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and the spaces U and Y will play a different role with respect to r-convergence.

In Section 2 we develope the abstract theory we shall need in the following; in Section3 w

show the applications to problems (Ph) above, and we give an example showing that in som(

situations the domain of problem (P 00) is not given by a state equation y’=g~(t,y,u) bu

coincides with the entire product space UxY. 
1

2. THE ABSTRACT FRAMEWORK

Let us denote by U and Y two topological spaces and let be a sequence o’

functions; by Z(+) we shall denote the "sup" operator and by Z (-) the "inf’ operator. Forever)

ue U and ye Y we define

where are the signs + or -, and S(u) and S(y) respectively denote the set of all sequences

uh-u in U and in Y. For example we have

When a r-limit is independent of the sign + or - associated to one of the spaces N,U,Y

this sign will be omitted. For example, if

then their common value will be indicated by r (N+,U,Y+) lim 
seq h 
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The following propositions are proved in [4].

PROPOSITION 2.1. Let be a minimum point for Fh , or simply a pair such that

Assume that (uh,yh) converges to in UxY and that there exist

Then we have 
’

(i) is a minimum point for Foo on UxY;

(ii) lim [ inf Fh] = min F .
h UxY UxY 

°°

PROPOSITION Let {Fh} and {Gh} be two sequences of function from UxY into [0,+~],
and let (u,y)e UxY. Assume there exist

Then we have

In many applications, the introduction of a new auxiliary variable can be helpful; the

following proposition shows the behaviour of r-limits with respect to this operation.

PROPOSITION 2.3. Let Fh:U Y~R be a sequence of functions, let V be another topological
space, and let p (V) be a sequence of multimappings. Assume that the following

compactness condition is satisfied:

for every converging sequence (uh,yh) with Fh(uh,yh) bounded, there exist a

sequence vhE relatively compact in V.

Then setting
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we have for every (u,y)e UxY

Therefore, f for every (u,v,y)e U V Y there exists

we have

Proof. It is enough. to repeat, with just some slight modifications, the proof of Proposition 2.4

of [3]..

In the following, if A is a set we denote by xA the function

3. APPLICATIONS TO CONTROL PROBLEMS

Let k,m,n be positive integers and let p&#x3E; 1. The space Y of states we consider is the

Sobolev space endovedwith the topology, and the space U of
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controls is the space LP(O,l;Rn) endowed with its weak topology (weak* if p=+~). The cost

functions are of the form

where are Borel functions. Finally, the state equations are

where and are Borel functions, and the multimappings

are Borel mesurable (Le. the sets {(t,u,v)e ve bh(t,u)}
are Borel sets).

Then the control problems we are concerned are

or equivalently

where

We introduce now an auxiliary variable ve Lq(O,l;Rk) with q&#x3E;l and define a new sequence
of functionals by setting

In this way the problems (Ph) take the form

u

In order to apply the abstract theory presented in Section 2 (more precisely Proposition

2.1), we have to calculate the r limit of the sequence Fh . To do this, we make
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some hypotheses on fh’ ah , Bh , bh .
(3.6) For every te [0,1], rzo, ye Rn with we have (if l/q + = 1)

(3.7) For every te [0,1], yl,y2E Rn with |y1|,|y2|~r we have

(3.8) There exist 7~,~0 and ae such that

for every te [0,1], ue v~ Rk. When or the quantities lulp and ivlq in

the left-hand side have to be substituted respectively, where
Hc Rm and Kc Rk are bounded sets.

(3.9) For every te [0,1], ue Rn with we have

for a suitable ae [ 1,+~] and functions Pr(t,s) , crr(t,s) from into 

measurable in t, increasing and continuous in s, with and such that

are continuous operators from Y into L1(0,1) , La(0,1)
respectively.

(3.10) There exist UhE and VhE Lq(0, 1 ;Rk) such that vh(t)e bh(t,uh(t)) for ae.
te (0,1 ), and the sequence fh(t,O,uh(t» is weakly compact in 

LEMMA 3.1. Under the previous assumptions, the following compactness condition is

satisfied : for every converging sequence (uh,yh) with Fh(uh,yh) bounded, there exists a

sequence { vh relatively compact in V such that for a.e. te [0,1 ]
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Proof. Let (uh,yh) be converging in UxY with Fh(uh,yh) bounded; then we have (ull’Yh)E ~h ,
so that we can find measurable functions vh(t) with

for a.e.tE [0,1]. It remains to prove that the sequence vh is bounded in Since yh is

uniformly bounded, by (3.8) and (3.9) we have for a suitable r&#x3E;0

where c&#x3E;0 is a constant and ye L 1 (0,1 ). Then, from the boundedness of Jh(uh,yh) we get that

vh is bounded in 

By Lemma 3.1, Proposition 2.3 applies, so that we have reduced our problem to the

characterization of the r limit of the sequence defined in (3.5). Set

now

Therefore

and, by Proposition 2.2 we may split the limit of 03A6h into the sum

The two terms in the sum above can be computed by using Lemma 3.1 and Theorem 3.4 of [4].

More precisely we have
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PROPOSITION Asswne that (3.8),(3.9),(3.10) hold and that for every ye Rn, 

Tle Rk

*

where fh are the polar functions of fh defined by

Then, for every (u,v,y)e U V Y we have

where is the polar function of po

PROPOSTTION 3.3. Assume that (3.6),(3.7) hold and that

(3.13) for every ye Rn ah(-,y)--+a(’,y) weakly in 

(3.14) for every ye Rn Bh(.,y)~B(.,y) strongly in 

(3.1 S) y~ -~ y in Rn .

Then we have 
’

where

Finally, we are in a position to compute the limit of Fh . In fact, by

Propositions 2.3, 3.2, and 3.3, and by (3.11) we get for every (u,y)e UxY
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where the function f is defined by

f(t,y,u,w) = inf{j(t,y,u,v) : w = a(t,y) + B(t,y) v} .
We conclude with an example showing that in general the domain of the limit functional

is not given by a differential equation of the form y’=g(t,y,u) but may be the whole space UxY.

EXAMPLE 3.4. Consider the sequence of optimal control problems

where u varies in y varies in and are given.

About the functions ah and bh we assume that

It is not difficult to check that all hypotheses (3.6),...,(3.10) and (3.12),...,(3.15) are satisfied,

and after some standard calculations we find that the limit problem (P 00&#x3E; has the form

Note that it is for a.e. tE [0,1], and

J32-b2 a.e. on [0,1] ] a.e. on [o,1 ] .

In this last situation, problem takes the usual form
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but this does not arive in the general case. Take for instance

bh(t) = sin(ht)
and we get b=0 and so that the limit problem is
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