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1. Introduction

We study a problem of variational convergence, namely the convergence of the data

in variational problems. The convergence we seek is such that the values of the individual

problems and the optimal solutions vary continuously with the data. Such considerations

are basic in the study of approximations to and sensitivity of variational problems, and

arise when the proper limit of problems with refined data has to be determined. An

excellent account of variational convergence is the monograph by Attouch [4].

The systems we deal with in this paper are of the optimal control type and have highly

oscillatory coefficients. The common convergences, e.g. weak-L1, or strong Li, are not

suitable for such systems We propose a graph-type convergence which works, but in turn

yields a new type of variational problems as possible limits. We call these by the suggestive

name, chattering equations. The structure of the chattering problems enables a study of

approximations and sensitivity, and induces a proper notion of feedback.

The paper is organized as follows: The framework of our analysis is displayed in

the next section together with the goals and the motivation. The technical conditions

and the technical setting are given in Section 3. An informal discussion is presented in

Section 4 where the heuristic of the new concept is explained. This discussion is done wit

reference to the simpler case of linear quadratic problems; in fact we offer a full description

of this case but with informal, and at points ad hoc, proofs. The -general nonlinear setting

is analyzed in Sections 5 and 6; the former introduces the chattering equations and the

latter describes the relevant topologies and proves the continuity. The sensitivity and

approximation questions are addressed in the closing section.
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2. Framework and Goals

We deal with a family of minimization problems, each of the form

P(f, g)

-,-/ - v

Here x E R~ and u E Rm. In this paper we consider the time interval [a, b], the cost

function and the initial condition Xo fixed. The functions f(., .) and g(., .) which

determine the constraint may be different for different problems, and therefore the problem

is denoted P( f, g). We assume that f and g belong to prescribed ensembles and g. (The

exact structure of ,~’ and g and the other specifications, e.g. of Q(., .), are given in the

next section.)

Our technique applies to a more general setting, for instance to a constraint of the

form x = f(x,u,t) or Q depending on t. We restrict the discussion to the separable case

P( f, g) for the sake of clarity. In fact, some of the ideas are demonstrated best with the

aid of the simpler case of the linear quadratic minimization, as follows:

Here we assume that the matrix valued coefficients A(t) and B(t) belong to prescribed

ensembles A and B of matrix valued functions. The discussion in Section 4 refers therefore

to the LQ case.

Here is a main goal of the analysis.
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Goal 1. Find a topology on :F and a topology on 9 such that

(i) both topologies are compact, and ,

(ii) the infimal value of the problem Pc!, g), denoted by val( f, g), depends continuously

on f and g.

When the two topologies desired by the first goal are determined, we can set the second

goal. 

Goal 2. Discover the continuity and sensitivity properties of solutions, or approximate

solutions, u(t) of P( f, g) with respect to the data f and g.

We elaborate on the statement of the second goal, but before that we disclose briefly I

the motivation behind the analysis. (Many examples of similar variational convergence

problems can be found in Attouch [4]. Convergence of control problems was studied by

Buttazzo and Dal Maso [8], and Buttazzo [6], [7].)

The variety of possible data may arise in two ways: either from uncertainty, due 1

to errors of estimations and fluctuations, or we may have a sequence of problems with

increasingly refined structure, and we want to deduce from the behavior of the limit in-

formation about the refined approximations. In particular, the proper notion of limit has I

to be defined. Condition (ii) is a natural link between the sequence and its limit in this

situation. Condition (i) enables us to extract converging subsequences at least from, say,

a sequence of refined structures, and to determine their limits. Another application for

compactness is the existence of uniform bounds. Suppose we know that val( f, g) is finite 
’È

for all ( f, g); then (i) and (ii) together imply that there is a uniform bound for all costs

val (f, g).

Note that the two requirements set in Goal 1 oppose each other. The continuity may t
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require many open sets, but too many open sets may harm compactness. In addition to

the two formal conditions we wish the topologies to be not too abstract so that information

on the possible solutions can be deduced along the lines of the second goal.

The second goal is concerned with the sensitivity of the system to perturbations,

either in the parameters or in the controls that are used. Queries that we want answers

to are: Suppose uo(t) is a solution of P(fo,go); if f and g are close to 10,90, is uo(t) an

approximate solution of P( f, g)? What happens if both the data and the control

uo(t) are perturbed and what is then the proper notion of a small perturbation of up(t)?

Do the optimal solutions, or near optimal solutions, of P(f, 9) vary continuously with

(f, g)?

3. The Technical Setting

, 

The norm of the vector x in R’~ is denoted by the controls u are in .R~. The

derivative dx/dt is also denoted by x. If it matters, vectors are thought of as column

vectors; the transpose of x or A are denoted by xT and AT.

We wish to include highly oscillatory data; other than that, we are willing (in this

paper) to impose restrictive conditions. Accordingly, we specify and G as follows:

The function Q(x, u) is assumed continuous in (x, u) and coarse, namely Q( x, u) &#x3E;

+ for some constant 10 &#x3E; 0.

The family 7 is determined by prescribed constants. Ai &#x3E; 0 and K1. The family

consists of all the functions f (x, t) : Rn x [a, b] - Rn, which are continuous in x,

measurable in t and such that ( f (x, t)~  + 1) and ~/(r,~) 2014 I(y, t)1  g~.

The family g is determined by constants ~2 &#x3E; 0 and K2 . It consists of all the functions
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g( u, t): x [a, b] - Rn, continuous in u, measurable in t and such that t)i 

+ 1) and t)I  ~2!~ -~!’

Notice that we do not impose conditions that guarantee the existence of an optimal

solution. The value val( f, g) is therefore only an infimum, and the approximation and

sensitivity queries raised in the previous section may refer to approximate solutions.

In the particular case of the LQ problems, the previous conditions translate as follows.

The ensembles A and B consist of all the n x n, respectively n x m, matrix valued functions

bounded by respectively ~2’

The admissible controls for a pair ( f , g) in ,~’ x ~ are measurable functions u(t) :

~a, b~ - which are integrable over [a, b]. The conditions on :F and 9 imply that

for a given admissible control u(t) the solution x(t) of the constraint differential equation

x = f(x, t) + g(u(t), t), x(a) = x0, is unique. Hence the cost

is well defined; the cost is finite if u(t) is bounded.

4. Discussion

We display in this section the difficulties that arise when trying to achieve Goal 1 and

the arguments that lead to the solution we offer. To make our considerations transparent

we limit the discussion to the Linear Quadratic problem and the ensembles A and B. The

rather simple structure of the LQ problems enables us to provide proofs based on known

formulas. These are not available for the general nonlinear case which is treated in the

next section.
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It is possible to fulfill the requirements set in Goal 1 for the ensemble A by employing

a standard convergence. Consider the weak-Li topology on A. It is compact since elements

in A are bounded by There are explicit formulas for the minimal value val(A, B) of

LQ(A, B) . For instance

~ where K is positive definite and given as K = K(a) with ~(~) solving the Ricatti equation

see Athans and Falb [3, page 761]. A standard result on continuous dependence of solutions

on parameters (we quote a more general one in Section 6) implies that K(a) depends

continuously on variations in A(t) with respect to the weak-Li topology; hence the latter

is the desired topology.

The situation with B is more involved. The weak-Li topology is not suitable since

val(A, B) is then not a continuous function of B. This is reflected in the term 

in (4.2). As a concrete counterexample let A(t) = 0 and Bk(t) = sin kt, both scalars.

Then Bk (t) converge weakly to Bo(t) = 0. The Ricatti equation for the limit is K = 1,

while for each k the Ricatti equation is k = 1. The limit of the latter (since

sin2 kt converge weakly to !) is the equation ~~ _ ~ 1{2 - 1, which governs the limit of the
values. Hence continuity fails.

A common topology which yields the continuity is the strong-Li topology, but it is

not compact. It seems difficult to bridge the gap; even more so since the topology we

seek has to be revealing. Thus, for instance, the oscillations of, say, sin kt in the example

should not be washed out in the limit; this since the optimal controls clearly follow these

oscillations. We therefore introduce the following idea: We allow limits of sequences in
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B to be outside ~S; in fact, we allow these limits not to be matrix valued functions at all;

then we may need to modify the definition of the LQ problem in order to accommodate

these limits. We show in the sequel how this completion idea can be carried out. We call

the terms added to B chattering systems.

But before displaying the completion we want to remind the reader that the idea of

completion and compactification with unordinary items is not new in the calculus of vari-

ations and optimal control. The generalized curves of L.C. Young (see [13] and references

therein) is one celebrated example. The relaxed controls introduced by J. Warga (see [12]

and references therein) is another important example. Both, however, deal with the space

of solutions, either trajectories or controls, and not with the space of equations. A com-

pletion in the space of differential equations was performed by Kurzweil [10]. Sequences of

optimal control problems for which an extra term appears in the limit were described by

Buttazzo [7].

Recall that we want to maintain the effect of oscillations in the limit. A way of

modelling instantaneous oscillations is to allow as the limit of functions, say 

with values being probability distributions over the space of n x m matrices. The case 
"

B(t) is then the particular case of a measure concentrated at ~B(t~~. Keeping in mind

that the controls may respond to the rapid oscillations of the coefficients, we wish

to allow the controls at the limit equation to respond to the instantaneous changes. A

way to model this is to let the control u at the time t be a function of the matrix B; we

write it as u(t, .8~. The contribution to the dynamics is the weighted average of Bu(t, B)

with respect to the probability measure ,~3(t). Similarly, the contribution to the cost in the

LQ problem is the weighted average of The chattering LQ problem is then as
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follows.

where M denotes the space of n x m matrices. The measure valued mapping ,Q(t) has

values supported in the compact subset Ii’2 = {B EM: IBI  ~2~, see Section 3 for

the definition of K2. We denote the space of probability measures on I12 by 

Then (3: [a, b] --~ and we assume that /3 is measurable, when on 

we consider, say, weak convergence of measures (see Billingsley [5]). The ensemble of all

such chattering coefficients (3(t) is denoted by P. We still have to specify the admissible

controls. We may choose them measurable in (t, B) or continuous in B. (The particular

case of LQ(A, B) is realized as an LQ(A, (3) with a control u(t, B) continuous in B. ) For

definiteness we decide to have u(t, B) Borel measurable in (t, B).

The goals set for the collections A and B relate now to A and ?~. We define the desired

topology on P. To this end we identify an element /?(’) in P with the measure, say ~3, on

[a, b] X K2, obtained by integrating [3(.) with respect to the Lebesgue measure, namely,

if D C [a, b] x K2 is Borel and Dt denotes its t-section, then ~Ci(D) - f~ On

the space of these ( b - a)-times probability measures we adopt the weak convergence of

measures which is metrizable and compact since [a, b] X Ii 2 is compact, see Billingsley [5].

This is the convergence we want, as stated in the next proposition.

Note that the restriction of the weak convergence on P to the ensemble of ordinary

coefficients B is identical with the Li norm convergence.

Proposition 4.1. The weak-L1 topology on A and the weak convergence of measures

on P are compact, and val(A, #) is continuous on A x D.
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Compactness of the two topologies is a known property. The continuity will follow

from the general results in the sequel, but a relatively simple proof can be crafted along

the lines of the derivations of the Ricatti equation (4.2). It is not hard to show, but we do

not do it here, that val(A,(3) is equal to with 7~ = K(a) where K(t) satisfies the

Ricatti equation

Standard observations imply now that K(a) depends continuously on the respective topolo-

gies.

The LQ problems have a nice form of a feedback solution. For LQ(A, B) the optimal

solution is a function of t and x(t) given by

with K satisfying (4.2), see Athans and Falb [3, page 763]. It is possible to get a similar

formula for the chattering case. Then u == u(t, B , x)

with K(t) satisfying (4.3). Notice that in the chattering formulation the optimal control

is continuous in all variables.

Example 4.2. We apply our solution to the example mentioned before, namely

A(t) = 0 and Bk(t) = sin kt, both scalars. The range of the coefficients Bk is ]{2 =

~--1, 1~. It is not difficult to compute ~3(t); indeed, #(t) = #o is constant and /~o([~~]) =
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T - arcsin a). The limit problem is then

~ If we employ the Ricatti equation (4.3) in this case we get

and the optimal solution of the continuous problem is, in a feedback form,

and can be found explicitly from the previous differential equation; the simple calcu-

lation shows that

5. Chattering Systems

In this section we introduce the chattering variational problems in the nonlinear case.

The basic idea is along the lines of the discussion in the previous section, with the necessary

modifications.

Let G be the collection of continuous functions g(u) : Rm 2014~ ~ satisfying 

+ 1) and ~2!~ - vi. The constants a2 and K2 are taken from
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the description of g, see Section 2. We consider G as a metric space with the uniform

convergence on bounded sets; a possible distance is

We need the following for a reference.

Lemma 5.1. The space G with the uniform convergence on bounded sets is compact.

Proof. Follows easily from the boundedness on bounded sets and the uniform Lips-

chitz condition.

We denote by Prob(G) the family of probability measures on G. Let P denote the

ensemble of measurable mappings ~(t) : [a, b] 2014~ Prob(G), when the latter is endowed

with the metric structure of weak convergence of measures, see Billingsley [5].

An admissible control is a function u(t, g) : [a, b] x G - R"~ which is Borel mea-

surable in (t, g). 
t

The chattering variational problem is determined by a pair f and ( E P as

follows:

.x

The following result is needed to assure that the constraint differential equation is

well defined.

Lemma 5.2. Let u(t, g) be an admissible control. Then g(u(t, g)) : [a, b] x G - .Rn

is a measurable function. ’
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pr- oof. g(u(t, g)) is the composition of the continuous function (g, v) - g(v), from

G x into Rn, with the measurable mapping (t, g) - (g, u(t, g)), from [a, b] X G into

G x R~.

Like the ordinary case we denote by val( f, () the infimal value of P( f, (), and by

cost(u(., .), f, () the cost of applying the control u with the data ( f (). It is clear that

the ordinary problem P( f , g) can be viewed as a particular case of P(/,() with ((t) con-

centrated on g(-, t). The ordinary admissible control u(t) can be formally extended to an

admissible control of the chattering case by letting u(t,g) = u(t). (Specifying such an

extension is needed when we consider chattering perturbations of ordinary problems.)

Once the ensemble g is extended to the ensemble P, the two goals set in Section 2

may refer now to data in ~’ x P. The analysis of these is done in the next two sections.

6. Compactness and Continuity

In this section we introduce the topologies for 7~ and ~’, and verify the first goal,

namely the compactness of P and ,~° and the continuity of val ( f , ().

The definition of the topology on P follows the outline of the preceding section. We

identify an element ((t) : [a, b] ---~ Prob(G) with the measure c on [a, b] x G obtained by

integrating (t), namely = fa (t)(Dt)dt, where Dt is the t-section of D. Thus ~ is
a multiple of a probability measure by b - a. Convergence of sequences is taken as the

weak convergence of measures (see Billingsley [5]).

A simple computation shows that if ~’o (t) represents nonchattering coefficients, say

(0(t) is supported at the singleton (g0 (° , t)), and (k(t) converge to (o(t), then
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In particular, the restriction of our convergence to the data in 9 coincides with the Li

convergence in the sense that gk - go is equivalent to J~ (~g~(~, t) - --~ 0.

Proposition 6.1. The convergence in P is metrizable and compact.

Proof. Compactness and metrizability of the weak convergence follow from the com-

pactness of [a, b] x G (see Lemma 5.1) and the Prohorov Theorem (see Billingsley [5, pages

37, 240]). Therefore, the only point to verify is that the limit, say, fo, of a sequence in

p. is still in P, namely ~o can be disintegrated with respect to the Lebesgue measure on

[a, b] and the values of the resulting mapping (o (t) are probability measures on G. But this

follows easily from the observation that ~([c, d] X G) = d - c for all k and all a  c  d  b.

This completes the proof.

The definition of the topology on F is a weak-L1 type (compare with the topology on

A in Section 4) localized at each x. It is a standard topology in continuous dependence

considerations of ordinary differential equations; it goes back to Gikhman [9]. The defini-

tion is as follows. The sequence fk converges to f o if for every x E Rn and every t E [a, b]

the sequence fa s)ds converges to fa ,f p(x, s)ds.

Proposition 6.2. The convergence on 7 is metrizable and compact.

Proof. See Proposition 2.4 and Theorem 2.4 in Artstein [1].

Recall the following notions. Let h be a measurable function from a measure space

(T, /~) into a metric space Y. The distribution of h, denoted by Dh, is the measure on

Y given by Dh(C) = ~c(h~’ (C)). A sequence hk converges in distribution to ho if Dhk

converges to D ho with respect to weak convergence of measures. The latter is metrizable in

our case and we use "72) to denote the Prohorov distance between the measures "71

and ~2! the Prohorov distance is equivalent to weak convergence of measures, see Billingsley

[5].
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The following will be used several times.

Lemma 6.3. Let h(r): T - Y be measurable and let ~c be a measure on T. Let

~ Y  Rn be measurable. Then .~(h(T))d~.

Proof. Standard.

It will be convenient to use shorter notations for some of the integrals that define

the chattering variational problem. We use the convention that functionals with the same

index (double index occasionally) relate to each other.

Let be an admissible control applied to the chattering problem P( fk , ~~ ). We

denote by the resulting forcing term in the constraint differential equation, namely

The solution then of the constraint differential equation is denoted by

We also denote

namely is the integrand of the cost functional when is used.

For the control we define hk: ~a, b~ x G - [a, b] x G x R"’~ by

We agree to compute Dhk with respect to k, and for the sequence that we have we

compute Dho,k with respect to ~o.
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Proposition 6.5. Let ( fk , ~’~) be a sequence in 7 x P and let g) and 

be sequences of admissible controls, uniformly bounded. Then

(a) If converge to 0 as k ~ 0, then converge to 0

in the weak-L1 topology.

(b) If in addition fk --&#x3E; fo then converge uniformly to 0, and

(c) The difference of costs, cost( Uk, fk , fo, (o) converge to 0 as k - oo. 
"

Proof. (a) Let [c, d~ be a subinterval of ~a, b] and denote by rk and the restrictions

of hk and to [c, d] x G. Since the first two coordinates of h are the identical maps,

it follows from the structure of ~ and the condition on Dhk that dist(Drk, Dr0,k) also

converges to 0.

Define g, v) = g(v), then ~ : ~a, b] x G x R"z - Rn is continuous. Since all

the measures have a common compact support, by boundedness of the controls, it follows

(Billingsley [5, page 113]) that J J converge to zero. The composition;

of l with rk and ro,k yields the functions and If we now use

Lemma 6.3 to rewrite J and ld(Dr0,k) as integrals with respect to ~k and ’0,

the convergence (using the notation ~(t)) translates to

Since all are bounded and [c, d~ is arbitrary, the latter convergence implies the

desired weak convergence. ;

(b) By the preceding paragraph we have that the distance between 

and fp{x, t) + converges to zero. Continuous dependence of solutions with respect

to data in 7 is a known result, see e.g. Artstein [1, Theorem 3.1].
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(c) Define q(t, g, v) = Q(yp(t), v) where yp(t) is a continuous function. Then q is

continuous, converge to zero. The composition of q with

hk and yields the mappings C,?(yp(t), uk(t, g)) and 9)) . If we use Lemma

6.3 and write the latter convergence with respect to ~k and ~0 we get

If we only could replace yo (t ) in the first term of the convergence by x k ( t) and yo (t) in

the second term by XO,k(t), without harming the convergence, we would be done, since it

would be the differences of costs that converge to 0. But the replacements are allowed,

since yo(t) can be chosen a common limit point of xk(t) and (by part (b) and

the obvious uniform continuity) and then the continuity of Q(., .) provides the necessary

estimates that guarantee the convergence. This completes the proof.

Remark. The previous result holds of course when the sequence is replaced

by one control function uo. Then converges weakly to the trajectories Xk(t)

converge to xo(t) and the costs cost(uk, fk, (k) converge to cost(uo, f o, (0). The reason

we go to the trouble of considering a sequence of controls uo,k applied to ( fo, (0) is the

lack of compactness in the space of admissible controls (although the distributions 

and the functions and converge). It is the same difficulty that implies the

possible lack of optimal solutions. (We could introduce relaxed controls but this is beyond

the scope of this paper. )

We need one more lemma; it guarantees the fulfillment of the conditions of the last

proposition. We continue to use the same conventions.

Proposition 6.6. Suppose (k converge to (o in P. If uo (t, g) is a bounded ad-

missible control then there exists a sequence of uniformly bounded admissible controls
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uk(t, 9) such that Dhk converges to Dho. Conversely, if Uk(t,9) is a uniformly bounded

sequence of admissible controls, then there exists a sequence of controls uo, k (t, g) such that

dist(Dhk , Dho,k ) converge to zero.

Proof. Let C be a compact set in 7~" which contains all the possible values of

the controls uk(t, g), k = 0,1, ..., in the two parts of the proposition. It exists by the

uniform boundedness. Define H(t, g) = {(t,g,v): v E C}. Then H is a set-valued

map. Consider the sequence of set-valued maps Hk obtained when H is considered a map

of the measure space ([a, b] x G,~). Clearly, since ~k converge weakly to so, the maps

Hk converge in distribution to Ho (where convergence in distribution of set-valued maps
is defined in a natural way, see e.g. Artstein [2]). By Artstein [2, Theorem 6.3] the

closure of {Dh: h a selection of Hn} converges in the Hausdorff metric to the closure of

{Dh: h a selection of Ho}, where closure and Hausdorff distance are taken with respect
to the dist(-, -) metric. A selection hk of Hk and selections h0,k of Ho correspond to
admissible controls u k and uo,k respectively. Therefore, the convergence of the closures of

selections implies our result. This completes the proof.

Theorem 6.7. The given topologies in 7 and P are compact, and val( f, () is con-

tinuous (namely Goal 1 is achieved).

Proof. Compactness was verified in Propositions 6.1 and 6.2. To prove the continuity
note first that the optimal or near optimal controls for the problems P( f, () are all bounded

by the same uniform bound, say r. This follows from the coarsivity of and the

uniform local boundedness of f E 7 and g E G. Let now (/~~) converge to (fo,(o) in
,~’ x P and let uo(t, g) be an admissible control for P( fo, (o)’ By Proposition 6.6 there are

uniformly bounded admissible controls Uk(t,9) for P(fk,(k) for which Dhk converge to

Dho. By part (c) of Proposition 6.5, cost(uk,fk,(k) converge to Since Uo
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is arbitrary it follows that limsup ~) ~ vacl( fo, ~o)- Let now uk(t, g) be admissible

controls for P( fk, ~~), bounded by the aforementioned constants. By Proposition 6.6

there are uniformly bounded admissible controls g), all for P(fo, (0), for which

converge to zero. By part (c) of Proposition 6.5 the difference between

cost(uk, fk, ~k) and fo, (0) tends to zero. Since uk are arbitrary within the bound

r it follows that limin f val( fk , ~~) &#x3E; val( fo, (0). The two inequalities together constitute

the desired continuity.

7. Robustness and Approximations

We provide in this section some answers to the queries induced by the second goal of

Section 2. We pursue the analysis within the framework of the chattering problems P( f , ().

The results of course make sense also for the ordinary problems, and the translation to

this case is easy.

Our first result is concerned with the robustness to changes in the data.

Proposition 7.1. Let uo(t, g) be a bounded admissible control which is continuous

in the variable g. Let (fk, ~’~) converge to ( fo, (0 ) in 7 x P. Then cost(uo, fk , ~’~) converge

to cost(uo, fo , ~o).

Proof. We write for uo(t, g) when uo is applied in P(fk,(k). If we can only

show that Dhk converge to Dho (see Proposition 6.5), then by part (c) of Proposition 6.5

the convergence follows. The convergence of Dhk to Dho is trivial if uo(t, g) is continuous

in both variables. If uo(~, g) is only measurable, then by the Scorza Dragoni ([11]) extension

of the Lusin theorem, for every e &#x3E; 0 there exists a set T c [a, b] with Lebesgue measure

less than ~, and a function vo(t, g) which is bounded by r, continuous and vo(t, g) = uo(t, g)
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if t ft T. For vo we then have that desired convergence. But since x G)  ~ for all k,

and since £ is arbitrarily small, the convergence holds for uo as well. This completes the

proof.

The continuity of in the variable g cannot be dropped from the conditions

of the previous result. Indeed, uo(t,.) discontinuous in sensitive to even a uniform small

perturbation in g(., t) in the ordinary case. The continuity assumption, however, does

not seem to be severe. For instance, we showed in Section 4 (see (4.5)) that the optimal

solutions of the LQ problems are continuous in (t, B).

We consider now perturbations in both the data and the controls. A basic question is

then, in what sense to measure perturbations in the controls such that a small perturbation

results in a small deviation of the cost? We offer two answers. One when the perturbation

should result in a small error regardless of the perturbation in the data, and another when

compatible perturbations are considered.

Proposition 7.2. Let uk(t, g) be a uniformly bounded sequence of admissible con-

trols, each continuous in the g-variable and such that converge

to 0 (with ~ - ~ being the sup norm). Let (/~(&#x26;) converge to ( f p , ~p ) in 7 x P. Then

cost(uk,fk,(k) converge to cost(uo,fo,(o).

Proof. By the Egorov theorem a subsequence of uk(t, ~) converges uniformly to uo(t, .)

in the sup norm, on sets ( [a, b~ BT) X G with T of arbitrarily small measure. Then (with

the argument we used in the preceding result) Dhk converges to Dho, and by part (c) of

Proposition 6.5, the proof is complete.

Proposition 7.3. Let (k) converge to ( fo, (0) in 7 X 7~. Let g) be pertur-

bations of the bounded uo (t, g) as follows: uk (t, g) = uo (t, g) + pk (t, g) with p~ uniformly

bounded and the distributions Dpk computed with respect to ~~, converging to a mea-
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sure supported at j0j . If also uo(t, g) is continuous in the g-variable, then (k )

converge to cost(uo, fo, ~o)~

Proof. It is straightforward to show that the distance between Dhk and Dho, both

computed with respect to k, tends to zero. We already proved in the proof of Proposition

7.1 that the distributions of ho when computed with respect to ~k converges to Dh0

computed with respect to so. Together with part (c) of Proposition 6.5, the proof is

complete.

Our final result is concerned with the convergence of optimal controls. Again, since

we did not post conditions guaranteeing existence, uniqueness or lower closure for optimal

solutions, the statements involve approximating sequence. It is straightforward to restate

the result referring to optimal controls when the aforementioned properties hold.

We continue with the convention that the distribution Dhk (with h(t, g) = (t, g, u(t, g)))

is computed with respect and Dho , k is computed with respect to Notice that the

statement dist(Dhk, Dh0,k) ~ 0 carries considerable more information here about the

controls, than ordinary convergence in distribution implies; this is due to the first two

coordinates of h.

Theorem 7.4. Let (/jb,~) converge to ( fo, (o) in 7 x P. Let g) be uni-

formly bounded admissible controls such that converge to

zero. Then there is a sequence g) of uniformly bounded admissible controls such

that fo, (o) - val( fo, (0) tends to zero, and such that dist(Dhk,Dh0,k) tends to

zero as k ---~ oo .

Proof. The existence of with the property dist(Dhk, ----a 0 was proved

in Proposition 6.6. Part (c) of Proposition 6.5 implies then that

fo, (0) tends to zero. The continuity of val( f, (), established
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in Theorem 6.7, implies then that indeed fo , (0) converge to val( fo, (0). Thi~

completes the proof.
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