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the lower semicontinuous envelope F of functionals F defined on the space
~ (Q; R") of all Rn-valued measures with finite variation on Q.

RESUME. - On etablit une representation integrale de la forme :
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sur l’espace ~~ (Q, Rn) des mesures a variation bornee sur Q a valeurs
dans Rn.
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346 G. BOUCHITTE AND G. BUTTAZZO

1. INTRODUCTION

In a previous paper [3] we introduced a new class of nonconvex function-
als defined on the space ~~ (Q; Rn) of all Rn-valued measures with finite
variation on Q of the form

where ~,S is the Lebesgue-Nikodym decomposition of ~,, A~ is
the set of atoms of A, denotes the value ?~ (~ x ~), and # is the
counting measure (we refer to Section 2 for further details). For this kind
of functionals we proved in [3] (see Theorem 2.4 below), under suitable
hypotheses on f, cp, g, a lower semicontinuity result with respect to the
weak* ~~ (D; R") convergence.

In a subsequent paper [4] we characterized all weakly* lower semiconti-
nuous functionals on ~~ (Q; R") satisfying the additivity condition

and we proved that they are all of the form ( 1.1 ) for suitable integrands/,

In the present paper we deal with funtionals F of the form

if ~,S = 0 on otherwise

and we consider their (sequential) lower semicontinuous envelope F
defined by

F = sup ~ G : G  F, G sequentially weakly* l.s.c. on ~~l (SZ; Rn) ~ .
We prove in Theorem 3. 1 that F satisfies the additivity condition ( 1. 2)
so that, by the results of [4], it can be written in the integral form

for suitable f, (p, g. An explicit way to construct )n, f, (p, g in terms
of J..l, f, g is given (see Theorem 3 . 2), and this is applied in Example 3 .4
to the case f (x, s) _ ~ and g (x, s) with p E [ + oo and q E [0, 1].

2. NOTATION AND PRELIMINARY RESULTS

In this section we fix the notation we shall use in the following; we
recall them only briefly because they are the same used in Bouchitte &#x26;
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Buttazzo [3] and [4], to which we refer for further details. In all the paper
(Q, ~, Jl) will denote a measure space, where Q is a separable locally
compact metric space with distance d, ~ is the a-algebra of all Borel
subsets of Q, and Jl :   [0, + oo [ is a positive, finite, non-atomic measure.
We shall use the following symbols:
- Co (Q; Rn) is the space of all continuous functions u : 03A9 ~ Rn "vanish-

ing on the boundary", that is such that for every E > 0 there exists a

compact set KE c Q with ~M (x) (  E for all x E S2BKE.
- ~~ (Q; Rn) is the space of all vector-valued measures ~, : ~ --~ Rn with

finite variation on Q.

- ~ 7~ ~ is the variation of À E ~~ (Q; Rn) defined for every B E ~ by

- 03BBh ~ 03BB indicates the convergence of 03BBh to À in the weak* topology
of ~~ (Q; Rn) deriving from the duality between ~~ (Q; Rn) and Co (Q; Rn).

- ~, ~ ~, indicates that À is absolutely continuous with respect to J-l, that
is I À (B) = 0 whenever B and  (B) = 0.

indicates that À is singular with respect to that is

I À = 0 for a suitable B E ~ with j (B) = 0.
- with u (Q; Rn; ~), is the measure of ~~ (Q; Rn) (often indicated

simply by u) defined by

It is well-known that every measure Rn) which is absolutely
continuous with respect to  is representable in the form for a
suitable u E L (Q; Rn; Jl); moreover, by the Lebesgue-Nikodym decomposi-
tion theorem, for every R") there exists a unique function

Rn) (often indicated by and a unique measure

~,S (Q; Rn) such that

- with a bounded Borel function and ~~l (SZ; Rn), is
the measure of ~~l (Q; Rn) defined by

- 1 B with B c Q, is the function
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- bx with x E Q, is the measure of ~~ (Q; Rn)

- (Q; Rn) is the space of all non-atomic measures of ~~l (SZ; Rn).
- (SZ; Rn) is the space of all "purely atomic" measures of

~~ (Q; Rn), that is the measures of the form

- 03BB(x) with x~03A9 and (Q; Rn), denotes the quantity 03BB({ x}).
- A~ is the set of all atoms of ~,, that is

- cp (x, 03BB) with Rn), and + oo] a

Borel function such that cp (x, . ) positively I-homogeneous for every x E Q,
denotes the quantity

which (see for instance Goffman and Serrin [12]) does not depend on u,
when v varies over all positive measures such that ~, ~ ~ u.
- f* with f : Rn  ] - oo, + oo] proper function, is the usual conjugate

function of f

- with f : ] - oo, + proper function, is the usual recession
function of f .

It is well-known that when f is convex l.s.c. and proper, f* is convex l.s.c.
and proper too, and we have/**=/; moreover, in this case, for the

recession function the following formula holds (see for instance Rock-
afellar [16]):

where so is any point such that f (so)  + It can be shown that the

definition above does not depend on so, and that the function turns

out to be convex, l.s.c., and positively 1-homogeneous on Rn.
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349RELAXED FUNCTIONAL ON MEASURES

- with f : Q x Rn  [0, + oo] a Borel function such that f (x, . ) is

convex l.s.c. and proper for ~-a.e. denotes the function

defined for every (x, The function cp f, ~ (x, s) is l.s.c. in (x, s),
convex and positively 1-homogeneous in s, and we have (see for instance
Bouchitte and Valadier [5], Proposition 7)

with g : R" --~ [0, + oo] a function such that g (0) = 0, is the function
defined by

- g subadditive with g : [0, + oo] a function such that g(0) = 0,
will mean that

We remark that g is subadditive if and only if _ g, hence = g for

every subadditive function g with g (o) = o.
- with a, Rn ~ [0, + ~] denotes the inf-convolution

It is easy to see that

We also recall some preliminary results which will be used in the

following.

PROPOSITION 2. l: (see Bouchitté and Buttazzo [3], Proposition 2.2). -
Let g : [0, + oo] be a subadditive l.s.c. function, with g (0) = o. Then we
have:

(i) the function gO: [0, + oo] is convex, l.s.c., and positively 1-

homogeneous ;

PROPOSITION 2. 2: (see Bouchitté and Buttazzo [3], Proposition 2.4). -
Let a, [0, + oo] be two convex l.s.c. and proper functions, with a
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such that

Then we have:

(i) is l.s.c. and = (a* + (3*)*;
(ii ) a 0 j3h T a 0 j3 . for every sequence ~3h : Rn  [0, + oo of l. s. c. functions

with ~i~ T (3.

PROPOSITION 2 . 3. - Let f, g : Rn  [0, + oo] be two subadditive l.s.c.

functions with f(O) = g (0) = 0. Assume that for a suitable a > 0 it is

Then we have

Proof. - The inequalities ( f that

Let us prove the opposite inequality. Let us fix S E Rn with

( f V g)° (s) = C  + oo and for every t > 0 let st ERn be such that

By (2 . 1 ) and (2 . 2) we have for every t > 0

so that we may assume st - z as t - 0. For every ~ > 0 and w E Rn set

Fix E > 0; by Proposition 2. 3 of Bouchitte and Buttazzo [3] we have for
every t small enough

so that, passing to the lim inf as t --~ 0, and taking into account (2 . 2)

Finally, passing to the limit as E 2014~ 0, by Proposition 2 . 3 of [3] again, we
get ,

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



351RELAXED FUNCTIONAL ON MEASURES

We shall deal with functionals defined (Q; R"j of the form

For this kind of functionals we proved in [3] a result of lower semicontinu-
ity with respect to the weak* convergence in ~~l (SZ; Rn). More precisely,
the following theorem holds.

THEOREM 2. 4. - Let ~~ (SZ) be a non-atomic positive measure and
let f, cp, g : S2 x Rn -~ [0, + oo] be three Borel functions such that

(H1) f(x, . ) is convex and l.s.c. on Rn, and f(x, 0) = 0 for x E Q,
{HZ) . (x, . ) = cp (x, . ) = (x, . ) for Q,
(H3) g is l.s.c. on S~ x Rn, and g (x, 0) = 0 for every 
(H4) g (x, . ) is subadditive for all x E S2, and g _ c~ f, ~ on SZ x Rn,
(Hs) gO = cp on (QEN) x Rn, where N is a suitable countable subset of S~,
Then the functional F defined in (2.3) is sequentially weakly* l.s.c. on

~~ (~, Rn) .
Remark 2. 5. - The assumption cp = cp f, ~ on (QEN) x Rn with N count-

able, of Theorem 3. 3 of Bouchitté &#x26; Buttazzo [3], has been replaced here
by the weaker one c~~., ~ on (QEM) x Rn with ~. (M) = 0. A careful
inspection of our proof shows indeed that this weaker condition is still
sufficient to provide the lower semicontinuity of F.

Remark 2. 6. - A slightly more general form of the lower semicontinuity
Theorem 2.4 can be given (see Bouchitté and Buttazzo [4]) by requiring,
instead of (H4), that

(i ) the set D9 has no accumulation points,
(it) the function g°° is l.s.c. on Q x Rn,

(iii) nd g~ g on Q x Rn,
where D9 and g are defined by

The fact that all additive sequentially weakly* l.s.c. functionals on
~~ (Q; Rn) are of the form (2 . 3) has been shown in [4], where the following
result is proved.

THEOREM 2. 7 : (see Bouchitte and Buttazzo [4], Theorem 2. 3). - Let
F : ~~ (Q, Rn) -~ [0, + 00] be a functional such that

(i) F is additive {i. e. F (~, + v) = F (~,) + F (v) whenever v);
(ii) F is sequentially weakly* l.s.c. on ~~ (Q; Rn).
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Then there exist a non-atomic positive measure p E ~~ (Q) and three Borel
funtions f, cp, g: Q x Rn  [0, + oo) which satisfy

(Hi) f (x, . ) is convex and l.s.c. on R", and f(x, 0) = 0 for x E o,
(HZ) . f °° (x, . ) = cp f, ~, (x, . ) for x E Q,
(H3) g and g°° are l.s.c. on Q x R", and g (x, 0) = 0 for every x E Q,
(H4) cp f~ ,~ and g°°  g on S2 x Rn,

gO = cp = cp f, ~ on x Rn, where N is a suitable countable subset
of 5~2, and such that for every ~, E ~~ (Q; R") the integral representation (2. 3)
holds.

3. RELAXATION

The main application of Theorem 2. 7 consists in representing into an
integral form the relaxed functionals associated to additive functionals
defined on ~~ (Q; Rn). More precisely, given a functional
F : ~~ (Q; Rn~ -~ [0, + we consider its relaxed functional F defined by

F = sup ~ G : G __ F, G sequentially weakly* l.s.c. on ~~ (Q; R") ~.
The functional F above is sequentially weakly* l.s.c. and less than or

equal to F on ~~ (Q; R"). We shall apply Theorem 2 . 7 to F thanks to the
following result.

THEOREM 3. 1. - Let F : M (Q; Rn) ~ [0, + ~] be additive; then F is

additive too.

Our goal is to characterize the functional F when F is of the form

where ~ (Q) is a non-atomic positive measure and f,
g:Q x R" --> [0, + oo] are two Borel functions satisfying the following
assumptions:

f (x, . ) is convex and l.s.c. on R", and f (x, 0)=0 for x~03A9 (3 .1 )
There exist a > 0 and 03B2 E Lu such that:

g is l.s.c. on Q x R", and g (x, 0) = 0 for every x E S2 (3 . 3)
g (x, . ) is subadditive for every x E o (3 . 4)
g® (x, for every (x, (3 . 5)
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By Theorem 3.1 we may apply the integral representation Theorem 2.7
to F and we obtain

for a suitable non-atomic positive measure ~M(03A9) and suitable Borel
functions f, c~, g : SZ x [0, + oo] satisfying conditions (H 1)-(HS) of

Theorem 2. 7. In order to characterize these integrands we introduce the
functional

where

The main result of this paper is the following relaxation theorem.

THEOREM 3. 2. - For every ~, E ~~ (S2; Rn) we have

Remark 3 . 3. - We may consider on g the following weaker assumptions
instead of (3.4):
There exists a subset D of S2, which has no accumulation points, such that
g (x, . ) is subadditive for every x E S2BD, and the function is l.s.c. in

(x, s) .
The conclusion will be the same.

Example 3 . 4. - Let p E [ 1, + oo ], q E [o, 1 ], and let

In the case we } (i. e. the function which is 0 if
and +00 otherwise), and in the case q=O we set } (i. e.

the function which is 1 if s~0 and 0 Then we have

that is the associated functional F is sequentially weakly* lower semiconti-
nuous. In the remaining cases, F is not sequentially weakly* lower semicon-
tinuous and, after some calculations, one finds
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It is

Of course, in the case p = + oo and q == 1 it is

while, in the case p = 1 and q = 0 it is

4. PROOF OF THE RESULTS

In this section we shall prove Theorem 3 . .1 and Theorem 3.2; some
preliminary lemmas will be necessary.

LEMMA 4 .1. - Let ~,h --> ~,, let C be a compact subset of ~, and for every
t > 0 let

Then there exists a sequence th -~ 0 such that

Proof - Since C (r) is relatively compact, we have

as soon as is ~, ]-negligible, hence for all r E R +BN with N at most
countable. Choose rk E R +"’N with rk ~ 0; then

Therefore, the conclusion follows by a standard diagonalization
procedure..
Remark 4 . 2. - For every functional G : ~~ (Q; R~‘) --~ [0, + oo we define

It is possible to prove (see for instance Buttazzo [7], Proposition 1 . 3.2)
that if  is the set of all countable ordinals and for every § ~ we define
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by transfinite induction

we have

LEMMA 4 . 3. - For every E > 0 and (Q; R") let us define

Then we have

Proof - The inequality ~ is obvious. In order to prove the opposite
inequality, fix À E ~l (Q; Rn) and r > 0; there exists ~,n -~ ~, such that, setting

The conclusion follows by letting s --~ 0..

Proof of Theorem 3. l. - By Remark 4. 2 it is enough to show that

Moreover, setting FE as in (4.1) and applying Lemma 4 . 3, it is enough
to prove that F~ is additive for every s>0. By Proposition 1. 3. 5 and
Remark 1.3.6 of Buttazzo [7] it is

in particular, F~ is weakly* l.s.c. on ~~ (Q; R"). We prove first that for
every r > 0, Rn), and B1, B2E with B1 (~ B2 = QS it is

82 ~, be such that

and let Ki c B~ be compact sets (i =1, 2). By Lemma 4 .1 we have

for a suitable sequence th -~ 0, so that

Vol. 10, n° 3-1993.
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Now, (4. 2) (hence the superadditivity of F~) follows from (4. 3) and (4. 4)
by taking the supremum as K1 i B1 and K2 T B2. Finally, we prove that
for every r>O, R"), and Bl, with Bi (~ B2 = QS, it is

Let -~ 1B1 ~, and ~,2, h -~ 1B2 ~, be such that

and let K~ c Bi be compact sets (i =1, 2). By Lemma 4.1 we have

for a suitable sequence th -~ 0, so that

Now, (4.5) (hence the subadditivity of F£) follows from (4.6) and (4.7)
by taking the supremum as K1 T B1 and K2 T B2..

LEMMA 4. 4. - There exists a countable subset N of o such that

Proof. - Property (i ) follows immediately from the fact that F  F on
-6 (Q; R").

Let us prove property (ii ). Denoting by Fo the functional

by using Theorem 4 of Bouchitte and Valadier [5] and Proposition 2.2
we have

so that, if À = s bx,

Annales de l’lnstitut Henri Poincare - Analyse non linéaire
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Let us prove property (iii). By the integral representation Theorem 2.7
we have for a suitable countable subset N of Q

so that (iii) follows from (i).
Finally, let us prove property (iv). If Fo is the functional defined in

(4. 8), we have

Letting t --~ + oo and taking (4.9) into account, we get for every

~, E ~~l° (SZ; R")

since cp f, ~ (x, . ) __ f’°° (x, . ) for Jl-a.e. x E Q. By Theorem 2. 7 it is

( f )°° (x, . ) = cp (x, . ) for -a.e. and we obtain

so that (iv) follows from Proposition 3.2 of Bouchitte and
Buttazzo [3]..

LEMMA 4.5. - The functional F1 is sequentially weakly* l.s.c. on

~ll (Q; Rn) and verifies the inequality F1 _ F.

Proof. - The inequality is an obvious consequence of the
definition of fi, gl . We shall apply the lower semicontinuity
Theorem 2 . 4 by showing that the functions fl, g~ satisfy conditions
(Hi)-(Hs). Conditions (H1) and (H3) follow immediately from

Proposition 2 . 2 (i), and condition (Hs) follows from Proposition 2. 3.
Let us prove condition (H4). The subadditivity of gi (x, . ) is an easy

consequence of the subadditivity of g (x, . ) and (x, . .); it remains to

prove that g 1 _ cp f 1, ~ on Q x Rn, or equivalently (g 1 )° _ cp f 1, ~ on Q x Rn.
Setting

and using Proposition 2 . 2 (i), it remains to show that

Vol. 10, n° 3-1993.
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Since gO is coercive and l.s.c., the multimapping is l.s.c. and its
values are with nonempty interior. The same holds true for and

r f1 (x). Moreover, by Proposition 6 of Bouchitte and Valadier [5] we have

r f (x) = E Rn : :f* (., s) is locally p-integrable around x ~ (4 . 10)
r fl {x) = el ~ s E Rn : (.f~)* ( . , s) is locally J.l-integrable around x ~. (4 . 11)

Let us now fix x~03A9 and The lower semicontinuity
of the multimapping T° implies (see for instance Lemma 15 of [6]) that
for a suitable neighbourhood V of x

By (4.10) we can choose V such that

Therefore

that is, by (4 .11), s E (x). Hence

The conclusion now follows by recalling that (x) is closed, and that
cl (int K) = cl K for every convex set K c= R" with nonempty interior.

Finally, let us prove condition (H2). Since on 03A9 x R", we have
on Q x By conditions (H4) and (Hs) already proved, we

have for a countable set N c Q

Finally, the inequality

is a general property of the functions of the form cp (see Section 2)..

LEMMA 4. 6. - Setting

we have that there exists a E L1  (Q) such that 03B1  =1 E .
Let us consider ~~° (Q; R") with p; taking into account

that F1 _ F (by Lemma 4. 6) and cp _ 03C61 (by Lemma 4. 5) we have
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Since F _ (F) °° on ~2 (Q; Rn), we obtain

Consider now the Lebesgue-Nikodym decomposition of with respect
to ~

and let

We have, by (4.12)

Since u E L~ (Q) is arbitrary, we get

and, by definition of E, this implies v (E) = 0, that is v = 0..

Proof of Theorem 3. 2. - By Lemma 4. 5 it is enough to show that

that is

where N is a suitable countable subset of 5~2, M is a suitable Borel subset
ofQ with ~. (M) = o, and a is a suitable function in L~ (S2).

Conditions (4.13) and (4.14) follow from Lemma 4.4, whereas (4. 15)
follows from Lemma 4. 6. Let us now prove (~ 16). Take u E L~ (Q; Rn)

We have
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Collecting (4. 17)-(4. 20) we get

Since ue L1  (Q; R") was arbitrary, we obtain for a suitable B~B with
Jl (M) = 0

for every (x, x Rn. Now, (4 . 16) comes out easily from 4 . 21 .Indeed, for n-a.e. x~03A9 with a (x) = o, we have, using (4 . 14) and (4 . ( 21 : )

On the other hand, by Theorem 2. 7 and (4. 14) we get

-a.e. on Q, hence on ~ a ~ 0 ~, so that by (4. 21) :

x Rn with j (M) = 0. Therefore (4 . 16) is proved, and the proofof Theorem 3. 2 is completely achieved..
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