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ABSTRACT. - The Lasry-Lions regularization method is extended to

arbitrary functions. In particular, to any proper lower semicontinuous
function defined on a Hilbert space X and which is

quadratically minorized (i. e. f (x) >_- - c (1 + ~ ~ x ( ~ 2) for some c ~ 0), is associ-
ated a sequence of differentiable functions with Lipschitz continuous
derivatives which approximate f from below. Some variants of the method
are considered including the case of non quadratic kernels.

Key words : Hilbert spaces, regularization, approximation, epigraphical sum, Moreau-
Yosida approximation.

RESUME. - La methode de regularisation de Lasry-Lions est etendue
a des fonctions quelconques. En particulier, a toute fonction

semicontinue inferieurement propre sur un espace de
Hilbert X et qui est quadratiquement minoree ( f (x) >_ - c ( 1 + ~ I x ~ ~ 2) pour
un est associee une suite de fonctions differentiables a derivees
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290 H. ATTOUCH

lipschitziennes qui approche f par valeurs inferieures. Quelques variantes
de la methode sont considérées, notamment le cas de noyaux non quadra-
tiques.

1. PRELIMINARIES

Approximation methods play an important role in nonlinear analysis.
A number of problems in variational analysis and in optimization theory
give rise to nonsmooth functions with possibly infinite values defined on
finite or infinite dimensional spaces. By using a regularization procedure
based on the infimal convolution or epigraphical sum (see [4]), these

problems can be attacked with the help of classical analysis tools. Let

us mention in this direction the pioneering works of K. Yosida [25],
H. Brezis [9], J.-J. Moreau [17]. These authors deal with convex lower
semicontinuous functions in Hilbert spaces and with the corresponding
subdifferential operators which are maximal monotone. The regularized
function is proved to be C1, 1 (continuously differentiable with Lipschitz
continuous gradient). Some direct extensions have been recently obtained
in [4] for more general kernels than the square of the norm. A difficult
problem is to extend these results to the non convex case. A decisive step
in this direction has been done recently by J.-M. Lasry and P.-L. Lions
in [16]. They were motivated by the study of the Hamilton-Jacobi equa-
tions and worked with bounded uniformly continuous functions. In [8]
Theorem 2. 6, boundedness and uniform continuity assumptions are remo-
ved : the approximation/regularization result is obtained assuming that the
absolute value of the function is quadratically majorized. Our main results
(Theorem 4.1 and Proposition 4. 2) state that, given any quadrati-
cally minorized function f defined on a Hilbert space X with values

in R U { + oo }, the function defined by the formula

(x) = sup inf (f(u) + (2 03BB)-1 ~u-y~2- (2 )-1~y- x~2) is C1, 1 when-
yeX ueX

ever 0  ~  ~, and approaches f from below as the parameters À and ~ go
to 0. Observe that our growth assumption on f allows to treat the case
of an indicator function. Clearly, by exchanging the order of the inf-sup
operations, one obtains a corresponding approximation from above. The
paper is organized with respect to increasing generality: in sections 2, 3, 4
are successively considered the convex, then the convex up to a square
case, and finally the general case. A natural question that arises concerns
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the flexibility of the method: in section 5 is considered the case of non

quadratic kernels. These results open new perspectives in nonsmooth

analysis and ask for further developments: one may think defining general-
ized derivatives by relying on these approximation techniques. Regulariza-
tion of sets can be considered too by using their indicator functions.

Let (X, ~~ _ II) be a normed linear space, whose dual is denoted by
(X*, ~~ . ~I*). To any extended real valued function f : X -> R we can associate

the epigraph of f, and

the strict epigraph off
Probably starting with the work of Fenchel (on convex functions), it

has become more and more obvious that most properties of minimization
problems can be naturally expressed with the help of epigraphs: convexity
of f, lower semicontinuity off are respectively equivalent to convexity,
closure property of epi f Since functions may be seen as sets, it is natural
to combine them with the help of set operations. The vectorial sum of
sets (also called Minkowski sum) when applied to epigraphs gives rise
to the so called epigraphical sum (see Attouch and Wets [4]). Given f,

two extended real-valued functions, the epigraphical
sum (also called inf-convolution) f + g is given by the relation:

In geometrical terms

It plays a basic role in optimization and in the study of variational
problems mainly because of the relation

where for each f*(y)=sup{y,x~-f(x)} is the Legendre-
xEX

Fenchel transform or conjugate of f. Indeed, historically it has been intro-
duced as the dual operation of the classical sum of (convex) functions.
Another important feature of this operation is its regularization effect.
Given k : X -~ I~ + a "smoothing kernel" the epigraphical regularization
of f is defined by

Vol. 10, n° 3-1993.
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The case k~ _ ~, -1 I ~ . I ~ gives rise to the approximation of lower semiconti-
nuous functions by lipschitz continuous functions. This approximation
procedure very likely goes back to R. Baire and F. Hausdorff. It has
been then considered with increasing generality by E. J. McShane and
H. Whitney, for a complete description of the above considered regulariza-
tion and extension procedure one may consult [14] and [15]. The case
k~ =1 /2 ~, I ~ . ( ~2 leads to the Moreau-Yosida epigraphical regularization of f
(see [2], [9], [17])

Let us recall in the following proposition (see [2], Theorem 2. 64) some
of the main properties of this approximation in such a general setting.
The particular important case of convex functions will be considered in
the next section.

PROPOSITION 1 . 1. - Let f : X ~ f~ U { + be an extended real-valued

function defined on a normed linear space X. Assume that for all x E X,
f (x) >_ - c/2 ( 1 + ( ~ x ~ I 2) where c is some non negative constant. Then provided
0  ~,  1 /c, fx is a finitely valued function which is Lipschitz continuous on
each bounded subset ofX. Moreover and for all x~X,
sup03BB>0f03BB (x) = cl I(x) where cl f is the lower semicontinuous regularization
off

Despite its global definition the Moreau-Yosida regularization operation
has a local character as shown by

PROPOSITION 1.2. - Assume that f satisfies the growth assumption of
Proposition 1. l.

a) Let x~X be such that f(x) is finite. Then for each 0  03BB  1 /2 c and
for each p > p,

where p is given by:

b) Assume that f, g satisfy the growth assumption of Proposition 1 . 1 and
that f= g in a neighborhood of some point x~X with f(x)  + oo . Then for
each ~, small enough, fx (x) = g~ (x). Moreover assuming that f and g are
majorized in a neighborhood of x, there exists a neighborhood of x on which
fx = g~ for each ~, small enough.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof. - a) For each u~X, one has

It ensues that given 11 > 0,

Let p> p and let ~ > 0 be such that p > r > p, it is clear that

b) Assume that f = g on B (x, b), the closed ball with center x and radius
b > 0. For each h small enough one has p (x, h, c)  8. Let p (x, h, c)  p  8.

Observing that f and g coincide on B (x, p), it is clear from part a) that

.fa, 
Assume now that for some 03B4>0, M~0, f(x)=g(x)~M on B(x, 203B4).

For ~, small enough one has,

Observe that for each zeB(x, 8), p (z, ~,, and that f = g on B (z, 8).
It ensues from part a) that which ends the proof of the
proposition..
As we already stressed, these epigraphical notions are well fitted to

minimization problems, approximation of lower semicontinuous functions,
convex duality... Since we have in mind to regularize and approximate
arbitrary functions it is natural to consider their symmetric hypographical
version. Given f, g : X -~ (~ U { - oo ~, the hypographical sum off and g
is defined by

The Moreau-Yosida hypographical approximate of index ~ > 0 of f is
defined by

Vol. 10, n° 3-1993.
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Noticing that

we can convert the proposition 1. 1 into

PROPOSITION 1. 3. - Let f : X ~ R ~ { - ~} be an extended real-valued
function defined on a normed linear space X. Assume that for all x E X,

x _ ~ 1 + x 2 where d is some non negative constant. Then provided
0  ~,  1 /d, is a finitely valued function which is Lipschitz continuous on
bounded subsets of X . Moreover and for all x E X, 

~>o

where cl f is the upper semicontinuous regularization of f
Clearly the hypo graphical regularization has also a local character: for

each 1 /2 d and for each point x where f (x) > - o~o,

for each u > a where

2. THE CONVEX CASE

Let us now assume that X is a Hilbert space whose norm ]] . ]) is

associated to a scalar product denoted by (.,.). Let us denote by r~ (X)
the convex cone of the convex lower semicontinuous proper ( ~ + oo)
functions from X into It is a classical result that the

Legendre-Fenchel transform is a one to one correspondence from
ro (X) onto itself. For any function fbelonging to ro (X) its subdifferential
is the multivalued operator af : X --~ X* whose graph is defined by

From this relation, we can observe that

For any 03BB>0, and any x~X we denote by J{ x or briefly (when
there is no ambiguity) the unique point of X where the function

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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achieves its minimum. Hence

Observe that Jxx= (I + x, i. e. J~, is the resolvent of index ~, > 0

of the maximal monotone operator A = af The following classical result
due to J.-J. Moreau [ 18] summarizes the properties of the Moreau-Yosida
approximation in the convex setting (see also [2], [9], [19], [26]). It is the

starting point of our study.

THEOREM 2 . 1. - Let X be a Hilbert space and let f : X --~ 0~ u ~ + oo ~
be a convex, lower semicontinuous proper function. Then for any ~, > 0 the
Moreau- Yosida approximate fx of f satisfies the following properties:

a) fx is a convex C~° 1 function (continuously differentiable with a Lipschitz
continuous gradient). More precisely, for every x E X, where

A~ is the Yosida approximation of the maximal monotone operator A = af,
A03BB(x):=03BB-1 (x-J03BBx). Moreover, the operator A03BB is 03BB-1-Lipschitz continu-
ous.

b) As ~, decreases to zero, fx increases to f, while Dfx - af in the graph
sense (i. e. in the Kuratowski-Painlevé set convergence sense, see [2] for more
details). Moreover for every x~dom af, as 03BB ~ 0, where

af ° (x) is the element of minimal norm of the closed convex set af(x).
Note that the set convergence of Df03BB to af has been obtained in [2],

Prop. 3 . 56. The above result has been extended in [4] to the case of more
general kernels than 11.112.

3. THE CONVEX UP TO A SQUARE CASE

Our purpose is to extend the class of functions which can be regularized
into C ~ ~ 1 functions. One step in this direction has been done for the class
of weakly convex or paraconvex functions (see [3], [6], [7], [8], [23] and [19]
for the Yosida approximation of weakly monotone operators). Let us
recall and complete these results.

DEFINITION 3 . .1. - A function f : X - R ~ { + ~} is said to be weakly
convex, or convex up to a square, or paraconvex if there exists some

constant c >- 0 such that f ( . ) + ~ 2 I ~ . ~ ~2 is convex, that is

for all x, y belonging to X and all t in [0, 1].

Vol. 10, n° 3-1993.
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A function said to be weakly concave, or concave
up to a square or paraconcave if -g is weakly convex. This is equivalent
to the existence of some constant c >_ 0 such that g ( . ) - ~ I I . ~ I Z is concave,
that is

for all x, y belonging to X and all t in [0, 1 ].

Let us denote by the set of functions f such that f ( . ) + ~ ( ~ . ~ ~ 2
2

belongs to ro (X).

PROPOSITION 3 . 2. - Let f : X -~ I~ U ~ + g : X -~ (~ U ~ - oo .
Assume that f and g satisfy the growth assumptions of Propositions 1 . I and

1 . 3 . Then for any 0  h 0  p 1 d, -f03BB e r i jx (X) and g’ e r i j, (X) .
Proof. - It immediately follows from the definition of fx that

which can be reexpressed with the help of the Legendre-Fenchel transform
as

This means that fx is 1 03BB weakly concave. It is also proper thanks to

Proposition 1 . l. The conclusion concerning g~‘ is obtained in a similar
way..
When f is equal to the indicator function of a set C c X, it follows

from the preceding proposition that the function d2 (., C) is weakly
concave (a result due to E. Asplund).

Remark 3 . 3. - If A : X --~ X is a linear continuous symmetric operator,
then the x ) is weakly convex. Indeed, denoting

2

by c the norm of A, we obtain f(x) + ~ 2 I x ‘) 2 >_- 0 and then the quadratic

function f( . ) 2 ~.~2 is convex.
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Given a weakly convex (resp. weakly concave) function f (resp. g), and
given xEdomf (resp. xEdom g), we denote by af (x) (resp. ag (x)) the
set of lower (resp. upper) subgradients off (resp. g) in the sense of

R. T. Rockafellar (see [22]). If

then af 2 (x) _ - cx + acp (x) [resp. ag (x) = cx2 + a~ (x)], where acp (x) [resp.
a~r (x)] is the classical subdifferential (resp. upperdifferential) of convex
analysis. observe that the notation af and ag are not ambiguous since a
function which is both weakly convex and weakly concave is easily shown
to be Frechet differentiable. The following result, is a slight sharpening
of [3] Proposition 3. 3 (see also [6]).

THEOREM 3 . 4. - Let f~0393c (X) be a weakly convex function. Then for
any 0  ~,  c -1, f~, belongs to the class C 1 ~ 1. Moreover, introducing

cp ( . ) = f ( . ) + ~ I ~ . ~ ( 2 (which is a convex function) the following relations
2

hold:

a) for all x E (x) - I f x I I 2 (cp * )~ 1 ~~,~ - ~ x , and is ~, -1-weakl y
2 ~, À

concave.

b) For all x E X, f03BB (x) - - 
c ~x~ 2 2 + 03C603BB/( 1- 03BB c)(x 1 - 03BBc) , and f03BB is

c
- -weakly convex.

c ) 
c

d) Let us denote by J~ and A~ the resolvent and Yosida approximates of
acp. For any 0  ~,  c-1, the function f ( . ) + (2 ~,)-1 I) x- . ~~2 attains its

minimum at a unique point

and, the operator J . is --Lipschitz continuous. Moreover,a. ~ ) P

and the operator A~ ( . ) is max (~,-1, (1- ~, c)-Lipschitz continuous and
satisfies 03BB (x) E (x)).

Vol. 10, n° 3-1993.
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e) As ~, decreases to zero the following convergences hold: , fx increases to
f and Dfx - ~f in the graph sense.

Proof
a)

which proves that fx is C~ since it is the case for the square of the norm
and for the Moreau-Yosida approximate of a convex lower semicontinuous
function.

b) Elementary computations yield

c) From b), we can write

where

As   -, we obtain, using b),
d

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Observing that ~ = ~ and that
1 - Il d 1-(~,+~,)c

we obtain the announced result.

d) The first part of d) is an immediate consequence of b) and of the
fact that the operator J.~ ( . ) is a contraction (see [9] for example). From
b), we obtain that

The Lipschitz constant of is obtained from [16], p. 265, observing that

are convex with The fact fol-

lows from a straightforward computation. Indeed

e) The first part of e) is well known and can be recovered from b) since

- 20142014 20142014 goes to -c~x~2 and 03C603BB/(1-03BB c)(
x g oes to cp ( ) x as

2 2 

~, decreases to 0. For the second part, it suffices to observe that

and that the operator (. 1-03BBc) graph converges to ~03C6 as 03BB goes

to 0 thanks to Theorem 2. 1..

Vol. 10, n° 3-1993.
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Remark 3 . S. - If 03BB1 , then max (03BB-1, (1-03BBc)-1)=03BB-1. Thus it
2c

follows from Pro p osition 3 .4, d) that 03BB is 1 03BB -Lipschitzian (see also 19
p. 376-377). Moreover one can easily prove that

and

PROPOSITION 3. 6. - The functions f and fx have same critical points and
critical values.

Proof - Observe that

moreover, 0 E is equivalent to

4. THE GENERAL CASE

In [16], J.-M. Lasry and P.-L. Lions introduced a method providing
C1,1 regularization of bounded uniformly continuous functions defined
on a Hilbert space. In this section, we extend the class of regularizable
functions, allowing infinite values for the functions without requiring any
regularity assumptions.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Let f : X - R ~ { + ~} and g : X - R ~{ - ~} be real extended valued
functions and h, ~ > 0. Following [16], we introduce

THEOREM 4 .1. - Regularization: Assume there exists c, d >_ 0 such that,
for every x E X

Then,for all (A)" (resp. 

function whose gradient is continuous. One has

Moreover, (f03BB) ~ f and (g03BB) ~g.

Proof - Relying on Proposition 3.2,- (f03BB) is 1 03BBweakly convex and

finitely valued, thus for we obtain from Theorem 3.4 that the

function (f03BB) = -(-(f03BB))  is 1  weakly convex, is 20142014-concave and is

C1, 1. Using again Theorem 3.4, we derive that the gradient is

Lipschitz continuous with constant max -, 20142014 ). As (g03BB) = - ((-g)03BB) ,
the proof of the first part is complete. Choosing u=x in the definition of

and (~ and taking into account that u~, we obtain 
(~)~~. ’

THEOREM 4 . 2. - Approximation: Assume that f, g verify the growth
conditions of theorem 4.1. Then,

where cl and cl denote respectively the l.s.c. and the u.s.c. regularization

operation.

Proof. - We prove the first equality. The other can be obtained in a
similar way. Observe that f03BB = Since the inequality valid

for any function f, we derive from the above inequalities that { f~,)~‘ __ cl f

Vo(. 10, n° 3-1993.
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for all 0~~-. Hence we obtain lim sup for
c ~-~0,~-~0,~3L

each x e X. On the other hand, ~~, hence

for each xeX, hence the result..

Remark 4 . 3. - a) The preceding approximation result can be reinforced
in the following way. Let x E X and let (x~, ~) converging to x as À and p

go to 0 with 0  !~  ~,  1 . We observe that
c

Since increases as À decreases to 0, for any ho > 0,

As fÀo is continuous (and hence lower semicontinuous), it ensues

This being true for any ho, taking the supremum with respect to ho yields

It follows that converges to cl/ in the sense of epi convergence

(see [12]). This fact is important since it provides a path for a connection
with non smooth analysis via extensions of the Attouch’s Theorem relating
epi convergence of functions and convergence of the graphs of their
derivatives.

b) From Theorem 3.4 c), we deduce that and that

(~v=((~)v.
c) From Theorem 4.1, we derive that, if ~03BB 2, D(f03BB)  is - - Lipsch-

itz continuous.

d) If the indicator function of a subset S of X, we obtain

0~2014~(~S)~(~)~)~/(jc). It follows that ;ceS if and only if

(A)’M=0.
e) Observe that, thanks to Theorem 3.4, the supremum is attained in

the sup convolution defining (x) at a unique point (x) character-
ized by

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Example 4 . 4. - a) If f or - g belongs to ro (X), then ( f ~)~‘ = f ~, _ ~, and
= g’~ - ~‘. Indeed,

where

thus, using Theorem 3 . 4 a)

b) Let us consider the function f: R - R defined by

An easy computation leads to

and

Vol. 10, n° 3-1993.
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FIG. 1

In figure l, are drawn the graphs off (the doted curve), f~ (the dashed

curve ) and for the values ~, = 1 and 1 . Observe that the first
2 4

regularization will smooth the lower corners while the second regulariza-
tion will smooth the upper corners without introducing lower corners.

THEOREM 4. 5. - Critical points: Assume that f ( . ) >__ - ~ ( 1 + I ~ . I ~ 2) for
some c > o. Then f or all 

c

a) D (( f~)~‘) (x) = 0 if and only if 0 E lfx (x) (the upperdifferential of fx) and
in this case fx (x) = (x).

b) Assume that f is lower semicontinuous. Then

inf f = 
x x

argmin f= argmin 

c) Assume that x E X is a local minimum of f such that f is majorized
near x. Then if 0  ~, are small enough, x is a local minimum of 
and (x) =.f (x) ~

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof. - a) Follows from Proposition 3.6 observing that

( f~)~‘ _ - ( - f~,)~ and that ( -fx) E 
b) As one derives Moreover hence

x x

= inf f. Thus we obtain As ( f~,)~‘ _ f, it ensues
x x x x x

that

argmin f c armin 

Conversely let x E argmin we derive that

inf = (x) (x) ~ inf fx = inf f
x x x

which combined with yields Meargmin fx. Thus from [3]
x x

Proposition 3 .1 we obtain that x E argmin f : .
c) There exists a ball B with center x and positive radius such that

attains its minimum over X on x and such that f is majorized on B.
From Proposition 1. 2., b), we derive that f, and ( f + ~B)~ coincide near x
for all h small enough. Observing that f03BB and (f+03A8B)03BB are uniformly
minorized by f(x) near x, we can apply again Proposition 1.2, b) yielding
that ( f~)~ and (( f +’~B)~)~‘ coincide near x for all small enough.
From part b) of this theorem the point x minimizes (( f + ~B)~)~‘ over X
thus x is a local minimizer of ( f~)N. Moreover

5. EXTENSION TO NON QUADRATIC KERNELS

Let us begin by some definitions. We denote by P the set of even convex
functions 1t: R - R+ with 03C0 (0) = 0. Let us set

and

It is known ([I], Lemma 1) that if and only if [i* E A. A function
f: X --~- ~ ~ ~ + is said to be @-convex if there exists such that,
for each x, zeX, t E [0, 1],

Vol. 10, n° 3-1993.
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where tx + ( 1- t) z. A function g : X ~ R ~ { + is said to be a-
smooth if there exists 03B1~P such that, for each x, z E X and for each

t E Io, ~ 3,

We say that a P-convex function f (resp. a a-smooth function g) is P-
uniformly convex (resp. a-uniformly smooth) if 03B2~B (resp. x E A). For
further details about theses classes of functions, the reader may consult

[24], [27]).
The following lemma whose proof is a direct consequence of the defini-

tions, is taken from [5] (Proposition 1.8 and Corollary 1.10).

LEMMA 5 . 1. - Let f E To (X), then f is [i-convex (resp. 03B2-uniformly
convex) if and only i,f’f* is 03B2*-smooth (resp. 03B2*-uniformly smooth). .

Given a function and x, u E X, we set when the limit
exists

For a locally lipschitz function f, we define

The function u) is the Clarke directional derivative (see [10]). The
subdifferential of f at x is the closed bounded convex subset af (x) whose
support function is fO (x; .).

LEMMA 5 . 2. - Let f: ~ -~ R be a locally lipschitz function such that
g = - f is 03B1-uniformly smooth for some a E A. Then,

Proof - We first observe that,

Moreover, setting y = z + u, we obtain, for each t E [0, ~],

and then,

hence

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Replacing u by tu with t > 0, it ensues

hence

As a consequence, we get,

LEMMA 5. 3. - Let f : X --~ (~ be a locally lipschitz function such that f
and - f are uniformly smooth. Then f is Fréchet differentiable and

Df (x) - f o (x; . ) .
Proof. - Let x, u E X. Assume that f (resp. - f) is 03B11-uniformly smooth

(resp. 03B12-uniformly smooth). From the proof of Lemma 5.2, it ensues,
f ° (x; u) _ f (x + u) - f(x) + a2 u Thus we obtain

From Lemma 5. 2, we get

It ensues that fO (x; .) is linear continuous and that,

which ends the proof of the Lemma 5 . 3 ..
In the sequel, we shall work with smoothing kernels,

We make some assumptions (see [2], [7], [8]), ensuring that, given f,
g : X - R U { + oo ~, the functions

are finite and locally lipschitz. From now one, we shall assume that the
functions cp = p ° jj. ~j i and ~ _ ~r ~ ~ ~ . ~’ satisfy

a) cp (xn) --~ 0 implies 0.

b) For each xeX and each k > 1, there exists such that, for
each v~X,

c) There exist, p, c~, r E R + such that, for each u, v E X,

d) (p is lipschitz on bounded subsets of X.
e) B c X is bounded if (p is bounded on B.

Vol. 10, n° 3-1993.
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Given f : X -~ f~ ~ ~ + oo ~, we also assume that there exist ce and

x0~X such is bounded from below. When assumptions
a), ..., e) hold, Proposition 3.5 of [7] ensures that, for each

E  min 1 1 ), the function f03C6=f 1 ~(03C6°~. is finite and locally lipsch-
itz.
We are going now to explore the uniform convexity and uniform

smoothness of the above mentioned regularized functions.

PROPOSITION 5 . 4. - Let f : X -~ ~ U f + o~o ~ and let cp : X -~ ~ such that

(p is u-smooth for some a E P. Then f + cp is a-smooth provided it is every-

where finite.

Proof. - Let x, ZEX and t E [o, 1]. By definition of the epigraphical
sum, for each u E X

Thus,

where xt = tx + (1- t) z. The result follows by taking the infimum over
u E X in the right hand-side of the above inequality..

PROPOSITION 5.5. - Let g : X -~ (~ U ~ + oo ~ be a-smooth and let
h

Bf1: X --~ R be (3-convex. Assume that b = a + ( - [3) belongs to P and that
h h

g + ( - Bj/) is everywhere finite. Then, g + ( - ~) is 6-smooth .

Proof. - Let x, zeX, t E [0, 1]. Given E ~ 0, there exists v, w E X such
that

and

It ensues,
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Observing that , that P(.) is non
h

decreasing on R + and that a+(2014 P) is even, we obtain

Thus, letting E go to 0,

hence the result..

Remark 5.6. - The preceding result is sharp when considering

g (.)= ~.~2 203BB and 03C8(.)=~.~ 2  where 03BB. The functions g and 03C8 are

respectively a-smooth and P-convex with oc (t) = t2 203BB and 03B2(t)=t2 2 . An

elementary computation leads to g(-03C8)=~.~2 2(03BB- ) and this function is
exactly (a + ( - P))-smooth.
The main result of this section is,

THEOREM 5.7. - + oo }, -+ IR+ be
h

such that f e (cp ~, ~ . ~ () and {, f ’ e (cp ~ ~ ~ . ~ ~)) + ( - t~ ~ ( ~ . I ~) are everywhere finite
and locally lipschitz. Assume that ~.~ is 03B1-uniformly smooth that 03C8° ~.~]

h

is (3-strongly convex and uniformly smooth, and that oc + ( - (3) = b with ~ E A.
Then

is Fréchet differentiable on X. Moreover, this function is C 1 if X is finite
dimensional.

~roof. - From Proposition 5. 4, f + e (cp ° ~ ~ . ~ ~) is a-smooth. From

h

Proposition 5 . 5, ( f e (cp ° ~.~)) + ( - 03C8 ° ~.~) is 6-smooth and then 03B4-

Vol. 10, n° 3-1993.
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uniformly smooth since 8 E A. Applying again Proposition 5. 4,

is uniformly smooth. It follows from lemma 5. 3 that

is Frechct differentiable. When X is finite dimensional, we obtain
from Lemma 5.3 that the Frechet derivative of the function

h

( f e (cp ° f ( . ~ ~)) + ( - ~ ° ~ ~ . , ~) is equal to its Clarke derivative, thus it is con-
tinuous (~[10]). N

h

Remark 5 . 8. - The condition a + ( - ~3) = S ~ A is equivalent to the
h

condition a* - [i* E B, observing that (a* - ~3*)* = a + ( - ~3) thanks to the
Hiriart-Urruty’s formula (see [ 12]).

Example 5 . 9. - Let us give an example of non quadratic kernels which
satisfy the assumptions of Theorem 5 . 7. From ([24], Theorem 3), we know
that, given 03BE:R+ ~ R+ with § (0) = 0, and 03BE(cs)~c03BE(s) for each 

and each the function 03C8(u)= Jo 03BE(s)ds is uniformly convex with

modulus 03B2(t)= t 03BE(s ) ds. Let us introduce 03BE:R+ ~ R+ defined by
Jo B2/

03BE(t)=et-1. The function 03C80(u)=e~u~-~u~-1 is Po-convex with

Po (t)=2et/2-t-2. Let us set 03C8=03C80+~.~2 2, this function is uniformly

smooth and P-uniformly convex with . Then the function
e 2

(p==B)/* is a-smooth with a (t) _ [i* (t) = 2 (t + 1 ) ln (t + 1 ) - 2 t. By using a
formula on a conjugate of a difference of convex functions due to

J.-B. Hiriart-Urruty [12], we obtain that

An easy computation shows that a E B. Hence (~i - a~* belongs to A
and Theorem 5. 7 applies.
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