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1. Introduction.

This paper extends certain technigues developed in Evans-Ishii
[6], Fleming-Souganidis [9], Evans-Souganidis [8], etc. regarding
a PDE approach to various questions concerning large deviations.
The starting point for these studies was the observation that tle
action functions controling large deviations for various problems
involving diffusions are, formally at least, solutions of certain
Hamilton-Jacobi PDE; see, for example, Freidlin-Wentzell {10, p.
107, 159, 233, 237, 275, etc.]. Our new contribution has been to
seize upon this fact and, utilizing the rigorous tools now avail-
able with the new theory of viscosity solutions of Hamilton-Jaccbi
equations introduced by Crandall-Lions [3], to recover many of the
basic results heretofore derived only by purely probabilistic
means. We argue that these new PDE tools are often simpler and
more flexible than the probabilistic ones; the papers {[2] and [3],
in particular, demonstrate the ease with which we can now handle
nonconvex Hamiltonians. (We realize of course that many important
applications of large deviations have no connections with PDE's.)

This current paper continues the program above by undertaking

to investigate the asymptotics of a system of coupled linear para-
bolic PDE. The underlying probabilistic mechanism here comprises

a collection of diffusion processes among which the system switch-

es at random times determined by a continuous time Markov chain.
We rescale so that a small parameter 4 occurs multiplying the
diffusion terms in the corresponding PDE, whereas a term % occurs
multiplying the coupling terms. Then following Bensoussan- Lions-

Papanicolaou [1] we seek a WKB-type estimate for the solution "
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of the PDE, this of the form

-I{x,t)+o(1)

(1.1) u;(x,t) = e ¢ as ¢-—0 (k= 1,...,m)

where I, the action function, must be computed. We carry out a

proof of (1.1) by performing a logarithmic change of variables (an
jdea introduced by Fleming), and showing that I solves in the

viscosity sense a Hamilton-Jacobi PDE of the form

(1.2) I, + H(%,DI) = 0 in P" (0,x).

Using then routine PDE theory we can write down a representation
formula for I.

The novelty in these purely PDE technigues is that we can
calculate the Hamiltonian H occurring in (1.2) directly from <he
original system of coupled parabolic eguations, with no recourse
to probability or ergodic theory. This seems to us fairly inter-
esting, as the structure of H, involving the principal eigenvalue
of a certain matrix, is not at all obvious, even formally, from
the system of PDE we start with. It is also worth noting that,
although the Hamiltonian H 1s convex in its second argument, our
analysis depends crucially upon max-min and min-max representation
formulas., In any case, we hope that the techniques developed here
and in (6], (8], etc., will make some of the probabilistic results
more understandable to PDE experts.

We have organized this paper by presenting first in 82 a re-
view of useful facts from the Perron-Frobenius thec—y of positive
matrices. Then in %3 we state carefully our PDE results and pro-
vide some preliminary estimates. Finally, §5§4-5 complete the

proof of our main theorem.
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We hope in future work to extend these ideas to certain
systems of reaction-diffusion equations. (Freidlin has recently

undertaken a probabilistic analysis of such problems.)
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2. The principal eigenvalue of a positive matrix.

We briefly review in this section some consequences of the
pPerron-Frobenius theory of positive matrices, and derive also cer-
tain max-min and min-max characterizations for the principal eigen-

values of such matrices.

Notation. Given x = (xl,...,xn) € IPn, let us write
x >0
provided
xi>0 (1 < i< m),
and
X 2 0
whenever

xizo (1 < i < m).

Similarly, if vy = (yl,...,yn) € D?n, we write

to mean

i i
Notation. If A = ((aij)) is an mxm matrix and x =
(xl,...,xm) € Rm, set
m
(Ax)i = it® component of Ax = Zaijxj (1 < i < m).
j=1
Definition. Let A = ((aij)) be a reas m+«m matrix. We say

that A is strongly positive, written

A > O,
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provided
335 >0 (1= 4,3 < m.
Theorem 2.1 (Perron-Frobenius). Assume A > 0 and define
o] 0 .
(2.1) A" = A (A) = sup {A € R|there exists x 2 O
such that Ax 2 Ax)}.
(i) There then exists a vector xo > 0 satlisfying
Axo = loxo.

(ii}) If Y € € is any other eigenvalue of A, then Re} <
10.

(iii) Purthermore

(Ax)
(2.2) Ao = max min X i
X>0 1=<i<m i
and
(Ax)
(2.3) 10 = min max % 1.
x>0 1<ism i
(iv) PFinally,
m
o _ . pl(Ax)l
(2.4) A~ = sup inf % ,
psP x>0 i=1 i
for

m
P= (pe« eM™p > o, zpi = 1}.
i=1

Egggj; See Gantmacher {11, Chapter XIII] or Karlin-Taylor [12,
Appendix 2] for proofs of (i), (ii). Assertion (iii) is also
found in Gantmacher {11, p. 65], but as it is important for the
calculations in %4, we provide the following simple proof.

- T
Since A has the same spectrum as A and since assertion
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(i) applies as well to A" > 0, there exists a vector yo > 0

satisfying

Then for each x > 0
0 = x- (ATy® - 2%°%) = (ax - 1%)-y0;

and consequently

(Ax - .x°x)j < 0

for some index 1 < j < m. Hence

(Ax) (Ax) .
xoz % jz min % 1,
3 1<ism i
and so
(Ax)
,lo > max min % i.
®¥>0 1<izm i
On the other hand
Ax0 = loxo.
whence
(o]
o (Ax”) 4 (Ax) 4
A7 = min —p — ¢ max min
1<ism xi x>0 1<izm i

This proves (2.2), and the proof of (2.3) is similar.

Lastly, assertion (iv) is from Ellis [5, Problem IX.6.8] and

is a special case of Donsker-Varadhan f{4]. A direct proof is
this:
m
(Ax) . p; (Ax)
o] < i i i
A" = min max X = min sup —x
X>0 1<ism i x>0 psP i=1 i
m

. qj_qi q;
= min sup Zaijpie (xi—e .1 =1,...m)

q=R™ peP i, 3=1
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m
q;-d.
= sup inf z aijpie J
p<P qum i,j=1
2 pi(Ax)i
= sup inf Z —x
- > s
psP x>0 i,j=1 i

where we applied the minimax theorem to the linear-convex function

q.-9.
= J Ui
g(p.q) = Z aijpje . e

1i,3=1

Remark. It is interesting to note that whereas (2.3) and (2.4)
are "dual” under the interchange of inf and sup, the statement

"dual" to (2.2) is false:

o
o
A%
.
o}
=Y
9]
=
T
o]
-
»
»
[
#
+
]
(&)

Next we drop the requirement that the diagonal entries of A

be positive.
Theorem 2.2. Suppose A is an mxm matrix with

a,. >0 (1< 41i,j s m, 1= j).

1]
: o} 4]
(i} There exists a real number A = A (A) and a vector
xo > 0 satisfying
Axo = loxo.

Py . o
(ii) If » € € is any other eigenvalue of A, Re Ao

(iii) Furthermore,

m

o (Ax)i (Ax)i pi(AX)i

A7 = max min - = min max % = sup inf Z —
x>0 1si<m i X>0 1<ism i pEP x>0 i=1 i

1
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(iv) For fixed entries (aij“ < i,j ¢« m, 1i» J}, the func-

tion
f(a_,,a a_) = 2%a)
11722 " "mm’
i{s convex and nondecreasing.
froof . Set
d = max (Ialll,...,lamml) + 1,
and then apply Theorem 2.1 to
A s A +dI >0
to establish (i) - (iii). Assertion (iv) follows at once from
{iii}, since
noa P:X
f(a,,,...,a__) = sup inf Z Bl i |
11 mm P x>0 X3
pe i,j=1
m mog -
= sup {Zp.a.. + inf Z —ij—-i—j}
P 1 w0 X
PEF M=y i,j=1
i=j

this expression is convex and nondecreasing in the variables

TP PTRERTL W
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3. Statement of the PDE problem; estimates.
We assume now that C = ((cij)) is an m-~m stochastic

matrix; that is,

(3.1) Cre > O (1 < k,£sm, k= ¢)
and
m
(3.2) :E:Ckf =0 (1 < € s m).
£=1

k k
Suppose also that the functions aij’bi'gk : PR (1 < i,§<m,

1 < k < m) are smooth, bounded, Lipschitz continuous and satisfy

af (x) = af, (o) (1= 1,5¢n)
{3.3)
k 2 n
¥, 2 E ®
aij(x)ti)J vig| (x,£ € %)
for k =1,...,m and some constant p > 0. Assume. further that
(3.4) {Go = spt 9y is bounded and gp * (o] (k = 1,...,n).

We consider now the linear parabolic system

£ ¢ _k & k ¢ 1 £ . n
Yot T 7 %5%xgxg Pit%,x, * 2%k In B0,
(3.5)
& n
= R =
u g, on P x{t 0},
for k= 1,...,m. Here we employ a partial summation convention:

the indices 1 and Jj are summed from 1 to n, the index ¢

is summed from 1 to m; the index k 1is not summed.
According to the Perron-Frobenius theory, recalled in &2,

there exists a unique vector p > 0 satisfying

m
P =1
k=1
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and

m
ZCk[pk =0 (1I=1,...,m).
k=1

It is not particularly hard to prove (cf. [1, Section 4.2.111)
that as ¢— 0 each of the function ui converges on compact
subsets of ’ﬁn<(0,®) to the same Lipschitz function wu, which

satisfies the transport equation

u, = biuxi in D?nX(O,m)

where
< k -
b; = pby (i=1, ,n)
and
g Ppgy-
Observe that whereas u° = (ui,...,u;) is everywhere posi-

tive on’ EPnX(O,T] for each T > 0, the limit function wu has
compact support. Following then Bensoussan-Lions-Papanicolaou
[1,p.601] let us ask at what .rate the functions u” decay to zero
off the support of u, and for this attempt a WKB-type represen-

tation of u": of the form

I+o0({1)

ui=e € as ¢€—0 (k = 1,...,m)

where I = I{x,t) is to be determined. As in (61, {81, [9], we
exploit W. Fleming's idea of writing

L (xRt > 0);

{3.6) Vk = -¢ log u

so that
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and try to ascertain the limit of the functions v; as ¢— 0.

Observe first that routine parabolic estimates using (3.1},

(3.2) imply

£ .k
0 < uk < C1 = max fig } o
l<ksm L
whence
C -
(3.7) Vi > —-& log C1 (k =1,...,m).
We next employ (3.5) to compute that ve o= (vi,_‘.,v;)
solves this nonlinear system for k = 1,...,m:
vi-y
k ¢
rc e _k £ lakv£ va: +bk£ 7
v, = = a,.v -5 a3V LV - c, e
k,t 2 “ij k,xli 2 "13 k.x, k.xJ iTk,x; ke
n
(3.8) J in F7-(0,0),
£ = 1 K on int G x{t = 0}
Ve = ¢ log g o ,
£ n =
\Vk = +0 on (R Go)x{t 0}
Lemma_ 3.1. For each open set Q c< an(o,m) there exists a con-
stant C€(Q), independent of £, such that
£ £
sup lvkl.lekI < C{Q) (k =1,...,m).
Q
Proof. 1. The proof is similar to the proof of Lemma 3.1 in [8],

and we consequently emphasize only the important differences.
First of all we may assume that the ball B{0,R) 1lies in

int G0 for some fixed R > 0. Define then the scalar functions
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1
zk(x.t) = — ztat +8 (k=1,...,m)
R™-|x|
for 2,8 > 0 to be selected. Then
1 1
z, ~Z,
1 e k _1 1 k _1 1 £
z - =a;/ .z + za; .z z k + ¢ e
k,t 2°1j k,xixJ 2713 k,x1 k,xj - bizk'xi k€
k k
i £ [ 2313613 . Baijxixj
2LRr )2 Rk 23
Zal;jxixJ zbl;xi
+ 3 54 5 75 > 0 in B(O,R)x(0,w),
(R™-jx|™) (R™=-}x|7)
provided a = a(R) 1is large enough and R > 0 is selected so
that
_ k
8 = max (-log ( inf g )) < o,
1<ksn B(O,R)
Then
zy » vi on [B(O,R)x(t = 0}] u [8B(0,R)(0,®)].

Now the maximum principle applies to the nonlinear system (3.8)

since (3.1) implies that the nonlinear term

is increasing with respect to

v, (£ k).

whence

(3.9}

\7c —VC
Kk Ve
C e ¢
ke
vi and decreasing
Hence
2z} > v in B(0,R)x(0,®);
k = k 2 r r
lvil < ¢ in B(O,R/2)x{0.T)

for each T > 0.

with respect
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Now define

lxl2
P+ ot + 1 (k. =1,...,m)

zi(x,t)

for p,0,7r > 0 to be selected. Then

provided p,0 > 0 are large enough. Choosing now 7T greater

than the constant in (3.9) we apply the maximum principle to find

2 £
zZp 2 v in (R

" - B(O,R/2)1x(0,®) (k =1,...,m).

These .inequalities and (3.9) yield the stated bounds on lve

kl cn

compact subsets of Rnx(o,m), {k = 1,...,m).

2. To estimate IDviI we introduce the auxiliary functions
3 _ .2, 5.6,2 _ . F -
(3.10) zk = & (ka[ lvk (k 1,...,m)

where Q <c an(o,m), 4 is a smooth cutoff function with compact

support Q' 22 Q, { =1 on Q, and A > 0 is to be selected
below. Now choose an index k € {1,...,m} and a point (xg,tg)e

Q such that

(3.11) zi(xg,tg) = max max zg.
1<€<m Q° i

k .k ,
If (xo,to) e Q, then

(3.12) 0 =23 = 207 1DvE 12 + 202 vt - AV
k,x X, k ; X X_ k,x X

3 3 rj r h|

and
3 € _k _3
(3.13) C < Zp, ¢ T 3313%k,x.x
173
k k <1 =

at (xo,to). We utilize (3.8) and (3.10) to compute and then
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estimate the right hand side of (3.13):

I2 + 2§2V;

(4
k

2tL | Dv

0

&
ijvk,xixj

ak

£
2

£
—l(vk't -

"
k

llDzv;

£
k

]2 + £C{ {Dv

£
k

- eu(zlnzvilz + CiDV

o~
- Emk
A
> a -
! o~ ~
o x| o <
> I otw
L8 + w M
v >
> N "
Y
- X
| ) 8]
- xl +
% ]
X oM X
)
kv1 > k
g -
0 Mo Sy
o] LRl
+ Wl 2
X! :
Em& + %
- WM -
X2 S
N -
£mx xr J
v “ CV.K CV.K
1) I —
I ~ M
I & L
~ N
~ + ~
! ~<
Vi wi
)
4
J

%
w
o,
L~
C ——
I - xr
. N
X » 3
M | w -
w N &mx fmk
.KVi e( L
o ™ —
+ © +
+
o M
xJ - ®
~ » ™
emk - J
al Emk w M
] Mo >
. 0 hal
emx ol
- ! W X
e - >
e oM
Emk ﬂ
~ . - -,
X T
—_ o M -
EV.K CV.K VJ CV.K
. =) &t N
& ) o )
- N
+ ~— +
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Yk Ve
2 ¢ € £.,3 £,2
2ckéj vk,x (e )x + C{lekl + Clekl
r r
We employ (3.12) now to compute
2. ¢ £ £ k ¢
28 %y (-a, ,v v + b.v )
k,xr ij k,xi k,xjxr i k,xlxr
_ __ k ¢ £ _ &2
(3.15) = aijvk,x (ka,x. 2§Cx Ikal )
i j 3
k & £,2
+ bi(ka,x. - 2Ehx.|kaI )
i i
Furthermore, by (3.11),
£ v v
vk—vt k[ £
2 ¢ 2 - oyl € €,2 [
-2r vk,x (e )x = =2r 7 (lekl ka Dve)
r r
£_ €
VeV
€
e 2 £ 2 2 £, 2
< = (E7HDv 1% - 25Dy, 1)
£_ &
Vi Ve v
< re ¢ ( k)

Insert this estimate and (3.15) into (3.14), to find

VE —oF
Kk Ve o€ =¢F
A _k = ) £ k ¢
'Eaijvi,x.VL xj s Acyp,e £ - =)
i~ ’

Ay £,2
—'z!DVk‘ <

+ CeIDvii® + cipvpl? + o ipvii.

Thus
A 1DV 12 A cipy 1° ipv 12
<
(3.16) _,ka, < CA + C),ka‘ + C,ka,
k k
at (xo,to). Now choose

o
it

= w(max (£{Dvpl) + 1),
o
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and select the constant x4 so large that (3.16) forces the ine-

quality
(3.17) iovi12 < ¢
k
k .k .
at (xo,to). But then (3.11) and (3.17) imply
£ 2 3 .
max max Kle(I < max max z, + CA ¢ C + CA
1<€<m Q’ 1<€sm Q°
s C + C max (Cleil);
Q
and so
(3.18) max max Kleil < C.
1<€<m Q°

k
If (xo,tg) e dQ’, E(xlg,tg) = 0; and easy estimates lead also to

{3.18). Since ¢ =1 on Q, this gives the desired estimate. 2O
Remark. This proof is related to one in Koike {13], and follows
unpublished work of Evans-Ishii.

Lemma 3.2. For each open set Q << int Go\'[o,uo) there exists a

constant C€(Q), independent of ¢, such that

sup |vi|,IDvpl = C(Q) (k = 1,....,m).
Q

Proof. The proof is similar, except that we must consider also
the case that the point (xlé,tlé) from (3.11) lies 1in
int GOY(t=O). But since 9. > 0 in int GO for k=1,...,m,

the requisite estimates are easy.
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4. Convergence.
We next demonstrate that the functions (v;){>o converge

uniformly on compact subsets to limit functions Vi (k = 1,...,m},

and furthermore that v, = vy = ... = v = v. A major diffijculty
is that we do not have any obvious uniform control over the t-

dependence of the functions v;. Indeed, Lemma 3.1 provides us

with uniform estimates on only one of the four terms in the PDE
(3.8). Nevertheless we are able as follows to argue directly that

. I3 £ _
the differences (vk -~ Ve)5>o (k,£ =1,...,m) converge locally

uniformly to zero, and to control the rate of convergence, we

adapt here some ideas from [14].

Lemma 4.1. There exists a function v e C(Rnx(o,m)) and a
sequence ej——»o such that

€.
(4.1) ka——»v as ej——»o (k = 1,...,m),

uniformly on compact subsets of &nx(o,m).

Proof. We first claim that for each open set Q cc ?nr(O,m)
(4.2) max Hvi - v?ﬂ © < 0(e) as €—0,.
i,] L (Q)

To prove this choose a cutoff function ¢ with compact support in

an(o,m) and set

2 £ £
(4.3) @, = max g (v; - vi)l .
£ 13 1 31 @D (0,0))
We may as well assume
a > Q0

Fix T > 0 so large that

spt(r) = % (0,T),
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and define

€ _ r ¢
(4.4) Qij(x,y,t) = L(x, )0y, t)(v(x,t) - Vj(Y,t))
2
Ix-yi t
T T 2T Y%

for 1 < i,j<m x,ye€ R, 0< t < T. Choose now a subsequence

of the ¢'s (which for simplicity of notation we continue to

write as "¢") and integers k,f < {(1,...,m} such that
(4.5} sup <I>i£(x,y,t) = max sup 4>'rj.(x,y,t)
(x,y,t) _ 1, (x,y,t) )

for all small ¢ > 0. Next, passing to a further subsequence of

the ¢'s if necessary, select indices r,s = {(1,....,m} and
points (xc,te) £ spt ( such that

2, ¢ & & & € £ -
(4.6) Lo (%, t )(vr vs)(x L) a,

for all small £ > 0. Then (4.5) implies

sup &) .(x,y.t) > sup & _(x,y.t)
(x,vy,t) ' (x,y.,%t)
&

)

£ £ or
2 Qrs(x ,X ,t

(4.7) .
_ ,2,. £ . F £ £ £ L&, t°
= {7 (x ,t )(vr vs)(x ) 57 Y¢

a
> £
r 5.

Since Qfd(x,y,t) < 0 if either (x,t) ¢ spt (£) or (y.t) ¢

(xE,tE),(Y{,t{) < spt ({) such that

spt ({), there exist points
1 4

&
{4.8) 85 (x_,y_,t_) = sup &, (x.y.t).
k& e’ e’ e (%,7,t) k£

Then since

£ £
éke(xr_ )Y, ,tr_) 2 *k((xe IR A ).
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we deduce from (4.4) and Lemma 3.1 that
(4.9) Ix, -y 1 s ce
for some appropriate constant C.
Now inasmuch as (x_,y .t ) 1s a maximum point for Qi( we

have

- 2.¢ .
EN ) = 0, Dxéke(xg,y ,t ) s 0, D § (x‘,yk,t[)s 0.

ke, t(¥e Vet &' e v

These facts imply:
( £
[Ex, 2 )00y, .8, ) + E(x, 2 )0 (v, .t ) (v (x,.t)

(4.10) {1 - vi(y,.t))

&

£ £ £
F R, T E(Y, ) (VY (X)) = v (Y, %)) = o

.

“L(x ., t )0y, .t )a J(x )V (x_.t.)

k,xixJ

k
£ aii(xe)

v

+ (Y, t ) (Vilx, L t) = Voly, 6 At ()0, (%Lt
Xy .

r
(xg.te),x (xe,t,_.),

k
+ 2Z.(v€,t€) (x )vk x
i

L b
and

—C(xe.te)lc(ye,te) 5(Y, )"e L A

173
s 2at (v
£ 11 £

(4.12)

RAC R N ACIVEIR B AC AR PEL P I A

. ity =
£
t L4
+ 20(x .t )a 1J(y )v ,xj(vﬁ.tg){xj(vg.tf)-

Recalling Lemma 3.1 we deduce from these complicated expressions

the useful facts that
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£ £ ) _
C(xc’te)C(yc’tc)vk,t(xg'te) - v(,t(Y}'te) = 0(1)
£

£ k
{4.13) —_t(xe’te)t(Y&'tc)aij(xc)vk,xixj

2 (xc,te) > 0(1)

& £ £
) K(xc’te)C(Ye’tc)aij(yc)vz,xixj(yi’tc) < o),

as £¢— 0,

We evaluate the k'" equation in the PDE (3.8) at (xc,tc)

and the <£'° equation at (Y{'tc)‘ Subtracting and employing the

estimates from (4.13) and Lemma 3.1 we discover

{4.14) £ _oF [ _of
vk(xz,tc) vp(xe,tt) ve(y{,tg) Vq(Ya’tg)-

£ z
((xc,tc)f,(y&,tc)[ck e - ceqe

P
< 0(1),

where the indices p and q are summed from 1 to m. Since
%p >0 if p = k, we deduce

€ P>
vk(xg,tf)-vf(xf,t()

. £
Clx, . t )0y .t ) e

{4.15) . .
VelY rt )=V (y, . t,)

=
< I;(xg,te)t(yt,te)ceqe + 0(1),

summed for g =1 to m.

We must estimate the right hand side of this expression. But
(4.5) and (4.8) imply for each g€ (1,...,m} that

£
§k£(xe'ya"tt) ’ q)k (x}j,y{,t(i).

q
Thus

£ &
lx .t My,  t )y (x .t ) = vely .t )]

£ £ N
SXC IS A IS CLIR B A AR b
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whence, since ’(x&'te)’(ye'tz) > 0, we have
(4.16 & t ) - v t ) <o =
-16) vely, .t ) Val¥e -t ) < (g =1,...,m).

This inequality inserted into (4.15) implies

£ £ )
E{x )0y, .t )V (x .t ) - v (x_ .t )] < 0(¢) as c¢—o0.
But then (4.9) and Lemma 3.1 in turn yield
£ &
f(xg,te)C(Yz.tC)[vk(xe,te) - Vely, .t )] = O(¢) as ¢—o0.

>

Finally we observe from (4.7) and (4.8) that

Q
A

& & £ LA
3 < éke(xt_,yg,tg) < t(xg,tg)t(ye,t{)(vk(x{,tt) - Vely .t )
< O(e}) as €¢—0.

This proves (4.2}.

Returning now to the system of PDE (3.8) we observe that

Lemma 3.1 and estimate (4.2) yield

(3 ek £ _
vk,t - fvijvk,x.x. = 0(1) as €£€-—0
i3
on compact sets for k = 1,...,m. Consequently standard parabolic

estimates (see, for example, Evans-Ishii {6]) provide a uniform
Holder modulus of continuity on compact sets for the functions ﬁ

in the t-variable. Consequently there exists a sequence fj—aC

and functions Vi € C(Rnx(o,m)) such that
E .

J -
vk ——vvk (k = 1,...,m)

uniformly on compact sets. But then finally observe from esti-

mate (4.2) that in fact
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We next demonstrate that v is a viscosity solution of a

certain Hamilton-Jacobi PDE. For fixed x,p € Pn, set
_ 1 k k
B(x,p) = diag(...,-iaij(x)pipj bi(x)pi,...)

and then define the Hamiltonian

H(x,p) = 2%(B(x,p) + C)

(4.17)

]

the eigenvalue of the matrix A(x,p) =

B(x,p) + C with the largest real part.

According to Theorem 2.2, H(x,p) is real, the mapping p+— H(X,p)
is convex and increasing, and
(A(x,p)z)k (A(x.p)z)k

{4.18) H(x,p) = max min ——————— = min max
z>0 1l<k<m z

k z>0 1<k:zm %y

Lemma 4.2. The function v is a viscosity solution of the

Hamilton-Jacobi equation

v, + H(x,Dv) = 0 in P™x(0,®).

Proof. Let ¢ < c*(®"< (0,2)) and suppose that v - ¢ has a

strict local maximum at some point (xo,to) = PP (0,m). We must
prove
(4.19) PRy ) + H(xo,w(xo,to)) = 0.

To simplify notation slightly, let us suppose v;f—»v uniformly on
compact sets. Then there exist points (x;.ti) e #™ (0,0) such

that
£ &
A =1,...,m),
(4.20) (xk,tk)——)(xo,to) as &¢-—0 (k )

and
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(4.21) vi - ¢ has a local maximum at (xk,tk) (k = 1,...,m).
Since vi is smooth, the maximum principle and (3.8) imply that

£_€
Ve Ve

1 _k k £
i§%x%,x +'§aij¢xi¢xj = PPyt ket

(4.22)

[y
(=]

at the point (xi,ti), k=1,...,m. Fix 1 < k < m. Then (4.21)
implies for ¢ = 1,...,m that

2 £ £ £ z & £
Ve Xy ) - UG, t) = Ve lK L) - el ).

Hence
£ £ £ £ £ £ £ £ £ £ £ £
vk(xk,tk) - Ve‘xk'tk) 2 V(xR tp) - Velx,,t,)
£ £
+oUxp, th) - oKLt ) (£=1,...m).

We insert this inequality into (4.22) to find

£
z
£ _k k £
(4.23) 9 - 33;% . x, * 2 1J¢ ¢ bt Sk < O
i™j J i zZ,
. ¢ (3, T ) -Vl (3, tL )
where zZ, = exp( P ) >0 (k=1,...,m). Recall

now (4.17). Then, since ¢ is smooth, (4.23) implies

£
(Az" ),
(xo,to) + —_— < o(l) as £—0, k =1,...,m,
z
k

where A = A(xo,Da(xo,to)). But then

£
(Az )k
(xo,to) + max — < 0o((1) as £— 0;
1l<k<m zZ,

whence the "min-max" characterization of H afforded by (4.18)

implies
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(AZ)k
¢ (x .t ) + H{x_,Do(x_,t )) =¢ _(x_ ,t ) + min max
t'"0" 0 o] 0’0 t'"0" 0 2>0 1sk<m zk
(az°),
< ¢ . (x.,t.}) + max ——— < o(1) as £—0.
t*70’ "0 £
1<ksm Zy

This proves (4.19). The proof of the opposite inequality in case
v-¢ has a strict local minimum follows similarly, using the

pax-min characterization of H provided by (4.18). n

Remarks. (i)} In view of this Lemma, Lemma 3.1 and Crandall-Lions
[3], we see that v is locally Lipschitz in the variable t.
(ii) From Lemma 3.2 we see also that v is continuous on

compact subsets of int GOX[O,GD), and that

(4.24) v=0 on intG,.
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5. Indentification of the action function.

In view of the definition of the v; = -&£ log u;, we obtain

Theorem 5.1. The functions ui converge to zero uniformly on

compact subsets of {v > 0}.

We next identify v, using ideas set forth in [8]. For *his

let us first note that H satisfies

(5.1) |H(x,p) - Hkx,ﬁ)l < cip - pl(ipl + Ipl + 1)
and
(5.2) |H{x,p) - H(;.p)l < Clx - x!(lplz + 1)

- - n
for appropriate constants C and all x,x,p,p € R". 1In addition,

(5.3) alp!® - b < IH(x,p)| s AlpI® + B

for all x,p < ?n and certain constants a,b,A,B.

We recall next that the Lagrangian associated with H is

L(x,q) = sup (g-p - H(x,p)) (x.,qe P").

pek”

L satisfies continuity and growth estimates similar to (5.1) -
{56.3).

Theorem 5.2. We have

t

vix,t) = I(x,t) = inf {I L(x(s),—i(s))dslx(O) = x, x(t) GO}’
x{-)eX o
where
1 N n -
X = Hloc([o,m);F ) = {x : [0,9)—P Ix(+) 1is absolutely

continuous, X € L2(O,T) for each T > 0}.

’roof. Choose a smooth function 7 RP LR satisfying
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n
0sn =<1, n = 0 on Go,n>0 onP-Go.
Fix re {1,2,...} and write
-rn(x)
"z _ £ n
gpi{x) = g (x) + e (x € B7).
Let u = (uf w’) solve (3.5), but with g. replacin
et u = JEERRRA . . B w 9 P g G-
“E “£ £ “E £
Since I = Jpr Y = U and so Ve % Vi where
e _ “E -
vk— £ log uk (k 1,...,m).
Now
e - -£ log(gk(x)+1) (x € Go)
vp(x,0) = -¢ log g, (x) = n
rn(x) (x € B" - Gy).
The estimates and convergence arguments developed above apply
also to the v'r . Thus, passing if necessary to another subse-

quence, we have

~E -

J

v ‘o v
uniformly on compact subsets of [an(o,m), where v is a viscos-
ity solution of

v, + H(x,Dv) = 0 in I]?nx(o,m).

t
Furthermore, since vc is well behaved at t = O, the technique

for estimating the gradient works even on compact subsets of =y

{0,0), and thus v is Lipschitz on compact subsets of ?nX[O.m)-

Finally, a simple barrier argument shows that

v(x,0) = rn(x) (x < RP).

Then we have, according to [8], that
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t

vix,t) = v(x,t) = inf {J L(x(s),-x(s))ds + rn(x(t))]|x(0) =
x(-)eX
0
Let r—® to establish
t
(5.4) wv(x,t) > inf {J L(x(s),-x(s))ds|x(0) = x, x(t) = GO}.
x(+)eX o

On the other hand, fix T,5,0 > 0 and choose R > 0 so

large that

GO < B(O,R}.

Consider the cylinder C = B(0,R)<[8,T] and suppose (x,t) €

int €. Then, again using [8], we see that

(£=8 )T
vix,t) = inf J L(x(s),-X(s))ds
Xx(-)eX
0
X rcr-sVX(T) T

+ 1[T2t-5]v(x(t—5),6)lx(0) = x}
t
s inf {J L(x(s),-x(s))ds
X(+)eX 0
+ v(x(t-8),5)Ix(0) = x,{x(s)} ¢« R for
0s s < t-b, x(t-6) « Gg},

where

]
I

inf{s = olix(s)! = R)

and

ok

{y = Gyldist (y,3G,) = o).

Let R—®, 6—0 and p— 0, in that order, and recall (4.24)
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o find
t
v(x,t) ¢ inf {J L(x(s),-%(s))ds|x(0) = x, x(t) < Gy) -
x(-)eX 0

this inequality and (5.4) complete the proof.
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