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ABSTRACT. - This work is concerned with positive, blowing-up solutions
of the semilinear heat equation in R". No symmetry
assumptions are made. Working with the equation in similarity variables,
we first prove a result suggested by center manifold theory. We then
calculate the refined asymptotics for u in a backward space-time parabola
near a blowup point, and we obtain some information about the local
structure of the blowup set. Our results suggest that in space dimension n,
among solutions that follow the center manifold, there are exactly n
different blowup patterns.
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RESUME. - On etudie les solutions positives explosant en temps fini de
1’equation semilineaire de la chaleur : dans R". On ne suppose
aucune hypothese de symetrie. On calcule le comportement asymptotique
de la solution au voisinage d’un point d’explosion et on obtient certaines
informations sur l’ensemble des points d’explosion.
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314 S. FILIPPAS AND W. LIU

1. INTRODUCTION

This work is concerned with positive, blowing-up solutions of the semili-
near heat equation

Working with the equation in similarity variables, we first prove a result
suggested by center manifold theory. We then calculate the refined

asymptotics for u in a backward space-time parabola near a blowup point,
and we obtain some information about the local structure of the blowup
set.

A lot of work has been done concerning the blowup of solutions
of ( 1.1 ) and related equations such as For extensive discus-
sions and bibliobraphies we refer to ([2], [3], [5], [8]-[15]).
When studying the local properties of the blowing-up solutions of ( I , 1),

it is convenient to use the method developed by Giga and Kohn ([12],
[13], [14]) based on similarity variables. This change of both dependent
and independent variables is defined by

where b is a blowup point and T is the blowup time. If u solves (1.1)
then w exists for all time s and solves

where Studying the behavior of u near blowup is equivalent
to studying the large time behavior of w. Let us assume that u is nonnega-
tive and p is "subcritical", i. e. n = 1, 2 and p > 1, or, if n >_ 3, 1  p  (n + 2)/
(n - 2). Then, it follows from [13], [14] that

uniformly on bounded sets in y, where K is the constant nonzero stationary
solution of ( 1 . 3), i. e. K = ( p -1 ) -1 ~~ p -1 >.

Recently, Filippas and Kohn [7] and independently and simultaneously
Herrero and Velazquez [15], were able to obtain more information about
the way w approaches K. Since our analysis relies primarily on the ideas
of [7] we recall certain facts from there.
To learn more about the way w approaches K it is natural to linearize

equation ( 1 . 3) about K. Let
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315ON THE BLOWUP OF MULTIDIMENSIONSIONAL

Then v is a solution of

with

and v --> 0 uniformly on compact sets in y.
Let us at this point introduce some notation which we will keep through-

out the rest of this work. We tenote by L; the Hilbert space of functions

v ( y) such that f V2 p  oJ with p = e - ~’’ r 2~4 as usual. The linear operator

defines a self-adjoint operator in L; with eigenvalues 1, 1 /2, 0, -1 /2, ...
We denote ( y) ~~ =1 (k = n + 1), the eigenfunctions of If correspond-
ing to positive eigenvalues and similarly 
and {e-j (y)}~j=1. We also expand v ( y, s) as:

The presence of a nontrivial null space in the linear operator of (1 . 5)
suggests the use of center manifold theory: if a trajectory of ( 1. 5) goes to
zero it should generically do so like a trajectory on the center manifold.
Formally speaking, if a trajectory is on the center manifold, then

’Y = (’Y 1, Y2, ... ) and ~i2, ... ) are dominated by a = (a 1, a2, ... )
with

Although this is what should happen generically, there are exceptional
solutions of ( 1 . 5) which approach zero exponentially fast. In the context
of center manifold theory these are trajectories lying on the stable manifold
(for a rigorous and more extensive treatement of these ideas see e. g. [6]).
With these as motivation, it has been shown in [7] that in any space

dimension .

Vol. 10, n° 3-1993.



316 S. FILIPPAS AND W. LIU

THEOREM I . - Either v decays exponentially fast, or else for any ~ > 0
there exists an so such that

Moreover.

THEOREM 2. - If v does not decay exponentially fast, then the neutral
modes satisfy the following m X m nonlinear ODE system

Where II° denotes the orthogonal projection onto the neutral eigenfunc-
tion efl. The above ODE system will play a crucial role in the analysis of
the present work. As we show in Section 2 it can be put in a remarkably
simple form, and we are eventually able to solve it explicitly.

In the one dimensional case it was shown in [7].

THEOREM 3. - If v does not decay exponentially fast then for large
enough time s, and any C > 0

Moreover, the center of scaling is an isolated blowup point.
Herrero and Velazquez ([15], [16], [17], [22]), following the ideas devel-

oped in [ 11 ], consider the one dimensional case where their results go far
beyond the above Theorems. They obtain all possible large time profiles
for v including the case where v decays exponentially fast. They also obtain
refined asymptotics for ( y ( ~ Js, and they compute the blowup spatial
profiles. Finally they show that in all cases the blow up points are isolated.
Similar results are proved for the eu nonlinearity.
More recently Liu [20] and Bebernes and Bricher [1] have extended most

of the above results in arbitrary space dimension under the assumption
that u is a radially symmetric solution of ( 1.1 ).

In this work our main concern is to understand what happens in higher
dimensions without imposing any symmery assumptions.
Our results apply to any nonnegative solution of the Cauchy problem

( 1 . 1 ) satisfying

and having the asymptotic behavior

uniformy for i y  C.
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317ON THE BLOWUP OF MULTIDIMENSIONSIONAL

Our first main result is an improvement of ( 1. 8). Thus, in any space
dimension and in complete agreement with the formal argument [cf ( 1. 7)]
we show.

THEOREM A. - Either v decays exponentially fast, or else there exists a
constant C and a time so such that:

As in [7] we believe that the situation where v decays exponentially fast
is in some sense exceptional, but (as in [7]) we are unable to prove it.
The rest of our results are the analogue of Theorem 3, stated above, in

higher dimensions. Concerning the refined asymptotics of v ( y, s) we show.

THEOREM B. - Assume that v does not decay exponentially. Then for
large enough s, we have that

for some b positive, with

for some 1, ..., n -1 ~, where Q is an orthonormal matrix, is

the (n - k) x (n - k) indentity matrix and Ok is the k x k zero matrix. (If
k = 0, then The convergence in ( 1.14) takes place in for any
m >_ 1 and some a E (0, 1 ).

If b is a blowup point, we can rewrite ( 1.14) in terms of the original
variables as:

in the sense that the difference is -1 ) as t i T, in parabolas

If n =1, then necessarily k = 0 and the asymptotic behavior of v is the
same as that given by (1.10). For n >_ 2 the above result suggests that
there are n different possibilities depending on the rank of the matrix Ao.
If u (or equivalently v) is radially symmetric and decreasing in I x then it
has been proved recently in [1] and [20] that the large time behavior of

Vol. 10, n° 3-1993.
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v ( y, s) is given by

This is also given by ( 1 . 14) with k = 0.
Blowup along a continuum is known to exist. It has been proved in

[14] that there are initial data in Rn for which the blowup set of (1.1) is
exactly an (n-I)-dimensional sphere. We believe (but we have no proof
so far) that the refined asymptotics of v, given by (1.14) for k= n -1,
correspond to such a situation.
Our third main result in concerned with the local geometry of the

blowup set:

THEOREM C. - Assume that v does not decay exponentially fast and
let b be the center of scaling. Then either b is an isolated blowup point or
else there exists a k-dimensional linear subs pace Eo of R‘~ for some
k~{1, 2,.., n-1} passing through b with the property: f r is a ray

emanating from b and angle (Eo, r)=~ for some E E 0, - , then there is no
other blowup point along r within distance r* (E) > 0 from b. This r* (E) is

such that r* (E) ~ 0 as ~ ~ 0. Eo coincides with the zero eigenspace of the
matrix Ao given by ( 1. 15).

If n = 1, then necessarily the center of scaling is an isolated point. This
is by now well known, since in the one dimensional case the blowup set is
made of isolated points, see [5], [17]. If n >_ 2 there are n different possibili-
ties which strongly suggest that the blowup set should locally look like a
k-dimensional submanifold of Rn (See Section 2 for a discus-
sion on that.)

If u is radially symmetric and decreasing then it can blow up only at
the origin, see [9]. In fact, the above theorem says that if the asymptotics
of the solution is given by (1. 16), that is, the solution is asymptotically
radially summetric and decreasing, then the blowup point is an isolated

one.

Center manifold ideas have also been used by Bressan [4] in the study
of the blowing up solutions of in a bounded domain QeR".

Working with y/ Js as the spatial variable he shows the existence of
solutions which blow up at a single point according to a precise asymptotic
pattern. He also conjectures that this behavior should be generic. In

Section 2 we give a formal argument supporting the idea that the blowup
set of ( 1.1 ) should generically be made of isolated points.

After this work was completed we learned that a result similar to

our Theorem B was independently and simultaneously proved by
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J. J. L. Velazquez [23]. He also obtains some information about the large
time profile of v in the case where v decays exponentially fast.

2. THE FORMAL PICTURE

In this Section we first present a convenient way of dealing with the
neutral component of v. We then present a formal argument which
underlies the rigorous analysis of the other Sections.
We being by recalling the properties of the linear operator If defined

by (1.6). It is easy to see that If is a self adjoint operator on L;.
Concerning its spectral properties we have the following

LEMMA 2 . 1. - In Rn, n >_ 1, the eigenvalues of If are given by

The corresponding normalized eigenfunctions are as follows

and so forth, where hk ( y) = dk Hk ( y/2) with dk = (~ 1 ~2 2k + 1 k ~) -1 ~2 and Hk is
the Hermite polynomial for k= 0, 1 , ... In particular these eigenfunctions
form an orthonormal basis for LP .

This can be found in [7]. We also remind the reader that the Hermite
polynomials are defined by

It follows from the above Lemma that the null space of If has dimension

n (n + 1 )/2 = m and the (normalized) neutral eigenfunctions are

By its definition, vo ( y, s) can be expanded in terms of these eigen-
functions. For reasons that will become apparent in the sequel, we express

Vol. 10, n° 3-1993.
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the neutral component of v as:

with ai~ (s) = a~~ (s). Define now the coefficient matrix-function A (s) to be

Clearly A (s) is an n X n symmetric matrix for all s. Moreover we can
rewrite (2 . 1 ) as

We next tun our attention to the ODE satisfied by the neutral modes:

In view of (2 . 1), the ai’s are equal to either J2 or Let us

consider the first possibility. Then, (2. 3) can be written as

The integral in the right hand side can be computed by using (2.1,
integration by parts, and the fact that the form an orthonormal family
in L; (we omit the details); we finally get:

with

Similarly, we obtain

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



321ON THE BLOWUP OF MULTIDIMENSIONSIONAL

One can easily verify that (2. 5), (2. 7) are equivalent to:

where ]] A II denotes the L2 norm of A, i. e.

We summarize:

LEMMA 2. 2. - Suppose that v does not decay exponentially fast, and let
vo denote its neutral component. Then

where A (s) satisfies

with cn as given in (2. 6).
Thus, the large time behavior of vo (as well as of v itself) is encoded in

the large time behavior of A (s), which in its turn satisfies the ODE (2. 9).
If the error terms are neglected in (2.9), it is very easy to solve the

ODE. So let us omit the error terms throughout the rest of this Section
in order to (formally) complete the picture.
At first we show

LEMMA 2. 3. - Let A (s) be an n X n nonzero symmetric matrix-function
which exists for all time and satisfies

for some nonzero constant cn. Then

with

for some k E ~ 0, 1, ..., n - 1 }, where Q is a (constant) orthonormal matrix,
In-k is the (n - k) X (n - k) identity matrix, and Ok is the k X k zero matrix.

Proof. - By rescaling in time, we may assume c~ to be equal to 1.

Consider the initial value problem

Vol. 10, n° 3-1993.
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for some symmetric matrix Since Ai is symmetric it can be diagonal-
ized by an orthonormal matrix Q, i. e.

where the diagonal elements of Ai 1 are the eigenvalues of Ai. In general,
some of the eigenvalues of Al can be zero. So let us assume that k of
them are equal to zero; i. e. ~,i ~ 0 for whereas ~,i = 0 for

n - k + 1 _ i _ n. Consider the diagonal matrix

and let

One can verify in a straightforward manner that the matrix A (s) defined
by (2.14) solves the initial value problem (2.13). From uniqueness consi-
derations we conclude that (2 .14) represents all solutions of (2 .10). More-
over we have that for large s :

Therefore for large s we also have

with Ao as described in (2.12). D

Remark 2 . l. - An examination of the proof shows that each eigenvalue
of A (s) is either identically equal to zero, or else it is always different
from zero. Since the generic n X n symmetric matrix is of full rank, we
deduce that the case k = 0 describes the generic solution of the ODE.
We know from ( 1. 8) that co is the dominant component of v (if it does

not decay exponentially fast), therefore we expect that the large time
behavior of v is described by that of vo. Moreover from (2 . 8), (2 . 11 ) we
also have that

and this is the content of Theorem B.

As in [7] we expect that the large time profile of v ( y, s) should reflect
the local geometric of the blow up set. More precisely, the blow up set
should locally coincide with the region where v ( y, s) takes on its maximum
values. Because of (2.15), v ( y, s) takes on its maximum values wherever
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the quadratic form yT A0y takes on its minima. At this point it is conven-
ient to distinguish two cases: 

’

(i ) The matrix Ao is of full rank; i. e. k = o. As we explained above (see
Remark 2.1) this is what happens generically. From (2.12) we ’see that
Ao is equal to the identity matrix. Therefore from (2.15) we have that ’

In this case, v ( y, s) is asymptotically radially symmetric. It has an isolated
maximum at y = 0 and as we show (Theorem C) it corresponds to an
isolated blow up point b (the center of scaling) for u. Thus, generically,
the blow up set in space dimension n should be made of isolated points.

(ii) The matrix Ao is defective; i. e. k >_ 1. As can be seen from (2.12)
Ao is a nonnegative definite matrix and the minimum value the quadratic
from can take on is zero. The region where yT A0y is zero, coincides with
the eigenspace of Ao corresponding to the zero eigenvalue. Clearly this is
a subspace of Rn of dimension k; let us denote it by E~. We have therefore
that v ( y, s) takes on its maximum values along E~. This strongly suggests
that the blow up set should locally look like an k-dimensional submanifold
of R", containing the center of scaling b, and tangent to E~ at b. (Notice
that our rigorous result, i. e. Theorem C, is weaker than what the formal
argument suggest. Namely, we prove that there are no other blow up
points in a neighborhood of b, except possibly along the direction of Eo.
The method we use - which is based on a criterion for characterizing non
blowup points - is inconclusive when it comes to points along the direction
of Eo.) 

.

Thus, it is reasonable to expect, that in space dimension n, if v decays
like 1 /s, there are n different blow up patterns. These patterns correspond
to blowup at (isolated) points, blowup along curves, surfaces, and more
generally k-dimensional submanifolds of Rn for k - n -1.
Of course, to obtain a more complete picture about the blow up set,

one has to take into consideration the case where v decays exponentially
fast. As we explained in the introduction, we believe that this should be
the exceptional case. Herrero and Velazquez ([15], [16], [17]) have given a
complete characterisation of the exponentially decaying profiles in the

special case where ~ == 1. Moreover, they have shown that in all cases,
either v decays at an algebraic rate or at an exponential one, the blow up
set consists of isolated points. In analogy, one may think that in higher
dimensions the blowup patterns are independent of the decay rate of’v.
But we have no solid evidence for that.

We close this Section by briefly commenting on the content of the rest
of this work. It is evident that it is of great importance to know the
behavior of the solutions of the ODE satisfied by A (s). Unfortunatefy,

Vol. 10, n° 3-1993. , 
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the presence of the error terms introduces several technical difficulties and
the easy argument used in Lemma 2. 2 is not applicable. In Section 3 we
obtain a preliminary estimate, namely (or equivalently v)
decays like This information along with other ideas is then used in
Section 4 where we prove Theorem A. Using Theorem A we rederive the
ODE, but this time the error terms are of the order O ~ 1 /s3). In Section 5
we solve explicitly the ODE, there by proving Theorem B. Finally, in
Section 6 we give the proof of Theorem C.

3. A PRELIMINARY ESTIMATE

Our aim in this section is to prove the following

, PROPOSITION 3.1. - If v does not decay at an exponential rate then for
s large enough:

for some positive constants c and C.
Because of (1 . 8) we have that

therefore it is enough to show that ~~ vo decays like 1/s. It follows from
the definition of the A (s) that I ~ vo (s) is equivalent to ~ ~ A Conse-

quently, ~,Proposition 3 . 1 will be proved if we show
LEMMA 3 . 1. - The coefficient matrix-function A (s) satisfies for s large

enough:

for some positive constants c and C.
The above estimates have been proved in [20] for the special case n = 2.

Our proof folows these ideas, although at the technical level it is different.
We prefer to use a rather general approach, which has the advantage that
it simplifies the analysis of Section 5, where a more detailed study of the
large time behavior of A (s) is presented.
To show (3. 2) we will use the ODE satisfied by A (s). From the previous

Section we have that
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where 8 (s) is a symmetric matrix-function with the property that given
an E > o, there exists an s* such that for s > s* :

We begin by quoting a standard result from the perturbation theory of
linear operators.

LEMMA 3 . 2. - Suppose that A (s) in an n X n symmetric and continuously
differentiable matrix-function in some interval I. Then, there exist continu-
ously differentiable functions ~,~ (s), ..., ~,~, (s) in ~, such that

for some (properly chosen) orthonormal system of vector-functions
~~ ~ ~ (s), ... , ~~n~ (s). .
The proof of this Lemma can be found for instance in [18] or [21].

Roughly speaking, the above Lemma says that a smooth symmetric matrix-
function has smooth eigenvalues. (This is not true in general for the

eigenvectors.)
Let 03BB1 (s), ..., 03BBn (s), denote the eigenvalues of A (s). It is a well known

n

fact that L is a norm in the space of symmetric matrices. Therefore,
i= 1

n

in order to prove (3 . 2) it is enough to prove that £ ) ~,~ (s) ] decays like
. 

i= 1

I /s. Working in this direction we first show . _

’ 

LEMMA 3. 3. - The eigenvalues of the coefficient matrix-function A (s)
satisfy: 

’

Proof. - By rescaling in time we may set cn =1. Fix a time so (large
enough) and consider any arbitrary eigenvalue Let us assume
that it has algebraic multiplicity h. We denote by ~~ the (h-dimensional)
eigenspace corresponding to and by P (so) the projector of ; Rn
onto ~~ .
We claim that ~, J (so) is an eigenvalue of the operator P (so) A (so). (This

can also be found in [21] but we include it here for the sake of complete-
ness.) To show this, let us first denote by ~~ 1 j (sQ), ..., ~~’‘~ (sa) the

(orthonormal) eigenvectors corresponding to Next, we pick up a
sequence im of non-zero real numbers tending to zero, for which
lim ~~‘ ~ (s~ + ~m) = ~f ‘ ~ (sa), exists for i = 1, ..., h. This is always possible

m -. 00

since the are unit vectors for aIl s. Since (c~~~ j (SO + ~m),
c~~l ~ (so + ~m)) _ we also have that = In particular,

Vol. 10, n° 3-1993.
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the form an orthonormal basis for ~~ and
A ~_ v _~_(il ~ ~ n ~ ~ ..:... ,

i ~ i ~ ~ ~ ~~ i ._. _ "

it follows that
/ A /_ ~ _ v .

dny element 03C8 m M. Letting m ~ ~, we obtain
,. r _ _ _,... .

is irue tor any yr m M,
r i i ~ ~ , .:... _

proves our ciaim.

Next, it is clear from (3 . 6) that we also have:
... ~ ~ . ~ . _ . ,-, . - _

8) irom (3.7) and using equation (3.3) we obtain:

wC concmae mat is an eigenvalue of
(so). Hence .

wnere we used (3.4) and standard inequalities. Since the above estimate
is true independently of so, the proof of the Lemma is complete. 0
We intend to use the ODE’s (3.5) to show that

tor some positive constants c. C. These estimates, of course, are equivalentto (3. 2).

n

Proof of (3 . 10). - At first we note that £ (s) |is always different
from zero. Indeed, if it is zero at some time so then A (so) = o. But then, 

.
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by the uniqueness of the initial value problem, A (s) would be zero for all
times, and this forces vo as well as v to be identically zero.
To show the left inequality of (3.10) we use (3 . 5) to obtain 

’

for some positive constant c, and the desired estimate follows by integra-
tion. 

’

The right inequality of (3.10) requires more work. We first obtain some
preliminary estimates. From (3. 5) it is easy to see that

n ‘
for s sufficiently large. Since £ ~,~ (s)~ -~ 0 as s -~ oo, we must have

.; = i .

n

~ ~,i (s)  0 for s large. Furthermore, by (3 .11 )
; = 1 .. ,

for some c > o, from which we conclude that

To complete the proof, we now use an argument by contradiction.
. Suppose that

- We will show that there exists a sequence s~ --~ oo such that

which is a contradiction to (3 .12).
By (3.13), there exists a sequence s~ - oo such that

Vol. 10, n° 3-1993.
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We shall show that (3.15) implies (3 . 14). Since

we can find a subsequence of (again labeled as s~) such that

It is clear that at least one 

We know that I + ~ I - ~ QS. If we show that I + = QS, then (3 . 14) will
follow from ~3.15). Therefore, the proof of (3.10) reduces to the proof
of the fact that I + = Q~.

n

Suppose that I + ~ QS. Notice that I- ~ Q~ since ~ ~,i (s)  o. Clearly,
i= I

for sufficiently large j

Moreover

On the other hand, using (3.5) we get that

It follows from (3 .17)-(3 . 1 9) that

for sj large enough.

Annales de Henri Poincaré - Analyse non linéaire
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Fix an ~. Since ~ (~)>0,2014 ~~ (~)>0 and ~ (~) -~ 0, there exists ~t
~ 

’

least one s>sj, such that d 03BB+ (s)=0. Let us denote by tj the first such s.
~ , ’

Clearly j~~~(~)=~~(~) is increasing in (~ ~). Because of (3.20), either

d ds 03BB- (s)>0 throughout the interval (sj, tj), or else there exists a time  
in (sj, tj) at which d 03BB- (so) = 0. In both case we will reach a contradiction.’ 

&#x26;

(i) Consider first the case where there exists an ~) such that
~j B . B 

~

2014~"(~o)=0. Clearly, ~~(~o)>0. On the other hand, it follows from
&#x26;

(3.19) that

Consequently, for any b > o,

f6r s~ sufficiently large. But this is a contradiction to the fact that
n

£ X;(S)0.
;=i 1

(it) Now assume that d 03BB- (s) > 0 in tj). Then 03BB+ (s) > 0 is increasingds 
’ 

.

while ] X~ ] (s) > 0 is decreasing in Consequently,

by (3.17). On the other hand, since 2014 ~ (~)=0, the same argument as’ ~
before shows that for any 5 > 0,

for Sj large, which contradicts (3 . 21 ). The proof of (3.10) is now complete.

Vot. 3-1993.
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4. CENTER MANIFOLD ANALYSIS IN L; (R")

In this Section we will give the proof of Theorem A. We recall that we
are studying a nonnegative, blowing up solution of the semilinear heat
equation ( 1.1 ). We assume that when written in similarity variables

[see (1 . 2)], the solution satisfies (i) w is nonnegative, (ii ) w is uniformly
bounded in space-time and (iii) it tends to K as uniformly on
compact sets in y. These conditions are known to be valid for any nonnega-
tive solution of the Cauchy problem ( 1.1 ) provided that (a) u is uniformly

bounded at infinity (e. g. u - 0 at infinity); (b) _ n_2 or, if n>_ _ 3, p c n+2. ,
n-2

and (c) the center of scaling a is a blowup point (cf. [12], [13], [14]).
In giving the proof of Theorem A two Lemmas will be used. The first

one is an elementary ODE Lemma similar to the one used in [7]. In fact
it is a slight modification of it, which allows us to deal with quadratic
terms. It basically contains all the center manifold ideas that we use in
the present work.

LEMMA 4 . 1. - Let x (t), y (t), z (t) be absolutely continuous, real valued
functions which are nonnegative and satisfy:

where co, cl are positive constants. Then
either (i) x, y, z -~ 0 exponentially fast
or (ii) there exists a time to after which z + y  bx2, where b is a positive

constant depending only on co, cl.

Proof. - By rescaling in time we may assume cl =1. We divide the
proof into five steps:

Step 1: Unless x, y, z --~ 0 exponentially fast, there will be a time at
which co y  2 (x + z ) 2 .

Indeed, if co y ? 2 (x + z)2 for all time then from (4 . 3) we would have:

This implies that y --~ 0 exponentially fast and that forces x, z to decay
exponentially fast as well.

Step 2 : Let Once a (t) becomes negative, it will

stay nonpositive thereafter, for large times.
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The key observation here is that:

provided t >_ to for some to large enough. Indeed, using (4 .1 )-(4 . 3) we
write:

By choosing to large enough, we can arrange, [because of (4.4)] so that:

Using (4.6) and the fact that [which is equivalent to

we end up with:

for to large enough, and (4. 5) has been proved.
Let a+ (t) be the positive part of a (t), i. e. a+ 0 ~. From

(4.5) we have that

for all t > to. Suppose now, that a (t’)  0 for some t’ ( > to). From the
fundamental theorem of calculus, we have that for any t > t’:

from which we conclude that a (t) stays nonpositive for all t > t’; i. e.

for t large enough.
Step 3: There exists some time after to at which 
If not, (4 .1 ) would force z to grow exponentially fast contradicting

(4 . 4).
Step 4: Let ~i (t) = co z - 2 (x + y)2. Once this quantity becomes negative

it will stay nonpositive thereafter.
Working as in step 2 we first show that so long as P (t) >_ 0 then:
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for t large enough. But then, if p (t) ever becomes positive it should have
a nonnegative slope, contradicting the fact that p (t) - 0. We conclude:

for t large enough.
Step 5: The desired result follows from (4. 7) and (4. 8). D

The second Lemma is concerned with an a priori estimate of solutions
of:

withf(x)=O(x2) as x - 0. This is due to Herrero and Velázquez [15];
although they proved it in the one dimensional case the same proof works
for any space dimension.

LEMMA 4. 2. - Assume that v solves (4. 9) and v I  M  ~. Then for
any and L > 0 there exists r) and C = C (r, q, L) > 0
such that

for any s > 0 and any s* E so + L].
Using the above Lemma and Proposition 3.1 we write (for large s)

for suitable constants C;. That is, if we know the decay rate of v, we can
eliminate the "delay constant" s* in (4.10) ; in particular we have

COROLLARY 4.1. - decays like then for every r > 1, q> 1
there exists a C = C (r, q) > 0 such that

for s large enough.
We now give the proof of Theorem A.

Proof of Theorem A. - Let, as usual, v + denote the projection of v
onto the eigenfunctions of !l’ corresponding to the positive eigenvalues
and similarly for vo and v _ . We also set 

and has been shown in [7] that these quantities
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satisfy the following differential inequalities:

with some positive constant C. We already know from (1.8) and

Proposition 3.1, that either x, y, z they all go to zero exponentially fast,
or else decays like Assuming we are in the second case and
using (4 .11 ) we have that

for some c’ positive. From the first inequality of system (4.12) we get:

with c = c’ C. Since x, y, z they all go to zero with s, we get for large
enough time:

The last inequality of (4.12) can be dealt with similarly. Hence, from
system (4.12) we have:

We now use lema 4.1 to conclude that there exists a time so after which

and the Theorem has been proved. 0 ~

We next rederive the ODE satisfied by the neutral modes. As we

explained in Section 2 we do that in order to obtain a better estimate on
the error terms.

PROPOSITION 4. 1. - Assume that v does not approach 0 exponentially
fast. Then the neutral modes ~ 1 satisfy
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Proof - We first recall the equation (1. 5) satisfied by v

with I g (v) (_ c|v|3 for some positive constant c. Let e0j ( y), j = 1, 2, ..., m
be the neutral eigenfunctions of 2 as described in Section 2. Projecting
(4. IS) onto e0j we get:

or

with

’n 3/2
We will show that |E|~C( 03B12j ) .We first estimate E1. Recalling

we write:

where we used theorem A and standard inequalities. Moreover we have:

using (4 .11 ). Since

we get that
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Next we note that vo belongs to a finite dimensional space (the neutral
subspace of 2)- and therefore all norms of it are equivalent:

Putting everything together we have:

We finally estimate ~2:

where in the last inequality we used (4 . 11 ). Using now (4 . 16) we get

and the proof of Proposition 4.1 is complete. D

As a consequence of the above Proposition we have the following

COROLLARY 4. 2. - The coefficient matrix-function satisfies for s large
enough

with Cn = p (4 ?L)-n~4.
K

This follows from (4.14), (3.2) and the definition of A (s) (see Section 2).

5. REFINED ASYMPTOTICS

Our task in this section is to give the proof of Theorem B. To do this
we first have to study in more details the large time behaviour of A (s).
Our main conclusion concerning the asymptotics of A (s) is the following

PROPOSITION 5.1. - For large enough times we have that

for some b > 0, with
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for some k E ~ 0, 1, ..., n -1 ~, where Q is a (constant) orthonormal matrix,
is the (n - k) X (n - k) identity matrix and Ok is the k X k zero matrix.

Proof. - As usual we set cn =1. We being by analyzing the asymptotics
of the eigenvalues of A (s). In view of (4 .17), an argument identical to
that of Lemma 3. 2 shows that they satisfy:

One can show that the L’s are either equal to 20142014+9(20142014), or elses 

they are of the order 0 ( 20142014 ), for some 8 positive. (To keep the flow ofB~ /
our argument we postpone the proof of this statement for later on.) Let
us therefore assume that k of the eigenvalues of the matrix A (s) follow
the second pattern; L e.

for some In view of Lemma 3.1 we also have that 

The knowledge of the asymptotics of the ~,1’ does not suffice to conclude
(5. 2). We also need to know that Q is a constant matrix (independent
of s). To this end, we will show that the elements of A (s) are of the form:

for suitable constants (some of them possibly zero). Working in this
direction we set y~ _ ~ i 1, ..., c {1, ..., n }, and let be the principal
minor of order I of the matrix A, which is formcd as follows:

(Warning: AYl is a scalar, not a matrix.) Clearly,
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for some positive constant C. Moreover, by a straightforward calculation,
one can verify that

We intend to derive (5 . 5) by studying the system (5.7). At first we
note that because of (5.4)

and

Assume k ? 1. The case ~ = 0 can be dealt with similarly. For l=n-l,
from (5. 7), (5. 8) we get:

Solving (5.9), we get

for some (undetermined) constant In view of (5 . 6) we also have
that if k> 1 then necessarily C,~n _ 1= o. In any case, (5 .10) describes the
decay rate of Clearly, once we know the asymptotic behavior of
Ayl we can use (5 . 7) to obtain the same information about for any
l = n -1, ..., 1. Thus, by repeating the previous argument we eventually
end up with:

Notice that for 1= 1, is equal to aii (if we choose ~yl = ~ i ~) and
therefore (5.5) has been proved for the diagonal elements of A. For the
off diagonal elements we observe that:
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where the behavior of Aij is given by (5 .11 ) for 1= 2. Thus, (5. 5) has
been established.
We can now write

where Ao is a constant symmetric matrix. Since the eigenvalues of s A (s)
are

and s A (s) - - Ao, the eigenvalues of Ao are

Therefore, there exists an orthonormal matrix Q sucht that

This completes the proof of Proposition 5.1. D

It remains to give the proof of (5.4). This is a direct consequence of
the following elementary Lemma.

LEMMA 5. 1 Let x (s) be a solution of

which exists for all time. Then either

or else,

for some b E (0, 1 /2).

Proof - Fix an so large enough and let 03B2 be some number in (0, 1 /2).
If
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we are done. If (5 .15) is not true then there exists a time such

that x (s 1 ) ( > s ~ 1- ~. There are two possibilities: either

or else, there exists an such that

in (s2, s2 + E) for some ~>0. If (5 .16) is the case then, from (5.12) we get

and (5.13) follows by integration. We next show that (5.17) cannot
happen. For definiteness let us assume that x (s2) ~ 0 (the case x (s2) > 0 is
easier). From (5.17) we have that

On the other hand, from (5.12) we have that

which contradicts (5 .19), if so. is chosen sufficiently large. D
It follows from Lemma 2. 2 and Proposition 5 .1 that

with

We are now ready to give the proof of theorem B.

Proof of Theorem B. - At first we show that convergence takes place
in the L2 norm in every ball BR c Rn of radius R (0  R  oo). Let C denote
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a positive constant, not necessarily the same in each occurrence.

where we used theorem A and (5 . 20).
We next use standard parabolic estimates to improve the mode of

convergence. Since the arguments here are well known, we simply sketch
them.

Set U = v - v*. Then U solves the parabolic PDE:

where

with Let us denote by Qi, Q2 two space-time
parabolic cylinders located inside the strip {so - l, so). We also assume
that Q2 is strictly contained in Q 1. From interior regularity theory (see
[19], Chap. IV, § 10, p. 355) we have that for p > 1,

Set p = 2 to start with. It is easy to check that (for so large enough):

Therefore from (5 . 23) we have that ]] tQ2~ _ C so ~ ~ + s~. By the Sobolev
embedding theorem we also for some p > 2.
We iterate this scheme until we get ~U~~(Q)~C~’~ , for

some in some (smaller) cylinder Then, again
from the Sobolev embedding theorem, we conclude that
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for some ~, > o. Since (5 . 24) holds true independently of so, we have in

particular that

Finally, we use Schauder estimates in a similar fashion to obtain conver-

gence in higher norms. The details are omitted.

6. ON THE LOCAL STRUCTURE OF THE BLOW UP SET

As explained in section 2 we expect that the asymptotic profile of v ( y, s)
should reflect the local geometry of the blow up set. It has been proved
in [7] that this indeed is hat happens, in the special case where n = 1 and v
decays at an algebraic rate. We can now use the same method, to extend
this result to arbitrary space dimension n. Roughly speaking we will show
that if the center of scaling b is a blow up point, there is no other blow
up point in a neighborhood of b except possibly along the region where
v ( y, s) takes on its maximum values. Our precise statement is Theorem C.
We briefly recall the method of [7]. We denote by E (s) the "energy"

functional, defined for all solutions of ( 1.1 ) rescaled about any point
(a, T) by:

At the heart of the method is the following result due to Giga and
Kohn [14]: if

for some time so, then a is not a blow up point, where K = - . .
This result can be used in the following way. Assuming that b is a

blowup point, and using the similarity change of variables and the refined
asymptotics of wb, one can calculate the "energy" functional corresponding
to points a in a neighborhood of b. Those point a for which (6.2) is true
are then excluded from the blowup set.
We now give the proof of Theorem C.

Proof of Theorem C. - Assume that 0 is a blow up point and let a be a
point near it. Then, using the usual transformation ( 1 . 2) we have:
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and

with y = a/ JT - t. Moreover wo(y, s)=v(y, S)+K and we know from
Theorem B that for large times v ( y, s) behaves likes

it has been shown in [7] that for large times we can rewrite (6.1) as:

where

Although this was proved for n = 1, the proof works for any space dimen-
sion with trivial changes. (In fact, all arguments in [7] are n-dimensional,
except Lemma 7. 2. This Lemma is a direct consequence of Lemma 7. 3
there and the fact that v decays like 
We next turn our attention to the second term of the right hand side

of (6 . 3). It is convenient at this point to change variables by 
where Q is the same orthonormal matrix as in Theorem B. In the new
coordinate system (we drop the prime for simplicity) we have:

Let us now introduce some notation. We denote by the span of
y2, ~ ~ . , and by Eo the span of ..., We note that
coincides with the eigenspace of Ao corresponding to the eigenvalue

1, whereas Eo (as previously) is the eigenspace associated with the zero
eigenvalue. We also write where 03B3I is the projection of y onto

and similarly for yo. We can now rewrite (6 . 4) as:
r

The first integral of the right hand side is easily found to be equal to
(4 ~)k/2. For the second integral we expand the square, change variables
x - y - y and after several integration by parts we can compute it, so that
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finally we get:

Hence, we can rewrite (6.3) as:

with

From (6. 7), (6. 8) it becomes obvious that if there exists some

time s* after which

Since as soo, this shows that there are no
blow up points (except zero of course) along the ray a within distance

from zero. It is also clear that if and only if angle
y) --~ 0, and this completes the proof of Theorem C.
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