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1. Introduction

The study of variational problems has been much aided by casting them in the following
(simple) framework:

find x that minimizes f ( x) on X,

where X is the underlying space and f takes its values in (-00,00]; the value oo being
used to model the constraints that may be imposed on the choice of x. Probably starting
with the work of Fenchel (on convex functions), it has become more and more obvious
that the properties of such problems (stability, dualizability,...) and the properties of their

solutions, depend intimately on the properties of the epigraph of f. This is in contrast

to the "classical" approach that would be mostly concerned with the properties of the

graph of f. The analysis via epigraphs requires a number of (nonclassical) tools, some of
which have been brought to the fore during the last couple of decades and others that are

waiting further development. It is the purpose of this article to introduce the basic tools

of epigraphical analysis. A complete treatment of the subject is far beyond the scope of

this contribution, it would require a monograph of some length. Indeed one would need to

broach such topics as: epigraphical calculus (algebraic operations), epi-convergence (and
associated topological questions), epi-derivatives and epi-integration, as well as discuss

existing and potential applications in a variety of areas of pure and applied analysis.
We shall limit ourselves to a brief survey concentrating on elementary calculus rules and

definitions of limits. We also conclude this introduction by giving a series of examples that

suggest the wide applicability of (and the need for) epigraphical analysis.
We consider problems of the type (for which Rockafellar and Wets [39] use the term

variational system):
minimize for x E X,

where (x, B) ’2014~ f(x,8) : X x 0 2014~ IR. The variable x representing the decision variables

(state, control, etc.) with X of finite or infinite (distributed systems, stochastic prob-
lems, for example) dimensions. The space of parameters e could arise from perturbations
(parametric optimization), approximations (numerical solutions procedures, etc.), or could

correspond to physical characteristics that are intrinsic to the problem at hand. To each

value of 8 correspond: the value of the infimum,
i

and the set of (optimal) solutions of the problem, and the multifunction (set-valued map)
of solutions of the problem,
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We are interested in the continuity and differentiability properties of the infimal func-

tion, 8 inf f (8), also called the marginal function or the value function, and of the

argmin-multifunction (set-valued map) 8 - argmin f (9), and, when differentiable or sub-

differentiable, in computing their derivatives.

As indicated earlier, the epigraphical approach consists in deriving the properties of
those maps from those of the multifunction

i.e., an epigraph-valued multifunction, called the epigraphical multifunction.
Epigraphical analysis can be regarded as a specialization of results about multifunc-

tions to the map 8 ’2014~ epi f(., 8). And in many ways this is an appropriate viewpoint, not

withstanding the fact that the study of epigraphical multifunctions actually provides much
of the motivation for the study of multifunctions. However, because of the special nature
of epigraphs, of the questions raised in a functional setting, and in particular because of
the framework forced upon us by the applications, it is useful and instructive to have a

theory specifically developed for, and directly applicable to, epigraphical multifunctions.
In this we are helped by the fact that the subspace of epigraphical multifunctions is closed

with respect to the addition of their defining functions, epi-addition (Minkowski-addition
of the epigraphs), differentiation, taking (epi-)limits, integration, etc., i.e., all the basic

analytical operations.
To conclude this introduction, let us consider a few typical situations. We give a

couple examples of each one of the following cases: 8 is an approximation parameter (A.),
B is a perturbation parameter(B.), and 8 represents some physical characteristics of the

problem(C.).

Example A.I Stochastic optimization. The problem is to minimize /(~c) =
where P is a probability measure on 3i c IRN, and h is an extended

real-valued function defined on X x ~.. For example,

~(.r,~) = D(~~ ~)~ ~

where ç) represents the constraints as they depend on x and on the random elements
of the problem ~. This is a difficult problem to solve numerically because of the lack of

regularity of f (in general, f takes on the value +00, and is not smooth on its effective do-

main), and the lack of techniques and calculus for dealing effectively with multi-dimensional
integration. One is lead to consider approximations of the type:
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with the h8 converging to h and the P8 (usually discrete) measures approximating P.
The parameter space e = IN. We want to know: (i) if the solutions of the approximat-
ing problems converge to the solution of the given problem, and (ii) at what rate (error
bounds).

Example A.2 Finite elements approximations. Here X is a Sobolev space of type

H1(S2) or and

where a is a symmetric, continuous, coercive bilinear form on X x X. Let u. E argmin f.
The numerical procedures for calculating u* rely on the following approximations. The

space X is replaced by a finite dimensional subspace XB obtained by taking linear combi-

nations of a finite number of "elements". The approximating problems take the form:

We are interested in the convergence of the approximating solutions U8 to u* , and in

estimating (Note that, this latter estimate will depend on the regularity of u*.)

Example B.I Mathematical programming. Our point of departure is the optimiza-
tion problem:

A very useful characterization of optimality is provided by the differential inclusion:

where the (yi, == 1, ... , m) are (Lagrange) multipliers associated with the constraints.
The existence of such multiplers, and thus the possibility of making use of the preced-

ing relation, is intimately connected with the properties of the infimal function of the

(variational) system obtained by parametrizing the constraints, namely:

In particular, those multipliers can often be identified with the subgradients of the infimal

function at 8 = 0. Constraint qualifications can be viewed as providing sufficient (some-
times necessary) conditions to guarantee continuity, or subdifferentiability of 8 ~ inf f(8)
at 0, or in a neighborhood of 0.
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Example B.2 Duality in convex optimization. The problem is as in Example

assuming now that the functions f; are convex for i - 0,..., s, and affine for i =

s + 1, ... , m, and X is any normed linear space. As in Example B.I, the problem is

embedded in a family of parametrized problems, with the same type of perturbations
or by perturbing other quantities, but in such way that the function (x,8) - ,f (~, 8) is
convex on X x e with e another normed linear space. The dual problem is the conjugate

(Legendre-Fenchel transform) of the infimal function, i.e.,

The bilinear form ~-, -) brings the spaces V and 0 in duality. Let us consider the following
simple calculus of variations problem: for Sl a subset of IR." ,

One, of a number of possible dual problems is obtained by perturbing the integrand by an

L2 function p:

The dual problem is then:

This approach to duality can be combined with such results as the continuity (with respect
to the epi-topology) of the Legendre-Fenchel transform to derive stability and convergence
properties for dual variables, cf. Back [14], [15], Attouch, Aze and Wets [4].

Example B.3 Dynamic programming. We consider the following system: for t E

T],

where u is the control function and x is the trajectory of the system. We are interested in

choosing u so as to

One can reformulate (B .3) as a differential inclusion:
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The dynamic programming method associates to the preceding dynamical system the value
function

If v can be calculated it is relatively easy to derive the optimal control u* that yields the

optimal trajectory. When v is sufficiently smooth, one way of computing v is to solve the

Hamilton-Jacobi equation

If v is not sufficiently smooth, we need to rely on nonsmooth analysis to give an interpre-
tation to the preceding equation as has been done by introducing viscosity solutions , cf.

Crandall, Evans and Lions [22], or contingent derivatives, cf. Frankowska [27].

Example C.I Homogenization. We are dealing with composite materials, or materi-

als with many small holes, fibered or stratified materials. In such materials, the physical

parameters (such as conductivity, elasticity coefficients, etc.) are discontinuous, and os-

cillate rapidly between the different values that characterize the various components. A

variational formulation of such problems takes the following form:

where j is Y-periodic, Y = b=~, and 8 is a parameter near 0. The "homogenized"
problem

is obtained by letting the parameter tend to zero and taking a variational limit (an epi-
limit, cf. Section 3) of the energy functionals, in particular,

The calculation of jhom again requires solving a variational system (that depends on a

parameter z).

Example C.2 Optimum design. Consider the following situation: two media S21 and

D2 are separated by an isolating screen E (a smooth manifold of co-dimension 1) with
"holes" D = UDi that allows for the transfer of heat. With heat source h, the state

equations of the system are:



79

with the boundary conditions determined by the temperature g, i.e., y = g on the boundary
of n = S21 U S~2 U E. The problem is to "design" D so that the resulting solution yD of the

preceding system is as close as possible to a desired state z(.). The performance criterion
is then:

A more sophisticated version of this problem would allow for a control mechanism to

regulate the exchanges between 111 and ~2, cf. Attouch and Picard [5]. In general, such
problems do not have an optimal solution. This comes from the an "homogenization"
phenomenon: for given J and a class of admissible designs, the sets {Dv v E of a

minimizing sequences could tend to be more and more fragmented (clouds of tiny holes).
Epi-convergence is used to study the limiting behavior and to characterize the limiting
"problems" .

2. Epigraphical Operations.
Let X be a vector space. To any extended real-valued function f : X ---7 IR = [-00,00],
we can associate

the epigraph of f, and

the strict epigraph of f; these sets are empty if oo. The classical notions of (MinkoBvski)
sum of sets

and scalar multiplication of sets, for A E IR,

when applied to epigraphs generate the epigraphs of new functions that are called the
epi-sum and the (A-)epi-multiple. In particular, if we have two functions f and g, defined
on X and with values in the extended reals, the (Minkowski) addition

define the strict epigraph of a function that we denote by f + g and call the epi-sum of f
and g. The subscript "e" referring to the fact that the operation takes place on epigraphs.
A functional definition is given by the next relation:
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we use here the (epigraphical) convention that ~ - oo = oo. If, instead of strict epigraphs,
we want to relate the epi-sum of f and g to the sum of the epigraphs, we have the following
identity:

where vcl means vertical closure: for a set C C X x 1R,

Similarly, we define the (scalar) epi-m ultiplication e * as follows: for x in X, 03BB &#x3E; 0

since then

i.e., the epigraph of A * f is obtained as the 03BB-multiple of the epigraph of f. For A == 0,
e

the function 0+* f is the recession function of f:
e

The function 0+* e f is to be viewed as a limit of the collection {03BB*ef, 03BB &#x3E; 0} when A goes
to 0; more precisely a lower epi-limit, cf. Section 4.

Remark 2.1. The terminology and the notations are different from that used in the past.
In the literature one finds the epi-sum f + g, denoted by f og (or and called the inf-

convolution of f and g. The reference to "convolution" is formal, whereas the epigraphical
terminology refers to the geometric interpretation of these operations. The need for change
became imperative as these notions came to play the central role in epigraphical analysis.
This viewpoint is vividly illustrated by the next statement.

Theorem 2.2. For all ~, ~,c &#x3E; 0, f , g an d h exten ded real valued functions

where the indicator function of ~0}.Thus, the space ofextended real-valued functions
with the epi-addition is an algebraic semi-group. Also,
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an d if f is convex,

Finally, if f and 9 are convex, so is ( f + e g).
Proof. The argument is straightforward. For illustration purpose, we derive the following
identity. When A &#x3E; 0, it follows from the definitions that

Moreover, convexity is preserved by these operations since the sum of two convex sets is
convex and so is the scalar multiple of a convex set. 0

. 

The next two theorems are concerned with the basic variational properties of these
operations. For f : X - 1R, let

Theorem 2.3. Given A &#x3E; 0, f and g two extended real valued functions defined on X.
Then

(i) argmin f + argmin g C argmin( f + e g) (2.9)
i.e., if x minimizes f on X and y minimizes g, then x + y minimizes f + g;

(ii) A(argmin f ) = argmin(03BB*e f ), 
e 

(2.10)
i.e., if x minimizes f on X, then (Az) minimizes (A*/).

Proof. If x E argmin f, and y E argmin g, then for all u, v in X

Hence, for all z in X

and this means that
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from which (2.9) follows. To prove (ii), if x E argmin f, for all A &#x3E; 0 and v in X, we have

And thus

or equivalently (2.10). 0

Theorem 2.4. Suppose A &#x3E; 0, cl &#x3E; 0, ~2 &#x3E; 0, and f, g proper extended real valued
functions defined on X with inf f &#x3E; 2014oo, inf g &#x3E; 2014oo. Then

(i) ci- argmin f + ~2- argmin g C (£1 + 6:2)- argmin( f + g) (2.11)

where

(it ) 03BB(~1- argmin f ) = (03BB~1)- argmin(03BB e * f ) (2.12)

(iii) for all £ &#x3E; 0, argmin( f + g) C £- argmin f + £- argmin g
e

Proof. For (i) and (ii), the proof of Theorem 2.3 also works here. If x E argmin( f + g),
there exist, by definition, u~ , vF such that uE + v~ = x, and

where the last inequality follows from the fact that the infimum of f + g is the sum of the

infima. And from this the assertion readily follows. D

Before we continue with our development, we describe two classes of problems where

these epigraphical operations play an important and natural role.

The Average Problem. Let /i,/2?--~/n : ~ 2014~ IR correspond to the realizations

of random optimization problems. Typically, these come from uncertainty in the data

due to a random environment; for example: conductivity coefficients in heterogeneous
material, spatial porosity parameters for soils, data measurement errors. For i = 1,... n,
let ~; E argmin /,. The average of the solutions

is the solution of a new minimization problem
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called the average problem. We would be interested in knowing:

(i) the form of the limit average problem as n  oo;

(ii) if ~-(~i + - -’ + xn) provides a reasonable approximation to the optimal solution of the
limit problem. D

Asymptotic Expansion of Solutions. Let us consider the following family of (para-
metric) optimization problems

/8 : .X 2014)- (201400, oo], oo, and 0 is a subset of a linear space that contains 0. Let us

assume that for all-in e, the problems have all the desirable properties, in particular
that there exists

We are interested in the asymptotic behavior of uj as 8 goes to 0.

One could just be interested in the topological aspects of the problem. Namely, does

the sequence (uo , 8 - 0} converge, for which topologies, and can one characterize this
limit as the solution of a (new) optimization problem? These questions are answered in
the framework provided by the theory of epi-convergence that we review quickly in the

next section.

For numerical reasons, as well as for calculating error bounds and estimates, one often

needs more information about how (at which rate, e.g.) the u03B8 approach their limit. This

can be done either by introducing epi-metrics, in particular the epi-distance, to measure

the rate at which the functions 18 converge to fo. This leads to quantitative stability

results, cf. Section 4. Or, in certain particular cases one may hope for an asymptotic

expansion of the solution Us which respect to 03B8

The question is to determine uo, ul, u2, ... and to characterize them as solutions of new

variational problems. Let us proceed here at a formal level and assume that such a devel-

opment exists. From Theorem 2.3, assuming that

we would have
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This brings us to consider an expansion for fe of the following type:

or equivalently

We refer to these as asymptotic epigraphical expansions. D

For the same reasons as those for which the equation: given f, fo, find 11 such that

has in general no solution, one cannot, in general, find epigraphical expansions. The space
of extended real-valued functions with the epi-addition is an additive semigroup, not a

group, cf. Theorem 2.2. An interesting question is to characterize the class of funtcions

for which the preceding equation has a solution. It follows from the recent work of Hiriart-

Urruty and Mazure [29], and M. Volle [40], that a solution fl, if it exists, is given by the
formula:

A promising approach to the existence question, as well as the actual calculation, of asymp-
totic expansions for the solution relies on the second order epigraphical differential

calculus, cf. Section 5.

We shall return to this after we have introduced the appropriate topological concepts
that will allow us to understand in which sense we must interpret limits, approximations,
etc.

Many of the classical operations on functions find their natural interpretation in the

epigraphical setting. In particular, let fi and 12 be two extended real-valued functions

defined on X. Then

where for all x,

Also, let g ? J~ x ~’ ~ IR with Y another vector space and define the infim aJ function



85

This function, also called the marginal value function or the perturbation function, plays an

important role in optimization (mathematical programming, calculus of variation, dynamic
programming, optimal control, etc.). The operation, identified by (2.18), is called epi-

projection, in view of the following identity

where prjy x R is the projection operator defined by

To establish (2.19), simply note that

or equivalently

The epi-addition and the epi-multiplication have been introduced historically as "dual"

operations corresponding respectively to the classical sum of (convex) functions and scalar

multiplication of functions. Suppose that X is paired with X* 
* through the bilinear form

~-, ), and f is an extended real-valued function defined on X. The Legendre-Fenchel
transform f ~ f * , where f * : X * ~ IR is defined by

This function, called the conjugate of f, is clearly a convex function, since in view of (2.16),

and for all x, f (x)) is a (convex) half-space.

Proposition 2.5. Let f, g : X ~ IR, be any two functions, and 03BB a positive scalar. Then

ajjd
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Proof. From the definitions, we readily have

Also,

when A &#x3E; 0.

From this proposition, and the fact that f** 
*  f, we also have that

and

To obtain equalities one needs f** = f, g** = g. This requires f and g to be proper, lower

semiontinuous and convex, or identically +00 or 2014oo. If, moreover ( f* + e g* )** = f* +~’,
then (2.22) becomes

3. Epigraphical regularization

The epi-addition has a smoothing effect. By this, one means that a function obtained as

an epi-sum is at least as "smooth" as any of its elements, up to Cl regularity; this is
a general phenomenon when dealing with unilateral variational problem. This provides a
natural bridge between epigraphical analysis and classical analysis. As we shall see, by

choosing appropriately the regularizing term in an epi-sum, one can endow the resulting
function with the appropriate differentiability properties; this smoothing effect could in
some way, justify calling the epi-addition an "inf-convolution" .

To begin with, let us consider the epi-sum of an arbitrary function and a "kernel" of
the type (~p)- I ~~ ~ 



87

Definition 3.1. Let ~) be a normed linear space. Given p E and ~1 &#x3E; 0, the

epi-regularization of index A of a function f : X ~ IR is defined as

Explicitly

This terminology is justified by the following result.

Proposition 3.2. Let (X, 11.11) be a normed linear space A &#x3E; 0, p E [1, oo), and f : X - iR.

Suppose that for some ao E 1R, al E f majorizes ao - i.e.,

Then, provided 0  A  2~(o’ip)-B
fx is lipschitz continuous if p = 1

fa is locally lipschitz continuous if p &#x3E; 1,

and the lipschitz constants depend only on the value of the function at one point, and on

03B10,03B11 and A; moreover this dependence is continuous.

Proof. A number of related results have been obtained recently, see Attouch [3], Fougeres
and Truffert [26], Attouch, Aze and Wets [4]. This particular theorem can be found in

Attouch and Wets [9, Lemma 3.2]. 0

Remark 3.3. Geometrically, the preceding result takes the following form:

Now observe that epi is a "smooth" set ifp&#x3E; 1. The statement would thus

follow from the general fact: "if D is a smooth set, then C + D inherits the regularity of
D". We prove next a result of this type that has various implications.

Proposition 3.4. Let H be a hilbert space and p : ~f 2014~ a potential, i.e., ;,~ is

continuously differentiable, strictly con veY and coercive, ct,(0) = 0 and for any u and any
sequence E IN} one has

Then, for any function f : H --~ con irex, proper and lower semicontinuous; its

03C6-epi-regularization
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is contin uously differen tiable.

Moreover, for any non empty closed con vex set C C H one has :

where

and $c- js the indicator function of the set C. This means that C + B03C6 js a smooth set in the

following sense: jt is equal to the level set lev03B1 g with x &#x3E; inf g, of a convex continuously
differentiable functjon g.

Proof. From convex calculus (recall that 03C6 is coercive), we know that the infimum in the

expression (2.2) that defines (/+ ~)(~) is achieved at a unique point that we denote by
J~ (~).

and

see, e.g., Laurent [31], Aubin and Ekeland [12].

Thus, 8( f + 03C6)(x) is reduced to a single element, and hence f + p is gateaux differen-
tiable. Frechet differentiability of f + p will follow if we prove that the gateaux derivative
is continuous. In view of the preceding relations, this boils down to showing that

using here the fact that ~y~ is continuous.

Let {x03BD, 03BD E be a sequence converging strongly to x. The coercivity of 03C6 guaran-
tees the boundedness of the corresponding sequence ~J~ (x" ), v E For all u in H, we

have

and after extracting a weakly convergent subsequence such that J03C6(x03BD’ )-z, we pass to
w

the limit to obtain
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Note that we only used the convexity and lower semicontinuity of f. The preceding in-

equality implies that

2- =J~(3-),

and that the whole sequence E IN} converge to J,~ (~). As a consequence of

this, we obtain the convergence of the infimal values:

Since

we have that

which with the preceding inequalities yields

Hence

Now, use the fact that p is a potential to conclude that And this com-
$

pletes the proof of the frechet differentiability 
We now turn to (3.3). Note that

The assertion now follows from the first part of the proof with f = 0

Let us consider a special case of this result. For any A &#x3E; 0, define (~) _ (2,À)-1I1xIl2.
Clearly, px is continuously differentiable on a hilbert space. For any proper lower semi-

continuous convex functions f : H ~ (-00, ~] and 03BB &#x3E; 0, we set:
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In view of the previous proposition, the function f a is continuously differentiable. This

particular result was first obtained by Brezis [18]. These functions {f03BB, 03BB &#x3E; 0} play a
fundamental role in optimization theory and are called Moreau- Yosida approximates. The
reference to Yosida approximation (which usually refers to approximating operators) is

justified by the following property:

where (8,f )a is the Yosida approximate of the maximal monotone operator af .

4. Epigraphical Limits

We only review here a few of the main features of this theory which has received a lot of

attention during the last decade. For more about epi-convergence, the reader could refer

to the book on "Variational Convergence for Functions and Operators", Attouch [3].
Let be a normed linear space, {/*’ : X ~ IR, v E IN} a sequence of extended

real-valued functions defined on X. We say that the fll epi-converge to f at x, if

(i) for any sequence E IN } converging to x, lim infv /"(3’") &#x3E; f (x), and

(ii) there converging to x such that lim sup" f (x).

Note that these conditions imply that f is lower semicontinuous. We then say that f is

the epi-limit of the f L , and write f = epi-lim f" . We refer to this type of convergence

as epi-convergence, since it is equivalent to the set-convergence of the epigraphs. Interest

in epi-convergence stems from the fact that from a variational viewpoint it is the weakest

type of convergence that possesses the following properties:

Proposition 4.1. (Rockafellar and Wets [39]) Suppose {/;/~ : X 2014~ = 1, ...} is

a collection of functions such that f = epi-lim f". Then
v- 00

and, if

~’~ E argniin ,fYk for some subsequence {vk, k = 1, ...~

and x = limk~~ xk, it follows that

and
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so in particular if there exists a compact set D C X such that for some subsequence

1,...},

then the minimum of f is attained at some point in D.

Moreover, if argmin f ~ 0, then (inf IV) = inf f if and only if ac E argmin f

implies the existence of sequences {E" &#x3E; 0, v = 1,...} and ~~" E X, v = 1,...} with

such that for all v = 1,...

We will not provide an overview of epi-convergence (sometimes called r-convergence,
DeGiorgi [24]). We shall limit ourselves to a brief introduction to the recently developed
quantitative theory and stating one result that illustrates the relationship between taking

epigraphical limits and operations. We begin with this latter.

Proposition 4.2. Suppose (X, BI . II) is a normed linear space, and f", 1/ E 

- {g; g1/, 1/ E IN} two collections of extended real-valued functions defined on X, such that

Suppose also that E IN}, are equi-inf-com pact, i.e., for all a the level sets

are contained in a compact set, for v sufficiently large; and suppose that {inf g", v E IN} are

(equi-)bounded below, i.e., there exists /3 E IR such that for v sufficiently large inf g" &#x3E; ~3.
Then

Proof. It is immediate that +~") ~ /+~- The converse inequality
e t~

f + g  +~) is derived from the argument that follows. Whenever
e e

03B3 &#x3E; lim inf03BD~~ (/" + g03BD)(z), there exits a sequence {z03BD,03BD ~ passing to a subsequence
if necessary, such that
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By definition of epi-sum, it follows that there exist v E v E such that

x" + y" = z", and

Since the g" are equi-bounded below, for v sufficiently large, we have that f " (z" )  Î - {3.
This means that from some v on, all x" belong to a compact set contained in lev~_~ f’ .
Again passing to a subsequence, if necessary, let x denote the limit of the sequence 

IN}. The corresponding sequence {y", v E IN) then also converges to z - x := y. From
these observations, it follows that

The first inequality follows from the definition of epi-sum, and the second one from the

epi-convergence of the f " and g" to f and g. 0

We now turn to the definition of a distance between functions that would be compatible
with the topology of epi-convergence. Let d the distance function generated by the norm

on X, and let d(x, C) denote the distance from ~ to C; if C = 0, set C) = For any

p &#x3E; 0, pB denotes the ball of radius p and for any set C,

For the "ezcess" function of C on D is defined as,

with the convention that For any p &#x3E; 0, the p-(Hausdorff-)distance between
C and D is given by

Definition 4.3. (Attouch and Wets [9]) For p &#x3E; 0, the 03C1-(Hausdorff-)epi-distance be-

tween two extended real valued functions f,g defined on X, is

where the unit ball of X x IR is the set B := BX {(~, a~ :  1,  1~.

Convergence with respect to the epi-distances is somewhat stronger than epi-conver-

gence, at least in the infinite dimensional case, when X is a reflexive Banach space and
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epi-limits are defined in terms of Mosco-convergence, i.e. epi-convergence 
with respect to

both the strong and the weak topology on X. Let {~ : X - = 1,...} be a sequence
of functions. We say that f is the Mosco-epi-limit of this sequence, if for all x in X:

for any sequence v = 1,...} converging weakly to z, &#x3E; f(x),

and

there exists = 1,...} converging strongly to x such that lim sup f03BD (03BD) ~ f(x).
v

Proposition 4.4. Suppose X is a reflexive Banach = 1, ...~ a collection
of proper, extended real valued, lower semicontinuous, convex functions defined on X.

Then,

for all p sufficiently large implies

Moreover, jf X (== IR") is finite dimensional, the epi-distance topology is the epi-topology,

i.e., the topology of epi-convergence (without any convexity assum ptions ).

The proof can be found in Attouch and Wets [9], where one can also find an example of
a sequence of functions defined on a hilbert space that epi-converges but has no limit with

respect to the epi-distance. This, however, does not paint the full picture. It is also shown

in [9, Theorem 4.7] that most, if not all, of the known applications of epi-convergence in
infinite dimensions are such that Mosco-epi-convergence and convergence with respect to

the epi-distance coincide.

These pseudo-distances are not the only ones that could be used to quantify epi-

convergence. In Attouch and Wets [7], we introduce a notion of distance based on epi-
graphical regularization. For fixed p E (1, oo) and A &#x3E; 0, we work with the following

epigraphical regularization: := f + This leads to the following notion of
distance between two functions f and g:

Assuming that f and g are proper, this quantity is well defined since both fx and ga are
then bounded on bounded sets. The next theorem puts forward the relationship between
these pseudo-distances and the epi-distance.
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Theorem 4.5. (Attouch and Wets [9]) L et f an d g be t wo extended real valued functions
defined on a normed linear space (~~ ~ ’ ~), such that for some 0 and al E R,

for 1 ~ p  ~. Then for 0  À  (03B10p)-121-p, and p &#x3E; 0

with the constants 7 and ~3 depending only on the norm of a point at which f and g
are finite and the corresponding values of f and g, on 03B10, 03B11 and of course, on p and .1.

Similarly, for all 0  À  (aQp)-121-p, and

we have

We are thus dealing with the same uniformities. The epi-distance is relatively easy to

calculate or to estimate, one can use the Kenmochi conditions [9, Section 2] or the results of
Aze and Penot [13] who derive bounds for the p-Hausdorff distance between sets obtained
as the results of various operations (union, intersection, addition, etc.). On the other

hand, the distances ~jB ~ are better suited for theoretical investigations; for example, one
can demonstrate that the Legendre-Fenchel transform is an isometry for those distances

f7).
We have used these distances to derive holderian and lipschitzian properties for the

optimal and c-solutions of optimization problems, cf. Attouch and Wets [8], [10]. For

example, in the normalized case (xl == 0 and = 0), when f is quadratically "con-
ditioned" at 0, i.e., f (x) &#x3E; = cp(x) for  1, and g is some approximation or

perturbation of f, with x9 a corresponding minimizer, Theorem 4.1 of [8] asserts that

provided that the epi-distance (of parameter p) hausp ( f, g) is sufficiently small. We also
showed that this holderian stability result is optimal.

These, and related considerations, seem to suggest that the epi-distance topology (or
equivalently, the topology generated by the pseudo-distance plays a central role in the



95

theory of epi-convergence. It allows for the development of a quantitative theory of epi-
convergence (used to derive error bounds for the solution of approximating optimization
problems), the Legendre-Fenchel transform is bicontinuous with respect to this topology
(in fact, isometric properties can be derived), and, convergence with respect to the epi-
distanc.. is sufficient general so that all significant applications are covered. We know a few
of its properties, for example, the space of extended real-valued functions equipped with
the uniform structure generated by the epi-distances p &#x3E; 0~ is complete when X
is finite dimensional or if X is a reflexive Banach space and the functions are proper, lower

semi continuous and convex. Certainly a much more thorough study of this topology is
warranted.

5. Epigraphical Differential Calculus.

The concept of epi-derivative has emerged from the need to push the sub differential calculus
beyond that for first order derivatives; consult, for example, the work of Aubin [11] on
the differentiability of multifunctions (as it applies to subgradient multifunctions), and of
Rockafellar [37], [38] on the second order generalized derivatives.

Definition 5.1. Suppose f is finite at x with f an extended real-valued function defined
on a normed linear space X. If

is a well-defined function (possibly with values then f is said to be epi-differen tiable
at x. The function y - Dt y) is the directional epi-derivative of f at ~.

The difference with the classical definition of directional derivatives is the use of epi-
limits instead of pointwise limits. We are lead to this in the most natural way if we
approach the problem geometrically.

For {C03BD C X, v E N} be a filtered family ( N, H), let

where ?-~# _ ~ H’ C N H’ C H ~ 0, VH E H) in the grill of ~’-L, and
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We have the following notions of tangency: for ~~ E cl K, K C X,

where ~’ ~~~ means that the convergence takes place with ~’ in K. Obviously all these
K

cones are closed, and

A particularly nice feature of CK is that it is convex. We say that 7T is proto-differentiable
at ~~ if TK = AK, i.e., the Painleve-Kuratowski limit

exists. All of this leads to natural definitions of differentiability for multifunctions. Let X

and Y be two normed linear spaces and r : X ~ Y a multifunction (set-valued map). By

we denote the graph of r. For y~ E we define the differentials of r at y~) as
follows

it is proto-differentiable at 

The epi-derivative is related to the subdifferentials of multifunctions in the following
way: given f : X - [-ex:&#x3E;, we associate to it the multifunction

where

Then
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and

We have

... -

where the epi-lim inf is the function whose epigraph is the Lim sup of the epigraphs, see

3 for example,

where the epi-lim sup is the function whose epigraph is the Lim inf of the epigraphs, and

Moreover r is proto-differentiable at if and only if f is epi-differentiable at x~.
In the case of proper, lower semicontinuous convex functions, the notion of a second

order epi-derivative also follows in a natural way from the multivalued subdifferential

calculus. Let f : H - (-00,00] be a proper, lower semicontinuous convex function defined
on the hilbert space H. In computing the differentials of the subgradient map x ~ 
at a point E gph 8 f , we utilize the following facts:

(i) h-l[gph8j - = + h.) - ~(.~ v~~~
(i) convergence of subdifferentiable multifunctions is equivalent to the Mosco-epi-conver-

gence of the associated proper, lower semicontinuous, convex functions, see Attouch

[3]. Recall that Mosco-epi-convergence requires epi-convergence with respect to both
the strong and the weak topology on H.

From this follows a notion for second order epi-derivative (Rockafellar [38], Ndou-
toume [34])

To conclude, let us give the definition of epi-integral. Aumann, see [20] for example,
introduced the following definition for the integral of a multifunction. Let r : (H, A, ~ ’Y

be a measurable multifunction. Then
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Taking closure is at variance with Auman’s definition; we do it here because we deal
with closed-valued multifunctions whose integrals should also be closed. A function f :
X x (-00,00] is a normal integrand if the epigraphical multifunction w ~ epi 
is a closed-valued measurable multifunction and the epi-integral is defined as

(The operation ~ - has also been called the continuous inf-convolution.) One can

prove the following formulas, when f is jJ-atom convex [2] :

where co takes the convex closure, and cl the lower semicontinuous closure. The first one

of these two expressions follows from the second one, which in turn can be derived from

the identity
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