LIMIT PROBLEMS IN OPTIMAL CONTROL THEORY

G. BUTTAZZO

Dipartimento di Matematica, Via Machiavelli, 35, 44100 Ferrara, Italy

E. CAVAZZUTI

Dipartimento di Matematica, Via Campi, 213/B, 41100 Modena, Italy

1. INTRODUCTION

In this paper we deal with sequences of optimal control problems of the form

(P_h)
$$\min \left\{ \int_{0}^{1} f_{h}(t, y, u) dt : y' = g_{h}(t, y, u), y(0) = y_{h}^{0} \right\}$$

where the state variable y belong to the Sobolev space $W^{1,1}(0,1;\mathbb{R}^n)$ and the control variable u is in $L^1(0,1;\mathbb{R}^m)$. We are interested in the asymptotic behaviour (as $h \to +\infty$) of the optimal pairs (u_h, y_h) of (P_h); more precisely, we shall construct a new problem (P_∞) such that

if (u_h, y_h) is an optimal pair of (P_h) and if (u_h, y_h) tends to (u_{∞}, y_{∞}) in the topology $wL^1(0,1;\mathbb{R}^m) \times L^{\infty}(0,1;\mathbb{R}^n)$, then (u_{∞}, y_{∞}) is an optimal pair for (P_{∞}) .

The basic tool for treating the asymptotic problem above is the Γ -convergence theory which has been already used very fruitfully for many variational problems (see for istance[1],[2],[4], [5],[8],[9])

Here we use a more sophisticated version of the usual Γ -limits, because we shall consider our problems (P_h) as minimization problems on the product space U×Y (U is the space of controls and Y the space of states) for the functionals

$$F_{h}(u,y) = \begin{cases} \int_{0}^{1} f_{h}(t,y,u) dt & \text{if } y' = g_{h}(t,y,u) , y(0) = y_{h}^{0} \\ +\infty & \text{otherwise} \end{cases}$$

and the spaces U and Y will play a different role with respect to Γ -convergence.

In Section 2 we develope the abstract theory we shall need in the following; in Section3 we show the applications to problems (P_h) above, and we give an example showing that in some situations the domain of problem (P_∞) is not given by a state equation $y'=g_{\infty}(t,y,u)$ bu coincides with the entire product space U×Y.

2. THE ABSTRACT FRAMEWORK

Let us denote by U and Y two topological spaces and let $F_h: U \times Y \to \overline{R}$ be a sequence of functions; by Z(+) we shall denote the "sup" operator and by Z (-) the "inf" operator. For every $u \in U$ and $y \in Y$ we define

$$\Gamma_{seq}(N^{\alpha}, U^{\beta}, Y^{\gamma}) \lim_{h} F_{h}(u, y) = \begin{array}{cc} Z(\beta) & Z(\gamma) & Z(-\alpha) & Z(\alpha) & F_{h}(u_{h}, y_{h}) \\ (u_{h}) \in S(u) & (y_{h}) \in S(y) & k \in \mathbb{N} \end{array}$$

where α, β, γ are the signs + or -, and S(u) and S(y) respectively denote the set of all sequences $u_h \rightarrow u$ in U and $y_h \rightarrow y$ in Y. For example we have

$$\Gamma_{seq}(N^+, U^-, Y^+) \lim_{h} F_h(u, y) = \inf_{u_h \to u} \sup_{y_h \to y} \lim_{h \to \infty} F_h(u_h, y_h) \ .$$

When a Γ -limit is independent of the sign + or – associated to one of the spaces N,U,Y this sign will be omitted. For example, if

$$\Gamma_{seq}(N^+, U^-, Y^+) \lim_{h} F_h(u, y) = \Gamma_{seq}(N^+, U^+, Y^+) \lim_{h} F_h(u, y)$$
,

then their common value will be indicated by $\Gamma_{seq}(N^+,U,Y^+) \lim_{h} F_h(u,y)$.

The following propositions are proved in [4].

PROPOSITION 2.1. Let (u_h, y_h) be a minimum point for F_h , or simply a pair such that

$$\lim_{h} F_{h}(u_{h}, y_{h}) = \lim_{h} \left[\inf_{U \times Y} F_{h} \right]$$

Assume that (u_h, y_h) converges to (u_{∞}, y_{∞}) in U×Y and that there exist

$$F_{\infty} = \Gamma_{seq}(N, U, Y) \lim_{h} F_{h}$$
.

Then we have

- (i) (u_{∞}, y_{∞}) is a minimum point for F_{∞} on U×Y;
- (ii) $\lim_{h} \left[\inf_{U \times Y} F_{h} \right] = \min_{U \times Y} F_{\infty}$.

<u>PROPOSITION 2.2.</u> Let $\{F_h\}$ and $\{G_h\}$ be two sequences of function from U×Y into $[0,+\infty]$, and let $(u,y) \in U \times Y$. Assume there exist

$$\Gamma_{seq}(N,U^{-},Y) \lim_{h} F_{h}(u,y) \quad \text{ and } \quad \Gamma_{seq}(N,U,Y^{-}) \lim_{h} G_{h}(u,y)$$

Then we have

$$\Gamma_{seq}(\mathbf{N}, \mathbf{U}^{-}, \mathbf{Y}^{-}) \lim_{h} \left[F_{h} + G_{h} \right](\mathbf{u}, \mathbf{y}) = \Gamma_{seq}(\mathbf{N}, \mathbf{U}^{-}, \mathbf{Y}) \lim_{h} F_{h}(\mathbf{u}, \mathbf{y}) + \Gamma_{seq}(\mathbf{N}, \mathbf{U}, \mathbf{Y}^{-}) \lim_{h} G_{h}(\mathbf{u}, \mathbf{y}) + \Gamma_{seq}(\mathbf{N}, \mathbf{U}, \mathbf{y}) + \Gamma_{seq}(\mathbf{U}, \mathbf{y}) + \Gamma_{seq}($$

In many applications, the introduction of a new auxiliary variable can be helpful; the following proposition shows the behaviour of Γ -limits with respect to this operation.

<u>PROPOSITION 2.3.</u> Let $F_h: U \times Y \to \vec{R}$ be a sequence of functions, let V be another topological space, and let $\Xi_h: U \times Y \to \wp(V)$ be a sequence of multimappings. Assume that the following compactness condition is satisfied:

for every converging sequence (u_h, y_h) with $F_h(u_h, y_h)$ bounded, there exist a sequence $v_h \in \Xi_h(u_h, y_h)$ relatively compact in V.

Then setting

$$\Phi_{h}(u,v,y) = \begin{cases} F_{h}(u,y) & \text{if } v \in \Xi_{h}(u,y) \\ +\infty & \text{otherwise} \end{cases},$$

we have for every $(u,y) \in U \times Y$

$$\begin{split} &\inf\left\{\Gamma_{seq}(\mathbf{N}^{-},\!(U\!\times\!V)^{-},\!Y^{-})\lim_{h}\Phi_{h}(u,v,y)\,:\,v\!\in\!V\right\} \leq \\ &\leq \Gamma_{seq}(\mathbf{N}^{-},\!U^{-},\!Y^{-})\lim_{h}F_{h}(u,y)\,\leq\,\Gamma_{seq}(\mathbf{N}^{+},\!U^{-},\!Y^{-})\lim_{h}F_{h}(u,y)\,\leq \\ &\leq \inf\left\{\Gamma_{seq}(\mathbf{N}^{+},\!(U\!\times\!V)^{-},\!Y^{-})\lim_{h}\Phi_{h}(u,v,y)\,:\,v\!\in\!V\right\} \,. \end{split}$$

Therefore, if for every $(u,v,y) \in U \times V \times Y$ there exists

$$\boldsymbol{\Gamma}_{seq}(N,\!(U\!\!\times\!\!V)^{\!\!-}\!,\!Y^{\!\!-}\!)\lim_{h}\boldsymbol{\Phi}_{h}^{}(u,\!v,\!y)$$
 ,

we have

$$\Gamma_{seq}(N,U^-,Y^-)\lim_h F_h(u,y) \ = \ \inf\left\{\Gamma_{seq}(N,(U\times V)^-,Y^-)\lim_h \Phi_h(u,v,y) \ : \ v\in V\right\} \ .$$

Proof. It is enough to repeat, with just some slight modifications, the proof of Proposition 2.4 of [3].

In the following, if A is a set we denote by χ_A the function

$$\chi_{A}(x) = \begin{cases} 0 & \text{if } x \in A \\ +\infty & \text{otherwise} \end{cases}.$$

3. APPLICATIONS TO CONTROL PROBLEMS

Let k,m,n be positive integers and let p>1. The space Y of states we consider is the Sobolev space $W^{1,1}(0,1;\mathbb{R}^n)$ endoved with the $L^{\infty}(0,1;\mathbb{R}^n)$ topology, and the space U of

(3.1)
$$J_{h}(u,y) = \int_{0}^{1} f_{h}(t,y,u) dt$$

where $f_h:[0,1] \times \mathbb{R}^n \times \mathbb{R}^m \rightarrow [0,+\infty]$ are Borel functions. Finally, the state equations are

(3.2)
$$\begin{cases} \mathbf{y} \in \mathbf{a}_{h}(t, \mathbf{y}) + \mathbf{B}_{h}(t, \mathbf{y}) \ \mathbf{b}_{h}(t, \mathbf{u}) \\ \mathbf{y}(0) = \mathbf{y}_{h}^{0} \end{cases}$$

where $a_h:[0,1] \times \mathbb{R}^n \to \mathbb{R}^n$ and $B_h:[0,1] \times \mathbb{R}^n \to \mathbb{R}^{nk}$ are Borel functions, and the multimappings $b_h:[0,1] \times \mathbb{R}^m \to \mathcal{O}(\mathbb{R}^{nk})$ are Borel mesurable (i.e. the sets $\{(t,u,v) \in [0,1] \times \mathbb{R}^n \times \mathbb{R}^k : v \in b_h(t,u)\}$ are Borel sets).

Then the control problems we are concerned are

$$(P_h) \quad \inf \{J_h(u,y) : (u,y) \in \Lambda_h\}$$

or equivalently

$$(\mathbb{P}_{h}) \quad \inf \{ \mathbb{F}_{h}(\mathbf{u}, \mathbf{y}) : (\mathbf{u}, \mathbf{y}) \in \mathbf{U} \times \mathbf{Y} \}$$

where

(3.3)
$$\Lambda_{h} = \left\{ (u,y) \in U \times Y : y' \in a_{h}(t,y) + B_{h}(t,y) b_{h}(t,u), y(0) = y_{h}^{0} \right\}$$

(3.4) $F_h = J_h + \chi_{\Lambda_h}$.

We introduce now an auxiliary variable $v \in L^{q}(0,1;\mathbb{R}^{k})$ with q>1 and define a new sequence of functionals by setting

(3.5)
$$\Phi_{h}(u,v,y) = \begin{cases} F_{h}(u,y) & \text{if } v \in b_{h}(t,u) \\ +\infty & \text{otherwise} \end{cases}$$

In this way the problems (Ph) take the form

$$\inf \left\{ \int_{0}^{1} \left[f_{h}(t,y,u) + \chi_{\{v \in b_{h}(t,u)\}} \right] dt : y' = a_{h}(t,y) + B_{h}(t,y) v, y(0) = y_{h}^{0} \right\} .$$

In order to apply the abstract theory presented in Section 2 (more precisely Proposition 2.1), we have to calculate the $\Gamma_{seq}(N,U^-,Y^-)$ limit of the sequence F_h . To do this, we make

some hypotheses on f_h , a_h , B_h , b_h .

 $(3.6) \quad \text{For every } t \in [0,1], r \ge 0, y \in \mathbb{R}^n \text{ with } |y| \le r \text{ we have } (\text{if } 1/q + 1/q' = 1)$ $|a_h(t,y)| \le M_h(t,r) \quad \text{with} \quad ||M_h(\cdot,r)|| \leq M(r) < +\infty$ $||B_h(t,y)| \le N_h(t,r) \quad \text{with} \quad ||N_h(\cdot,r)|| \leq N(r) < +\infty$

 $(3.7) \quad \text{For every } t \in [0,1], \ r \ge 0, \ y_1, y_2 \in \mathbb{R}^n \text{ with } |y_1|, |y_2| \le r \text{ we have} \\ |a_h(t,y_1) - a_h(t,y_2)| \le \alpha_h(t,r) |y_1 - y_2| \quad \text{with} \quad \begin{aligned} \|\alpha_h(\cdot,r)\| &\le \alpha(r) < +\infty \\ & L^1(0,1) \\ \|B_h(t,y_1) - B_h(t,y_2)| \le \beta_h(t,r) |y_1 - y_2| \quad \text{with} \quad \begin{aligned} \|\beta_h(\cdot,r)\| &\le \beta(r) < +\infty \\ & L^q(0,1) \end{aligned}$

(3.8) There exist $\lambda > 0$ and $a \in L^{1}(0,1)$ such that

$$\lambda \left(|u|^{p} + |v|^{q} \right) - a(t) \leq f_{h}(t,0,u) + \chi \{v \in b_{h}(t,u)\}$$

for every te [0,1], u \in \mathbb{R}^m , v \in \mathbb{R}^k . When $p=+\infty$ or $q=+\infty$ the quantities $|u|^p$ and $|v|^q$ in the left-hand side have to be substituted by $\chi_{\{u \in H\}}$ and $\chi_{\{v \in K\}}$ respectively, where $H \subset \mathbb{R}^m$ and $K \subset \mathbb{R}^k$ are bounded sets.

(3.9) For every $t \in [0,1]$, $r \ge 0$, $u \in \mathbb{R}^m$, $y_1, y_2 \in \mathbb{R}^n$ with $|y_1|, |y_2| \le r$ we have

$$f_{h}(t,y_{1},u) \leq f_{h}(t,y_{2},u) + \rho_{r}(t,|y_{1}-y_{2}|) + \sigma_{r}(t,|y_{1}-y_{2}|) |f_{h}(t,y_{2},u)|^{(\alpha-1)/\alpha}$$

for a suitable $a \in [1,+\infty]$ and functions $\rho_r(t,s)$, $\sigma_r(t,s)$ from $[0,1] \times [0,+\infty[$ into $[0,+\infty[$ measurable in t, increasing and continuous in s, with $\rho_r(t,0)=\sigma_r(t,0)=0$, and such that $z \rightarrow \rho_r(t,|z(t)|)$, $z \rightarrow \sigma_r(t,|z(t)|)$ are continuous operators from Y into $L^1(0,1)$, $L^{\alpha}(0,1)$ respectively.

(3.10) There exist $u_h \in L^p(0,1; \mathbb{R}^m)$ and $v_h \in L^q(0,1; \mathbb{R}^k)$ such that $v_h(t) \in b_h(t, u_h(t))$ for a.e. $t \in (0,1)$, and the sequence $f_h(t, 0, u_h(t))$ is weakly compact in $L^1(0, 1)$.

LEMMA 3.1. Under the previous assumptions, the following compactness condition is satisfied: for every converging sequence (u_h, y_h) with $F_h(u_h, y_h)$ bounded, there exists a sequence $\{v_h\}$ relatively compact in V such that for a.e. $t \in [0,1]$

$$\mathbf{v}_{h}(t) \in \mathbf{b}_{h}(t,\mathbf{u}_{h}(t))$$
 and $\mathbf{y}_{h}(t) = \mathbf{a}_{h}(t,\mathbf{y}_{h}(t)) + \mathbf{B}_{h}(t,\mathbf{y}_{h}(t)) \mathbf{v}_{h}(t)$

<u>**Proof.**</u> Let (u_h, y_h) be converging in U×Y with $F_h(u_h, y_h)$ bounded; then we have $(u_h, y_h) \in \Lambda_h$, so that we can find measurable functions $v_h(t)$ with

$$\mathbf{v}_{h}(t) \in \mathbf{b}_{h}(t, \mathbf{u}_{h}(t))$$
 and $\mathbf{y}_{h}'(t) = \mathbf{a}_{h}(t, \mathbf{y}_{h}(t)) + \mathbf{B}_{h}(t, \mathbf{y}_{h}(t)) \mathbf{v}_{h}(t)$

for a.e.t $\in [0,1]$. It remains to prove that the sequence v_h is bounded in $L^q(0,1;\mathbb{R}^k)$. Since y_h is uniformly bounded, by (3.8) and (3.9) we have for a suitable r>0

$$\begin{split} \lambda \Big(|u_h|^p + |v_h|^q \Big) &- a(t) \leq f_h(t, 0, u_h) \leq \\ &\leq f_h(t, y_h, u_h) + \rho_r(t, r) + \sigma_r(t, r) \left| f_h(t, y_h, u_h) \right|^{(\alpha - 1)/\alpha} \leq \\ &\leq c f_h(t, y_h, u_h) + \gamma(t) \end{split}$$

where c>0 is a constant and $\gamma \in L^1(0,1)$. Then, from the boundedness of $J_h(u_h, y_h)$ we get that v_h is bounded in $L^q(0,1; \mathbb{R}^k)$.

By Lemma 3.1, Proposition 2.3 applies, so that we have reduced our problem to the characterization of the $\Gamma_{seq}(N,(U \times Y)^{-},Y^{-})$ limit of the sequence $\Phi_{h}(u,v,y)$ defined in (3.5). Set now

$$\begin{split} \overline{f_{h}}(t,y,u,v) &= f_{h}(t,y,u) + \chi_{\{v \in b_{h}(t,u)\}} \\ \overline{J_{h}}(u,v,y) &= \int_{0}^{1} \overline{f_{h}}(t,y,u,v) dt \\ \overline{\Lambda_{h}} &= \{(u,v,y) \in U \times V \times Y : y' = a_{h}(t,y) + B_{h}(t,y) v \text{ a.e. on } [0,1], y(0) = y_{h}^{0} \} \end{split}$$

Therefore

$$\Phi_{h} = \overline{J_{h}} + \chi_{\overline{\Lambda}_{h}}$$

and, by Proposition 2.2 we may split the $\Gamma_{seq}(N,(U \times Y)^{-},Y^{-})$ limit of Φ_{h} into the sum

(3.11)
$$\Gamma_{seq}(\mathbf{N}, (U \times V)^{-}, Y) \lim_{h} \overline{J_{h}} + \Gamma_{seq}(\mathbf{N}, U \times V, Y^{-}) \lim_{h} \chi_{\overline{\Lambda}_{h}}$$

The two terms in the sum above can be computed by using Lemma 3.1 and Theorem 3.4 of [4]. More precisely we have **PROPOSITION 3.2.** Assume that (3.8), (3.9), (3.10) hold and that for every $y \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n$, $n \in \mathbb{R}^k$

(3.12)
$$\overline{f_h}^*(\cdot, y, \xi, \eta) \to \phi(\cdot, y, \xi, \eta) \quad weakly in L^1(0, 1)$$

where $\overline{f_h}^*$ are the polar functions of $\overline{f_h}$ defined by

$$\overline{f_h}^*(t,y,\xi,\eta) = \sup \left\{ \xi u + \eta v - \overline{f_h}(t,y,u,v) : u \in \mathbb{R}^m, v \in \mathbb{R}^k \right\}.$$

Then, for every $(u,v,y) \in U \times V \times Y$ we have

$$\Gamma_{seq}(\mathbf{N},(\mathbf{U}\times\mathbf{V})^{-},\mathbf{Y})\lim_{\mathbf{h}}\overline{J}_{\mathbf{h}}(u,v,y) = \int_{0}^{1} \phi^{*}(t,y,u,v) dt$$

where ϕ^* is the polar function of ϕ .

PROPOSITION 3.3. Assume that (3.6),(3.7) hold and that

 $\begin{array}{ll} (3.13) \quad for \; every \; y \in \mathbf{R}^n \quad a_h(\cdot,y) \rightarrow a(\cdot,y) \quad weakly \; in \; L^1(0,1;\mathbf{R}^n); \\ (3.14) \quad for \; every \; y \in \mathbf{R}^n \quad B_h(\cdot,y) \rightarrow B(\cdot,y) \; \; strongly \; in \; L^q'(0,1;\mathbf{R}^{nk}); \\ (3.15) \quad y_h^0 \rightarrow y^0 \quad in \; \mathbf{R}^n \; . \end{array}$

Then we have

$$\Gamma_{seq}(N,U\times V,Y^{-})\lim_{h}\chi_{\overline{A}_{h}} = \chi_{\overline{A}}$$

where

$$\bar{\Lambda} = \left\{ (u,v,y) \in U \times V \times Y : y' = a(t,y) + B(t,y) v, y(0) = y^0 \right\}.$$

Finally, we are in a position to compute the $\Gamma_{seq}(N,U^-,Y^-)$ limit of F_h . In fact, by Propositions 2.3, 3.2, and 3.3, and by (3.11) we get for every $(u,y) \in U \times Y$

$$\Gamma_{seq}(N,U^{-},Y^{-}) \lim_{h} F_{h}(u,y) =$$

= $\inf \left\{ \int_{0}^{1} \phi^{*}(t,y,u,v) dt : y' = a(t,y) + B(t,y) v, y(0) = y^{0} \right\} =$

$$= \int_{0}^{1} f(t,y,u,y') dt + \chi_{\{y(0)=y^0\}}$$

where the function f is defined by

$$f(t,y,u,w) = \inf \{ j(t,y,u,v) : w = a(t,y) + B(t,y) v \}.$$

We conclude with an example showing that in general the domain of the limit functional

$$F(u,y) = \int_{0}^{1} f(t,y,u,y') dt + \chi_{\{y(0)=y^{0}\}}$$

is not given by a differential equation of the form y'=g(t,y,u) but may be the whole space U×Y.

EXAMPLE 3.4. Consider the sequence of optimal control problems

$$(P_{h}) \qquad \min \left\{ \int_{0}^{1} \left[u^{2} + |y - y_{0}(t)|^{2} \right] dt : y' = a_{h}(t) y + b_{h}(t) u, y(0) = \xi \right\}$$

where u varies in U=L²(0,1), y varies in Y=W^{1,1}(0,1), and $y_0 \in L^2(0,1)$, $\xi \in \mathbb{R}$ are given. About the functions a_h and b_h we assume that

$$\begin{cases} a_{h} \rightarrow a & \text{weakly in } L^{1}(0,1) \\ b_{h} \rightarrow b & \text{weakly}^{*} \text{ in } L^{\infty}(0,1) \\ b_{h}^{2} \rightarrow \beta^{2} & \text{weakly}^{*} \text{ in } L^{\infty}(0,1) . \end{cases}$$

It is not difficult to check that all hypotheses (3.6),...,(3.10) and (3.12),...,(3.15) are satisfied, and after some standard calculations we find that the limit problem (P_{∞}) has the form

$$(P_{\infty}) \qquad \min \left\{ \int_{0}^{1} \left[u^{2} + |y - y_{0}(t)|^{2} + \frac{|y' - a(t) y - b(t) u|^{2}}{\beta^{2}(t) - b^{2}(t)} \right] dt : y(0) = \xi \right\}.$$

Note that it is $\beta^2(t) \ge b^2(t)$ for a.e. $t \in [0,1]$, and

 $\beta^2 = b^2$ a.e. on [0,1] $\Leftrightarrow b_h \rightarrow b$ a.e. on [0,1].

In this last situation, problem (P_{∞}) takes the usual form

$$(P_{\infty}) \qquad \min \left\{ \int_{0}^{1} \left[u^{2} + |y - y_{0}(t)|^{2} \right] dt : y' = a(t) y + b(t) u, y(0) = \xi \right\},$$

but this does not arrive in the general case. Take for instance

$$b_{h}(t) = sin(ht)$$

and we get b=0 and $\beta^2 = 1/2$, so that the limit problem is

$$\min \left\{ \int_{0}^{1} \left[u^{2} + |y - y_{0}(t)|^{2} + 2|y' - a(t)y|^{2} \right] dt : y(0) = \xi \right\}.$$

REFERENCES

- [1] H.ATTOUCH: <u>Variational Convergence for Functions and Operators</u>. Appl.Math.Ser., Pitman, Boston (1984).
- [2] G.BUTTAZZO: Su una definizione generale dei Γ-limiti. Boll.Un.Mat.Ital., <u>14-B</u> (1977), 722-744.
- [3] G.BUTTAZZO: Some relaxation problems in optimal control theory. J.Math.Anal.Appl., 125 (1987), 272-287.
- [4] G.BUTTAZZO & G.DAL MASO: Γ-convergence and optimal control problems. J.Optim. Theory Appl., <u>38</u> (1982), 385-407.
- [5] E.CAVAZZUTI: G-convergenze multiple, convergenze di punti di sella e di max-min. Boll.Un.Mat.Ital., <u>1-B</u> (1982), 251-274.
- [6] F.H.CLARKE: Admissible relaxation in variational and control problems. J.Math.Anal. Appl., 51 (1975), 557-576.
- [7] F.H.CLARKE: <u>Optimization and Nonsmooth Analysis</u>. Wiley Interscience, New York (1983).
- [8] E.DE GIORGI: Convergence problems for functionals and operators. Proceedings of "Recent Methods in Nonlinear Analysis", Rome 1978, edited by E.De Giorgi & E. Magenes & U.Mosco, Pitagora, Bologna (1979), 131-188.
- [9] E.DE GIORGI & T.FRANZONI: Su un tipo di convergenza variazionale. Atti Accad.Naz. Lincei Rend.Cl.Sci.Fis.Mat.Natur., 58 (1975), 842-850.
- [10] T.ZOLEZZI: On equivellset minimum problems. Appl.Math.Optim., 4 (1978), 209-223.