
Small solutions to nonlinear Schrödinger equations

CARLOS E. KENIG*

GUSTAVO PONCE*

LUIS VEGA**

Department of Mathematics
University of Chicago

Chicago, IL 60637, USA

Department of Mathematics
University of California

Santa Barbara, CA 93106, USA

Facultad de Ciencias
Universidad Autonoma de Madrid
Cantoblanco, Madrid 28049, Spain

ABSTRACT. - It is shown that the initial value problem for the nonlinear
Schrodinger equations

where P (.) is a polynomial having no constant or linear terms, is locally
well posed for a class of "small" data uo.
The main ingredients in the proof are new estimates describing the

smoothing effect of Kato type for the This method
extends to systems and other dispersive models.
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RESUME. - On montre que le probleme de Cauchy pour t’equation de
Schrodinger non lineaire

ou P ( . ) est un polynome sans termes constants ou lineaires, est bien pose
pour une classe de « petites » donnees uo.

Les ingredients principaux de la demonstration sont des nouvelles esti-
mations qui decrivent l’effet regularisant de type de Kato pour le groupe

La methode admet des extensions aux systemes et aux autres

modeles dispersifs.

1. INTRODUCTION

Consider the initial value problem (IVP) for nonlinear Schrodinger
equations of the form

where u = u (x, t) is a complex valued function,

is a polynomial having no constant or linear terms and

The main purpose of this paper is to establish a local existence theory
for the IVP ( 1.1 ) with "small" data uo ( . ).

In the semilinear case [with/(.) a real valued function]
the IVP ( 1.1 ) has extensively studied. In particular local and global
theories and blow up results have been proven. These depend upon the
regularity and size of the data, the degree and sign of f ( . ) and the
dimension n ([3], [8], [9], [12], [18], [34], [36], 37], for a complete list of
references see [2]).
The general IVP (1.1) has been mainly treated when one of the following

hypothesis hold:
- 

energy estimates are available

or

- analytic data (analytic solutions).
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Energy estimates for the equation in (1.1) can be established when

using integration by parts one can show that 
’

for any with s > n/2 + 1 and p=p(P)eZB
It is clear that the estimate (1.2) can only be guaranteed if P ( . ) exhibits

an appropriate symmetry. For example:

and

are real valued functions (see [27]-29]).
When P ( . ) satisfies ( 1. 2) the proof of the local existence theory in

HS (W) with s > n/2 + 1 follows the argument used for quasilinear symmetric
hyperbolic systems (see [17]). Indeed, for those P’s the same proof works
if one removes the term involving the Laplacian from the equation in ( 1. 1 ).
In other words, this local result does not use the dispersive structure of
the equations.

It is interesting to remark that the case k = 2 in ( 1. 3) was treated by
D. J. Kaup and A. C. Newell [21] ] using an appropriate version of the
inverse scattering method.
The other approach uses analytic functions techniques to overcome

the loss of derivatives introduced by the nonlinearly P ( . ). Thus under

appropriate assumptions on the analytic data uo and the nonlinearity P ( . )
local and global analytic results have been obtained (see [13], [16], [30]).
Our approach here is quite different. It is based on the dispersive

character of the associated linear equation. More precisely, it relies in a

crucial manner on new estimates for the smoothing effects in the group
f eit0394}~- co.

In [19] T. Kato showed that solutions of the Korteweg-de Vries equation

satisfy that

The corresponding version of the above estimate for the Schrodinger
group {~}~
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was simultaneously established by P. Constantin and J.-C. Saut [6],
P. Sjolin [31] and L. Vega [41].

In [23] we show that in the one dimensional case ( 1. 5) can be improved
i. e.

where Dx = ( - ~) 1 ~~ and that this estimate is sharp.
Our main new tool is the inhomogenenous version of ( 1. 5)-( 1. 6). More

precisely, it will be proven in section 2 (Theorem 2 . 3) that for n = 1

and for n >_ 2

denotes a family of disjoint cubes of size R such that
Rn = ~ Q03B1.

Roughly speaking ( 1. 7)-( 1. 8) tell us that the gain of derivatives in the
inhomogeneous case is twice that obtained for the homogenous problem
( 1 . 5)-( 1 . 6). For the global smoothing effect of Strichartz type [35] (see
also [8]) this principle was already proven in [22] and [23]. In this case the
gain of derivatives is only present when the equation is of order larger
than two. In particular for the associated with the
linearized KdV equation ( 1 . 4)

it was shown ([22], Theorem 2. 4) that

and
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The extension of (1.7)-(1.8) to general dispersive equations and applica-
tions to associated non-linear problem including the generalized KdV
equation and other dispersive systems (see [11]) will be given elsewhere,
(see [24], [25]).
To complement the inequalities ( 1. 7)-( 1. 8) one needs to use estimates

related with the maximal function: sup (see [1], [7], [26], [31], [40]-
[0, T]

[41]). This idea is implicit in the splitting argument introduced by
J. Ginibre and Y. Tsutsumi [10] in their work on uniqueness for the

generalized KdV equation. Thus in section 3 we shall study boundedness
properties of this maximal function.

Finally in section 4 we establish a local existence theory for the IVP
(1.1). Four cases will be considered n = 1 or n ~ 2, and whether or not P
has quadratic terms. In the later case [i. e. when P(.) does not have
quadratic terms] we shall show that the IVP (1.1) is well posed in

where s >_ so (n) and 8=8(P, n) > 0. When P ( . )
possesses quadratic terms we need to introduce weighted HS-norms, (see
Theorems 4. 2, 4.4).
Our method of proof is based on the contraction mapping principle.

Depending on the case considered it uses several norms: those introduced
by the smoothing effect the maximal function and the persistence proper-
ties and if necessary some weighted Sobolev norms.

It should be mentioned that in those cases where both the energy
estimate and the method provided below apply, our method seems to give
better results. In particular in [24] it will be shown that the IVP the

generalized Benjamin-Ono equation

is locally well-posed in HS (IR) and where

so (k) _ 3/2 if k > 2. In this case the energy method proves the result for
s > 3/2. A similar argument will allow us to improve some of the results
in [38], [39] (see [24]). Observe that our techniques below work equally
well for real or complex valued, therefore they apply to the equation (1.9).
Also it shall be clear from the proof below that our method extends
without any modification to systems and to non-linearities given by smooth
functions F (u, u, with Taylor expansion at the origin having
no constant or linear terms.

The results in section 4 present the following questions:
- Under what conditions do these local solutions extend globally?
- For "large" data uo does the IVP ( 1.1 ) have a local solution?
For particular nonlinearities P ( . ) our method combined with the global

estimate (3. 2 b) and its extensions to gives some positive answers to
the first question above (see [24]).

Vol. 10, n° 3-1993.
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Finally we would like to point out that here we shall not attempt to
obtaint the best results (Theorem 4 .1-4 . 4) provided by our method since
in any case is not clear that they would be optimal.

2. LOCAL SMOOTHING EFFECTS

This section is concerned with local smoothing effects of Kato type
exhibited by the 

In the homogeneous case these effects basically assert that if uo E L2 
then D;/2 eitA uo E (tR" x R). As was mentioned in the introduction we
shall deduce new estimates for the inhomogeneous case.

Before stating any results we need to introduce the following notation:
is a familly of nonoverlapping cubes of size R such that

- U Q..
03B1 ~ Zn

THEOREM 2 . 1. (Local smoothing effect: homogeneous case). - For n =1

and for n >__ 2

where Dx f (x) = ~’~ f (~)) " (x), i. e. the homogeneous derivative of order
yoff

Proof. - (2 . 2) was established in [6], [31], [41]. The fact that its right
hand side grows linearly in R independently of the dimension n was proven
in [23] (section 4).
The improvement in the one dimensional case (2 . 1 ) was given in [23]

(section 4). There, it was shown that this estimate is sharp in the sense
that there exists a class of initial data uo in which (2 .1 ) becomes an
identity. D

The dual version of (2 . 1 )-(2 . 2) is given by

COROLLARY 2. 2. - For n == 1

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and for n >_ 2

In section 4 the estimates (2.3)-(2.4) will be used in connection with
Duhamel’s principle. More precisely, for T] (2 . 3)-(2 . 4) imply that

for n =1 and

for n >_ 2 respectively.
Now we consider the inhomogeneous IVP

with F E S x R).
Our main result in this section is

THEOREM 2.3. (Local smoothing effect: inhomogeneous case).
(a) When n =1 the solution u (x, t) of the IVP (2.7) satisfies

(b) When n >_ 2 the solution u (u, t) of the IVP (2. 7) satisfies

Proof of Theorem 2. 3 (a) (estimate (2. 8)). - Formally taking Fourier
transform in both variables in the equation in (2. 7) we get

and consequently

Vol. 10, n° 3-1993.
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By Plancherel’s theorem (in the time variable)

denoting the Fourier transform of F in the time variable and

where the integral is understood in the principal value sense.
We claim:

The claim (2 .11 ) combined with Minkowski’s integral inequality and
Plancherel’s theorem in the time variable shows that the terms in (2 .10)
can be bounded as follows

which yields (2. 8).
It remains to prove the claim (2 . 11 ). For i > 0

Observe that in a neighborhood of the singular points ~ = ± 1 and 11 = oo
the function r~ ( 1- r~ 2) -1 behaves like the kernel of the Hilbert transform
(i. e. 1 /r~) (or its translated) whose Fourier transform equals - i sgn ( y).
Hence a simple comparison argument yields (2 . 11 ) when T > o. The proof
of the case T  0 is similar and therefore it will be omitted.

The above formal process can be justified by applying it to the equation

In this case the estimate (2. 8) holds uniformly in E > 0. Then taking the
limit we obtain the desired result.

Thus we have proven that there exists a solution u (x, t) of the equation
in (2.7) satisfying the estimate (2.8). In general, this solution may not
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vanish at t = 0. However by using Parseval’s identity one sees that

Now from (2. 3) it follows that D;/2 u (x, 0) E L2 (R), which combined
with (2 .1 ) shows that

is the solution of (2. 7) and satisfies the estimate (2. 8). D

Proof of Theorem 2 . 3 (b) (estimate (2 . 9)). - Define and such
that

and

where t) is the corresponding solution of the IVP (2 . 7) with
inhomogenous term instead of F.

Taking Fourier transform in both variables one finds that

Using Plancherel’s theorem in the t-variable the left hand side of (2. 9)
with Mp ( . ) instead of u ( . ) can be written as

The following result (whose proof will be given later) provides the key
estimate.

the Fourier transform in x only) then

Vol. 10, n° 3-1993.
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We shall restrict ourselves to consider only the term

since the other portion [i e. i E ( - co, 0)] corresponding to the symbol
in the argument below is easier to handle.

The expression in (2. 14) is majorized by

Successive changes of variable 03BE = 03C41/2 ~ and y = 03C41/2x give

Observe that by taking inverse Fourier transform in the space variable
one has that

Thus

Now using lemma 2 . 4 for the family i1~2 Q~ and a change of variable
the terms in (2.16) can be bounded by

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Combining (2.12)-(2.17) with Plancherel’s theorem we have that

which implies the desired result (2 . 9). D

We now turn to the proof of lemma 2.4.

Proof of lemma 2 . 4 - Let cp E Co (R) with supp cp ~ [ -1, 1 ], cp --_ 1 in

[ -1 /2, 1 /2] and 0 _ cp _ 1. Let 03C61 (03BE) = cp (2 ( |03BE|-1 )) and (03BE) such that
~P ~ (~) + ~PZ (~) =1.

Define

where mi (~) = cpi (ç) m (~).
First, we shall establish (2 .16) for the operator T2 whose symbol m2 (ç)

has no singularities. For p, p’ such that

by Holder’s inequality, Sobolev’s lemma and Mihlin’s theorem it follows
that

To estimate T 1 we split its symbol mi (ç) into a finite number of pieces
(depending only on the dimension n). Let 03B8~C~0 (R) with 1),
define

mi ( . ) can be expressed as a finite sum of mi, i’s (by a rotation argu-
ment). Notice that

Vol. 10, n° 3-1993.
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and

for appropriate constants ap’
Thus Plancherel’s theorem in the x variable leads to

where

CLAIM. - There exists ~ > 0 such that for any (xn, yn, 

Combining the claim (to be proven below) with Schwarz’ inequality and
the theorems of Fubini and Plancherel we find that

which yields (2.13)
It remains to establish the claim. We have that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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where the support of the integrand is contained in

It suffices to consider only the case where ~" > o.
For (~, it follows that ~ ~ ~ 2 -1= ~n + ~ ~ ( 2 -1= ~n - ~2 with

~. > 1 /2. Then K = K + + K - with

where 03C8~C~0 (Rn-1  R+) with support and uniform estimates in

~ ~ ~ (~" -1 /i ~ ~  1 /4 ~, which proves the claim.
To complete the proof of (2 . 9) one just needs to use the same argument

given at the end of the proof of the estimate (2. 8). D

ESTIMATES FOR THE MAXIMAL FUNCTION

We begin by stating an L2-continuity result for the maximal function
sup I
[0,T]

THEOREM 3 . 1. - Let n =1. Then for any s ~ 1 /2 and any p > 1 /4

Proof (see [22], Corollary 2. 8 and [40]). -
Observe that (3 .1 ) implies that

The following global estimate was established in [26]

In section 4 and for future references we shall need the following
extension of Theorem 3 .1 to the n-dimensional case.

Let { Q(1 denote the mesh of dyadic cubes of unit size.

Vol. 10, n° 3-1993.
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THEOREM 3. 2. - With the above notation, for any s, p > n/2

In particular,

Observe that if one is only interested in the inequality (3.4), this was
proved for s > 1 in all dimensions in [1]. It suffices to prove (3 . 3) in the time
interval [0, 1] since the general case follows by using a simple homogeneity
argument (see [22], section 2).

First we shall prove the following result,
LEMMA 3. 3. - Let 03C8k E Co ([2k -1, 2k + 1]) such that 0 -_ (x)  1. Then

where Hk ( I . I ) is decreasing,

and for r E (o, 10). Also a similar result holds for
t~ E Co ([ -10, 10]) with 2k" replaced by c. D

Proof - We divide the proof in three steps:
Sept l. - One dimensional version of Lemma 3 . 3.

PROPOSITION 3 . 4. - For k E 7L + , k >__ 4 and t E [o, 2] define

Then

D
First we observe that a related result was established in [22]. To prove

Proposition 3.4 we need the following version of the classical Van de
Corput lemma.
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LEMMA 3. 5 . - Let cp E Co (R) and ~ E C2 such that ~" (~) > ~, > 0 on
the support of cp. Then

Proof (see [32], pp. 309-311 ).

Proof of Proposition 3 .4. - Define

and

For r e (0, 1) is dear that I (t, r) ~ _ c 2k.
For r > 1 we consider three cases:

(i ) Q to the left of Ik
(ii ) 
(iii) Q to the right of Ik.

In cases (i )-(ii ) we have t >- c r . Since the phase function ~r (s) = ts2 - rs
verifies ~r’ (s) = 2 t >- c by Van der Corput’s lemma (lemma 3 . 5) one has

In case (iii) we have with 

Hence integration by parts shows that

Since r > 1 it follows that [case (iii)]

Finally, when we always have Q to the right ofIk, i. e. r/2 t >_ c 2k.
Therefore integrating by parts as in (iii) N-times we obtain the bound
dN/rN. 0

Vol. 10, n° 3-1993.
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Step 2. - The Fourier transform of a radial is
given by the formula

Thus to extend the results in step 1 to higher dimension we need the
following asymptotic estimates for the Bessel fnctions

LEMMA 3.6

for each N~Z +. -

Proof. - (3. 8 a) (see [33], p. 158).
(3 . 8 b) It follows by combining the identity

with the Taylor expansion for ( y2 ~ 2 iy)m -1 ~2 and the estimates

Step 3. - Proof of Lemma 3 . 3.
Using (3 . 7) we write

wnere r= .

When r e (0, 1) the second term in (3 . 9) shows that ï (t, r) _ c 2"k.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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For Y > 1, we first plug in (3 . 9) the remainder term in the development
of (3 . 8 b) to obtain the bound

We shall fix N so large that

Next we deal with the j-term in (3 . 8 b) with 

By the step 1 the last integral is bounded by

To finish the proof let us compute the L 1 norm. For 1] we obtain
the bound In the annulus r E [ 1, c2k] we have (after some computa-
tions) that

Finally, the integral in r >_ c 2k is clearly bounded by

Proof of Theorem 3 . 2. - Let {03C8k }~k= 0 be a smooth partition of unity
in !R" such that the Wk’S are radial with supp and

supp ~rk __ ~ 2k 1 _ I ~ ~ _ 2k ~ k =1, ... Let

To prove (3 . 3) with T =1 it suffices to show that

Vol. 10, n° 3-1993.
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As in the one dimensional case (see [22]) the proof of (3.10) is obtained
by showing that

By using lemma 3 . 5 we find that

Thus the left hand side of (3.11) is bounded by

Let where Xy denotes the center of QY. Then

and consequently using Minkowski’s inequality we estimate the expression
in (3 .12) by

But

with c independent of a, since E~, y overlaps a finite number (independent
of a) of Q~’s.
Hence the proof reduces to show that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Let

Notice that if m >_ 4 and then Qao ~ ~ 2m - 2  ~ y I  2m + ~ ~ . There-
fore we see that

as desired. D

To estimate the maximal function sup I eite uo (x) in the L1, ll-norms
[0, T]

we shall use the following weighted inequalities.

PROPOSITION 3. 7. - 

where

Proof - (i ) By Sobolev’s and Fubini’s theorems we see that

Inserting the formulas

Vol. 10, n° 3-1993.
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and

(see [8], [14]) in (3. 15) we obtain the desired estimate (3. 13).
(ii) As in the previous proof we have by using Sobolev’s inequality in

the cylinder Q~ x [0, T] that

To estimate the L1-norm above we combine the formulas

where n = n + 1 if n is odd and n = n + 2 of n is even,

and

(see [15~) to infer that

which completes the proof. D

4. THE NONLINEAR SCHRODINGER EQUATION

Consider the nonlinear IVP.

where P denotes a complex valued polynomial defined such that

Assuming that for some with there exists we

shall consider four cases d = 2 or d >_ 3 and n =1 or n >_ 2.

THEOREM 4 . 1 (Case n = 1 and d >_ 3). - Let n =1. Then given any
polynomial P as in (4. 2) with d >_ 3 there exists b = ~ (P) > 0 such that for

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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any with s >_ 7/2 and ~~ uo ~~~~2, 2  ~ the IVP (4 .1) has a unique
solution u ( . ) defined in the time interval [0, T], T 

= T uo ~7/2, 2) >0 with
T (8) ~ oo as 0 - 0 satisfying

and

Moreover, for any T’ E (0, T) there exists E > 0 such that the map uo - u (t)

from {uo E HS Mo - uo  E ~ into XT. (~ YT, is Lipschitz. D

Proof. - For simplicity in the exposition we shall only consider the
most interesting case s = 3 + 1 /2. The general case follows by combining
this result with the fact that the highest derivatives involved in that proof
always appear linearly and some commutator estimates (see [4], [5], [20])
for the cases where 1 /2, 

For (to be determined below) we denote
the solution of the linear inhomogenous IVP

where

and

It will be established that for appropriate a and T (depending only on
in the appropriate manner and then the solution

u = O (v) of the IVP (4.5) belongs to Z~ and

is a contraction.
For this purpose we use the integral equation

First we notice that

Vol. 10, n° 3-1993.
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where

Thus combining the estimates (2. 8) and (2 .1 ) for the terms in (4. 7)
involving R’s and S respectively it follows that

Above we have used the commutator estimates obtained in the appendix
of [20]. Next we combine the estimate (2. 5), the group properties and the
integral equations (4. 6) to find that

From the estimate (3 . 2 a) for the maximal function sup we obtain
[0,T]

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Inserting the notation

in (4. 8)-(4.10) we see that

with (to be determined) and where the constant c>l
depends only on P ( . ) and on the linear estimates (2. 1), (2. 5), (2. 8)
(3.2a).

First we fix 8 such that

and then choose any a = a ( ( ( uo ( ( ~~2, 2) > o such that

Thus

for any T satisfying

Hence, fixing an a as in (4.13) and then a T as in (4.15) we obtain
that the map

is well defined.
To prove that C ( . ) is a contraction we apply the estimates described in

(4. 8)-(4. 10) to the integral equation

to obtain [see notation in (4.11)]

since v, v E Z~.
From (4.15) it is clear that T can be chosen such that

Vol. 10, n° 3-1993.
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Therefore for those T’s the map contraction in Z~. Conse-
quently, there exists a unique u E Z~ with (u) = u which due its regularity
solves the IVP (4 . 1 ).

Since it follows that

which combined with the integral equation (u) = u shows that

From (4.18)-(4-19) one can only conclude that for any E > 0

To establish the persistence property of u (t) in H’~2, i. e.

one needs to use the following argument:
(i ) Since (4 . 2) described a local property it suffices to prove it at t = 0.
(ii) Inserting the estimates (4.12)-(4.14), (4.19) in the integral equation
(u) = u as in (4 . 8) one sees that for To sufficiently small

as To tends to zero.
(iii ) For E > 0 let uo E (~) such that ] uo - uo ~ ~ ~~2, 2  E, that it follows

from (2. 8) that

Therefore from (4 . 21 )-(4 . 22) one can conclude that

as To tends to zero.
(iv) Finally combining the integral equation

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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with the estimate (2.5) and the group properties as in (4. 8)-(4. 9) together
with (4. 23) one obtains the desired result.

Using a similar argument we shall establish the uniqueness result in a
class larger than Z~. Let 5 be a solution of the IVP (4 .1 ) in the time
interval [0, T 1J with Ti T. Moreover assume that ~Za1T1 for some a1 > a,
with 5e C ([0, T1J : H7/2). Thus U satisfies the integral equation form of
(4.1). By continuity there exists T2 ~ (o, T 1) such that

Combining this estimate with (3 . 2 a) as in (4 . 9) one finds that there
exists T3 E (o, T2) such that

A similar technique shows that for T~ E (0, T3)

Hence ~ZaT4 and consequently u - u for (x, x [0, T4]. Reapplying
this proccess we extend the uniqueness result to the interval [0, T].
To complete the proof of Theorem 4.1 we need to establish the conti-

nuous dependence. Denoting by u (t), v (t) the corresponding solution of
the IVP (4.1) with initial value uo, vo respectively we write

The same proof of the contraction property of ( . ), (4 . 1 6), (4 . .17),
shows that

where the constant K depends only on P, II uo ~ ~ ~~2, ~ II vo and To E (0, T).
Indeed, this argument shows that the constant K can be taken smaller
than 1/2 if

with 8 = 8 (T - To) > 0 is sufficiently small. D

THEOREM 4 . 2 (case n = 1 and d = 2). - Let n == 1. Then given any polyno-
mial P as in (4 . 2) with d = 2 there exists b = b {P) > 0 such that for any
uo E HS (~ H3 x2 dx) - GS with s >__ 5 + 1 /2 and
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the IVP {4 .1 ) has a unique solution u ( . ) defined in the interval [0, T],
T = T (bo) > 0 with T (8) --~ oo as ® -~ 0 satisfying

and

where YT was defined in the statement of Theorem 4 . l . Moreover, for any
T’ E (0, T) there exists a neighborhood Vuo of uo in GS (R) such that the map

u(t) from Vuo into n YT, is Lipschitz. D

We recall the notation ]] . 2, m

Proof. - For simplicity in the exposition we shall assume

It will be clear from the argument presented below that this does not
represent any loss of generality.
As in the proof of Theorem 4.1 we consider the most interesting case

s=5+ 1/2.

For Uo E Hl1/2 (R) n H3 (tR: x2 dx) with ] u0 ~11/2, 2 + ~ u0 ~3, 2, 2 03B4 (to be
determined below) we denote by C (v) = (v) = u the solution of the linear
problem

where

It shall be established that for appropriate a and T (depending only on
~ ~ uo ( ( 11 /2, 2 + ~ ~ uo ~ ( 3, 2,2 in the appropiate manner) the map

is a contraction.
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We will use that for t E [0, T] u = ~ (v) the solution of (4. 25) safisfies
the integral equation

Since

combining (2. 8), (2 .1 ) as in (4. 8) it follows that

As in the previous proof above we have used the commutator estimates
obtained in [20].

Writing the equation (4. 6) as

from (3 .13) we have that
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(see [14]). The same estimate shows that

The inequality (2.3) and the group properties used in the integral
equation lead to

where D2 was defined in (4. 27).
Introducing the notation

one easily see that the estimates (4. 27), (4 . 29)-(4 . 31 ) yield the expression

with ~o = ~ ~ uo ~ ~ 1 ~ ~2, ~ + ~ ~ 2  S to be fixed.
At this point the rest of the proof follows by the method given in details

in the previous proof, therefore it will be omitted. 0

THEOREM 4. 3 (Case n >_ 2 and d >_ 3). - Let n >_ 2. Then given any
polynomial P as in (4. 2) with d >_ 3 there exists b = ~ (P) > 0 such that for
any with s >_ so = n + 2 + 1 /2 and the IVP (4 . 1 )
has a unique solution u ( . ) defined in the time interval [0, T],
T = T ( ~ ~ uo 2) > 0 with T (8) -~ oo as 6 -~ 0 satisfying

and

where

with its norm described in (4 . 34). Moreover, for any T’ E (0, T) there exists
a neighborhood Vuo of uo in such that the map 0 ~ (t) from Vuo
into XT, ~ WT. is Lipschitz. -
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Proof. - For simplicity of the exposition we shall assume

with I, j, k E { 1, ..., n ~ fixed.
We also restrict ourselves to the most interesting case s = so = n + 2 + 1 /2.
As in previous proofs, for with ]] uo = ~o  S (to be

determined below) we consider the linear IVP

for ~n x [0, T] -~ ~v)  a for j =1, 2, 3 } where the are

defined

and

with the forming a family of disjoint cubes of side one such that
- U Q..

It will be shown that for appropriate positive constants 8=8 (P), a = a (b)
and T = T(03B40)>0 if v~aT so does the solution u ( . ) of (4.33), and that
the map I> (v) = u is a contraction.
We shall rely on the integral equation

Our first estimate deals with the local smoothing effect. Observe that
for any 03B2~Zn with | 03B2| = S0 - 1/2
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Thus the estimates (2. 2) and (2. 9) allow us to write
T _ m ..

where the commutator estimates deduced in [20] have been used. Combin-
ing the estimate (2.4) with the group properties we obtain

rho estimate ~,3 (u) we insert (3 . 3) in (4 . 35), thus

Hence defining

trom (4. 36)-(4.39) it follows that

At this point the rest of the proof follows the argument given for
Theorem 4 .1, therefore it will be omitte. D

Finally we have

THEOREM 4 . 4 (Case n >__ 2 and d = 2). - Let n = 2. Then given any
polynomial P as in (4 . 2) with d = 2 there exists b = ~ (P) > 0 such that for
any uo E HS n H2n + 3 2n + 2 dx) - CiSwith s >__ so = 3 n + 4 + 1 /2 and

.. " " " ..

the 1 V~’ (4 . 1) has a unique solution u ( . ) defined in ihe time interval [0, TJ,
T = T (~o) > 0 with T (8) -~ oo as 8 -~ 0 satisfying

and
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where WT and its norm were defined in the statement of Theorem 4. 3 and
in (4 . 34) respectively. Moreover, for any T’ E (0, T) there exists a neighbor-
hood u0 of uo in Cis such that the map 50 - u (t) from into RT. ~ WT,
is Lipschitz. -

Proof. - We shall follow the argument presented in the previous proofs,
therefore a sketch will suffice.

Since our method does not rely on any special structure of the nonlinear
term, besides its quadratic character, we restrict ourselves to consider the
case 

.

Also for simplicity in the exposition we assume s = so = 3 n + 4 + 1 /2.
Define

where

and

with the Q(1’S and m-norm described as in the previous proof
and in (4.24) respectively.

, 

For a given v E ET denote by u = D (v) the solution of the linear problem

with u0~s0 such (to be
determined).

It is clear that u ( . ) satisfies the integral equation

Thus an argument similar to that used in (4. 36)-(4. 37) shows that

Also, as in (4. 38), (2. 6) and the group properties yield the inequality
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Next by combining (3 . 14) with successive applications of the rule

(see [15]) and the equation in (4.41) written as

we can infer that

To estimate ~,4 (u) we use the formula

(see [15]) several times to conclude that

From (4. 42)-(4.45) we find that if

then

At this point we remark that the rest of the proof follows in the same
manner as that of previous theorems. Therefore it will be omitted. D
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