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Abstract. This paper presents a technique for approximating the viscosity
solution of the Bellman equation in deterministic control problems. This

technique, based on discrete dynamic programming, leads to monotonically
converging schemes and allows to prove a priori error estimates. Several

computational algorithms leading to monotone convergence are reviewed
and compared.
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Introduction

The notion of viscosity solution of Hamilton-Jacobi equations recently
introduced by Crandall and Lions [21] ] and developed by various authors (see
Crandall-lshii-Lions [19], Lions [40] and references therein) has proved to
be an important tool in several applications and particularly in the

dynamic programming approach to deterministic (see Lions [38], [39],
Capuzzo Dolcetta-Evans [13], Bardi [1 ], Barles [4], Barles-Perthame [5],[6],
Lions-Souganidis [42], Soner [50]) and stochastic (see Fleming [26] and

references therein) optimal control problems.
The aim of this paper is to discuss some aspects of the theory of

viscosity solutions related to approximation and computational methods
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in the framework of deterministic control theory. More precisely, our

purpose here is to point out on a model problem how the solution of the
classical discrete time dynamic programming functional equation (see
Bellman [7]) can be regarded as a uniform approximation of the viscosity
solution of the corresponding Bellman partial differential equation.

We will show how this PDE approach allow to establish general results
on the rate of convergence of the approximate solutions. These results

provide a wider theoretical basis to classical and more recent

computational techniques for the value function and optimal feedbacks.
The last section is completely devoted to review in this framework
several methods leading to monotone convergence (namely, successive

approximations, iteration in policy space and finite difference

approximations).
Let us mention finally that most of these methods have been also

applied to stochastic control problems. We refer the interested reader to

Bellman-Dreyfus [8], Howard [29], and to the more recent works by
Kushner [32], Kushner-Kleinman [33],[34], Lions-Mercier [41], Menaldi [46],
Quadrat [49], Bensoussan-Rungaldier [10].

1. The infinite horizon problem: discrete Bellman equation and

synthesis.

Let us suppose to observe the state x(t) E IR n of some deterministic

system evolving in time and to be able- to affect its evolution by acting on
some available controls. A standard model for the evolution can be

expressed in terms of a system of controlled ordinary differential

equations:

dx(t)/dt = b(x(t),a(t)), t&#x3E;0

(1.1)
x(0) = x,

where the control a is a measurable function of t taking values in a

given compact subset A 
The cost functional which measures the performance of the control a is

taken of the form
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where f is a given function (the running cost) which we shall always
assume to be bounded on Rn A and 03BB is a positive number (the discount

factor).
The discounted infinite horizon problem is to determine, for any initial

position x E R n, the value

(P) v(x) = Inf a(.) E.9L J(x,a) , ~ = { a: [0,+oo) - A, a measurable}

and to identify a control a* (depending on x ) for which the infimum in (P)
is attained, provided such a control exists (see Fleming-Rishel [27],
Lee-Markus [37] as general references for optimal control problems and
Carlson-Haurie [18] for the treatment of several examples of infinite
horizon problems arising in the applications).

!n this section we describe how discrete time dynamic programming
methods (see Bellman [7], Bensoussan [9], Bertsekas-Shreve [11 ]) apply to
problem (P). At this purpose, let h be a fixed positive number and assume
that the evolution (1.1 ) is observed only at a sequence of instants tj = jh,
j=o,1,2,.... Assume as well that the dynamics b and the running cost f
remain constant in any time interva! namely,

" " " J

where

(1.4) aj = a(tj)

and xj = x(tj) is given by the recursion

xo = x

The total cost associated with the initial position x and the control a is

given, in this discretized model, by the series
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with # = 1 - ~h. !

Let us introduce now the approximate value function vh by setting

where 5th is the subset of A consisting of controls which are constant

on each interval 

The statement below comprises the well-known Bellman Dynamic
Programming Principle for the problem under consideration:

proposition i .i The following identity holds

for aCl x = Xo ancf p=1, 2, ...

Proof. Let x = XQ be an arbitrary but fixed vector in [R n. By (Ph)’ for any

e &#x3E; 0 there exists a£ such that .

Now it is easy to check that for any p &#x3E; 1

The second term in the right hand member is actually #P ).
Hence,

The reverse inequality is proved in a similar way..
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The (DPPh) yields the Bellman functional equation characterizing the value

function vh .

Proposition 1.2 Let us assume |f (x,a)  M for a(C (x,a) e"1R nx A. Then the function
vh de-fined d y is the unique bounded solution of

for h E [0,1 /~[.

Proof. The boundedness of vh is an easy consequence of the assumption on

f . To check that vh satisfies (B~), take p = 1 in (DPPh). This gives

To prove the converse, take p = 1 in (DPPh) and observe that for any e &#x3E; 0

ther exists a£ such that v

and therefore .

Finally, let u1 , u2 be two bounded solutions of (Bh). It is immediate to

deduce from (Bh) that .

and the uniqueness is proved. -
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On this characterization of the approximate value function vh relies

an algorithm for the synthesis of optimal feeback controls for the discrete
time problem (Ph).
In order to describe it, let us assume that vh is lower semicontinuous

(this is the case if, for example, b is continuous and f is lower

semicontinuous). Then, for any fixed x E the supremum in (Bh) is

attained at some ah = ah(x) E A. Define next

and set

Therefore we have:

Proposition 1.3 Let h E [0, 1 /Â,[. If vh is lower semicontinuous and A is compact, then

the piecewise constant control defi.ned by (1.8) is optimdfor (Ph), that is

Proof. By the very definition of the mapping x ~ from equation (Bh)
it follows that for any p

This yields by addition

and (1.9) follows by letting p - 
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2. Limiting behaviour as the time step vanishes.

In this section we shall investigate the behaviour of vh and a*h as the

time step h tends to zero. It is natural to expect that vh and a*h should

converge, respectively, to the value function v and to some optimal
control (if it exists) for problem (P).

We report hereafter on some recent convergence results and error

estimates. A crucial role in establishing these results is played by two key
facts in the theory of viscosity solutions of Hamilton - Jacobi - Bellman

equations. First, the observation due to P.L.Lions (see [38]) that the value v

of problem (P), even when only continuous, satisfies nonetheless the

corresponding Bellman equation

in the viscosity sense. Second, the uniqueness result of

M.G.Crandall-P.L.Lions [21] for bounded uniformly continuous viscosity
solutions of (B). Let us recall for the reader’s convenience that a
viscosity solution of (B) is a bounded uniformly continuous function u such
that for each # E C 1 ([R n) the following holds:

(i) if attains a local maximum at Xo then

(ii) if u-~ attains a local minimum at XQ then

Let us also point out that the use of this weak notion of solution of (B)
allows to pass to the limit as h - 0 in the nonlinear equations under

rather general conditions on b and f .
Let us state and sketch the proof of two results in this direction (see

Capuzzo Dolcetta [12], Capuzzo Dolcetta-Ishii [14] and Loreti [43] for

details and extensions).



168

Theorem 2.1 Let us assume that b and f are continuous on x A and that for some
constants L, M the following holds

for alix, x’ a E A, o~r

vh  v h 2014~ 0+ ancf

for some constant C &#x3E; 0.

Theorem 2.2 Under tfie assumptions of Theorem 2.1 and

tfie following estimate of the rate of convergence holds

for some constant C &#x3E; 0.

Sketch of the proof of Theorem 2.1.
The first step is to establish the uniform estimates:
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for h E [0,1/~[. These are simple consequences of the fact that vh
satisfies (Bh). Then, by Ascoli-Arzelà theorem, there exists a Lipschitz
continuous function u such that

vh  u locally uniformly in (R n

as h - 0+ (at least for a subsequence).
The next step is to show that u is a viscosity solution of (B). To do this,

E n), Xo a local strict maximum point for u - #, S a closed ball

centered at xo’ Xo h a maximum point for over S. Then (Bh ) yields

Since # E C1 ( R"), it follows that

0 &#x3E; Supa~ A [-0 p 

for some e = 8(h,a) E. [0,1] . Hence, by uniform convergence,

that is u is a viscosity subsolution of (B). A similar argument shows that
u is also a viscosity supersolution of (B) and, by the uniqueness theorem
of Crandall-Lions [21], u == v.

In order to prove (2.4), observe that by definition,

A simple computation shows that for any a 
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where e = Since e - 1 is of order h as h- 0+, (2.4)
follows..

Sketch of the proof of Theorem 2.2.
Let us consider the function 03A8 defined by

where ~ is an auxiliary function forcing ~ to attain its maximum at

some point R 2n. It is not difficult to show that I xo - y0 |  CE2.
Since v is the viscosity solution of (B), then

for some a*~ A. The next step is to show that vh satisfies the

semiconcavity condition

for some C &#x3E; 0. To prove this observe that vh satisfies, by its very

definition,

A rather technical computation based on (2.5), (2.6) shows (see [14] for
details) that

where
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Since

with v = log(1 +Lh)/Lh , and ?L &#x3E; 2L , the integral in (2.11 ) can be

estimated by CM (1 +M/vL) l"zI2. This implies (2.10). As a consequence of
the uniform semiconcavity (2.10) of vh one has (see [14] for technical

details)

for all x~ R n. The choice x= in the above yields

From this and equation evaluated at x = XQ it follows that

This inequality, combined with (2.9), yields

Choosing e = h 1/2. , from the above inequality it follows that

and (2.8) is proved..
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2.1. Under the sole assumptions of Theorem 2.1 it is possible to

show that

for a proof we refer to [14] and also to the papers by Crandall - Lions

[20] and Souganidis [51] ] where similar estimates are established for

general Hamilton - Jacobi equations of the form

including for example the Isaac’s equation in differential games theory.
The above Theorem 2.2 exploits, through the semiconcavity assumptions
(2.5), (2.6), the special structure of the Bellman’s equation (B) , namely
the convexity of the mapping

in order to obtain the sharper, and in fact optimal (see [14]), estimate

(2.8).
Theorems 2.1 and 2.2 can be regarded as an extension of earlier results by
J.Cullum [22], K.Malanowski [44] , M.M.Hrustalev [30] obtained via the

Pontryagin maximum principle under rather restrictive convexity
assumptions. The asymptotic behaviour of the discrete value function as

the time step vanishes is studied in [16], [17] for other control problems
such as the stopping time and the optimal switching problem, without use
of the notion of viscosity solution. More recently the notion of
discountinuous viscosity solutions (see [5]) has been applied to prove the

convergence of a discretization scheme for the minimum time problem by
Bardi-Falcone [2].

As a consequence of Theorem 2.1,2.2 and Proposition 1.3, the

piecewise constant controls a*h (see §1 ) yield the value of problem (P)
with any prescribed accuracy. Their limiting behaviour as h - 0+ is easily
understood in the framework of relaxed controls in the sense of L.C.Young
[53] (see also Lee-Markus [37], Warga [52] as general references on this

subject). Namely, a*h converge weakly to an optima! control for the

relaxed version of (P). The result relies on the fact that the Hamiltonian is
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ieft unchanged by relaxation (see Capuzzo Dolcetta -Ishii [10 ] for details

and also to Mascolo-Migliaccio [45] for other relaxation results in optimal
control).

3. Discretization in the state variable and computational
methods.

In order to reduce equation (Bh) to a finite dimensional problem we need a
discretization in the state variable x. To be able to build a grid in the

state space, let us assume the existence of an open bounded subset Q of

(R n which is invariant for the dynamics (1.1 ). A triangulation of Q into a

finite number P of simplices Sj can be constructed (Falcone [23]) so that,

the Sj is invariant with respect to the discretized

trajectories, i.e.

I 
l where k=max diam(Sj’)’ We denote i=1,...,N, a generic node of that grid
! 

and we replace by the following system of N equations

which corresponds to the above outlined discretization in the space
variable. We shall briefly refer in the sequel on some computational
techniques available to solve this system of equations.

, 

3.~. Notice that, due to the fact that we are dealing with the

infinite horizon problem, the discretization in time (1.3), (1.4) and (1.5) is

not sufficient in itself to compute an approximate solution of (B). Infact,
even if in priciple the value of u(x) can be obtained by (Bh) from the

previous knoledge of u at all points x+hb(x,a), i.e. the points which follow x

I in the discretization scheme (1.3), the classical backward scheme of the
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dynamic programming computational procedure (Larson [35]) cannot be
applied since time varies in [0,+oo[. That scheme is only suitable for finite I
horizon problems where a terminal condition is given. 

’

Remark 3.2. Other numerical methods which can be applied directly to (B) ;
do not lead to the system (Bhk)(see also Remark 5). Let us just mention i
the finite element approach used by Gonzales-Rofman [28] to solve the í
Bellman equation related to a stopping time problem with continuous and

impulsive controls. The procedure generates a monotone non-decreasing
sequence and a convergence result is obtained by means of a discrete

maximum principle (see also Menaldi-Rofman [47] where the convergence
to the viscosity solution is proved).

Successive approximation (BelCmun [7], Bellman-Dreyfus [8]).

Perhaps the most classical technique to compute a solution of (Bhk) is to

apply Picard method of successive approximations.
Starting from any assigned initial guess

one can compute by a simple interpolation on the nodes of

the grid and then define the following recursive sequence

Since Th is a contractive map (see Theorem 3.1 below), un will converge to

a limit as h tends to 0.

In spite of its simplicity this technique has several computational
disadvantages which do not compensate for the fact that convergence is

assured for any initial choice u~.
In order to illustrate this point, assume to have M admissible controls.

Since the point could be anywhere in Qk, the computation of

u n+ 1 would require to keep the N values of un at the nodes in the central

memory and compare M different values to find the value of un+ 1 at each
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node : this means that N x M comparisons are needed at each iteration.

However, using state increment dynamic programming (see Larson [33]) it

is possible to reduce considerably the huge demand for memory allocations.
Larson’ technique consists essentially in the introduction of a

compatibility condition between the step in time h and the spacial step k .

By defining Mb= b(x ;,a )L h1=k/Mb and choosing h2 such that the
invariance condition (3.1) is verified, ’ the choice of h=min 

guarantees that the points xi+hb(xi,a) belong to some simplex having xi
among its nodes. In that way only the values of un at neighbouring nodes
are needed to compute un+ 1 at xi.
The second disadvantage is that the velocity of convergence of this

algorithm becomes very poor when a great accuracy is requested, due to

the fact that the contraction coefficient of Th is p=1- ~h , which is close

to 1 for h close to 0. We shall see in the section devoted to finite
difference schemes an acceleration technique which permits to overcome

this difficulty. This acceleration technique is essentially based on the

monotonicity of Th which guarantees a monotone convergence of un for an
~ appropriate choice of u".

Approximation in policy space j8 j, Howard [29]).

A different computational procedure leading to monotone convergence is
the Bellman-Howard approximation in policy space. The idea here is to fix

i an initial guess for the policy rather then for the value function (as in the
i 
i 

successive approximation procedure). Assuming an to be such an initial

I guess, we can compute the related return function by solving the equations

I This can be done starting from an assigned uO, 0, and generating the

recursive sequence

which, under appropriate assumptions, will converge
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Then one looks for a new policy such that

and replaces ao with a1 in (3.4) to compute a new return function u 1 by
means of recursion.

Notice that

Continuing in this way, we obtain a monotone decreasing sequence un and
the procedure stops when an+ 1 = an. Since for any choice of the policy we
obtain a return function which is greater or equal to the value function u,

we have

so the approximation in policy space yields monotone convergence.
This procedure appear to have more appealing properties from the

computational point of view. Infact, Kalaba [31] has shown that it is

equivalent to the Newton-Kantorovich iteration procedure applied to the
functional equation of dynamic programming and Puterman-Brumelle [48]
have given sufficient conditions for the rate of convergence to be either

superlinear or quadratic.

Remark 3.3. Assume to have M admissible controls. Even if this procedure
does not require M comparisons to compute uJ,n(xi) in (3.5), they are

requested in (3.7) . Then the cost of this procedure in terms of
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computational requirements is similar to the method of successive

approximation and depends mainly from the velocity of convergence in

(3.6). Larson’ technique can also be applied to this scheme.

finite difference approximation.

We look for a solution of in the following space of piecewise affine

functions, W = {WE in The following theorem holds

(see Falcone [23])

3.1 Under the same assumptions of ?Cceorem 2.1, for any h E [0 , 1 /À. [ satisfying(3.1J tfl.ere exists a unique solution vh of in W and ta foCCozvircg estimate holds

Sketch of the proof.
Due to the invariance assumption (3.1 ) any point xi + hb(xi,a) belongs to
n k and can be written as a convex combination of the nodes, with

coefficients Since we look for a solution in W, equation (3.3) is

equivalent to the following fixed point problem in R N

where [13 A(a) U + h F(a)]i and A(a) =[ is a

nonnegative matrix N x N such that the sum of the elements on each row is

equal to 1, U and F are vectors of [R N. By the properties of A follows that

therefore Th is a contracting operator in [R N and (3.10) has a unique

solution U*.
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Estimate (3.9) can be derived combining the estimates on Sup 

v(x) I obtained in the preceeding section with the lipschitz continuity of

vh and the fact that U* ),..., 

Even if the preceeding theorem establishes the convergence of the

recursive sequence Un + 1 = T h (U n) starting from any initial guess UO,
special choices of UO are more appropriate for numerical purposes in order

to obtain monotone convergence and to accelerate convergence. The
acceleration technique is crucial to break the obstacle constituted by the
fact the convergence is very slow whenever a great accuracy is requested,
as we explained in the section devoted to successive approximation.
Let us consider the set of subsolutions for the fixed point problem (3.10),
i.e. the set f{1 ={U: U  Th (U)}. Since U  V implies  T h (V), the

recursive sequence Un is monotone increasing and remains in e1 whenever

U 0 is taken in f{1. This set is closed and convex, by the definition of Th ,
and U* is its maximal element since it is the limit of any (monotone)
sequence starting in f{1. We can construct then the following -

Accelerated algorithm

Step 1: take UO in f{1 and compute 

Step 2 : compute U1 = UO+ a (U1 ’0- Uo) where

(3.12) a = max {aeR+: UO+ a (U1 ~~- Uo)E 21 };

Step 3 : replace UO with U1 and go back to Step 1.

The convergence of this algorithm to U* is guaranteed by the convergence
and monotonicity properties of Un, since Un  Un  Un+1 ~ U* .
The first interesting feature of this acceleration method is that its

velocity of convergence is not strictly related to the magnitude of 

since Th is used only to find a direction of displacement. Infact several
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numerical tests have shown that a decrease of h does not always imply an

increase in the number of iterations (for a detailed discussion of some

numerical tests as well as for the practical implementation of the

algorithm see Falcone [24] and [25]). The second appealing property is that,

once a direction of displacement has been computed, the algorithm
proceeds in Step 2 by a one-dimensional constrained optimization problem
to recover the next approximation. Finally, it is quite interesting to

compare the actual acceleration parameter a n with 1, which is the

parameter value corresponding to standard successive approximation, in

order to have an empirica! estimate of the velocity of convergence.
Numerical tests have shown that h-1, i.e. an ~100 when h=10-2.

3.4. Assume to have M admissible controls. The cost for finding a

direction of displacement is exactly the same of successive approximation
and the search of U1 at Step 2 would require a certain (a priori unknown)
number of additional comparisons to check that the constraint in (3.12) is
verified. Nonetheless, the total amount of operations needed in order to

find a fixed point with the above acceleration technique is much lower
since the total number of iterations is considerably reduced, e.g. from

order 103 to order 10 when h=10-2. The application of Larson technique
to this scheme yields a particular structure of the matrix A (a), namely it

becomes a tridiagonal matrix for scalar control problems.

Remark 3.5’. Other finite difference schemes have been considered to solve

the Bellman equation (B). In particular Crandall-Lions [18] have studied

some finite difference schemes which can be regarded as an adaptation of

classical schemes for conservation laws, such as Lax-Friedrichs scheme.
It is interesting to point out here that they obtain an estimate of order 1/2

and monotone convergence as well.

We conclude with section with some final comments and remarks related
to the schemes that we have presented here. It is worthwhile to notice
that these schemes can be adapted to treat other deterministic control
problem such as finite horizon and optimal stopping control problems
(intact, successive approximation and approximation in policy space were
originally developped for those problems, see [7], [8], [35] ). This can be
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done adding some control, say a’, to A, and writing those problems as ar
infinite horizon problem by an appropriate definition of f(x,a’), b(x,a’).

The second, and perhaps more important remark, is that all thes~
schemes provide the approximate value function and, without an)
additional computation, the related approximate feedback law at least to

all nodes of the grid. It can also be proved (see Falcone [23]) that such é

feedback law is "quasi optimal" for the original continuous problem (P).
Due to the monotonicity, the acceleration method can be applied also tc

the approximation in policy space. In this case the fixed point will be the

minimal element in the set of supersolutions and the sequence U n will be

monotone decreasing. Moreover, due the local quadratic convergence o
this approximation, it should be quite interesting from a numerical poin1
of view to combine this procedure with the finite difference approximatior
scheme. Infact, one can first look for a rough approximation of the optima
policy by applying that scheme and then use it as initial guess in (3.4).
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