w=0, x,teR (1.4)

satisfy that

r r [0,w (x, )P dxdt<c(T, R, ||w(x, 0)|],).
—Tv—R

The co.rresponding version of the above estimate for the Schrodinger
group {e"}%

r r (1= Q) ey [P dxde<c(T, R, Juol)  (1.5)
-TJ-R
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258 C. E. KENIG, G. PONCE AND L. VEGA

was simultaneously established by P. Constantin and J.-C. Saut [6],
P. Sj6lin [31] and L. Vega [41].

In [23] we show that in the one dimensional case (1.5) can be improved
Ie.

supJ [D;/Ze“a%uo[ZdzchuoH§ (1.6)
where D, =(—A)"/? and that this estimate is sharp.

Our main new tool is the inhomogenenous version of (1.5)-(1.6). More
precisely, it will be proven in section 2 (Theorem 2. 3) that for n=1

@ ¢ " 2 1/2
sup <J 8,‘(J SUTNEFR( ‘E)d‘t) dz)
x - 0

© 0 1/2
§cf (J |F(x, t)[2d1> dx, (1.7)
and for n>2

® t 2 1/2
sup <J J 8x(f e'("”AF(.,I)a’t) a’zdx>
eeZ" e ¥ — 0 0

<RY G r IF (x, t)]zdzdx)m (1.8)
aeZ" Qev —

where {Q, },.zn denotes a family of disjoint cubes of size R such that
R'= U Q,.
aeZ”

Roughly speaking (1.7)-(1.8) tell us that the gain of derivatives in the
inhomogeneous case is twice that obtained for the homogenous problem
(1.5)(1.6). For the global smoothing effect of Strichartz type [35] (see
also [8]) this principle was already proven in [22] and [23]. In this case the
gain of derivatives is only present when the equation is of order larger

than two. In particular for the group {V(s)}®, associated with the
linearized KdV equation (1.4)

Sw+diw=0
it was shown ([22], Theorem 2.4) that

© 1/4
(J DYV (o | dz) <cllup

4 1/4 © 3/4
dz) §c<j ]]F(.,z)[[‘}”dz) .
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The extension of (1.7)~(1.8) to general dispersive equations and applica-
tions to associated non-linear problem including the generalized KdV
equation and other dispersive systems (see [11]) will be given elsewhere,
(see [24], [25D.

To complement the inequalities (1.7)-(1.8) one needs to use estimates
related with the maximal function: sup |e*2.|, (see [1], [7], [26], [31], [40}-
[0, T}

[41]). This idea is implicit in the splitting argument introduced by
J. Ginibre and Y. Tsutsumi [10] in their work on uniqueness for the
generalized KdV equation. Thus in section 3 we shall study boundedness
properties of this maximal function.

Finally in section 4 we establish a local existence theory for the IVP
(1.1). Four cases will be considered n=1 or n=2, and whether or not P
has quadratic terms. In the later case [i.e. when P(.) does not have
quadratic terms] we shall show that the IVP (1.1) is well posed in
{uoe H (Rl up ||, , <8} where s2s,(n) and 8=5(P, n)>0. When P(.)
possesses quadratic terms we need to introduce weighted H-norms, (see
Theorems 4.2, 4.4).

Our method of proof is based on the contraction mapping principle.
Depending on the case considered it uses several norms: those introduced
by the smoothing effect the maximal function and the persistence proper-
ties and if necessary some weighted Sobolev norms.

It should be mentioned that in those cases where both the energy
estimate and the method provided below apply, our method seems to give
better results. In particular in [24] it will be shown that the IVP the
generalized Benjamin-Ono equation

ou+D, 0, u+u o, u=0, x, teR, keZ"* (1.9)

is locally weli-posed in H*(R) with [[u, ||, ,<8=38(k) and s>, (k) where
5o (k)<3/2 if k=2. In this case the energy method proves the result for
§>3/2. A similar argument will allow us to improve some of the results
in [38], [39] (see [24]). Observe that our techniques below work equally
well for real or complex valued, therefore they apply to the equation (1.9).
Also it shall be clear from the proof below that our method extends
without any modification to systems and to non-linearities given by smooth
functions F(u, V, u, u, V,u) with Taylor expansion at the origin having
no constant or linear terms.

The results in section 4 present the following questions:

— Under what conditions do these local solutions extend globally?

— For “large” data u, does the IVP (1.1) have a local solution?

For particular nonlinearities P (.) our method combined with the global
estimate (3.25b) and its extensions to R” gives some positive answers to
the first question above (see [24]).

Vol. 10, n° 3-1993.



260 C. E. KENIG, G. PONCE AND L. VEGA

Finally we would like to point out that here we shall not attempt to
obtaint the best results (Theorem 4.1-4.4) provided by our method since
in any case is not clear that they would be optimal.

2. LOCAL SMOOTHING EFFECTS

This section is concerned with local smoothing effects of Kato type
exhibited by the group {e™}® .

In the homogeneous case these effects basically assert that if u,e L% (R")
then D12 e u e L} (R"x R). As was mentioned in the introduction we
shall deduce new estimates for the inhomogeneous case.

Before stating any results we need to introduce the following notation:
{Q. }aczr is a familly of nonoverlapping cubes of size R such that
R*= U Q,.

aeZ"”

THEOREM 2.1. (Local smoothing effect: homogeneous case). — For n=1

© 1/2
sup (J |DL? €% 1y, (x) | dt) <clluol

2 2.1

x -

and for n=?2

© 1/2
sup (j j ]Di/ze‘“uo(x)lzdtdx> <cRljugll; 2.2
aeZ" Qg — @

where D f (x)=c, |&|" F )Y (x), i.e. the homogeneous derivative of order
yof f.

Proof. — (2.2) was established in [6], [31], [41]. The fact that its right
hand side grows linearly in R independently of the dimension » was proven
in [23] (section 4).

The improvement in the one dimensional case (2.1) was given in [23]
(section 4). There, it was shown that this estimate is sharp in the sense
that there exists a class of initial data u, in which (2.1) becomes an
identity. [

The dual version of (2.1)-(2.2) is given by

w T 12
§cJ (j [ f(x, t)lzdt> dx, (2.3)
2 - 0
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and for n=2

T
D}c”j e " f(., Dt
) 0

<cR Y (J T]f(x, t)|2dtdx)”2. 2.4
Qe vO

aeZ"

In section 4 the estimates (2.3)-(2.4) will be used in connection with
Duhamel’s principle. More precisely, for 1[0, T](2.3)-(2.4) imply that

o T 1/2
§cj (J |f (x, t)]"dt) dx, (2.5)
2 — 0

<cR Y (J JTIf(x, t)[zdtdx>1/2 (2.6)
Q! 0

2 ae 2"

1
Di/zj IR £, Ddt
0

for n=1 and

t
Dilzf U f( r
0

for n=2 respectively.

Now we consider the inhomogeneous IVP
=iAu+F R "
d,u=iAu+F(x, 1), teR, xeR } 2.7
u(x, 0)=0

with FeS (R" x R).
Our main result in this section is

THeOREM 2.3. (Local smoothing effect: inhomogeneous case). —
(a) When n=1 the solution u(x, t) of the IVP (2.7) satisfies

sup( [~ |0, u(x, t)]? dt>1/2§cj00 (Im |F(x, 1)]? dt)ll2 dx. (2.8)

(b) When n=2 the solution u(u, t) of the IVP (2.7) satisfies

(* o 1/2
sup (J [V u(x, 1)|*dr dx)
aecZ® Qv —®

<cR Y (J Jw |F (x, t‘)lzdtdx>1/z. 2.9)

aeZ"

Proof of Theorem 2.3 (a) (estimate (2.8)). — Formally taking Fourier
transform in both variables in the equation in (2.7) we get

i 9=c L&D,
T—E2

and consequently

O u(x, t)= cJ f ee F(i 1) dt dr.

Vol. 10, n® 3-1993.



262 C. E. KENIG, G. PONCE AND L. VEGA

By Plancherel’s theorem (in the time variable)

(j‘w |0, u(x, t)]zdt)u2
=C(j°° 2d’t>1/2 (2.10)
o 2 \12
=c(f d‘r>

F® denoting the Fourier transform of F in the time variable and

r 5P o
T—E?

-

J K(x—y, 0F9(y, 1dy

e o

K{ 7= ) et 5

ao=| e Lo

where the integral is understood in the principal value sense.
We claim:

KeL*®(R?), with norm M. 2.1

The claim (2.11) combined with Minkowski’s integral inequality and
Plancherel’s theorem in the time variable shows that the terms in (2.10)
can be bounded as follows

o R © © 1/2
cMJ ||F«>(y,.)n2dy=cmf (J |F(y,s)12ds> @,

— — — o0

which yields (2.8).
It remains to prove the claim (2.11). For t>0

- e 4 ZJ\D iyin N
K({, 1) J_we ———T_ézdﬁ _we _—l-nz dn.
Observe that in a neighborhood of the singular points n=+1 and n=o0
the function (1 —n?)~! behaves like the kernel of the Hilbert transform
(i.e. 1/n) (or its translated) whose Fourier transform equals —i sgn (y).
Hence a simple comparison argument yields (2. 11) when t>0. The proof
of the case t<0 is similar and therefore it will be omitted.

The above formal process can be justified by applying it to the equation

Ju=iAut+eu+F(x,t), teR, xeR", £>0.

In this case the estimate (2.8) holds uniformly in €>0. Then taking the
limit we obtain the desired result.

Thus we have proven that there exists a solution u(x, ¢) of the equation
in (2.7) satisfying the estimate (2.8). In general, this solution may not

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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vanish at t=0. However by using Parseval’s identity one sees that

u(x, O)=CJOO e""g(J‘OO %ﬁ(ﬁ, ‘C)d‘f>d§
—w® —o T—E&

=cj® ««3‘"5<J‘0O F@(E, s)sgn(s)e”"sgzds>d§

— o

=c j %% sgn (s) F (x, s5) ds.

Now from (2.3) it follows that D2 u(x, 0)e L?(R), which combined
with (2.1) shows that

u(x, )—e"% y(x, 0)
is the solution of (2.7) and satisfies the estimate (2.8). O

Proof of Theorem 2.3 (b) (estimate (2.9)). — Define F,’s and #,’s such
that

F= Z Fxe.= Z F,,
aecZ" aecZ”

and

u= X u,
aeZ"
where u,=u,(x, t) is the corresponding solution of the IVP (2.7) with
inhomogenous term F, instead of F.
Taking Fourier transform in both variables one finds that

u, (&, 1)= F_(¢, 1) foreach aeZ"

lﬁlz—r

Using Plancherel’s theorem in the z-variable the left hand side of (2.9)
with 2, (.) instead of u(.) can be written as
R Y

s (J 1 1L e

The following result (whose proof will be given later) provides the key
estimate.

1/2
d‘c dx) . (2.12)

¢t
g7 =1

the Fourier transform in x only) then

1/2 : 12
sup ( [T(ngD)|2dx> §CR<j ]g]zdx> O .13
Q Q

aeZ"

LEmMmMmA 2.4, — If (T (&)= hE)=mE)AE) (here A denotes

Vol. 10, n° 3-1993.



264 C. E. KENIG, G. PONCE AND L. VEGA

We shall restrict ourselves to consider only the term

p<” J g

since the other portion [ie. Te(— o0, 0)] corresponding to the symbol

1/2
‘i dx) 2.14)

in the argument below is easier to handle.
In|*+1
The expression in (2. 14) is majorized by

(rsupj Jnefxéimf_rﬁg@,r)d&

Successive changes of variable £=1/21 and y=1"2 x give

e 5
w | |Je g e

2 1/2
dxdr> . 2.15)

2
Jvehx/zxn l |T2] 1=‘E"_1 Supj JeiTI/an I ‘TZ] 1 l'i*ﬁ(,cI/Zn’ T)dn| dx
ny-— x " n"—
. n PN 2
=71""11t7"2 sup e ———— Fy (@2 n, nydn (2.16)
x Jilizg, In?-1

Observe that by taking inverse Fourier transform in the space variable:
one has that

(Fp(x'2m, 0)" (x, D=1""2FP (712 x, 7).
Thus
support F{) (1742, 1) = 12Q, for any 1eR.

Now using lemma 2.4 for the family t"/>Q, and a change of variable
the terms in (2. 16) can be bounded by

t"“lt"/ztsz [t_"/zl:‘([f)(t“/zx, 7) [*dx
120,

ZRZj |FO (y, D2 dy. (2.17)
Qp
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Combining (2.12)-(2.17) with Plancherel’s theorem we have that

sup (Jm |V ug(x, D) dxdt)ll2

acZ" — 0 JQq
© 12
§cR(JJ ]F‘B’)(x,‘r)|2d‘rdx>
Qpgv—©

0 1/2
§CR<J J IFﬁ(x, t)|2dtdx> R
Qe —@

which implies the desired result (2.9). O
We now turn to the proof of lemma 2.4.

Proof of lemma 2.4 — Let o CY (R) with supp o<[—1, 1}, o=1 in
[~1/2, 1/2] and 0<o<1. Let ¢, (§)=0(2(|E|—1)) and ¢, (&) such that
0, &)+, (€)=1.

Define

Th()=mEAE)" ), i=1,2
where m; (§)=¢; (§) m (%).

First, we shall establish (2.16) for the operator T, whose symbol m, (£)
has no singularities. For p, p" such that

1
l + l, =1 and - 1 =
p P P p
by Holder’s inequality, Sobolev’s lemma and Mihlin’s theorem it follows
that

)

S |-

1/2
( [ T2 (g%0p dx) ScRMRTUDIT, (gx0) I,
Qu

SRRy T, (g XQB) ||P
<cRID-W | %oy l-<cR|g Xag Il

To estimate T, we split its symbol m, (£) into a finite number of pieces
(depending only on the dimension #). Let 8e CJ (R) with supp8<=(—1, 1),
define

m @)= Q(E]-))mE)O6@[E)=m, ()0 (4]E])  (2.18)

where £=(E, £)eR" ! xR.
m, (.) can be expressed as a finite sum of m; ’s (by a rotation argu-
ment). Notice that

supp m; ;S{&=E, E)eR"' xR/|E|<1/4 and 1/2<|E|<3/2}
Q. cR""!x[a, a,+R]

Vol. 10, n° 3-1993.



266 C. E. KENIG, G. PONCE AND L. VEGA

and
Q,eR"™ ! x[ag, ag+R]
for appropriate constants a,, aj.
Thus Plancherel’s theorem in the x variable leads to

a,

« TR _
lTl,l(ngB)lzdx§f f AT @y P dxd,
R"~

q

Qu

J‘ﬂa R J\
ay R
J’ J
ag R

2 —
dg dx,

Jeixnén m 4 (&) (g XQB) (Ea &n) dE.m

ag*+R = _ o _
J j T @ ey sy a (X, 3 B dy dy, | dE d,
ap R

where

o«

a (X, Yoo £)= J ¢TI, | (E) i,

— @

CLamm. — There exists C>0 such that for any (x,, y,, ) eR"™*!

la(x, ym D[P =C.

Combining the claim (to be proven below) with Schwarz’ inequality and
the theorems of Fubini and Plancherel we find that

a, +R ﬂﬁ"’R — _ — =
EéRJ j J j e" " (g Xoy) (1, ¥ a(xy, &, E)dy

ag R"_l ap Rn*l

fa,+R aB+R
e

Jag R ! Jag

(fa, +R ag +R
—cr [ j

Jag ag R 1L

f'aa‘f' R ag +R _ —
—CR j J ((E k) G ) [ A7y, d,
R"™

Jag ag

2 -
dy, dt dx,

2

dy, dt dx,

f @Ay (9 v B
R

2

dE dy, dx,

j Ao 0 v Y
R"™

=CR2j (g r0) 1) [*dy

which yields (2. 13)
It remains to establish the claim. We have that

@ (X s E>=J°° euxrwnmf___l<p<z<|g1—1)>e<4)z|>dgn
=e<4lEI>j°° et 1a|§—1 e Q(g]-1)de,=K* B

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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where the support of the integrand is contained in
A={E &)/|E|<1/4and 125[E,|<3/2}.

It suffices to consider only the case where &,>0.
For (§,&,)eA it follows that |§[2—1=§f+|2|2—1=§f—u2 with
p>1/2. Then K=K*+K~ with

= [ £ -
K+ X, =0(4 My > s on n
*, ©=6( I»EI)J0 e (én—u)(&ﬁu)\l}(& Y
=e(41'a‘l>r L _JE g,
o £, — K

where \TJeC;’f (R"~!x R*) with support and uniform estimates in
{Ee R~ E|l<1/4 }, which proves the claim.

To complete the proof of (2.9) one just needs to use the same argument
given at the end of the proof of the estimate (2.8). [

ESTIMATES FOR THE MAXIMAL FUNCTION

We bggin by stating an L2-continuity result for the maximal function
sup [ "% |
[0, T}

THEOREM 3.1. — Let n=1. Then for any s>1/2 and any p>1/4
© 1/2
( Y sup sup |e*%u, (x);2> <c(+TP|uolls.. O (.1
j=—o0 [0, T} jSx<j+1

Proof (see [22], Corollary 2.8 and [40]). —
Observe that (3.1) implies that

x© . . ‘ 12
(J sup | €% ug (x) |2dx) <c(1+ 1)) g ]fs, 2- (3.2a)
—w [0,T] :
The following global estimate was established in [26]
) . 1/4
(J sup | €% ug (x)[* dx) <c||D¥*uqlf;- (3.2b)
—o0 (—, ®)

In section 4 and for future references we shall need the following
extension of Theorem 3.1 to the n-dimensional case.
Let {Q, },<z» denote the mesh of dyadic cubes of unit size.

Vol. 10, n° 3-1993.



268 C. E. KENIG, G. PONCE AND L. VEGA

THEOREM 3.2. — With the above notation, for any s, p>nf2

(Y sup sup |ei'Au0(x)’2)”2§c(1+T)"l u ||y, 2- (3.3)

aez" [0, Tl xeQ,

In particular,

1/2
(J sup | uy (x) ]2dx) <c(1+TP|ugl. O (.9)
R" {0, T}

Observe that if one is only interested in the inequality (3.4), this was
proved for s> 1 in all dimensions in [1]. It suffices to prove (3.3) in the time
interval [0, 1] since the general case follows by using a simple homogeneity
argument (see [22], section 2).

First we shall prove the following result,

LemMa 3.3. — Let \, e CP ([2°7%, 2*1)) such that 0=\, (x)<1. Then
Jor k=4 and 1|0, 2]

<cH,(]x]) 3.5

J AR A (DL
o

where H, (| . |) is decreasing,

J H, (| x|)dx<c2kn, (3.6)
R"

and H, (n)<c2™ for re(0,10). Also a similar result holds for
Ve Cg ([—10, 10]) with 2*" replaced by ¢. O

Proof. — We divide the proof in three steps:

Sept 1. — One dimensional version of Lemma 3. 3.

PROPOSITION 3.4, — For keZ™*, k=4 and 1€[0, 2] define

I(t, = J eIy (s)ds.

Then
c2k for re(0, 1)
2k 1/2
[I(z, n|<F(, r)= ('(—) for re[l, ¢2¥
r
enr™N for r>c2*

for any NezZ*. 0O
First we observe that a related result was established in [22]. To prove

Proposition 3.4 we need the following version of the classical Van de
Corput lemma.

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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Lemma 3.5. — Let e C? (R) and e C*(R) such that ¢" (€)>1>0 on
the support of ©. Then

O QE) |10 V2 {0+ @ I}

Proof (see [32], pp. 309-311).
Proof of Proposition 3.4. — Define

g={sem+/ <L}
41

Ik=[2k—1’ 2k+1]

For re(0, 1) is clear that |I(z, r)|£c 2"
For r>1 we consider three cases:
(i) Q to the left of I,
(i) QNL#$
(iii) Q to the right of I,.

r

5§— —
2t

and

In cases (i)-(ii) we have t=¢ % Since the phase function ¢, (s)=ts*>—rs

verifies ¢, (s)=21=c é by Van der Corput’s lemma (lemma 3.5) one has

e, r)|§c(2_")”2.
r

In case (iii) we have — 5 " > c2* with [$:(s)|=|21s—r|2r/2.
t

Hence integration by parts shows that

I(z, )= J et — < 10 (s))a's

it ©) 9" (s) Y }d<—
J { (¢())2¢k() ¢;(S)‘lfk(5) s<

Since r>1 it follows that [case (iii)]

c 2

<C—U2

r

Finally, when r2¢2* we always have Q to the right of I, i.e. r/212c¢2.
Therefore integrating by parts as in (iii) N-times we obtain the bound
dyr. O
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Step 2. — The Fourier transform of a radial function Fx=1 () is
given by the formula

Jo=F(jg]y=r-e-21 jwf(S) Y22 (rs) 52 dis. 3.7

Thus to extend the results in step 1 to higher dimension we need the
following asymptotic estimates for the Bessel fnctions

L) :
rem+1/2r{12) ).,

eirS(l _SZ)(Z m-—1)/2 ds.

LeEmMMa 3.6
J.(N=0(r") as r—0 (3.8a)
N N

Jn(=e™" N Y Oy 7~ ITHD 4 ol Y By, jr D
j=0 j=0

FO(r~ Nty as rs o0 (3.85)

iz

J

for each NeZ*. -—
Proof. — (3.8a) (see [33], p. 158).
(3.8b) It follows by combining the identity

1 ©
J eirs(l __SZ)(sm~1)/2 ds:e—irj e~ry(y2+2(y)m~1/2 dy

-1 0
©
_eirJv e—ry (yz_zl-y)m—uz dy:e—ir Il __eirI2
0

with the Taylor expansion for (y2+2iy)™~ /2 and the estimates

[ee]
J ey dy=0(e"?) as r— oo,
1

0
fe"yyldy=0(r“'“)) as r— .
1

Step 3. — Proof of Lemma 3. 3.
Using (3.7) we write

1@, r=

wawwmwﬁn
1

22

Jewmﬂammwwm
0

where r=| x]|. _
When re (0, 1) the second term in (3.9) shows that I(t, <2,

Annales de I'Institur Henri Poincaré - Analyse non linéaire



NONLINEAR SCHRODINGER EQUATIONS 271
For r>1, we first plug in (3.9) the remainder term in the development
of Ju/2)2 (3.8b) to obtain the bound
2kni2 1 1

An=2)2 N+3/2 9k (N+1/2)

We shall fix N so large that
n—2

+N+§>n.
2

Next we deal with the j-term in (3.85) with 0<j<N

1 ® 1
elt selsr i sn/2 \l’k (S) dS
r(n—2)/2 JVO (Sr)1+ 1/2

1 1 . © o, Lo~
= __ kn{2 = (j+1/2)k it2s  —isr
An=2)2 LJ+1/2 2722 . e e Y (s) ds.

By the step 1 the last integral is bounded by

2k \1/2
('(4) if re[l, ¢24

;
Cur™™ if r>c2

To finish the proof let us compute the L! norm. For re[0, 1] we obtain
the bound ¢2*". In the annulus re[l, ¢2*] we have (after some computa-
tions) that

c2k rn—l
knj2 akj2 n—(j+1/2)k < kn~—2jk
2hnl2 k2 L “mma s S22

Finally, the integral in r=c¢2* is clearly bounded by

2kn/2 )=+ 12 k< okn [

Proof of Theorem 3.2. — Let {\ };>, be a smooth partition of unity
in R" such that the Y,’s are radial with supp yo={|§|<1} and
supp V, < {2*"1<|g|<2¥ k=1, ... Let

(W (D) up) " ©)=e"'* Y (| & ]) g (§).
To prove (3.3) with T=1 it suffices to show that

(Z sup sup

yez" Jti<1 xeQy

jl W, (t—1)g(.,1)de
-1

2\1/2
) (3.10)
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As in the one dimensional case (see [22]) the proof of (3.10) is obtained
by showing that
2 )1/2

<Z sup sup
écznk( z <Jq lg(x, t)ldxdt>2>1/2. 3.1
yeZ" —1JQy

yez" Jt1<1 xeQy
By using lemma 3.5 we find that

Jl W.(t—1)g(.,Ddrt

-1

Ul W, (t—1g(.,Ddr

éij(lyl)J |g(x=y, 1)|dudy

-1

<y (sup Hk(y)M lg(x—y, 1)|dudy.

yez" \VeQy -1Jg,
Thus the left hand side of (3.11) is bounded by
1 2\1/2
(Z (Z (sup Hk([yl)) sup j J lg(x—y, r)[drdy) ) (3.12)
yeZ" \aez" Y€Q xeQy J-14JQ,
Let E, ,=2"Q,— x,, where x, denotes the center of Q,. Then
1 1
supj j g (x—, r)[drdygj J g 7 |dudz,
xeQy J—1 o ~1JEq,y

and consequently using Minkowski’s inequality we estimate the expression
in (3.12) by

1 2\1/2
(Z (2 (sup Hk<|yl>>f J <G r)ldrdz) )

1 2\ /2
<X (suka(IyI))<Z J J lg(z, r)ddrdz>> .

acz" ¥€Q yeZ"

But

(Z <J1 J lg(z, r)drdz)2>1/2§c( Y (Jl lg(z, 1:)[(1'1:(1'2)2)1/2
yeZ® \v=1JEq y yeZ" —1JQy

with ¢ independent of «, since E, , overlaps a finite number (independent
of ) of Q/’s.
Hence the proof reduces to show that

Y sup |[H(lyD]|Sc2".

aeZ" yeQu
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Let

Fn={Q/QN{2"s|y|s2"" }£4},
Fo={Q/QN{lr|<2}=0¢}

Notice that if m>4 and Q, €%, then Q,, {2 2<|y|£27*3}. There-
fore we see that

m=1,...

a2’ Y€

Y sip H(pDs T T sup By

m=0 gueFm Y€Q
<

s ()T T HETIF sl |s2 )]

mz4

§c2""+cJHk(ly])dy§c2""
as desired. [

To estimate the maximal function sup |e™u,]|(x) in the L', /*-norms

[0, Tl
we shall use the following weighted inequalities.

ProrosiTiON 3.7. — (i) For n=1
J sup]e""?%uo(x)ldx§c(1+T)2([[uo|l3,2+||uo|lz,2’2). (3.13)
- [0, T1

(i) For n=2

z [SOUP sup |ei'Auo(x)]§c(1+T)"+3{HuoHZHZ’2+“u0||2n+2’2’2"+2}
aez" [0, T) xeQq

(3.14)
where

1/2
= S (j lalf(x)lzlxlfdx> 5
[yl£1 R"

Proof. — (i) By Sobolev’s and Fubini’s theorems we see that
J sup | "% uy (x) dx

— o0 [0,T]
9] T 2 0 T 2
J‘ f | €% uoldtdx+cj |0, €"% u, | dt dx
—w JO

© VO

T © T 0
f J Ie“aguoldxdthj J | €% 2 ug|dxdt. (3.15)
0 —

0 -
Inserting the formulas

b S

e Al

0

j " g |drselglat el vl
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and
itg2 ito2 . ito2
xe"% uy = "% (xuy)— 2 it "% 9 u,

(see [8], [14]) in (3.15) we obtain the desired estimate (3.13).

(i1) As in the previous proof we have by using Sobolev’s inequality in
the cylinder Q, % [0, T} that

Y, sup sup |e™uy(x)]

aeZ" {0, T xeQq

T T
§c{lj J le"ugldxdi+ Y J J ]eimﬁﬁuoldxdt}.
TJo Jer [BlSn+2 JO JR"

To estimate the L-norm above we combine the formulas

17l el f el xFr
where n=n+1 if nis odd and n=n+2 of n is even,
x;e f(x, =" (x; f)—2ite™ s, 1),
and
X x5 f (x, =™ (x, x; )= 211" (3 f+x;0,, /)
—2ite"™ (%, 0, [) — 412 €"(0,, 0, )
(see [15]) to infer that

Z sup sup Ieimuo(x)f§c(1+T)n+3(Huo”2n+2,2+”u0“2;.+2,2,2n+2)~
wez" [0, TI xeQq

which completes the proof. [

4. THE NONLINEAR SCHRODINGER EQUATION

Consider the nonlinear IVP.
O, u=iAu+P(u, Vou, u, V u), teR, xeR"
u(x, 0)=uq(x) }
where P denotes a complex valued polynomial defined in C2"*2 such that

P@)=P(zy, ..., Zpns )= Y a2% 4.2)
I

(4.1

Assuming that for some o€ Z*"*? with |, |=d there exists a,,#0 we
shall consider four cases d=2 or d=3 and n=1 or n22.

THEOREM 4.1 (Case n=1 and d=3). — Let n=1. Then given any
polynomial P as in (4.2) with d=3 there exists =258 (P)>0 such that for
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any uge H? (R) with s27/2 and ||u,|\/5, , <8 the IVP (4.1) has a unique
solution u(.) defined in the time interval [0, T], T=T (||uo|l12,2) >0 with
T (0) > o as 6 — 0 satisfying
ueC ([0, T]: H* (R) = X5 4.3)

and

ueYi={u:R'x[0, T| > C/DS* V2 uel® (R:L2(0, D)} (4.4)
Moreover, for any 'E’G(O, T) there exists >0 such that the map Uy — u(f)
from { i€ H* (R)/|| 14— to ||s, , <&} into Xy M Y is Lipschitz. U

Proof. — For simplicity in the exposition we shall only consider the
most interesting case s=3+1/2. The general case follows by combining
this result with the fact that the highest derivatives involved in that proof
always appear linearly and some commutator estimates (see [4], {51, [20))
for the cases where s#k+1/2, keZ™.

For uge H7? (R) with | g |52, <8 (to be determined below) we denote
by @ (v)=®,, (v) =u the solution of the linear inhomogenous IVP

S,u=idZu+P(v, axv,iaxﬂ)} @.5)
u(x, 0)=uo (x)
where

veZ“T={v: Rx[0, T) - C/sup ||[v(D) ]2, .Za,

(0, T1
T 1/2
sup(j | 0% v (x, t)[zdt) <a,
and
<1+T)-‘(r sup (|0 (x, D[+ 0, v(x, z)|2)dx)”2ga}.
o [0.T]

Tt will be established that for appropriate a and T (depending only on
| 4o ||2. » in the appropriate manner and P (.)) if ve Z; then the solution
u=® (v) of the IVP (4.5) belongs to Z7 and

O Z5-7%

is a contraction.
For this purpose we use the integral equation

t
u(t)==o @) ()= "% u0+J EUVEP (v, v, v, 0,0)(t)dr.  (4.6)

0
First we notice that

3P, 0,0, 0, 0,0)=02vR ()+0F vR,()+S(.) 4.7
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where
Rj(-)sz('U» v, 0,0, 6,1-)—)j=1, 2 and S(.)=S((6§v)[al§3; (ai"j)]uga)

Thus combining the estimates (2.8) and (2.1) for the terms in (4.7)
involving R’s and S respectively it follows that

T 1/2
sup (J |6t u(x, z)|24z> <o ya.

0

iy CJOO UT;angj(.);Z(x, z)dz)”zdxﬂﬂn;/w(.)szz

0

T 1/2
§c”u0||7/2,2+c<sup(J | 0% (x, t)!zdt> )
x 0

><<JOQ sup (|2 + v P (x, t)dx>
w0, T]

x {1 +sup sup ((Jv|+[d,v]) (x, t))"_3}

[0, T] x

#eT sup (o) 5,2 {1420 322

écliuoll7/z,z+c<sup ( j "t t)lzd,)“)
X [3)

x(on sup ([o)2+]|v, ) (x, t)dx>{1+;up le @ 5232}
_ » T]

o [0,T]

+¢T [sOqu](“v(t)H%/Z’Z{1+|]v(t)[|%72?2})ED1. (4.8)

Above we have used the commutator estimates obtained in the appendix
of [20). Next we combine the estimate (2.5), the group properties and the
integral equations (4.6) to find that

sup || #(9) ||z, » <Dy | @.9)

[0, T1

From the estimate (3.2 a) for the maximal function sup ]ei""'?“[ we obtain
[0, T1

<J‘w sup (Ju|>+|0,ul?) (x, 1) dx)1/2§c(l +T)

- [0, T}

“{Nuollyjz. 2+ eTH? sup N @3z {1+ o @270} (410
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Inserting the notation
T 1/2
A (w)=max {sup (J [ogw(x, 0)f? dt) ; sup lw(®) |72, 25
x \Jo {0, Tl

(1+T)_1<J~aO sup (|wr+|o,w]) (x, t)dx)llz} 4.11)

in (4.8)-(4.10) we see that
Ar@)Zedo+c(1+T) (A (0)° + (Ar (0)))

with 8,=|| o |72, 2<8 (to be determined) and where the constant ¢>1
depends only on P(.) and on the linear estimates (2.1), (2.5), (2.8)
(3.2a).

First we fix & such that

4cPs=1 4.12)
and then choose any a=a(||u,||;/, ;) >0 such that
ae(2cdy, 4¢dy). (4.13)
Thus
Ar(W)Zcdy+2c(1+T)(Ecdy) L2, (4.14)
for any T satisfying
204¢P(1+T)82<1. 4.15)

Hence, fixing an a as in (4.13) and then a T as in (4.15) we obtain
that the map

o=, :77 > 77
is well defined.

To prove that ®(.) is a contraction we apply the estimates described in
(4.8)-(4.10) to the integral equation

(I)(v)(t)—d)(g)(z)=j VR P(, .. )—=P(3,...) (1) dr.
0

to obtain [see notation in (4.11)]

Ar(@ @)~ @ @)=Zc(1+T)Ar(v—2)
X (Ar (@) +(Ar (@)~ + (Ar (@) + (A ()P
S4c(1+Ta?Ar(0—0)<4c(1+T)(40)* 82 Ar(v—2) (4.16)

since v, v e Z5.
From (4.15) it is clear that T can be chosen such that

4e(1+T)(dc)?82<1/2. 4.17)
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Therefore for those T’s the map ®, (.) is a contraction in Z7. Conse-
quently, there exists a unique u€Z7 with ®, (1) =u which due its regularity
solves the IVP (4.1).

Since ueZ$ it follows that

ueL> ([0, T}: H"?) 4.18)
which combined with the integral equation ®, ()= u shows that
ueC ({0, T}: H?). 4.19)

From (4.18)-(4-19) one can only conclude that for any £>0
ueC ([0, T]: H"2"¥).
To establish the persistence property of u(f) in H"/?, i.e.
ueC([0, T]:H"?) (4.20)

one needs to use the following argument:
(i) Since (4.2) described a local property it suffices to prove it at t=0.
(ii) Inserting the estimates (4.12)-(4.14), (4.19) in the integral equation
®, (u)=u as in (4.8) one sees that for T, sufficiently small

Ty 172
supU 0 u(, z)]%ﬁ)
x 0

To - 172
§2Csup(J [6j’;e"’3xu0|2dt> +o(1) (4.20

o]
as T, tends to zero.

(iii) For £>0 let uj e H* (R) such that ||u, — 1§ ||;,,, , <&, that it follows
from (2.8) that

To . 1/2
sup < J | 0% e u|? dt)
x 0

T
§0Huo_uf)”7/z,2+c SuP(J

o - 172
0% et 2 dt)
0

T, 1/2
gcs+c(jOsup]ei‘aiaiuglzdt) Scet+ceToljublls, .. (4.22)

0 x

Therefore from (4.21)-(4.22) one can conclude that

To 1/2
sup(j | 0% u(x, t)]zdt> =0(1) 4.23)

0
as T, tends to zero.
(iv) Finally combining the integral equation

t
u(t)-—u0=e"a§u0—uo+j VP L Y (t)de

0
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with the estimate (2.5) and the group properties as in (4. 8)-(4.9) together
with (4.23) one obtains the desired result.

Using a similar argument we shall establish the uniqueness result in a
class larger than Z%. Let u be a solution of the IVP (4.1) in the time
interval [0, T,] with T, <T. Moreover assume that ue 73 for some a; >aq,
with ueC ({0, T,]: H”?). Thus u satisfies the integral equation form of
(4.1). By continuity there exists T, e(0, T,) such that

sup ||17(I)H-,,2)2§a.
[0, T2l

Combining this estimate with (3.24a) as in (4.9) one finds that there

exists T;e(0, T,) such that

© _ ~ 172
<J sup (|u|2+]6xu|2)dx> <a

— oo [0, T3}

A similar technique shows that for T, (0, T;)
T, N 1/2
sup ( j |[otu(x, n|? dt) <a.

0
Hence ueZ5 . and consequently u=u for (x, 1)eRx[0, T,]. Reapplying
this proccess we extend the uniqueness result to the interval [0, T7.
To complete the proof of Theorem 4.1 we need to establish the conti-
nuous dependence. Denoting by u(z), v(z) the corresponding solution of
the IVP (4.1) with initial value u,, v, respectively we write

u(f)—v(1)=e"% (uo—vo)+jtei('_"63 (P(u.)—P(v...))dr

0

The same proof of the contraction property of @, (.), (4.16), (4.17),
shows that

Ar, (u—0)<||up— v, ||.,/2,2+KATO(u—v)

where the constant K depends only on P, || u4 |52, || v ||7,2 and Toe(0, T).
Indeed, this argument shows that the constant K can be taken smaller
than 1/2 if

“ Up— Vg ”7/2, 2<0

with =3 (T —Ty) >0 is sufficiently small. O

THEOREM 4.2 (case n=1 and d=2). — Let n=1. Then given any polyno-
mial P as in (4.2) with d=2 there exists $=06(P)>0 such that for any
ue ¥ (R) N H?* (R: x* dx) =G, (R) with s=5+1/2 and

50=”u0 ”11/2,2'*'“"0 ”3,2, 2598
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the IVP (4.1) has a unique solution u(.) defined in the interval [0, T},
T=T(8,) >0 with T(0) > co as 8 — 0 satisfying
ueC([0, T): G,(R)=Xs
and
ueYs,

where Y5 was defined in the statement of Theorem 4.1. Moreover, for any
I’ €(0, T) there exists a Eeighbgrhood V., of ug in G4(R) such that the map
uy = u(t) from v, into X3. N Yy is Lipschitz. U

We recall the notation || . || 5. .

1/2
flhsn= T ([ 125 @FIxpras) (4.24)
IBl=k R"
Proof. — For simplicity in the exposition we shall assume
P(u, 0 u, u, 6, u)=(0,u)>

It will be clear from the argument presented below that this does not
represent any loss of generality.

As in the proof of Theorem 4.1 we consider the most interesting case
s=5+1/2.

For uge H''2 (RN H?(R: x? dx) with ||ug||,1/2, 2+ || 4o ]]3, 2, 2 <8 (to be
determined below) we denote by @ (v) =@,  (v) = u the solution of the linear
problem

—ia2 2
O, u 16Xu+(6xv)} .25

u(x, 0)=uo (x)

where

veE"T={v:RX[O, T] - C/

T 1/2
sup o) l|11/0. 25 sup [|0() . 2 2 Sa, sup (J 1380 (x, z)]2d1> <a
T] x

[0, T] [o, 0

- [0,T]

and (1 +T)‘2J sup |0, v (x, t)}dxga}.

It shall be established that for appropriate a and T (depending only on
luoll11/2, 2+ || 4o ||3, 2, » in the appropiate manner) the map

®: B¢ Es

is a contraction.
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We will use that for te[0, T] u=® (v) the solution of (4.25) safisfies
the integral equation

u(f)= 0 (v) (1) = "% f PIT: (0,v)? (v) dr. (4.26)
0
Since

33 ((0,v)*)=c, 0,0 020+ S (0% 0)a<5)
combining (2.8), (2.1) as in (4.8) it follows that

sup (JT |08u(x, 1)|*dt I)UZ
x 0

§c||”0”11/2.2+cjm (JTl(axvaﬁv)(x, t)|2dt>1/2dx
- 0

+cj DS ()l de el 1an.
0

+ c(sup <j‘T |08v(x, 1)]? dt)”2>
x \Jo

X(Jw sup | 0, v (x, t)|dt)+cT sup o312, .=D,. (4.27)

- o0 [0, T}

As in the previous proof above we have used the commutator estimates
obtained in [20].
Writing the equation (4.6) as

u(f)= et <u0+ J ' e (3_v)? (t)dt) (4.28)

0

from (3.13) we have that

(1+T)’2J sup |0, u(x, D]dx<c(|uo|ls. 2t o3, 2,20 T sup (EIGYE

0 [0, T]

Z j [| xe ™% 35 1 (3, 9)%) (1) ||, dr S e 8o+ ¢ T (1+T) sup o2,

+ Z “an“((a )2 (D |, dt=<cdy+cT(A+T) sup o) ]}% 2
=0 Jo
+T(SuP] H'U(t)Hs,z)(SOup ”v(t)“a,z, o), (4.29)
0, T [0, T]

. . 2 — 2
since I'(x, ©)=x+2it0,=e"% xe "% and

l[xe™ ™% f L =lIT (& O f =% |2+ 271 f Nl
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(see [14]). The same estimate shows that

ISOUPJHu(t)“3,2,2§C|]“0“3,2,2+CT““0H4,2+C(1 +T?) [SOUP Hv(t) “5,2
, T , T}

+crn<axv)2<r);[3,2,2drgc<1+T)so+(1+T2) sup |58,
0 {0, T}

+cT(sup Hv(t)ns,z)(suP H'U(t)Hs,z,z)' 4.30)
[0, Tl [0,T]

The inequality (2.3) and the group properties used in the integral
equation lead to

sup “u(t)Hu/z,zéDz (4.31)
[0, T]

where D, was defined in (4.27).
Introducing the notation

Qp (w)=max {Sup ”W(t)nu/z,z; sup l[W(t)[ls,z, 25
[0,T] {0, Tl

sup <jT]8§w(x, t)lzaft)m; (1+T)"? jvm sup |9, w(x, t)]dx}

0 - [0,T]
one easily see that the estimates (4.27), (4.29)-(4.31) yield the expression
QW) Sc(1+T)8+c(1+T?(Qr ()% (4.32)

with 8o=||ug||11/2, 2+ || x40 |5, 2 < to be fixed.
At this point the rest of the proof follows by the method given in details
in the previous proof, therefore it will be omitted. O

THEOREM 4.3 (Case n=2 and d=3). — Let n=2. Then given any
polynomial P as in (4.2) with d=3 there exists 8=038(P)>0 such that for
any uoe H (R™) with s2s,=n+2+1/2 and |u,||, ;<8 the IVP (4.1)
has a unique solution u(.) defined in the time interval [0, T),
T=T (]| |lso, 2)>0 with T (8) - co as 0 — 0 satisfying

ueC ([0, T]: H* (RM) =X}
and
ue Wt

where

W;E{w:wx[o, T} > C/AM >0

T
s.t. for all cube Q of side one j‘ j | DS 12w 2 dxdth}.
0 JQ

with its norm described in (4.34). Moreover, for any T € (0, ’I;) there exists
a neighborhood V., of u, in H¥(R") such that the map ug—~u(t) from Vg
into X5 M W3 is Lipschitz. —
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Proof. — For simplicity of the exposition we shall assume

P(u, V u,u, V,u)=0,ud, ud, u

with 1, j, ke {1, ..., n} fixed.
We also restrict ourselves to the most interesting case s=s,=n+2+1/2.
As in previous proofs, for ueH®(R") with |lu, |l ,=8,<8 (to be
determined below) we consider the linear IVP

O, u=iAu+0,v0, v0, v
! (4.33)

u(x, 0)=uo (x)

for veZ4={v:R"x[0, T] > C/A] (v)<a for j=1, 2, 3} where the A]’s are
defined

A (0)= sup 12 llso, 2-

A (v)= sup (J f [08v(x, t)‘zdxdt) , (4.3

IBl= So+1/2 aeZ”

and

A@=(+T)"( Y sup sup |V, 0(x, z)|2>”2,

aecz" 10, Tl xeQq

with the Q,’s forming a family of disjoint cubes of side one such that
R'= U Q,.

aecZ"

It will be shown that for appropriate positive constants 6 =298 (P), a=a(d)
and T=T(8,)>0 if veZ§ so does the solution u(.) of (4.33), and that
the map @ (v)=u is a contraction.

We shall rely on the integral equation

u(t)=0 @) (H=e"uy+ f A 0,00, v)(Vdr.  (4.35)

[

Our first estimate deals with the local smoothing effect. Observe that
for any BeZ" with |B|=s,—1/2
ag(anvaxj‘u@,ckv)=aﬂa 00,00, v+ 0, vagaxjvanv
+ 0, v@ va vaﬂa v+S((0L0) 1<)y 250-1/2)- (4.36)

x Yxy
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Thus the estimates (2.2) and (2.9) allow us to write

M @scllug s,

n

T 1/2
te ) ) Z(J Iagaxpvaxmv(?xrvlzdxdt>
IBl=s0-1/2 p.m,r=1 4o zn 0 Jo,

T
+Cj ”Dilzs(-)ﬂz df§c”“o”so.z
0

T 1/2
+c( S sup <fj|6§v[2dxdt> )
[Bl=so+1/2 qez" 0 N

x( Y sup sup |V,0(x, 1)[})+cT(sup o) |5, 2)°
[0, T]

wez" 10, T xeQq
<edotc(1+ DAL () Al ()2 +c T (0))°=D,. (4.37)

where the commutator estimates deduced in [20] have been used. Combin-
ing the estimate (2.4) with the group properties we obtain

AT () <D, (4.38)
To estimate A (1) we insert (3.3) in (4.35), thus
M@ =c|tgllyzea, T T2 AT (@) (4.39)

Hence defining

YT(w)= max {Af(w)}

k=1,2,3
from (4.36)-(4.39) it follows that
YT (@) <cdg+c(1+T)" (YT (v))°.

At this point the rest of the proof follows the argument given for
Theorem 4. 1, therefore it will be omitte. [J

Finally we have

THEOREM 4.4 (Case n22 and d=2). — Let n=2. Then given any
polynomial P as in (4.2) with d=2 there exists 8=38(P)>0 such that for
any uo e H* (R") N H>"*3(R":| x|*"*2 dx) = G,with s2 s, =3n+4+ 1/2 and

8oznuouso, 2T Huo “2n+3,2n+2<8

the IVP (4.1) has a unique solution u(.) defined in the time interval [0, T,
T=T(8x)>0 with T(®) > 0 as 60 satisfying

ueC([0, T]:G)=Rs
and

s
ue Wi
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where W5 and its norm were defined in the statement of Theorem 4.3 and
in (4.34) respectively. Moreover, for any T'€(0, T) there exists a neighbor-
hood ¥, of u, in G, such that the map u,— u(f) from V, into RS, N W5
is Lipschitz. -

Proof. — We shall follow the argument presented in the previous proofs,
therefore a sketch will suffice.

Since our method does not rely on any special structure of the nonlinear
term, besides its quadratic character, we restrict ourselves to consider the
case

P(u, Vou,u, V,uy=|Vul?

Also for simplicity in the exposition we assume s=s,=3n+4+1/2.
Define

Bo={w:R"x[0, T|» C/ul W)<a, j=1,..., 4}

where
T —
uy W)= sup [|w(®) |, 2»
[0, T}
T 1/2
pw= Y sup (J |Bw(x, )] dxdt) ,
{B1=s0+1/2 e 2" 0 JQq
piw)=(1+T)~"*3 % sup sup |V, w(x, 1|
acz" [0, T} xeQ,
and
HywW)=sup [|W(O)|lzns2, 2, 2042
[0, T)
with the Q,’s and the || . ||, ,, ,-norm described as in the previous proof

and in (4.24) respectively.
For a given ve E% denote by u=® (v) the solution of the linear problem

6,u=iAu+|Vv|2}
u(x, 0)=uy(x)
with uoeG,, such that ||ug|lspra+1/2, 2% |40 |20+ 2. 2, 2042 =86 < (t0 be

determined).
It is clear that u(.) satisfies the integral equation

(4.40)

u()=0@)(1)=e"uy+ jt eIV ()2 dr 4.41)
0

Thus an argument similar to that used in (4.36)-(4.37) shows that
=S+ c(1+T" P P (@3 () + ¢ T (] ())*’=D,  (4.42)
Also, as in (4.38), (2.6) and the group properties yield the inequality
i (@) =D, (4.43)
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Next by combining (3. 14) with successive applications of the rule
X" f (x, ) =e (T, T;() f (x, 1)
=e " (x,+2it O ) (x;+2it 0:) f(x, 7)
(see [15]) and the equation in (4.41) written as
u(t)=e (qurj e ™| Vo(r) d‘t>

0
we can infer that

H3 (W =cd,
+J V0@ et 5 [ e8| Volt ), e
0 ipl2n+2

S8t e T @) +c(1+T)"2 (1] (0) (u] (W) + pi(2). (4.44)
To estimate p} (1) we use the formula
x;e" f(x, )=(x;+2it 0,) €™ f—2ire™ O, f
=" (x; /)~ 2 ite™ 0y, /).
(see [15]) several times to conclude that
He@Sc(I+TY 8, +c(1+ Ty (u] () (W] (0) + I (). (4.45)
From (4.42)-(4.45) we find that if
Y= max  {uf ()}

i=1,..., 4

then
YT <ce(1+T)"+! 8o+t c(1+T)" 3 (¥T (v))2.

At this point we remark that the rest of the proof follows in the same
manner as that of previous theorems. Therefore it will be omitted. [J
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