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1. I ntroduction.

This article concerns the basic problem in the calculus of variations: given a

nondegenerate real interval [a,b], a mapping and points xa, 

choose an absolutely continuous function to

b
minimize A(x) := J L(t,x(t),x(t)) dt subject to x(a)=xa, x(b)=xb. (Pj

Tonelli [9] was the first to describe a satisfactory existence theory for (P). He identified the set

of absolutely continuous functions as the smallest class in which a minimizer could reasonably

be expected to exist-a contribution so fundamental that it now appears in the very statement

of the problem. But while Tonelli’s theory represented a great step forward on the basic

question of existence, it raised new questions about the traditional necessary conditions.

Tonelli conjectured [10], and Clarke and Vinter verified [6], that certain instances of problem

(P) satisfying Tonelli’s existence hypotheses have minimizers for which the Euler equation fails.

This revealed an essential difference between the hypotheses of existence theory and the

conditions under which the standard necessary conditions apply. The intermediate existence

theory of Clarke and Loewen [5] gives new information about both sides of this gap: on one

hand, it offers a new approach to existence theory quite distinct from Tonelli’s direct method;

on the other, it pertains to a large class of problems whose solutions are Lipschitzian, and

hence satisfy the Euler equation (see [2]). The fine points of intermediate existence theory are

described in [5]. The purpose of the present paper is to describe its consequences for the

Lipschitzian regularity of minimizers under various assumptions.

The plan of the paper is as follows. In Section 2 we review the intermediate existence

theory of [5], with particular attention to its intuitive significance and its difference from the

direct method of Tonelli. Section 3 describes the theory’s consequences for the question of

existence in the small, and asserts that under very weak hypotheses, any solution to (P) is
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2. Intermediate Existence Theory.

The intermediate existence theory of [5] forms a versatile link between Clarke and

Vinter’s global regularity theory [7] and their existence and regularity results "in the small"

[8]. Better still, it offers new existence and regularity theorems in the global setting,

generalizes the local theory in [8], and applies in a variety of intermediate situations. On the

local level, the main advance is the removal of Clarke and Vinter’s hypothesis that L(t,x, . )

be strictly convex for each (t,x). The natural replacement for this assumption enters through

(H2), below.

The Basic Hypotheses, in force throughout this article, are as follows.

(HI) The Lagrangian is locally Lipschitz, and

(H2) For each (t,x)E[a,b]xRn, the function L(t,x, . ) is strictly convex at infinity.

(A function is called strictly convex at infiniiy if it is convex and its

graph contains no rays.)

To appreciate the notion of strict convexity at infinity, let be convex, and let

The graph of e contains a line segment

r), t e [0, 1] , if and only if the line segment ] lies inside ôh(p) for

some p obeying Thus the hypothesis that e be strictly convex at infinity is

equivalent to the assumption that 8h(p) is never an unbounded set, just as strict convexity

requires that 9h(p) contains at most one point.

Returning to problem (P), we introduce the Hamiltonian

Hypothesis (H2) implies that the partial subgradient

8pH(t,x,p) is always a bounded set, although the bound on its magnitude may increase very i

rapidly with jpj. In fact, strict convexity at infinity gives us slightly more than boundedness: i

it implies that when 8pH(t,x,p) contains very large elements, it must be bounded away from !
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the origin. This is the content of Prop. 2.1 below, in which we write (for fixed R&#x3E;0)

PR(s)=min{ s, pR(s) }, s&#x3E;O, where

PRes) = inf { r &#x3E; 0 : for some one has both

and 

(Here, and throughout the paper, B denotes the open unit ball of 

2.1 PROPOSITION. For each fixed R&#x3E;0, the function pR has the following properties:

(a) PR is nondecreasing and obeys ‘ds&#x3E;0;

(b) V(t,x,p)E[a,b]xRBxRn, 

8pH(t,x,p) C sB;

(c) PR{s)-’ +00 as s-~ +00;

(d) if L(t,x, - ) is strictly convex for each (t,x) E[a,b] xRB, then 

Assertion (b) of Proposition 2.1 makes the role of /?p precise, and follows directly

from the definition. Assertion (a) is evident, while (d) holds because 8pH(t,x,p) contains at

most one point in the strictly convex case. The Proposition’s most significant assertion is (c),

which relies upon strict convexity at infinity, and is proven in [5].

In the theory to be described below, the function pp controls jumps in the

derivatives of extremals for (P). Now since the derivative of an arc can be anything in

this must be understood appropriately. We therefore make the following definition.
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2.2 DEFINITION. Let f:R - Rn be measurable. The set of essential values of f af t

denoted Ess f(t), consists of all such that

It is clear that if f(t)=g(t) a.e. then Ess f(t)=Ess g(t) Vt, so that variations in the

sets Ess f(t) represent essential changes in f(t). When we speak loosely of jumps in x for

xEAC, we mean discontinuities in the set-valued map t-Ess x(t). If x happens to be an

extremal for (P), we have the following.

2.3 PROPOSITION [5]. Suppose two arcs x and p are given, such that

Then for all t in [a,b], with no exceptions,

The inclusion (2.1) in this straightforward result holds whenever x is an extremal for

problem (P) in the sense of the Euler inclusion [2], the Hamiltonian inclusion [3, Thm. 4.2.2],

or the maximum principle [3, Thm. 5.2.1]. The conclusion (2.2) is to be compared with

Proposition 2.1 (b): it shows that if |x|~~R and Ess x(t) contains any point inside pR(s),
then Ess x(t) lies entirely inside sB. Informally, it is impossible for Ixl to jump beyond

level s from a level below 

In the case when L(t,x, . ) is strictly convex, inclusion (2.2) implies that Ess x(t)

contains at most one point for each If x is known to be Lipschitz, then it follows

that Ess x(t) contains exactly one point for each and consequently x is actually

continuous.
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We now consider two fundamental quantities associated with solutions to problem (P).

2.4 DEFINITION. Let R &#x3E; 0 and 0  r s be given. We define

where both extrema are taken over all triples (to,tl,x) for which is

nondegenerate, xEAC[to,tl], and the following conditions hold:

(a) for some 

(b) Ess for 

(c) Ess x(t) CsB for all tE(to,tl);

(d) )x(t)~R for all 

(e) x solves the following problem on [to,ti]:

(Conditions (a) and (b) are understood to involve the appropriate one-sided essential values in

cases where either u or r falls at an endpoint Qf 

These numbers have natural interpretations. The first one, describes the

shortest time interval over which an arc solving the auxiliary problem (e) can exhibit an

increase in velocity from to (The appearance of pR(s) in condition (b)

accounts for the fact that a jump beyond level s must start above level as we have

seen.) For very large values of s, such an increase may be impossible, and conditions (a)-(e)

may be inconsistent. This forces + 00, a condition we regard as desirable. As for

VR(r,s), it measures the largest possible objective value in the auxiliary problem (e). Of
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course, the supremum may be approximated by a triple (to,t1,x) completely unrelated to the

triples for which tl-to approximates When there are no triples obeying (a)-(e),

one has 

The key properties of ~R and VR are described in the next two results. The first

of these is a combination of [5, Prop. 2.11] with [5, Prop. 6.1]; the second is new.

2.5 PROPOSITION. Fix any r, R &#x3E; 0. Then for any S obeying the mapping

is nondecreasing on [5,+00). Also, there exist E &#x3E; 0 and S&#x3E;O such that

2.6 PROPOSITION. For every choice of r, R&#x3E; 0, there is a constant M &#x3E; 0 such that

V R (r,s)  M (b - a) for all s sufficiently large.

Proof Fix r, R&#x3E;0. According to Prop. 2.5, there are positive constants ( and So

such that

Let us define S=max{So’ 2R/ (}, and set
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We will show that

Indeed, fix any s &#x3E; S and let x on [to,tJ be any Lipschitz arc satisfying conditions

2.4(a)-(e). By definition of (2.3) implies Consequently the straight-line

arc x joining (to,x(to)) to (tl,x(tl)) obeys

so that x is an admissible arc in problem 2.4(e). But x solves this problem, so we must

have

Now VR(r,s) is the supremum of this inequality’s left-hand sides, so (2.4) follows. ////

We may now quote the intermediate existence theorem [5, Thm. 3.2]. We present only

its Lagrangian formulation; an equivalent Hamiltonian formulation appears in [5, Thm. 3.1],

where it is used to give new sufficient conditions for the existence of periodic trajectories of

Hamiltonian systems. The theorem concerns not problem (P), but a related problem involving

a state constraint:
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2.7 THEOREM (INTERMEDIATE EXISTENCE). Fix R&#x3E;0. Assume the Basic

Hypotheses, as well as

(H3) for some 5&#x3E;0, one has 

Suppose that for some a in (O,a) and some Lipschitz arc x admissible for (PR), one has

(H4) + min{~x~)  R,

(H5) for some where r:=A(x)/(o;(b2014a)).

Then the set of solutions to problem (PR) is nonempty, and consists entirely of Lipschitz arcs.

To highlight the difference between Thm. 2.7 and classical existence results based on

the direct method, we refer to the instance of problem (PR) with n = 1,

L(t,x,v)=(l+)v~)~-x~/8, R=2, (a,xa)=(0,0), and (b,xb)=(b,O). It is shown in [5,

Example 3.2.1] that for any b&#x3E;0 sufficiently small, hypotheses (H1)-(H5) hold and hence

Thm. 2.7 applies to assert the existence of a Lipschitzian solution for (PR). However, for any

fixed b &#x3E; 0, and any A&#x3E;inf(P), c&#x3E;0, the level set

fails to be compact in any reasonable topology. In particular, there exists a minimizing

sequence with no convergent subsequences: the direct method cannot possibly succeed.

The remainder of this paper concerns applications of Thm. 2.7.
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3. A Regularity Result.

The main result of this section is a regularity theorem in the spirit of [7 , Thm. 2.1]

(see also [8 , Cor. 1]). To prove it, we apply a local existence result based on Thm. 2.7. Thus,

let a point be given, and suppose U is a neighbourhood of (to,xo) on which

a function is defined and obeys

L is locally Lipschitz on U x Rn, (3.1 )

L(t,x, . ) is strictly convex at infinity for each (t,x)EU. (3.2)

These conditions are simply the Basic Hypotheses restricted to U x Rn.

3.1 THEOREM [5]. If (3.1) and (3.2) hold, then there exist f&#x3E;O and R&#x3E;O for which

is a subset of U on which the following holds. For every M&#x3E;0

and every pE(O,R), there exists 6 &#x3E; 0 so small that for every pair of endpoints (a,xa) and

(b,xb) in W obeying

the following problem has a Lipschitz solution:

In fact, all its solutions are Lipschitz.

Proof {Sketch). Without loss of generality, we take (a,xa) = (0,0). Then it suffices to

check (H l)-(H5) and apply Thm. 2.7. Now (HI) and (H2) follow from (3.1) and (3.2) in the

region of interest. As for (H3), if it is violated by L then one can define a new Lagrangian

for which (H2) implies (H3), while the solution set to the problem above remains unchanged.

For a sufficiently small choice of 6, conditions (3.3) permit A(x) to be made arbitrarily

small, where x is the straight line between the endpoints: this gives (H6). And (H7) follows

from. Prop. 2.5.



196

3.2 THEOREM. In the presence of the Basic Hypotheses, let x be any strong local solution

to problem (P). Let r E [a,b] be any point for which

Then r lies in a relatively open subinterval I of [a,b] on which x is Lipschitzian. In

particular, there is a relatively open subset 11 of [a,b] of full measure in which x is locally

Lipschitzian.

Proof. Let r be a point satisfying (3.5). Then there must be some number M&#x3E;0

together with sequences b. 1 converging to r while obeying

Note that the Basic Hypotheses imply that conditions (3.1) and (3.2) hold (with

U=[a,bJxRn) at the point (to,xo) _ (T,X(T)). Therefore Thm. 3.1 applies, and provides

certain positive constants R and 6. We may reduce Rand i, if necessary, to assure that

x solves problem (P) relative to all arcs y obeying and that 

In terms of the constant t M defined above and the choice p = R/2, Thm.

3.1 asserts the existence of some 6 &#x3E; 0 for which conditions (3.3) imply that all solutions of

problem (3.4) are Lipschitzian.

For each i, consider the following problem:
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4. Existence and Regularity in the Large.

Although the intermediate existence theorem concerns (PR), which involves the state

constraint can often be used to treat the unconstrained problem (P) as well. This

is most evident when the solutions of (P) can be assigned an a priori bound in the supremum

norm, for then the solution sets for (P) and (PR) coincide for sufficiently large values of R. In

this section we describe a very mild growth condition which generates such an a priori bound,

and use it to prove new global regularity results for certain slow-growth problems.

Suppose there are nonnegative constants (3 and i and a positive-valued function

Q’:[0,+oo)2014~R, for which the following holds for every R&#x3E; 0:

We may then estimate the objective value of any admissible arc x as follows: if 

Suppose now that.x is an admissible arc for problem (P). If we assume that for some

Ro &#x3E; 0,

then (4.2) gives, for all admissible arcs x,

Consequently the solutions of (P), if any, are to be found among the solutions of (PR ).
0

Now the solution set for (PR ) remains unchanged if L is replaced by the Lagrangian
0

L = L + y. This new Lagrangian obeys (H3) in the set R0B, with a= a(Ro)

from (4.1 ). And (4.3) can be rearranged to give

this strict inequality is preserved when a(Ro) is replaced by a sufficiently large value of a in
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(0,o(R.o)), which confirms (H4). Only (H5) remains to check.

An extremely versatile replacement for (H5) is the extremal growth condition (EGC),

defined as follows:

It is evident that (EGC) implies (H5), from which we deduce the following result.

4.1 THEOREM. Let L satisfy the growth condition (4.1). Suppose there is an arc x

admissible for (P) such that

If (EGC) holds, then the solution set for (P) is a nonempty collection of Lipschitz arcs.

Note that the inequality condition (4.6) certainly holds if

lim R[a(R)2014/?(b2014a)] = +00. This condition is much weaker than the coercivity

hypothesis typically invoked in existence theory, which we will discuss in Section 5. Conditions

(HI), (H2), and (4.1) are also very mild. Thus the applicability of Thm. 4.1 depends primarily

on the number of situations in which (EGC) can be shown to hold. This number is rather

large, as illustrated by the applications of Thm. 4.1 which constitute the remainder of the

paper. The first of these concerns a class of slow-growth Lagrangians familiar from the theory

of parametric problems.
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4.2 PROPOSITION. Let L(t,x,v) = where p is a positive-valued locally

Lipschitz function. Then (EGC) holds. In particular, if one has the inequality

for some admissible arc x, where

then the solution set of (P) is a nonempty subset of C1[a,b].

Proof. Note that (4.1) holds with 5 as in (4.8) and /?==~==0. Also, any

Lipschitzian solution of (P) will automatically be smooth because the Lagrangian is strictly

convex in v. Therefore the desired conclusions will follow from Thm. 4.1 once we verify

(EGC).

To do this, fix R, r &#x3E; 0 and let a Lipschitz arc x on [to,tJ satisfy the conditions of

Def. 2.4 for some s&#x3E;r. Conditions 2.4(c)(e) imply that there is a constant c for which

(This is the second Erdmann condition-see [1].) Now 2.4(a) implies

whence (4.9) implies

where A(R) = max~~p(x) : In particular, the existence of such an arc x forces

s’‘ =p(s)2 to be less than the right side of this inequality. In other words, for all sufficiently

large values of s, no such arc x exists. That is, which verifies (EGC) and

completes the proof. ////

Proposition 4.2 is a generalization of [5, Prop. 7.3], in which the function p was

required to be uniformly bounded away from zero on Theorem 4.1, on the other hand, is
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a special case of [5, Thm. 7.1].

Growth conditions on the Bernstein function can also be used to confirm (EGC) for

problems with slow growth. Let us now suppose that L is C2 and Lvv is everywhere

positive definite. Then the Bernsiein funciion is given by

(with all evaluations at (t,x,v)): it arises when the Euler equation for a C2 extremal x is

written in the form x=F(t,x,i). Our next result concerns a new growth condition on F

which implies global existence and regularity.

4.3 THEOREM. Let LEC2 obey growth condition (4.1) and Lvv(t,x,v»O

Furthermore, assume that for every R &#x3E; 0, there exist a nonnegative

function and a constant c &#x3E; 0 for which

Then (EGC) holds. In particular, if there is an arc x admissible for (P) such that (4.5) holds,

then the solution set for (P) is a nonempty subset of C1[a,b).

Proof. Let us first replace (4. 10) by a growth restriction which appears more

restrictive. For every R &#x3E; 0, (4.1) implies that

Consequently (4.10) implies that

This has the same form as (4.10), except that L appears directly instead of in modulus. We

are therefore free to assume the following instead of (4.10):

(We may also add a constant to m(t), if necessary, to ensure that the coefficient of 1 +Ivl is

nonnegative throughout the region of interest.)
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We now turn to (EGC). Fix any positive values of r and R. Recalling the constant

M of Prop. 2.6, we define

It suffices to prove that since and Prop. 2.5 applies. On the

contrary, suppose R(r,s)+oo. Then there must be some interval [to,tl] carrying an arc

x satisfying

The second of these relations, together with the strict convexity in v of our Lagrangian,

implies that x is continuous on [to,tl]. From the regularity theorem of Weierstrass [1,

2.6.iii, p. 60], it follows that x is in fact C2, and the extremality conditions above can be

rewritten as

According to (4.11 ), we have

where g(t) = m(t) + cL(t,x(t),x(t)). Gronwall’s inequality, together with the initial

condition from 2.4(a), implies that 
’

But we may compute
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by Prop. 2.6, whereupon (4.12) gives This contradicts condition 2.4(b)

and completes the proof.

A special case of (4.10) involves the following pair of growth conditions: there exist

constants k &#x3E; 0 and p&#x3E; 1 such that for every R&#x3E; 0, there are nonnegative quantities c(R),

g(R), and obeying

Clarke and Vinter [7] introduced these conditions (with m(t)=l) to generalize the original

work of Bernstein. They showed that when L is coercive (see Section 5), (4.13) and (4.14)

imply that all solutions to (P) are Lipschitz. To see that these conditions imply (4.10), fix

R&#x3E; 0 and write

The right-hand side has the form prescribed by (4.10), as required. Since it does not require

coercivity and relies upon a weaker growth condition, Thm. 4.3 generalizes [7, Cor 3.4].

Here is a simple non-coercive example to which Thm. 4.3 applies. Let be

positive-valued and of class C2. Then (4.10) holds for L(t,x,v)=4&#x3E;(x)(1+lvI2)1/2, while (4.1)

was confirmed in Prop. 4.2. (The Bernstein function in this case is
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5. Global Regularity for Coercive Lagrangians.

The Lagrangian is called coercive if there are a non-negative,

nondecreasing convex function and non-negative constants /3, r for which

Note that when L is coercive, (H2) reduces to the assumption-standard in existence

theory-that L is convex in v. Also, given any convex function 00 satisfying (5.1) and

(5.2), one can create a nondecreasing, non-negative convex function 0 for which these

conditions remain valid, at the possible expense of an increase in 7.

A coercive Lagrangian L certainly satisfies growth condition (4.1). Indeed, (5.2)

implies that for any given ~&#x3E;0, there exists such that

Thus (5.1 ) implies that

As we noted in Section 4, any choice of 1F&#x3E; #(b-a) in this relation will confirm bot~

(4.1) and (4.5). Thus Thm. 4. 1. takes the following form in the coercive c.

5.1 THEOREM. Let L be coercive. If (EGC) holds, then the solution set of (P) is a

nonempty collection of Lipschitz arcs.

Theorem 5.1 is similar in spirit to the classical existence theorem of Tonelli. It relies

upon convexity in v and coercivity, as does Tonelli’s theorem, but contains the extra

conclusion that all solutions are Lipschitzian. The example in [6] shows that this desirable

assertion is available only under additional hypotheses, among which Thm. 5.1 establishes
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(EGC). The verification of (EGC), in turn, can be based on the following result.

5.2 LEMMA [5]. Let L be coercive. Then for every R &#x3E; 0 and K &#x3E; 0, there exists a

constant M &#x3E; 0 such that

Lemma 5.2 is used in [5] to prove that any coercive Lagrangian L which is

independent of t necessarily satisfies (EGC), and hence that any autonomous fast-growth

problem has only Lipschitzian solutions.

We now consider a time-dependent version of (P) involving a coercive Lagrangian L.

Thus we assume that the endpoints (a,xa) and together with the quantities /3, y,

and B of (5.1)-(5.2), are fixed. We say that L satisfies the extended Morrey condition if, for

every R&#x3E;0, there are nonnegative constants co, cl, c2, and a nonnegative function

such that

whenever and for some point 

5.3 THEOREM. If a coercive Lagrangian L satisfies the extended Morrey condition, then

the set of solutions to (P) is nonempty, and consists entirely of Lipschitz arcs.
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Proof. Observe that the extended Morrey condition (5.3) implies the following growth

condition, which appears more restrictive. For every R&#x3E;0, there exists a nonnegative

and a constant c &#x3E; 0 such that

whenever q~9xL(t,x,v) and for some Indeed, let

’mo(t), co, ci, and c2 be quantities for which (5.3) holds. Then choose so large that

In the region one has

Using these estimates in (5.3) gives (5.4), with and

We therefore proceed under condition (5.4).

(We may add a constant to m(t), if necessary, to ensure that the second factor in (5.4) is

nonnegative throughout the region of interest.)

In view of Thm. 5.1, it suffices to verify (EGC). Thus, fix r, R&#x3E; 0. We will show

that Ap(r,s)=+oo whenever s&#x3E;S and where S is given by Prop. 2.5 and M

is defined as follows. Let Mo be the constant given by Prop. 2.6; define

~a = maxi PE8vL(t,x,v), 

and set

The constant M appearing in our claim is the one for which (cf. Lemma 5.2)
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To verify that s&#x3E;S and force suppose the contrary.

Then some s&#x3E;S with must admit a Lipschitz arc x on some interval [to,tJ

where conditions 2.4(a)-(e) hold. In particular, conditions 2.4(c)(e) imply that x solves a

certain optimal control problem, for which the conclusions of the Maximum Principle [3, Thm.

5.?.l~ imply the following. There exists an arc pEAC[to,tJ for which

According to (5.4), it follows that

where h(t) = m(t) + cL(t,x(t),x(t)). Now h is nonnegative and integrable, so

where Ko was chosen above. Now by Gronwall’s inequality and condition 2.4(a), inequality

(5.7) gives

According to (5.6) and Lemma 5.2,

and this contradicts condition 2.4(b). This contradiction arises from our assumption that

 which must therefore be false. The proof is complete.

Theorem 5.3 compares favourably with other regularity results based on conditions of

Morrey type. Although it requires Lipschitzian t-dependence in place of the measurable t-

dependence of [7], [4], the growth condition (5.3) is more general than that appearing in either

of these references. In the smooth case, inequality (5.3) reduces to

whereas [7, Cor. 3.3] requires
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