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 b s tr a  t , The proposed formulation extends the Euler variable approach,
classical in Continuum Mechanics, up to make it val id for such singular
systems as, for instance, a single mass-point. The key concept is the
kinetic tensor measure of the investigated material, relative to some

wi~dow~ in time-space. This 1s f irst developed In the framework of GaH lean
time-space. I n that case, the fundamental 1 equation involves the four-
-dimensional vector distribution divergence of the kinetic tensor measure.
It is shown, in particular, how the Initial conditions of an evolution

problem or th~ confinement of the investigated system by a given boundary,
possibly with shocks, may be described through adequate terms in the

fundamental equation, In order to develop similar procedures in the R i eman-
nian manifold setting of Analytical Dynamics, one introduces the diffe-
rential operator equilibrium, acting on the doubly contravariant symmetric
tensor measures of the manifold. This operator receives a variational 1
interpretation, In terms of the transport by test flows . Thereby, the
connection of the proposed formulation of Dynamics with Hamilton’s

principle is explained.

© 2016 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



2

1. Introduction
Studies devoted to the existence or the regularity of solutions to pro-

blems arising from Physics, in particular from Mechanics, commonlg begin
with stating what actuallg will be meant bg a solution. Except in some

theoretical chapters of Physics, the general accepted conceptual back-

ground does not generate mathematical problems in a form allowing for the

application of the current methods of Functional Analgsis to the investi-

gation of solutions. This is the price one has to pag for conducting phgsical

inspection in a language which involves onlg some famlliar mathematical

concepts, such as C ~ functions, functions with Jumps on smooth surfaces,
etc...

In our views, this state of affairs cannot be expected to change

rapidlg. Bridging the gap between Functional Analysis and the principles on

which the respective chapters of Physics are founded would surelg need a

lot of technicalities, with dissuasive effect on the majoritg of the public.

And meanwhlle, the progresses of Functional Analysis would be 1 iable to

reveal alternative approaches, with more promising prospect.

6eneral lg, axiomatic improvement looks llke the ever unfinished job
of cleaning after the action. As long as a scientifIc domain Is alive, the

investigation of facts in its active fringe ls never entirely conducted

through the logical application of previouslg stated "principles", but

involves inductive thinking. Only afterwards are the principles adjusted, so

as to permit the deductive arrangement of the findings. This is true, even in

such a domain as Mechanics, the theoretlzation of which has begun ear lg.
The treatment of adhesion [3] or that of continuous media with 

structure (see, e.g. [ ]), among other current examples, lllustrate this

observation.

No attempt is made in this paper at systematically constructing an

updated axiomatic of Classical Mechanics. This would be a special ist’s work

and a heavg task, for the number of axioms needed to make a complete

system is greater than it seems at first glance. There onlg will be
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dlsplaged certain cha1ns of mathematical properties which, some could

a significant role in such a construction. !n the meantime, the

formulation we propose is more modestlg expected to reduce the distance

between the statement of some mechanical problems and their

mathematical 1 study.

The elementarg example of a continuous medium with C’ velocity
field is used in Sec. 2 to introduce the main concepts. I t is shown how the

balance of mass and the balance of momentum of the investigated material

mag be condensed into a four-dimensional equation. This introduces a

doublg contravariant symmetric tensor measure, called the kinetic tensor

measure, relative to a chosen part of time-space called a window. The

latter is the geometric container of the mechanical information that one

intends to treat. I t does not necessarily involve the same material partic-

les at every instant . The fundamental equation, which is asserted to govern

Dynamics, puts forward the divergence of the kinetic tensor measure, a

differential operator understood in the sense of Schwartz’s Distributions

Galilean invariance is an essential feature of Classical Mechanics. ln

order to make sure that the proposed formulation meets this requirement,

we choose, in Sec.3, to expose it in the coordinate-free setting of the

Galilean time-space G .

Sec. 4 explains how this formalism applies, In particular, to the

dynamics of a single particle. The time-dependent efforts acting on it are

represented bg a vector Distribution of order ~1 1 on 6. In the most

significant cases, this order actual lg equals zero, i.e. the said Distribution

is a four-dimensional 1 (Radon) measure. Then i t i s found that the velocity
vector of the particle is a function of time with locally bounded variation

and the motion is governed bg a measure differential equation [ 1 6][ 1 8].

This includes as a special case the traditional treatment of through
the concept of percussion.

it is also the example of a s1ngle particle which is used, in Sec. 5. to

demonstrate how the choice of an adequate window allows one to describe
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the conditions of an evolution problem bg means of terms in the

fundamental equation. Depending on the decision made, of including or not

the initial instant to in the investigation, it is either the limit of the

velocity vector on the left or on the right of ta which has to be considered
as "initial veiocitg".

I n Sec. 6 is formalized the confInement of the particle bg a boun-

a typical example of unilateral constraint . Here again, the concept of

window proves essential.

One of the reasons for having focused attention on the case of a single

particle is that the traditional l Analytical l Dynamics formallg reduces

arbitrarg systems to moving points in Riemannian manifolds. The extension

of the preced i ng formalism to this case calls for discussing tensor

measures or tensor distributions 1n such a manifold and for comparing
different generalizations of the divergence operator, wh i ch, i n the Galilean

setting, used to plag the central part. This is the object of Sec. 7, where the

equilibrium operator is introduced. Bg definition, the latter equals the

negative transpose of the deformation, a standard differential operator i n

Continuum Mechanics.

This i s used in Sec. 8, where a mechanical system of finite freedom is

considered, with a Riemannian manifold Q as its set of possible configu-
rations. It is found that, bg applging, in the product manifold the

equilibrium operator to the corresponding kinetic tensor measure, and

equalling the result to the covector measure on R Q which represents the

efforts acting on the system, one recovers the Lagrange equations. An

advantage of this procedure is that, simi larlg to what has been observed in

Sec.4, it keeps mean1ngful in some significant nonsmooth motions, then

leading to measure differential equations. Such is the case for motions

involving collisions with a boundarg. Thereby, the setting previously

adopted bg the author in developing numer i ca methods for the dynamics of

systems presenting unilateral contacts (possibly with drg friction) [ 17]

receives a theoretical foundation.
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The rest of the paper 15 aimed at connecting the proposed formulation

of Dynamics with the variational principle of Hamilton. This is achieved

through the transport method, formerlg used by the author on various pur-

poses [ 10] [ 13] [ 15]. In this method, variations are imparted to the inves-

tigated objects by having them carried along a certain class of In

particular, the equilibrium operator, acting on the doublg contravariant

tensor measures of the concerned manifold, receives in that way a varia-

tional meaning. The advantage of such a procedure over the traditional

calculus of variations is that it requires less smoothness of the inves-

tigated objects. The form this gives to Hamilton’s principle is still valid for

motions with non differentiable velocity function. The latter is onlg
assumed to have locallg bounded variation, allowing, in particular for the

presence of shocks.

2. A heuristic example.
Let us first consider a continuous medium whose motion, relative to

some orthonormal i inertial 1 axes i s smooth enough for the three

components u’ of the velocity field and the density p to be C ~ functions of

the time variable and of the x coordinates. Let us denote bg f the time
variable and agree, for all the sequel, that indices will take their

values in{OJ,2,3}, while Latin ones will take theirs in {1,2,3}.
It is known that the three equations of momentum balance and the

equation of mass conservation mag be combined, so as to be condensed Into

the equivalent four-dimensIonal writing
(2, 1 ) (p fcc.

Here, ,, denotes the partlal derIvatIon with respect to x03B2 and, bg convention,
uo= 1. For a&#x3E;0, the expression fO( represents the component of rank a of the

three-dimensional volume density of effort. In common cases, this vector

f i e l d equals the volume dens i tg of external 1 effort, plus the divergence of

the Cauchg stress tensor fJeld. Besides, f~=0, unless a ot eXtra-

material 15 imagined, at the rate of f° unit of mass per unit of
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tlmexvolume (in that case, the velocltg of the supplled materlal must also

be glven, inducing a contribution 1n f 1, f2, f3).
Let us denote bg X the Euclidean linear space where x1, x2, x3 are

orthonormal coordinates; then mag be seen as orthonormal

coordinates in the product space Itself equipped in the standard wag

with a Euclidean metric. One may interpret the left-hand side of (2.1 ) as

expressing the four components, indexed bg 0(, of the vector field

divergence of the tensor field in R X with components 

If the motion is not smooth enough for the partial derivatives to exist

in the elementary sense, there is no doubt that the dynamics of the

considered material is correctlg expressed bg understanding these deriva-

tives "in the sense of Schwartz’s Distributions in This actuallg is an

abuse of language, since never a function equals a d i str i but i on. What in fact

constitutes a distribution in the sense of L, Schwartz, is the measure

possessing the considered function as relative to Lebesgue’s
measure. Of course, the function has to be locallg integrable with respect
to the latter.

As an example, In a situation familiar to Fluid Mechanists, one mag

check that the Distribution formalism, applied to (2.1), readily gields the

balance equations of mass and momentum across a shock wave in an invis-

cid fluid [ 10].

Generally, we propose to formulate In the following wag the dynamics
of some matter present In a subset W of the tlmexspace RxX. The notation

W here ls chosen as a remInder of wi~dow, a denomination w e shal l later

explain In more detall.

First, a nonnegatlve real measure In concentrated on W, called

the presence measure of the said matter, has to be def ined. Let us denote

it by 8 . The formulation In view makes sense provided the 

components u°‘ (with UO=1, bg convention) are elements of IR).

We snall admit as far motions ot this sort aro concerned,

the dynamics C?f the considered matter Is governed by
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On the left-hand side are the components of the four-dimensional

vector distribution of the symmetric tensor C, with

components 8. In other words, C possesses as density) relative to

8, the tensor function We propose to cal C

the kinetic measure of the considered matter.

For this equalitg of distributions to hold, the right-hand members F’B
to be elements of 1:)’1 i.e. to be the components of

a vector distribution F on RXX, with This vector distribution

conveys all the information needed about the internal and external efforts

that the considered matter experiences and about the possible loss or

collection of material (for instance through the boundarg of we shall l

come back to this in Secs. 6 and 7). Actuallg, the special case where F

happens to be a distribution of order zero, i.e. a (Radon) measure, will

prove the most significant.

REMARK 2.1. In our introductorg example, the presence measure admitted

the real function p as density relative to the Lebesgue measure of RxX. I t

i s clear from this example that the approach of Dynamics we are developing
extends what, in Continuum Mechanics, is cammonlg called the treatment of

a problem In Euler variables In such a treatment, the description of motion

is primarl lg done through the velocity vector of the matter, at everg point
of the concerned reg i on of t i mex space. Whether the vector field with

components ( possesses Integral lines In defining the motion

of Individual particies, becomes a secondary question. This Is a realistic

attitude, since the velocity vector is nothing but an average value, refer-

ring to the underlying agitation of microscopic objects. In realitg, conti-

nuous media (principal lg those which are qual ified as f luids) evolve w j th a

certain amount of intradiffusion, so the individuation of particles can only

emerge as an approximate concept. The Euler variable treatment proves also

well adapted to calculating the average flow of a microscopically hetero-
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geneous fluid (e.g. a flow wlth suspended small objects or 1nvolv1ng multl-

phasic micro-structure). In contrast, most models of deformable 

require the individuation of particles.

Angwag, it is rather unexpected to use the Euler variable approach in

formulating also the dynamics of a as we shall do in

Sec.4.

REMARK 2.2 The Dgnamics of mixtures suggests to generalize the

preceding formulation, up to accept as C a symmetric tensor measure

which no more equals a "tensor square". We mean that, when C is repre-

sented in the form C(J, where p is a nonnegative real measure and

the value C~(E), would not neces-

sarllg have, for p-almost every 03BE, the form with v denoting a

vector f 1 e 1 d. Similar remark applies to Stochastic Dynamics : In order to

take into account the data uncertaintg, one mag be led to treat, instead of a

single motion, some probabi 1 ized col lection of them. Then C is replaced by
some probabi J1zed average of the corresponding tensor measures ; this In

general is not a tensor square. Another source of interest of this collective

approach to dynamical 1 problems could be to dlsregard some singular

solutions, bg considering them as "non gener i c".
Even so, it seems to us that the nonnegativity of the quadratic

form with matrix C’v03B103B2(03BE), which trivially holds In the foregoing, has to be
placed among the principles of Dynamics. An argument in favor of this

postulate mag be found In [15], an introduction to the general 1 use of

the Transport Method . In this method, whose application to the present

situation is described in Sec.10 below, the possiblg nonsmooth solutions to

some field equations are characterized as gielding zero variation rate for a

certain functional in a certain tgpe of alteration processes. The above

nonnegatlvltg then arises from the study of the second variation rate and,

roughlg speaking, mag be interpreted as a "stabilitg" requirement.
The nonnegativitg postulate also has the merit of protecting one from

the temptation of accepting as C some tensor distribution with order h&#x3E;O.



9

in tact, lt R), with are the components or a tensor

distribution, the nonnegativitg assertion becomes C~,~(p~&#x3E;0, holding
for everg This propertg may be shown [ 1 5] to require h=O.

REMARK 2.3 The definition of a Euclidean metric in RxX, the time-space,

rests on the choice of time and length units. A unit-free construction would

be possible, at the price of more complicated notations. We shall in the

sequel go on assuming that the physical units are fixed.

3 . The Galilean setting.
Galilean invariance is a dominant feature of Classical 1 Dynamics.

Basicallg, it consists in saying that, given some reference frame

(Le. a frame In which the familiar momentum equation holds; this is also

called a ~a&#x3E;&#x3E;l~ar~ frame), ang other frame whose motlon, relative to 1t, is a

rectilinear and uniform translation is inertial too. The underlging trivial

fact is that, if a moving point possesses an acceleration with regard to the

former frame, then the same vector is also the acceleration of this point

with regard to the latter.

Rather than asking for " i nvar i ance" under some class of operations,
we shall in this paper adopt the synthetic approach. Th i s consists in

describing first some geometrical structure, providing the framework in

which all subsequent assertions are to be formulated. Then, automaticallg,
these assertions wtJ I be " i nvari ant under the automorph i sm group of the

considered structure". In other words, instead of checking that a statement

is "frame-indifferent", we prefer to exhibit a formulation of it in a

"frame-free" language.

Cons i der i ng an affine space 6, we shal denote by G’ the 1 i near space
of the corresponding vectors (this is consistent with the notations used,

about manifolds, in further sections : 6’ in fact equals the tangent space to

6 at ang point). For a differentiable function f ; 6- R, the Vf, i.e.

the tangent linear map 6~!R, at a point is an element of the dual 6 ’.

The dual itg bilinear form w i 1 i be denoted by a dot and the corresponding
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orthogonality by 1.

DEFINITION 3. I , A Gal ilean t I m e-space ( or Galilean event space ) is a

affine space., say G, J specialized by the fixation of the

following objects:
&#x3E; ° A non-constant affine function 1D:6-+R" called date.

A Euclidean metric in the subspace of G’.

The elements of E are called spatial vectors.

The trick of using the Euclldean structure of E, 1n order to identify
this linear space with its dual will l not be applied for the moment.

DEFINITION 3.2. A moving point is a mapping, say n .. of a roal interval

T ( calledan interval of t i me) verifying
(3.1 ) b’tET v ®Cn(t))=t.

I1’ n ls differentiable at some t, tho derivative an element

of 6), is called the absolute velocitg of the moving point at instant t

From (3.1), it results that

(3.2) u. B7[) = 1.

li n is an affine so that u is constant with regard to t ,-

the moving point is said to have an inertial motion.

DEFINITION 3.3. A Cartesian coordinate system of G ., say 0x0x1x2x3,
is called Galilean or inertial lf

(3.3) [)(O) = 0

and it its base vectors 1(O}) 1(1)’ 1(2)’ 6) satisfy
(3.4) 1 and = 1(2)’ B71D = 1(3)’ 0® = O.

This, In particular, Implies that 10Y 1(2)’ 1(3) belong to E. One says
that the axes Ox3 have spatial directions.

Instead of conditions (3.4), one mag equivalentlg introduce the base of

G’* adjoint to and assert that, relatively to this base, the

covector B7D has components 1 , 0, 0, O.
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under these conditions, for ang point 03BE of G with coordinates

x°, x~ ,x2, x3, one has = x°.

As soon as a coordinate system of this sort has been chosen, everg

moving point mag be described bg giving the four coordinates of n(t),

with I f, in particular, the functions n1, n2, n3 are constant, the

moving point is said fixed in the spatial frame Ox 1x2X3 , or to be a 
cle attachod to this frame. Then the motion of this point is inertial, with

absolute velocltg equal to 1(0)’ Such is the aspect that the concept of an
inertial reference frame takes on in the present formalization.

Practlcallg, xt ,x2, X3 are interpreted as Cartesian coordinates in some

three-dimensional affine space X, whose points are identified with the

particles attached to the frame. One sags that X is an inertial reference

Observe that the Euclidean metric of E and the possible ortho-

normality of 1(1)’ 1(2)’ 1(3) with regard to it play no part in what precedes.
Theg w i 1 1 onlg become significant in Remarks 3.6 and 3.7 below.

When a reference space X has been specified as above, ever~ ~~~ lets

Itself univocallg be represented In the form (x°, x), with and

X EX. For a moving point n, it proves expedient to use the writing
(3.5) rttt) =(t, p(t)), with p(t)EX.

I f U=11(t&#x3E; exists, the difference E. Bg definition, this

i s the velocity of the moving point relative to the reference space X.

Clearlg, the space of the vectors of X mag be identified with E , so this

relative velocitg is found equal to the derivative p(t).

We now are going to show that the formulation of Classical Dynamics
proposed in Sec.2 makes sense in the setting of Galilean time-space.

A window is a subset W of 6. With the matter present 1n 1t, the kine-

tic tensor measure is associated. lts construction starts with the defi-

nition of the presence mmesure of the said matter, a nonnegative real

measure, sag 8 , concentrated on W. Afterwards, the absolute velocity
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field is introduced as an element, say u, of 8 (7 ’), satisfying (3.2)

8-a.e.. Then, the kinetic tensor measure is, by definition, the element

C = u0u0 of 1),0«(;) 
The classical i discussion of covar i ance and contravariance, when

partial derivation with respect to Cartesian coordinates m an arbitrary
affine space is involved, entails that the distributions 

equal the components of an element of 1).1«(], (; ’») i.e. a (contravariant)

vector distribution of G, independent of the Cartesian coordinate system in

use. This is the of C, in the sense of the ~.?f

the affine space G. This distribution mag also be constructed without

reference to ang coordinate frame, as the functional assigning to every
an element of G’ as follows :

Then, the formulation proposed in Sec.2 now may be translated into

the frame-free writing

It must be kept in mind that, in spite of the investigation being
restricted to the subset W, here and 

tor d i v are understood in the sense of the whole space G.

The distribution 66) on the right-hand side wi 1l, in practice,

equal a sum of terms convening various pieces of information about the

physical effects that the matter Investigated in the window W experiences.
The following remarks plag a significant role in discussing these terms.

The contracted multiplication of C bg the constant covector field ~7D

yields a vector measure on G, concentrated In W,
=u6.

The divergence of this vector measure is an element of D’ namelg
the functional

(observe that this definition of the divergence of a vector measure does not
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reig on any connection in the underlging space ; it more generally makes

sense in the framework of differential manifolds, with vector measures

understood as in Sec.7 below).

DEF I N I T I ON 3.4. The vector measure rs called the mass-

current of the matter ln the window W.

The real distribution dlV(Ue) is called the mass-input relative to

this window.

A vector distribution, such as F in (3.7), Is said to take its values

in the subspace E of G 1f for everg q&#x3E;EÐ1(6,1R). Bg observing
that (dlv = div one obtains:

PROPOSIT ION 3.5. The vector distribution div C takes its valuas in E

if and only if the mass-input is zero.

REMARK 3.6. Since the linear space E i s equ i pped w i th a EucHdean metri c,

i t makes sense to i mpose on a Galilean coordInate system, sag 
the conditlon of orthonormality ln what concerns the "spatlal " axes

Now, one observes that ang change of Gal i lean coordinates preser-

ving this condition is expressed bg a matrix whose determinant equals t 1.

Consequentlg, a well 1 defined real measure in the space 6 mag be

introduced as admitting the Lebesgue measure of 1R4 as image in ang of

these special coordinate systems. We shall call this measure the Galilean

Alternatively, if a frame-free construction is wished, one mag put
For everg this level set of the date function is an

affine space, equipped with an Euclidean metric since its vectors let

themselves be identified with the elements of E. Hence, in E(t), the

three-dimensional volume is frame-free defined, a real measure denoted

here bg v~ . Then, the Galilean volume emerges as the element of 1)’°(6, R)

assigning to everg m the real number 

Here is an example of the use of the Galilean volume measure. Let 0

be a subset of G, assumed open to fix the ideas. The characteristic function
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Xo makes the density relative to Galilean volume, of some nonnegative real

measure W. In some usual situations, the gradient Vu, a priori an element

of ~’t(G, G’‘), happens to belong to 1),0(6,6’*») i.e. it equals a covector

measure, concentrated on the boundarg ðQ. For every vector field

the real number bg definition constitutes the

(inward) flux of r) across 60. This generalizes the familier situation where

ao is a smooth surface and gives rise to formulas of the Green-

Ostrogradskg tgpe; [4] and [22] are reference books on questions of this

sort.

REMARK 3.7. Some terms expressing "forces" or "e f f orts" should natural
contribute in the right-hand member of (3.7). A connection

then has to be made with the virtual power (or virtual work) formalism

under which efforts are commonlg treated. In Statics, the possible equill-

brium of a mechanical system, relative to some reference space X, is

investigated. To this end, it is usual 1 to describe everg effort through the

power it would develop in every motion with smooth velocity f ield p. Bg

axiom, this power depends l inearlg on the "test f ield" p. In other words, one

defines each effort as a real i linear functional on some in

fact a covector distribution, element of IE*). When coming to Dgna-

mics, the definition of efforts has to be expanded in the dimension of time

too. Each effort will then appear as an E*-valued distribution in 6, in

practice an element of for some integer h.

In contrast, the distribution F in (3.7) is 6~valued; more speclallg, if

the mass-input vanishes, this distribution is E-valued. At the present

stage, this lack of consistency is readily overcome by observing that the

Euclidean metric of E allows one to identify this space with its dual. The

introduction of the operator "equ", instead of "div", in Sec.7 below, w111

provide a deeper insight.

4. A single particle .
Let P be a punctual particle, with mass m&#x3E;0. Let p(t) denote, as in
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(3.5), its position -we shall l rather sag 1ts in accordance wlth

the current terminology of Continuum Mechanics- at time t in the inertial

reference space X. Let Ox1x2x3 denote an orthonormal Cartesian frame of
this space.

The motion p : R-.X is assumed contInuous. Equivalently, the mapping
is continuous of R to G. In view of the special form of its

first component, it is clear that tt is in jective and proper,. in the sense

that the inverse image of everg compact subset of G is compact in R.

When, in a problem of Continuum Mechanics, the motion of individu-

ated particles is expressed, one i s used to sag that Investigation i s con-

ducted in Lagrange variables ln contrast, the Euler variable standpoint

consists in focusing attention on the velocity field in time-space. The

formulation of Dynamics we are proposing clearlg is of the latter sort. This

section is to demonstrate that, nevertheless, the said formulation is able

to generate differential equations of the Lagrangian stgle.
We first have to state the definition of the model "punctual particle"

in this framework. Here, the chosen window W will I be the whole of 6.

The presence measure of the particle In 6, an element of 1).0(6, R), Is
defined as t9e linear functional 8 assigns to every q&#x3E;t!f&#x3E;(6, R) the
real number (8, tp(n(t)). dt, In fact, because everg compact subset of

6 has a compact Inverse image under n, one readi lg checks that 8 meets the

suitable continuity requirements for being a measure. Since m&#x3E;0, the

expression 8, cp&#x3E; is nonnegative for everg nonnegative 03C6 (an alternative

reason for asserting that 8 is a measure). In other words, If t denotes the

Lebesgue measure on R, then a equals the under n of t~ measure

mf.

There i s now to Introduce the velocity field u o f the i nvest i gated
material. The natural assumption to make, in order to allow for its cons-

truction, is that the mapping p, or equivalentlg n, is absolutely
continuous. Then the derivative ( i , p(t)) exists for almost everg t and
tn(t) makes an element of I; (]’). The complementary set 15
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03B8-negligible. Hence, for 8-almost everg point 03BE of 6, there exists a unique

such that ~=n(t). Therefore, four ’functions ~--.u«(~):=TI«(n-1(~» are
defined a-a.e. in G, with 1 if a=0 and pOC(T1-1(~» otherwise.

Through standard properties of the images of measures, the vector field u

which has these components is an element of 8; G’); this vector field

more speciallg belongs to 6’) if and onlg if nc 

(equivalentlg X)).

Under the latter conditions, the kinetic tensor measure C exists; i ts

components are the linear functlonals

Due to the def inition of partial derivatives in the theory of Distri-

butIons, the left-hand member of (2.2) i n the present case equals the

functional defined, for every by

Observe that is an absolutely continuous function, with

derivative equal to for almost every t Since 1iO= 1, this

yields in particular 

i.e. the mass-input is zro. This reflects the implicit assumption that the

particle evolves without collecting nor losing ang material.

Consequentlg, in view of Prop. 3.5, the vector distribution divC takes

its values in E. For consistency with the writing of Classical Mechanics, we

shall, in the rest of the section, identify this Euclidean linear space with

its dual.

By the notation we mean that Y is a function of a real

interval I to E (or, more generallg, to a Banach space [16]) locally
bounded variation, Le. Y has bounded variation on everg compact sub-

interval of 1. With such a function Y, an E-valued measure on I is

classical associated, that we denote bg dY and call the differential

measure of Y. A measure differential equation [ 16] [ 18] is a condition
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imposed on an unknown the form of an equality of E-valued

measures

where dh is a given real measure on I and -~E a given function

meeting suitable regularity requirements. Because E has finite dimension

(this would more generallg hold for a Banach space possessing the

Radon-Nikodym propertg [ 1 6]), a nonnegative real measure ds on I is sure

to exist (non unique~), relative to which dY and dh possess density
functions and Then the above condition i s

equivalent to an equality In I n particular, the Lebesgue measure

on I mag be taken as ds if and onlg if both functions Y and h happen to be

locally absolutely continuous. 1 n the latter case, the measure differential 1

equation reduces to a differential 1 equation i n the usual 1 (Caratheodorg)
sense.

incidental for mecbhanical systems presenting unilateral cons-

traints and/or drg friction, efforts are connected to the motion through
relations of such a form that Dynamics is finale expressed In a measure

differential inclusions [16] ] [ 17].

PRO POS 1 T ! ON 4.1. Suppose that the distribution E ), 

efforts that investigated particle experiences, happens to be

a measure. Then the fundamental eQuation (3.7) holds If and only if the

element p of IE) [possesses a representative which] is a function

locally bounded variation, satisfying the measure differential

equation

(4.3) m 

Proof. Choose IR) wlth support contained in some compact interval

I; the image of I under the continuous mapping p is a compact subset, sag
K, of X. Denote bg ( an element of 1XX, IR) with value 1 throughout a

neighbourhood of K. Then the function (p defined as
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belongs to 1)(6, R). with this choice of (p, the expression in (4.2) becomes

Consequently, i f ( 3.7 ) holds, one has, for every id 1,2, 3},

I t the distribution F’ i s a measure, there exists a real 1 number A&#x3E; 0 such

that, for every R ) w i th support contained In the compact subset

Ixsupp( of the inequality IF’, A~03C6~~ holds. Therefore, by

choosing cp under the form (4.4), one obtains

for every 03C8 with support contained in I. This classicallg entails that p’ has
locally bounded variation. Furthermore, the right-hand side of (4.5) equals

Therefore n-1(Fi) equals the derivative, in the sense of the

Distributions on R, of the measure p’ dt. This derivative is nothing but the
differential measure of the function pB so (4.3) is established.

Converselg, if p’ verifies (4.3), the same calculation shows that

C~/p~ = F~, cp&#x3E; for everg p of the form ( 4. 4). Bg density the same holds
for everg R ). 0

The most familiar case, where the distribution F can be asserted to

equal a measure, Is that of a particle submitted to a force fleld. Giving
such a field consists in defining, on a subset of G assumed at al event to

contain a universally locallg Integrable (for Instance continuous)

E-valued function, sag f. The particle is said submitted (proportional to

its mass) to the force field if the distribution F equals the 6L valued

measure possessing the function 03BE~(0, f(E)) as density, relative to the

presence measure e. In such a case, the measure is found to possess

the function 1-~(0, mf(n(t))) as density relative to the Lebesgue measure f

of IR. Therefore, (4.3) is satisfied if and onlg if the E-valued measure dp
possesses t-f(n(t)) as density relative to !. This equivalently means

and that the classical differential equation p ( t ) _
f((t,p(t))) 
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In general, as soon as each component of the

vector distribution d1vC equals a real measure on G; this ls the image of

the measure m iiex t under the (continuous, in jective and proper) mapping

Alternativelg, this mag be established bg performing on the

expression (4.2) an integration bg parts, gielding

Essentiallg whlle n3 equal, for almost everg t, the compo-

nents of the acceleration vector p(t)EIE.

5. Initial I conditi ons.
This Section provides examples of change of wi~dow through the

restriction procedure. For simplicity, let us assume that the analysis of

some dynamical situation has been first conducted with the whole space G

used -as window and that the corresponding distribution F In the funda-

mental equation has been found to be a G’-valued measure. As a part of the

proposed formulation of Dynamics, we now are going to stipulate how the

elements of this analgsis relate to the treatment of Dynamics one could

alternatlvelg conduct when using another window W. The latter

wil l be supposed to be a Borel i subset of 6, so that its characteristic

function, sag x, belongs to L°° of ang (Radon) measure.

Let us respectively denote bg 8, u, C the presence measure, the

velocity field and the kinetic tensor measure in the former treatment. We

decree when the window W ls used, the presence measure should be

and the velocity field u* = Xu. Consequently, the kinetic tensor

measure equals C~ = u~0u~6~=)(C. The fundamental equation always has the
form of an equalitg of distributions in 6. ln view of what has been

prev10usly written with 6 as window, the new equation necessarily is

The products XF and X dlvC make sense because, txj assumption, F and,

consequently, divC are measures.
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One naturallg interprets xF as the part of formerly considered

member F which ls visible ln the window W.

The vector distribution is easitg found to have its

support contained in the boundarg of W. This distribution conveys some

information about what happens outside the restri c ted window one i s now

using. Additional regularity assumptions mag confer to this term a more

suggestive look.

Suppose, for instance, that C has the form c~  , where y denotes the
Galilean volume (Rem.3.6) and C’03B3 an element of L1loc(G,03B3;G’~gG’). Suppose
that the latter tensor function has locally bounded variation, in the

four-dimenslonal sense [4][22] and that W is closed, with boundary a~

equal to a C2 hgpersurface. Then, the real measure -xy possesses as

distribution gradient a G’03B1-valued measure, sag v, with support contained

in OW, which mag be viewed as the outgoing operator, relative to W .

The above assumptions secure that div C is a G’-valued measure and that

C" possesses an outside trace on sag C’03B3+, which is a locally

v-integrable tensor function. One finally obtains that, in such a case, the

term div(xC) -~divC equals C’03B3+.03BD (the dot refers to contracted tensor
product ).

The variabies t and x°, in Sec. 4, were assumed to range through the
whole of R. Problems pertaining to a limited time interval mag be

formulated as well, provided the window is restricted adequatelg.

EXAMPLE 5.1. As the first example, let W equal the closed half space

~(t~)=~~E~ : 
which mag be called the closed future of instant to. -By this choice we do
not mean that the concerned mechanical sgstem was not in existence before

t0, but that investigation begins at this instant
We shall restrict ourselves, for brevitg, to the framework of Sec. 4,

i.e. the sgstem consists of a single particle, with motion described bg
n G ) and we assume that the distribution F is a measure. So n is
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an element of lbv(R, 6’); this implies the exlstence of and 

the limits of the absolute velocity n on the left and on the right of to,
denoted in the sequel by ui and u~.

Let ~0 denote the characteri st i c funct10n of the subset F(t0) of 6. In
terms of the presence measure 8 introduced in Sec.4, the presence measure

relative to the new window equals i.e. the functional

The kinetic tensor measure, in the former treatment, was C=u0u 8. In the

new window, it becomes Co=uu Similarlg, the vector measure F

expressing the forces involved, has to be replaced bg In particular,

i f F expresses the act i on of a force field f;6-E, one has F = (0, f ) 8, thus

Recal that Co and Fo must sti 11 be considered as distributions on the
whole of 6. In that sense, let us calculate the components of divC0, I.e. the

distributions

We now applg a formula for differential measure of the product of two

functions g and h belonging to R), namelg [ 16]

d(gh) = g-dh + h+dg.
Take g=n°‘ and since (pon is locallg absolutely continuous, the (at

most countable) set of the discontinuity points of is negligible

rel at lvelg to the measure Therefore

= = dn~

Besides, for ang function QE and for ang compact interval t1]’
one has

Therefore, the distribution (dlvCo)CX consists In the functional



22

This equals the sum of the two following measures:

1" a measure concentrated in W which, in view of (42), in nothing but

the component of rank o( of F 0 = xoF,
2° the point measure with mass m placed at point 

In conclusion, if the dynamics of the particle is treated in the window

one has to retain, of the effort measure F formerlg considered, onlg
what is "visible in the window", namelg Fo, and to add to it the G’- valued

point measure located at the point with coordinates 

and whose has components m, 

mp3-Cto). Giving the latter measure amounts to specifying the following
data: the initial position of the partic1e, its mass m and the limit u o of
its velocity on the left of to.

Observe that, with regard to the chosen window, the 

distribution i s no more zero. It equals the real 1 measure with value m,

located at the point 

In the above treatment, the hgperplane is part of the

window. lf, in particular, the particle experiences a shock at instant to,
this will be included in the studg, entailing for the right-limit U~ of the
absolute velocity a value different from the given left-limit uo. Here is an
alternative viewpoint.

EXAMPLE 5.2. We now take as window the open future of to, Le,

In that case, a possible shock at instant to is no part of the studg, so giving

Uõ would not provide sufficient information about the particle historg for

predicting Its further evolution.

Let us denote by XI the characterlstlc function of f(to)’ The presence
measure is now 0~=)(~, the kinetic tensor measure CI = u0u 0j and the
effort measure F 1 = X IF.

In the place of (5.1), the formula



23

has to be used, yielding instead of (5.2),

-- 

v

The conclusion is analogous to what has been obtained in the preceding
case. Dynamics now is expressed bg equalling the distribution divC1 to the
sum of the following terms:

1 ° The vector measure F 1 ’
2° The point measure with value m u~, located at 

6. Confinement by a boundary
Again, in this section, we shall restrict ourselves to the dynamics of

a single particle and the time variable will be assumed to range through the

whole of R. The effect of a material boundary, that the particle is not

allowed to cross, will be taken i nto account.

Therebg, the mapping n is permitted to take onlg values in some

region of 6. Let this region be defined bg an inequalitg b(~) ~ 0, with given

b so the boundarg is described as the hgpersurface 5 of G. with

equation b(03BE) = 0. The section of S bg an isochronous hgperplane (( 
is denoted bg St’ In order that all these sections properlg represent

boundaries at the corresponding instants, one assumes that, at everg point

of S, the gradient Vb does not belong to the linear subspace generated in

G’ bg VD (in particular, it does not vanish).

rn that wag, onlg the global location of the boundary in time-space is

given, without ang further Information about the motion ot the material It

is made of. Such a description would clearlg not be enough if one attempted

to take into account ang frictional effect occurring in the event of contact.

But i t will prove sufficient for developing the model of an idea/ boundarg,

through which the following physical 1 assumptions, concerning the effort

that the boundary possible exerts on the confined particle, are formal ized:
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10 The effort vanishes on ang time interval during which the particle does

not touch the boundary.
2° In the event of contact, no adhesion, i.e. glueing or welding effect, takes

place.

3° I n the same event, no friction i s present.

DEFINITION b.1. The hypersurface 5 is said to constitute an Ideal 1

boundarg if the feasibility of a distribution REÐ,1(6, E ) , for expressing
the effort it exerts upon confined material (namely the particle in

the present instance) is characterized by the follo wing property.
For every ~~D1 (G, E) which, at any point of S, satisfies r). U,

one has  R, r) ,0 .

Here is a consequence of this propertg.

PROPOSITION 6.2. Every REÐ,1(6, E ) agreeing with the above Definition

is an E- valued measure on G with support contained in S. For every

representation of this measure in the form R=R’ , where  denotes a

nonnegative real measure on 6 and E), the valve R)()) is,

at p- almost every point 03BE, J an element of E orthogonal to and

directed to ward the permitted region.

Proof. We shall restri ct the proof to the special 1 case where S equals a

hyperplane of G. I n fact, the techn i ques presented In Sec. 7 below, concer-

ning vector distributions on manifolds and thelr representation In arbitrary

coord i nates, make It possible to reduce the general case to th i s one.

I n th i s spec i a case, a Galilean coordinate system of 6, in the sense

of Definition 3.3, may be chosen such that the permitted region equals the

half-space x~ .0. We thus take as b the linear function ~--’X’, so ~b
equals the constant vector with components (0,1,0,0). The components R’,
i E 1 ,2,3}, of the vector distribution R equal, bg definition, the elements of

such that, for everg E), one has R,I’»= Rp I’)i&#x3E;. The
condltion on S reduces, in the present case, to r)’ &#x3E; 0 holding
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throughout the coordinate hgperplane x~=0, 5lnce thls lmposes no

restriction on r)2 and r)3, one concludes that the distributions R2 and R3
vanish. As for the distribution R~, it equals the linear functional which

assigns to every the real number R,1’)11(u&#x3E;. First, the

assumption made implies that this real number should be ~0 as soon as r)’
is a nonnegative element of D~(G,!R), classlcallg implying that R, equals a
nonpositive real measure. Secondlg, this assumption ental1s that such a

functional assigns the value zero to every I) 1 whose support does not
intersect S, so the support of R is contained in S. The asserted properties

follow, through standard arguments. D

To fix the i deas, let us assume that, In addition to the above boundary

efforts, the investigated particle is submitted to a given force field. Then,

according to Prop. 4.1, the velocity functlon t-.Tt(t) belongs to 1 bv( R, G’ ).

However, assuming that the boundary funfll1s the requirement of Definition

6.1 I is a priori not enough to secure that the function Tt takes its values in

the permitted region onlg. We now are going to show how adequate window

restriction allows one to take this requirement into account.

L et us use as window the permitted region W={03BE~G:b(03BE)0}.

Asserting that the fundamental equation (3.7) is satisfied with F equal, in

view of what precedes, to an E-valued distribution on G, impl ies, through
Prop. 3.5, that t/Je corresponding mass-input vanishes Then the following

Proposition mag be invoked

PROPOSITION 6.3. Assume relatively to the above ~indo~; ti~e

motion has zero mass-input, but nonzero presence mea-

Then n( t ) belongs for every t to the permitted region.

Proof. Put w := The mass current equals the vector measure

where xw denotes the characteri st i c functlon of w. The mass-Input is the

divergence of this vector measure, namely the distribution



26

Choose I, ~ ~, p in the same way as in the proof of Prop. 4.1. This yields

meaning that ~w has zero derivative in the sense of the Distributions.

Therefore, this function takes a constant value B (equal to 0 or 1 ), except

possibly in some Lebesgue-negligible subset of IR.

Since W is closed in 6, the function Xw is u.s.c. on R. Imagine the

existence of 03C4~R whith ~w(03C4) = 0 ; then ~w vanishes on a neighbourhood of
i. This requires B=0, implging that Xw vanishes Lebesgue-a.e., in

contradiction with the assumption of nonzero presence mesure relatively to

the window W. D

REMARK 6.4. Using Prop. 4.1, one finds that, under the above conditions,

the velocitg function t-in(t) belongs to and that the dynamics of

the particle is governed by a measure differential inclusion [ 12] [ 17]. But,

In the event of the particle colliding with the boundarg, evolution is not

unlquelg determined bg this inclusion.

Actually the circumstances of shocks are, ln practice, so complex
that the physical information needed for a deterministic analysis ls

usually out of reach.

If the boundary is fixed (relative to some Inertla1 reference space), it

is traditional to complement the statement of evolution problems bg the

requirement of energy preservation. The possible collisions are then cal led

elastic bounces Even so, the uniqueness of solution to Initial 1 value

problems is conditioned !x) additional smoothness assumptions (2][19][21].

Energy balance for motions with Ibv velocitg function is drawn in [17] and

ob j ect i ons to the preservat i on of (mechan1cal) energy are rai sed, even i f

the materials of which the boundary and the investigated system are made

may be treated as perfectlg elastic. Preference is given, in [17], to

the softness (Le. inelasticity) assumption of the possible collisions. In the

present context, this would be expressed bg asserting that, at t suci
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that D(T1(t»=O, tne right-side lfmft it"’(t) is a tangent vector to 5 . T he

resulting evolution problems are dissipative and prove more comfortable,

analytically and numericallg, than in the case of elastic bounces.

Furthermore, the phgsical circumstances in which the softness assumption

mag be accepted seem easier to identifg in practice. The existence of

solutions to the corresponding initial value problems is estabiished in

[8] [9].

7, Operators def and equ on a Riemannian manifold ,
Three integers d, r, h will recurrently appear in the rest of this paper.

Let it be assumed once for all that

(7.1 ) 

Let M denote a Cd-differential manifold (without boundary), of finite

dimension n. A Riemannian metric is defined on M bg giving some

symmetric doubly covariant tensor field g, assumed to be r times

continuouslg differentiable. This we shall express bg writing

g~C’"(~M"0gM"), in a somehow abusive system of notations, to be

applied in all the sequel. Understand that g is actuallg not a mapping of ~

to a set which would be denoted bg M’~M", but a selector, assigning to

everg an element of )(-:0s1t(’:, where denotes the cotangent

space to 3~ at point x.

For every vector field M’), the Lie derivative Lv9 makes
sense. This 15 a Ch f ield, of the same tensorial tgpe as g.

Definition 7.1 The differential operator

is called the def ormat i on operator.

This denomination is suggested bg the Kinematics of Continua. In fact,
lf v is the velocity field of a continuous medium in motion throughout M,
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then def v equals the rate of deformation tensor of the medium (we shall

come back to th i s In Sec.9; see also [7], Chap.1 ).

When coord i nates are used In 3~f, the classical 1 expression of L i e

derivatives [7] yields the components of the tensor def v in the form

Let us now introduce the space 1),htM’, )(’05)(’) of the tensor 
butions on M, of order h (more correctlg, one should sag "of order less

than or equal to h"), doublg contravariant and symmetric. By definition, an

element T of this space is a real continuous linear functional on

D~~0J~’’); the latter denotes the subspace of 

consisting of fields whose support is compact in 3~. Continuity is meant in

a sense similar to that of the theory of real distributions with order h in

!R" In this theorg, for everg compact subset K of Rn, a Banach norm is

constructed on the subspace of consisting of the

functions whose support is contained in K. This construction involves the

suprema of the absolute values of the partial derivatives, up to order h, of

the considered function. To do the same here, one has to use local charts in

M; a compact subset K of M is covered bg the domains of a finite number of

them. The norm of an element of 1)~().{,)(t*~s)(t*) is constructed from the
partial derivatives, up to order h, of its components. It is found that ang

change of charts replaces the constructed norm bg an equivalent one. A

functional 1f-’R is said continuous if its restriction to everg DK is

cont i nuous.
- 

We shall l uniformly denote bg .,.&#x3E; all i the R-valued bilinear forms

corresponding to the pairing of a space of fields with a space of distri-

butions. In contrast, for every the pairing bilinear form of ?~x and
Is denoted by a simple dot, as well I as the forms which pair the

adequate couples of tensor products of them.

Relatively to a local chart of 3~, the tensor distribution T is repre-
sented bg its components Tij. The latter mag be viewed as real distributions
on the domain D of the chart (an open submanifold of )() or, alternatively
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as real distributions on the range of this chart (an open subset of From

the first standpoint, one mag define Tij as follows. For every xeD, the chart

induces a base, sag {e(1),...) e(n)}, in the cotangent space to ~ at point x ;

the assignments are Cd-1 fields of covectors In D. Then the element
Tij of i s introduced by

As a consequence, for every x:~lr(M,~0~f’), one finds T, K&#x3E; = 
Of course, all what precedes can be more generallg done for arbitrary

tensorial tgpes, without the restriction of sgmmetrg; some other cases

will be met in the sequel. This is modelled on De Rham’s theory of Currents

on differential 1 manifolds [20] ; the same concepts have already been used

by A. Lichnerowicz [6] [5].
In particular, when h=0, the tensor distribution is said to be a doublg

contravariant symmetric tensormeasure. fts components are real measures

in the standard sense. By applying to them the Radon-Nikodym theorem, one

shows the existence of a (non unique) nonnegative real measure p on M,

relative to which T possesses a density T’ ~L~(M, ;M’~sM’); notation:T =

Therefore, the action of T mag in that case be expressed as an integral

This integral more general makes sense for every 

BL) the notations L~ or L°° here we mean that, in ang chart, the components
of the considered fields are elements of spaces of the corresponding sorts.

Observe that the tensor measures so defined on the manifold M can bg
no means be viewed as o-additive functions of subsets, except of course

for the tensorial order zero, i.e. the case of scalar measures.

DEFINITION 7.2. Ihe negative transpose of def, a linear mapping of

D’~~’0~’) to ~h+ 1 (~~ ~.~ ) , /~. called the equilibrium operator and

denoted by equ . In other words, for every T in D’h(M,M’~gM’) and
ever~ ~ //? ~.) , "
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The denomination "equ" 1s suggested bg the treatment of the Statics

of a Continuous Medlum through the Method of Virtual Power : in th1s

method, some test velocity fields , similar to r) above, are considered.

Assume that the tensor distribution T Is meant to represent the internal

efforts of the medium, in such a wag that, whenever the medium moves

with r) as velocity field, equals the power of these efforts.

Similarly assume that the external efforts are represented bg an element F

of 1)’h+ 1()(, )f’.), I.e. the corresponding power equals F,I’). Then, the requl-
rement of zero total power for every test f ield f) gieids the equi l ibrium

equation of the medium in the form F = equT.

I f coordinates are used in M, one derives from (7.2) and (7.5) the

expression of the components of eou T:

The products of distributions bg functions, which appear on the right-hand

side, make sense, due to Inequalities (7.1 ).

REMARK 7.3. tf the Riemannian manifold M simplg consists in a Euclidean

space, one readllg finds, bg using orthonormal Cartesian coordinates and

dropping the distinction between covariance and contravariance, that the

operator "equ" coincides with what, in Secs. 2 and 3 , has been introduced

as the "divergence" of the considered tensor distribution. The meaning that

the latter operator may take 1n the manifold context calls for some

comments; also the case of tensor fields has to be compared with that of

tensor distributions.

Let us agree [7J to mark with ii the subscript introduced bg
the covariant derivation of ang differentiable field, relatively to the

standard torsion-free connection associated with the Riemannian metric. l n

particular, the divergence nf a (doubly contravariant) tensor field

15 defined as the (contravariant) vector field with

components 4&#x3E;íjU’ Here 03A6 is not necessarily symmetric and this

nore generate appl ies to a tensor field of higher rank, provided i ts first

Index corresponds to contravarfance. In [6], the negative of thfs operation
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or contracted covariant derivation is called codifferentiation.

The operation li may aiso be introduced for a tensor distribution,
element of some space of the Ð,h sort. This is, bg definition, the negative
transpose of the similar operation, applled to fields belonging to the paired

D~ space. The covarlant derivative, associated In that wag with ang tensor

distribution. Is another tensor distribution of one unit up In tensorial rank

and one unit up in distributional order. I t obeys the same calculation rules

as the covarlant derivative of tensor fields. I ts construction Is Indifferent

to the cho i ce of a chart: th i s Is made clear bg observing that the operator
so defined on some space equals the negative transpose of the

divergence operator, defined on the adequate 1)h+ space.
Covarlant derivation allows one, In particular, to Introduce the

divergence of a tensor distribution T E 3~’®~(~ as the element dlv T

of D’~ ~ 1 ()(, ~C’) such that (div T~= 
As another instance, the covariant derivative of a real measure

equals the element ~~ of 1)"(){,)(’$), with components

such that

The Riemannian volume is the nonnegative real measure p on M

equal, as soon as an arbitrary local chart (x) is chosen, to ;

here denotes the real measure on M whose image in the chart equals the

Lebesgue measure of One f inds PH =0.
as above, 4&#x3E;p is an element of D~f~’0M")

and it turns out that 

In contrast with d1vT, the element equT, as defined by (7.5), is a

covector distribution. Also recall that (7.S) essentiallg applies to

symmetric T (equivalently, if this definition is used for nonsgmmetric T,
the result depends onlg on the symmetric part of it). BL) observing that, for

everg differentiable vector field r), one has [7],

one derives from (7.5) that, for T E D’~’(?~f, ~f’®S?K’),
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8. Lagrange equations,
The setting of this section is the Analytical Dynamics of a mechanlcal

system with finite freedom n. Classlcallg, the system possible states

constitute a Cr-differential manifold Q, where some local coordinates are

denoted bg Q’ ,.", d. For simplicitg, we shall make the scleronomy assump-
tion, I.e. the constraints underiging the above parametrization do not depend

on time. Consequently, the generic expression of the kinetic energy is a

time-independent positive definite quadratic form with respect to the

time-derivatives q’, say

The doublg covariant tensor f ield g def ines in Q a Riemannian metric.

For a twice differentiable motion (or, more generalig, if
the functions p’ belong to the Lagrange equations mag be

developed in the form

The functions are the covariant components, relative to the

local 1 coordinates in use, of the efforts acting on the system (possibly
defined in an indirect wag, through the phenomenological laws governing
the physical environment).

Similarly to what has been done in Sec.4 for a single particle we

are going to show that these equations are implied by a more general

formulation, valid even in the absence of the second derivatives pi.

To the local coordinates invoked above in Q correspond local coor-

dinates in the product manifold (RXQ, denoted bg (QO, Q 1,..., Qn), with q°
ranging through R. Greek indices will take their values in {O,1 ,..., n}
and Latin ones in {1,...,n}. Ang motion mag equivalently be

represented bg the mapping Let us equip the manifold

R Q with a Riemannian metric, bg adjoining to the above matrix gij a row
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and a column as follows: and %0= 1.
Using Lagrange equations amounts to reduce the dgnamlcs of the

system to that of a particle with unit mass, moving in the Riemannian

manifold Q. So, simllarlg to what has been done in Sec.4, we shall

associate with every continuous motion p;R-Q its presence measure

This equals the functional assigning to every

the real number Then, a-almost everg point of

R Q has the form Provided that the functions pi , or

eoulvalentlg the functions belong to R), one mag asslgn to

such a 03BE the velocity components u03B1(03BE)=03C003B1(t) (observe that u°---1 ),
defining the element of the tangent space If, more speciallg,
the functions p’, or equivalentlg the functions belong to the

products belong to ensuring that the real 1 measures

make sense. These are the components of the tensor measure

C=u0u0, an element of called as ’before

the tensor measure. lf (7.6) is used to express the ,components

elements of one finds, if P==i&#x3E;0,

there simply comes out

This is the divergence of the vector measure u6 (a concept independent of

the Riemannian metric). Simllarlg to the Galilean case, u0 mag be called

the mass current and its divergence the mass inout . Here, the same

integration by part as in Sec.4 yields that this divergence vanishes

(8.3) 

The reason of this fact 1s that the window we are using equals the whole of

RxQ
I t pi happens to belong to the same integration by parts as

in (4.5) yields that equals the real measure JR So,

(eQuC)1 1s found equal to the real measure q&#x3E;-+ JR where Li
denotes the left-hand member of (8.2). This shows that, In such a smooth
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case, the Lagrange equations are equlvalent to the writing

(8.4) equ C = F,

where the element F of is defined as follows: the

components F~ , i&#x3E;0, equal the measures defined on RxQ as the functional

cp-~~ and, by convention, 

We therefore propose to accept (84) as governing the dynamics of

the considered system in less smooth situations too.

Let the covector distribution F be a measure, nonnecessar11y

admitting as above a density relative to 8. There comes out, as jn Sec.4,

that a motion satisfies (8.4) if and onlg if t-~p~(t) are functions with
derivatives PiE verifying the measure differential equations

corresponding to (8.2), namelg

This includes in particular the traditional 1 trea tmen t o f shocks, bg
means of the concept of percussion. The connection of this extension of

Analytical Dynamics with the principle of Hamilton will be made clear in

Sec. 11.

In particular, the confinement of the system bg a boundary, as

introduced In Sec.6, mag be analgzed In the present setting. Let the

permitted region of RxQ be defined by the Inequaltty b(~)0, with

At everg point of the limiting hypersurface S 

b(~)=0) it is assumed that at least one of the partial derivatives for

I &#x3E;0, do no t vanish. Such an inequality natural lg arises when one expresses,

In the framework of Analytical Dgnamics, the mutual Impenetrability of

two parts of the Investigated sgstem in phgsfcal space, or also the confi-

nement of one of these parts bg some external obstacle. Let us spltt the

distribution F, tn (8.4), Into the sum of a term E, representIng regular

efforts, and o f a term R corresponding to possible con tac t or impact

effects. Depending on the circumstances which prevail In ptxjslcal space,
the law governing R mag happen to be similar to what has been formulated
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1n Definition 6.l, conferring to the hypersurface S of RxQ the status of

an boundary.
With a view to preclselg transpose Def inition 6.1, let us denote bg .:40

the set of the test fields satisfging the two following
conditions:

(the dot refers to the pairing of the tangent space and the cotangent space
at everg po1nt of 

DEF I N i T I ON 8.1. The considered unilateral constraint will be said ideal if

tfie feasibility of an element R of for representing ti~e

assoclated contact or impact effects /s characterized by

In common applications, this is found equivalent to the fact that, In

physical space, the possible contact or Impact of the concerned bod i es

displays no friction nor adhesion.

Us i ng th i s propertg In order to eliminate R, one obta i ns:

PROPOSITION 8.2. The motion with kinetic tensor measure C is

dynamically feasible ln the presence of the above unilateral constraint if

and only if

In the Hne of Prop. 6.2, condition (8.10) Is found to imply that

equ C- E is a measure. Therefore, as soon it is ascertained that also E i s a

measure, the functions corresponding to such a motion belong to

lbv(R, R).

Incidentally, in view of the definition of "equ", (8.10) is equivalent to

The special case where the function b is a constant with regard to
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t deserves notlce. Due to the scleronomg assumption, this happens, In

particular, if the inequalitg expresses the mutual impenetrability of

two parts of the sgstem in phgsical space or also if it expresses the

confinement of some of these parts bg a fixed external obstacle. Then, one

may introduce, instead of 14~, the set J4 defined bg imposing on f) the

condition (8.7) alone. In view of (8.3) and because the component of rank

zero of E has been assumed to vanish, there comes out that (8.10), in this

case, 1s equivalent to

Let us stress that the preceding provides onlg an expression of

Dynamics. In the case of impact, condition (8.10) has to be complemented
with some phenomenological shock law, e.g. the assumptlons that bounces

are elastic or that theg are soft.

9 . The transport techni que , I
Let M be a Cd-manifold, d~2, with dimension n. A vector field

M’), 1 03C3d-1, mag be seen as the velocity field of a continuous

medium A, in motion throughout M. This means that, for everg element X

of A, called a particle, the placement is a solutlon

to dx/di=f)(x), a differential equation in 3~. In other words

holds for everg 03C4~R and every XEA. Both members are elements of the

tangent space to )( at point Here, time 1s denoted bg T, in order to

prevent, 1n further applicatlons, ang confusion with the time variable t of

Dynamics.

Through the use of local i coordinates in M, (9J) is reduced to a

differential 1 equation in R". Standard facts, concerning the dependence of

solutions with regard to initial conditions, lmplg the following. Denote bg

Pt the mapping of A onto ~f. One finds that, for everg i and i’ in
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R, the mapping is a C03C3-diffeomorphism or M (leaving invariant

everg point of 

An equivalent statement is that the continuous medium may be

equipped with the structure of a C °- differential manifold, in such a way

that every mapping Pt, is a dIffeomorphism of A 

Clearlg here, the medium A is considered only from the kinematical

standpoint, without referring to ang material realization.

More generallg, f) mag also depend on the time T, this variable

ranging, instead of the whole of IR, in some open real Interval I (containing
0). The smoothness assumption made in this case is that the vector field

À) has its support contained in a "(-constant compact subset of M

and that the vector field (i:, X)-( 1, f)(1:, X» of the product manifold I XM is

C’

DEF I N I T I ON 9J. Such manifold as A above, wbose motion over M is

defined through some velocity field )(’) J possibly depending on 03C4.
ls called a carri er of order cr.

Every object of the C03C3-differential geometry of A possesses under

each diffeomorphism pI, i~l, an image or push-forward, which is an object
of the same nature in the CC1-dlfferentlal geometry of M(recall that

A i-dependent object in equal to the image under p~ of some

t-constant object in A, is cal led a moving object convected by the

carrier A. This agrees with the meaning that the word "convected" has In

Continuum Mechan i cs.

Consider, in particular, a specified particle XEA and a specified

element x of the tangent space ~~. The C° mapping p’{: induces a

linear mapping of ~~ to )(~t,À)’ said tangent to Pt at point À; we shall

denote this 11near mapping bg p’(i,X) (or 3p(’c,X)/~ while the other

partial derivative, namelg will be denoted by the

latter, an element of M~ ~, is the velocity of the moving point À».

APPlging to x: yields, for everg i, an element c(1:) of which
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natural w111 l be called a moving vector in M, attached to the moving

point 1:-+ and convected ay A. Symmetrically, a fixed element x‘

could be chosen i n the cotangent space Because pz is a

diffeomorphism, it induces a linear mapping of this space onto )(’~"{,)J’
namelg the inverse transpose of p’(1:, the image obtained of x‘ is a

moving covector, say c03B1(03C4), convected bg Å. In general, some fixed element

in the tensor product of an arbitrarg number of copies of. ’03BB and ’03B103BB
yields, as image, a moving tensor of the same tgpe in M, attached to the

moving point ~)) and said convected bg n.

PROPOSITION 9.2. With regard to local coordinates (Xi) in M , let a

moving vector c , J convected by A have components Ci(l:). These are C°

functions of 1:, with first derivatives

where the partial derivatives of the components of the velocity field

of A are calculated at point p(l:, )J.

Symmetrically, the components c;1:) of a convected covector c.
are C° functions of t: I with first derivatives

Proof. The element x of ’03BB may be identified with the derivative at r=0 of
a differentiable function r- defined on a nelghbourhood of 0 in R,

and such that X(0)=X. Put x(t, r)=p(t, X(r». In view of the definition of the

image of x, the component of this image equals the partial derivative

8 xi/ðr, calculated for r = 0. Now t-i x(i, r) Is, for everg r, the motion in ~

of the particle ~(r) of A, so this function makes a solution to the diffe-

rential equation (9.1). Then (9.2) 15 nothing but the classlcal formula

governing the dependence of such a solution with regard to the parameter r

(this formula is simply established bg putting the differential equation into

integral form, and bg deriving the integral relativelg to r ). The derivation

relative to L mag actuallg be performed o times, because the functions rY
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are C ~, bg assumption.

Furthermore, Ir c and c* respectively are a vector and a covector,

convected by A, attached to the same particle X, then c.c’ =x.x’ is a

constant with regard to i. Hence, taking derivatives relatively to i, one

obtains =0 for everg such pair. Bg Identification this implies

(9.3), provided that the existence of é; is secured. The latter existence mag
be established bg successlvelg taking as x the n elements of a base in

A~ This yields n convected vectors denoted txj c(1),...,c(n)’ The components

c; verify n linear equations = constant. The matrix is nonsingular
and its elements are differentiable functions of T. Hence the same is true

for its inverse, so the proof i s complete. 0

REMARK 9.3. The above holds even If f) depends on t, under the

smoothness assumptions made before Definition 9.1. More generallg,
formulas similar to (9.2) and (9.3) express the t-derivatlves of the

components of a convected tensor of ang sort, attached to the moving point

À). For Instance, lf are the components of a convected tensor

of second order and mixed tgpe, one has

REMARK 9.4. The derivatives in (9.2) do not make the components

of a vector which would be associated with the moving vector in a

way independent of the coordinates in use. I n fact, since cd) is an element

of Mj,,,~, , a i-dependent space, I t can possess a "(-derivative onlg with

reference to some connection In the manifold )(. Let us observe however

that, In usual Continuum Mechanics, happens to be the familiar Euclidean

three-dimensional I space. I n this special I case, (9.2) expresses the compo-

nents of the same vector whichever Is the Cartesian (nonnecessarily
orthonormaD coordinate system in use. This vector slmplg Is the derivative

of with regard to the standard connection of the familiar Euclidean

space.

What precedes concerns local objects, associated with a fixed 03BB~.
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Let us now conslder t-constant fields of the manifold A.

For instance, let a vector field be given, first without

adding ang smoothness assumption. The push-forward of this field under

the diffeomorphism is naturallg defined as the vector field z(i,.),

assigning to ever~ x in M the element p’er, À)(~(À» of )(~, with 
This 03C4-dependent vector field on M win be said convected bg the carrier

A. Formula (9.2) yields the derivative of the real function P1()J»)
for X fixed in A. The existence of the derivative of x), for x fixed in

~ is conditioned bg additional smoothness assumptions. In fact, if the

functions z’ are CB the chain rule yields

where all l the terms in the rlght-hand side are evaluated at point (i,x).

Since zd,x), for fixed x, belongs whichever is i to the same linear space

3~X, this expresses the components of x)/ð"(, a vector independent of

the coordinates used. It is well 1 known as the L ie bracket of the vector

fields z and ~.

As other examples of fields in M convected bg A, one mag consider

the images under Pt of a covector field and of a scalar field, both defined in

A independently of t. In partlcular, 11 turns out that, 1f the 03C4-dependent

element St of is convected, its gradient is a

convected covector field.

Strictlg, the roles of M and A cannot be exchanged, since the diffe-

rentiability order of A, bg construction, is smaller than that of M.

However, one mag symmetrically start with a i-constant vector field

M ’) and consider its pull-back under pj, a "(-dependent vector

field in A. Through standard arguments of Differential Calcu-

lus, the differentiability properties found in the preceding lmplg that, for

everg fixed X, the derivative exists. As a function of À, it

makes an element of The C° vector fleld In M obtained as i ts

push-forward under p° is nothIng but the Lie derivative L~z.
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Differential Geometers are used to define the Lie derivation

assoc i ated with a vector field f) through the cons i derat i on of the 

or evolution operator, generated bg f), without explicitely introducing the

moving manifold A. The present equivalent construction should look more

familiar to Continuum Mechani sts and, i n our views, makes the further

proofs easi er.

As another example, let us consider, Instead of a vector field, the

tensor field g used in Sec.7 to define in M a Riemannian metric. lts

pull-back under pt 1s a i-dependent tensor field X-~(X)~A"~A". This
corresponds to the i-dependent Riemannian metric induced on A bg each of

its placements in J4. There comes out that the 03C4-derivative 03B303C4 exists. Its
push-forward under pt is the Lie derivative Lg, Therebg 1s explained the
connection of the latter with the time-rate of deformation of the

continuous medium.

Let us terminate this section bg observing that the pul1-back and the

push-forward, under a dIffeomorphism of adequate order, mag also be

defined for tensor distributions. consider, for i nstance, an element e of

i.e. a doubly contravariant tensor measure on A. Bg

associating with every A’*) lts push-forward, sag 

under the diffeomorphism pT: A-M, one defines a one-to-one linear

mappi ng of thi s space to I~CM~"0~C"), bl-contlnuous i n the

pseudo-topologies we have referred to in Sec.7. Then, the push-forward

T =pI(6 ) is def ined as the element of D’~~’0M’) such that

I f e l s 03C4-constant, then T 1s called a doubly contravariant tensor measure

moving convectedby the carrier A.

10, A variational l formula f
As In Sec.7, let us equip the manifold M wlth a Riemannian metric by

fixing an element g of CreM",~’.0S)5""..). Let T E )(.~,~.), I.e. T Is a

doublg contravariant symmetric tensor measure on M. At the first stage,
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thls tensor measure will, for simplicity, be assumed to have compact

support. Then )g:dT = Is a meanIngful real number that we shall

call the trace integral of T, relatlve to the Riemannian metric of 1tí. We

are going to studg the 03C4-derivative of this real functional when the tensor

measure T Is convected by a carrler.

PROPOSITION 10.1. Let Tt denote a 1:- depending doubly contravariant

symmetric tensor measure , with compact support in M , convected by a

carrier with velocity field M’). Then

PROOF. By assumption, Tt equals the push-forward under p, of some

03C4-constant 0398~D’0(,’~g’). Denot i ng, as before, the pu 1 l-back of g

under P t one has

Because e is a 1: -constant tensor measure with compact support, the

t-derivative of the right-hand member equals Justifying this

derivation rests on the use of local coordinates in A. Since the support of e

is compact, it is covered bg the domains of a finite collection of local

charts of A; bg invoking an adequate partition of unity, one ls reduced to

the case of a single chart. The mean value theorem and the uniform

continuity of the components Imply that this vector field equals the

i-derivative of 03B303C4 in the sense of the pseudo-topologg of D0(, ’03B1~s’03B1).
Now, pushing forward by pt, one obtains

REMARK 10.2. The velocity field f) above may depend on t, under the same

smoothness assumptions as in In Sec.9, Involving that, for every t in the

concerned interval the support of f) is contained in a fixed compact subset

The extension of Prop. 1 0. I to a measure T with non compact support

Is only a matter of definition. Since the Integral on the left-hand side of
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( 10.1 ) is no more sure to make sense, a real function with

value 1 throughout K 1s to be chosen. Applying (10.1) to the tensor measure

of yields a local version of Prop. 10.1; only the choice of ex has to be

adapted to that of q.

1 1. Hamilton’s principle.
Various statements, concerning systems of finite freedom or conti-

nuous media, have been placed under this name. Also the status of the for-

mulated assertions varies, depending on authors, from that of an occasional 1

corollary to that of the verg basis of Dynamics.
The general idea Is to characterize the dynamically feasible motions

bg a property of the variations that a certain real i functional 1 undergoes,
when the investigated motion is submitted to a certain class of alterations.

! n the line of what precedes, we are going to perform such alterations

through the transport by carriers. The connect i on of our "equ" formulation

of Dynamics with statements of Hamilton’s stgle will thus be made clear.

For brevity, let us restrict ourselves to the setting of Sec.8. A motion

of the investigated system Is described as a mapping A

time Interval is specified and, In the manifold RxQ, we shall use as

window the open band

The components C03B103B2 of the correspond i ng kinetic tensor measure consist of

the functional

Consequentlg, the trace integral of C equals

In this context, Proposition 10.1 I yields a characterization of the dynaml-

cal lg feasible motions In the following variational form.

PRO POS I T i ON 1 1.1. distribution equality (8.4), governing the
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dynamics o1’ the considered system, holds in open subset W ar IRxQ
if and only if, for every carrier with velocity field ~~D1(W,(R Q)’), one

has

Here Ct denotes the doubly contravariant tensor measure, convected by

the carrier, which reduces to C for 1: = O.

In order to compare this statement with Hami lton’s principle, let us

now cons i der the kinetic part of the Hamiltonian action functional, namely,
for every PE W1.2([to, t1], Q)

Due to the definltion, given in Sec.8, of the matrix g03B103B2, one has

Since the term ~(t1-tO) remains constant in the considered variations, we
have to compare the transport of C, invoked in the above Proposition, with

the application to A of the traditional procedure of the Calculus of

Variations. The latter consists in imbedding the investigated motion

t- p(t)EQ into a family depending on an additional real parameter, that we

shall also denote bg i, sag (t, z)--~ pet, 1), such that

Now, a wag of constructing P consists In Introducing a ca~r~e~ In

RxQ and making it transport the point net) = (t, p(t)). Let us speciallg define

this carrier bg a velocity field ~hose component of rank

zero vanishes; thIs mag be called an isochronous carrier, since its flow

preserves each submanlfold q° = constant of W. For everg value of the real
variable i In some nelghbourhood of zero, let us denote bg #, the

corresponding transport mapping. In other words q) is the position at

i of the carrier particle whose placement at 1=0 equals the element
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of W. Then def ine P through

(11.8) 

Conditions (11.6) and ( 1 1.7) clearlg are satisfied.

Observe that is a chain of points in RxQ which, if the

traditional smoothness assumptions of the Calculus of Variations are made,

depend in a C1 wag on the real variable t. Its derivative ls the vector

an element of the tangent space 

Evaluating, for everg i, the derivative of yields an

element of say In view of the definition ( 11.8)

of P, this makes, for fixed t and with i plaging the role of time, a moving
vector convected by the carrier, such that fl ( t , 0 ) = fi( t ),

Slmllarlg, the presence measure of namely the i-depen-
dent functional assigning to everg the real number "(»dt,

is convected bg the carrier and reduces, for i=0, to the presence measure

of t-~n(t). As a consequence, the kinetic tensor measure of is

convected bg the carrier and reduces for i=0 to the kinetic tensor measure

of Bg identifying this tensor measure with Ct in Prop. 11.1, J one

concludes that, if t-p(t) is a dynamically feasible motion of the system,

one has, in view of (11.5),

In order to recover from th i s equality the principle of Hamilton In i ts

traditional form one has to make the special assumption that the

distribution F expresses efforts deriving from a (time-independent)

potential energy function, say This means that F=-(9U)8,

where 8 denotes the presence measure. Since, bg construction,

the right-hand member of ( 1 1.9) is found equal to

1:»dt. So, the classical Hamilton action has zero derivative

at 1 = 0 in the course of the considered transport.

The foregoing was onlg meant to explain the connection of Prop. 11.1 I

w i th Hamilton’s principle, without attemptIng to establish ang precise
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eQu1valence. Actually the two statements have different scopes. Prop.11.1 I

properly pertains to Nonsmooth Dynamics.
In particular, this Proposition mag be applied, in the line of Secs.6

and 8, to motions submitted, with possible shocks, to the ideal unilateral

constraint defined bg the inequality b(03BE)0. Agaln, we shall split F into

the sum of a term E, representing regularlg distributed efforts, and a term

R, arising from contact or impact. Let E derive from a potential energy

U(t,q). We are going to consider carri ers whose velocity field ~ belong to

the set denoted bg A0 in Sec. 8, 1.e. these carriers are isochronous and, at

everg boundarg point of the perm i t ted region, theg flow in the outward

direction. Then, siml larlg to Prop. 8.2, one obtains

PROPOSITION 11.2. L et P be related through (11.8) to the investigated
motion p. The latter 1s dynamically feasible h the presence of the

considered unilateral constraint &#x3E;f and only if the inequality

holds far every carrier with velocity field ~~A0.

As in Sec.8, one observes that, if the functions b and U are constant

with regard to t, the set "’0 mag equivalents be replaced bg ~, i.e. the

considered carriers need not be isochronous.

Of course, one may alternatlvelg reverse the inequality in the

definition (8.7) of E4~, provided that inequality t 11.10) is also reversed.

Introducing, In that wag, carriers whose flow at the boundary Is directed

inward mIght look more natural. But It would ruin the prospect of

investigating solutions through minimization arguments. In fact, the studg
of the second derivative with respect to 1 [15], when the support of f) is

contained In the interior of the permitted region, shows that minimization,

in the present context, can by no means be exchanged with maximization.
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