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1. INTRODUCTION

In this paper we deal with sequences of optimal control problems of the form
1

®) min {th(KJY,U) dt @ y=g (Ly.w),yO)=y }
0

where the state variable y belong to the Sobolev space W171(0,1;R“) and the control variable u
isin L1(0,1;R™). We are interested in the asymptotic behaviour (as h—+<2) of the optimal pairs
(upsyp) of (Py); more precisely, we shall construct a new problem (P_,) such that
if (un.yy, ) is an optimal pair of (Py) and if (uy,,yy,) tends to (4,.,Yo.) in the topology
wL1(0,1;R™)xL>>(0,1;RD) , then (UoasYoo) IS an optimal pair for (P,,).

The basic tool for treating the asymptotic problem above is the I-convergence theory which
has been already used very fruitfully for many variational problems (see for istance[1],[2],[4],
(S1I8LI9D)

Here we use a more sophisticated version of the usual I'-limits, because we shall consider
our problems (Pp,) as minimzation problems on the product space UxY (U is the space of

controls and Y the space of states) for the functionals
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1
j fi(ty,u)dt if y'=g (ty,u), y(0)=yfl
FQuwy) =13
400

otherwise ,
and the spaces U and Y will play a different role with respect to I'-convergence.
In Section 2 we develope the abstract theory we shall need in the following; in Section3 w
show the applications to problems (P},) above, and we give an example showing that in sony
situations the domain of problem (P,,) is not given by a state equation y'=g,,(t,y,u) b

coincides with the entire product space UxY.

2. THE ABSTRACT FRAMEWORK

Let us denote by U and Y two topological spaces and let Fh:UxY—;I-{- be a sequence o:
functions; by Z(+) we shall denote the "sup” operator and by Z (-) the "inf" operator. For ever
ue U and ye Y we define

T NUAYDImF @y = Z®) 20  Ze) Zo F,y)
h (w)eSw)  ()eSw) keN h2k

where B,y are the signs + or —, and S(u) and S(y) respectively denote the set of all sequences
up—uin U and y,—y in Y. For example we have

rseq(N*,U‘,Y*) imF,(y) = inf sup limsup F(u,y,) .
wou oy -y h—ee

When a I'-limit is independent of the sign + or — associated to one of the spaces N,U,Y
this sign will be omitted. For example, if

I NUY) lim Fy(uy) = T NSUTY) lim Fy(w.y) ,

then their common value will be indicated by I‘seq(N+,U,Y+) lim Fh(u,y) .
h
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The following propositions are proved in [4].

PROPOSITION 2.1, Ler (uy,,yy,) be @ minimum point for Fy, , or simply a pair such that

lim F,(uy,) = lim[infF, ] .
, AL AN ey

Assume that (uy,yp,) converges 10 (Uo,.Yoo) in UXY and that there exist

F. = [ NUY)lmF, .

Then we have
(D) (UpoYoo) is @ minimum point for F, on UXY;

@ Jm[infF] = minF_.
h UxY UxY

PROPOSITION 2.2, Let {Fy} and {Gy} be two sequences of function from UXY into [0,+=],
and let (u,y)e UXY . Assume there exist

TNU D EmE@y  ad T NUY)lmGuy) .

Then we have

Ta®U YD) lim [F+G, Jwy) = T (NU D 1mFuy) + T (NUY)lim Gyuy) -

In many applications, the introduction of a new auxiliary variable can be helpful; the

following proposition shows the behaviour of T™-limits with respect to this operation.

PROPOSITION 2.3, Let Fyy:UxY—R be a sequence of functions, let V be another topological
space, and let Zp:UxXY— o (V) be a sequence of multimappings. Assume that the following
compactness condition is satisfied:
for every converging sequence (uy,yy) with Fy(up,yp) bounded, there exist a
sequence vpe Zy, (up,yy,) relatively compactin V.

Then serting
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Fh(u,y) if ve Eh(u,y)
d‘th(u,v,y) =

+o0 otherwise ,

we have for every (0,y)e UXY
inf {I‘seq(N',(UxV)',Y') lim ®,(u,v.) - veV} <

— o — o 1 + = e
< I'seq(N JULY )l}lm Fh(u,y) < I'seq(N ,ULY )l}\m Fh(u,y) <

IA

. + — N 1 .
inf {I (N",(UxV)Y") lim &, (w,v.y) = ve v}.
Therefore, if for every (u,v,y)e UXVXY there exists

L (N(UXV),Y) I}Im D, (wv.y) ,

we have
[ USY) limFy(uy) = inf {r Ny lim @, ,v.y) : veV} .

Proof, It is enough-to repeat, with just some slight modifications, the proof of Proposition 24

of [3]. =

In the following, if A is a set we denote by X o the function
I 0 ifxeA

X, ) =
A [ 4o otherwise .

3. APPLICATIONS TO CONTROL PROBLEMS

Let k,m,n be positive integers and let p>1. The space Y of states we consider is the

Sobolev space W1-1(0,1;R™) endovedwith the L°(0,1;R™) topology, and the space U of
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controls is the space LP(0,1;R™) endowed with its weak topology (weak* if p=+ee). The cost

functions are of the form
1

3.1) Jh(u,y) = Ifh(t,y,u) dt
0

where f,:[0,1]xRPXR™—[0,+<] are Borel functions. Finally, the state equations are
62) {y‘e ah(to,y) +B,(ty) b (t,u)
y(©)=y,
where ap,:[0,1]xR?"—»R™ and Bh:[O,l]xR“—>Rnk are Borel functions, and the multimappings
by:[0,11xR™— ¢ (R™X) are Borel mesurable (i.e. the sets {(t,u,v)e [0,1]¥RM=RK : ve by (t,w)
are Borel sets).
Then the control problems we are concerned are
(®p)  inf {Juy) @ y)eAp)
or equivalently
®p  inf {Fp(uy) : (uy)eUxY}

where
33) A, = {(u,y)e UxY : y'ea, (ty) + B (ty) b (t,u), Y(0)=Y(}),}
(3.4) Fo=J+x, -

We introduce now an auxiliary variable ve Lq(O,l;Rk) with ¢>1 and define a new sequence
of functionals by setting
F(uy) if veb (tu)

(3.5) D, (uv.y) = {
400 otherwise .

In this way the problems (Py,) take the form

Tat : y=a,(ty) + B (ty) v, y(O)=y}} .

1
inf {J[fh(t,y,u) *Xve by (L)}

In order to apply the abstract theory presented in Section 2 (more precisely Proposition

2.1), we have to calculate the T" seq(N ,U%Y") limit of the sequence Fy, . To do this, we make
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some hypotheses on f}, , ap, , By , by, .
(3.6)  For every te[0,1], 120, ye R™ with lyl<r we have Gf 1/ + /= 1)
la.h(t,y)l < Mh(t,r) with Ith(~,r)IIL1(O I)S M(r) < +e0
B, (t, )t < N, (t,r) with NGO . SN <o .
LN | 0,1

y

3.7 For every te [0,1], 120, y1,yo€ R? with Iy Lly,i<r we have
la (ty)) —a (tLy )l S o (D) ly —y,l with 'lcth(-,r)llLl o1 Sar) <+
B, (t.y,) - B,y < Bh(t,r) ly,;~y,! with IIBh(-,r)HLq.(O 1)5 Br) < +oo .

3

(3.8)  There exist A>0 and ae L1(0,1) such that

P a4y 0
MiaPr -2 < 0D+

for every te [0,1], ue R®, ve RK. When p=-+eo Or g=+o the quantities lulP and W in
the left-hand side have to be substituted by X{ueH}) and x {ve K| Tespectively, where
HcR™ and KcRK are bounded sets.

3.9) For every t€ [0,1], 120, ue R™, y;,y,€ RT with lyLly,l<r we have
(o-1)a
£ (LY S £ (Ly,0) +p (Ll ~y,) + O (Ll -y,D If, ¢y vl

for a suitable ae [1,+e<] and functions p(t,s) , 6;(t,s) from [0,11x[0,+ee[ into [0+«
measurable in t, increasing and continuous in s, with p;(t,00=0.(t,0)=0, and such that
Z-3p{t,lz(DD) , z—0.(t,1z(1)]) are continuous operators from Y into Ll(O,l) ,L%0,1
respectively.

(3.10)  There exist upe LP(0,1;R™) and v, e L9(0,1;RX) such that Vh(De by (tup () for ae.

te (0,1), and the sequence f},(t,0,up (1)) is weakly compact in Ll(O,l).

LEMMA 3.1, Under the previous assumptions, the following compactness condition is
satisfied: for every converging sequence (up,yp) with Fy(up,yp) bounded, there exists a
sequence {vy} relatively compact in V such that for a.e. t€ [0,1)

vy (D€ b, (tuy (1)) and  y,(D=a,(ty, () + By (Ly, (D) v, (®) .
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Proof, Let (up,,y},) be converging in UXY with Fy(up,,y},) bounded; then we have (uy,yp)e Ay, ,
so that we can find measurable functions vp(t) with
vi(eb tu®)  and ¥, =a(ty,®) + B (ty,®) v,
for a.e.te [0,1]. It remains to prove that the sequence vy, is bounded in Lq(O,l;Rk). Since yy, is
uniformly bounded, by (3.8) and (3.9) we have for a suitable r>0
A, P+ v, 1) —a@) < £,(t0u) <

(a-1)a
£, (ty,u)+p 0+ o lf Ly upl <

A

A

c fty.u) + ¥
where ¢>0 is a constant and ye L1(0,1)‘ Then, from the boundedness of Jj,(up,yp,) we get that
vh is bounded in L4(0,1;RK).

By Lemma 3.1, Proposition 2.3 applies, so that we have reduced our problem to the

characterization of the I"seq(N L(UxY)",Y") limit of the sequence ®y,(u,v,y) defined in (3.5). Set

now
f(tyuv) = f(tyu)+
AGARY ALY x{vebh(t,u)}
1
Jh(u,v,y) = th(t,y,u,v) dt
0
- 0
A= {(u,v,y)e UxVxY : y'=a(ty)+ B (ty) v a.e.on {o,13, y(0)=yh} .
Therefore
D =T +-
= Tht X A

and, by Proposition 2.2 we may split the I"seq(N,(UxY)‘,Y‘) limit of &y, into the sum

G.11) T UxVY D) limT, + TgNUXV.Y) lim xxh

The two terms in the sum above can be computed by using Lemma 3.1 and Theorem 3.4 of [4].

More precisely we have
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PROPOSITION 3.2, Assume that (3.8),(3.9).(3.10) hold and that for every ye R®, Rt
k
nekR

(3.12) T .y.Em) = oCy.En) weaklyinL'(0,1)
where E: are the polar functions of T, defined by

f_h‘(t,y,i.'n) = sup {iu +1nv —f-h(t,y,u,v) : ueR™, ve Rk} .

Then, for every (u,v,y)e UxVxY we have
1

LUV imTvy) = oGy dt
h
0

where @ is the polar function of ¢.

PROPOSITION 3.3, Assume that (3.6),(3.7) hold and that
(3.13) for every yeRY  ay(-y)—a(y) weakly in L1(0,1;RD);
(3.14) for every yeR® By (-y)=B(.y) strongly in L9'0,1;R0K);

n

3.15) y -y inR".

Then we have
L NUXV.Y') lim xxh = %

where
A = {(@v.y)eUxVxY : y =a(ty) + Blty) v, y0)=y’} .

Finally, we are in a position to compute the I seq(N,U',Y‘) limit of Fy, . In fact, by
Propositions 2.3, 3.2, and 3.3, and by (3.11) we get for every (u,y)e UxY
iy seq(N,U_,Y_) lim F(wy) =

1
= inf { j¢'(t,y,u,v) dt : y'=a(ty) +B(ty) v, y(0)=y0} =
0
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1
= Jf(t,y,u,){’) dt + g 0
5 {y©O)=y'}

where the function f is defined by
ft,y,u,w) = inf {jt,y,u,v) : w=a(ty) +Bty) v}.

We conclude with an example showing that in general the domain of the limit functional
1

F(uy) = J.f(t,y,u,y') dt + x 0
H {y(O)=y}

is not given by a differential equation of the form y'=g(t,y,u) but may be the whole space UxY.

EXAMPLE 3.4, Consider the sequence of optimal control problems
1
®) min { j[u2+ ly—yo®F]dt : y=a@y+b®u, y0)=t}
0

where u varies in U=L2(0,1), y varies in Y=W!1(0,1), and y,e L2(0,1), &R are given.
About the functions ay, and by, we assume that

[ a, —>a  weaklyinL'(,1)

1 b,—b  weakly inL7(0,1)

lbf > B> weakly inL™(0,1).
It is not difficult to check that all hypotheses (3.6),...,(3.10) and (3.12),...,(3.15) are satisfied,

and after some standard calculations we find that the limit problem (P,,) has the form

ly' —a(®) y — bt) ul®

1
®) min { [[u*+ ty yofs LZ2X208 Tae : y)=¢} -
H B®-b"(n

Note that itis p2()2b2(1) for a.e. te[0,1], and
B2=bZae.on[0,1] & bp—b ae.on[0,1].
In this last situation, problem (P,,,) takes the usual form

1
®) min {J.[u2+ ly —yo(t)lz] dt : y=a@®y+b®u, y(0)=§} .
0
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but this does not arrive in the general case. Take for instance

bp() = sin(ht)

and we get b=0 and B2:-=1/2 » S0 that the limit problem is

f1]

[2]

[3]

(41

[5]

[6]

M

[8]

9]

1
min {J.[u2+ ly y,OF+ 2ly—a@y’] dt : y©=£} .
0
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