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1. Introduction.

This paper extends certain techniques developed in Evans-Ishii

[6], Fleming-Souganidis [9], Evans-Souganidis [8], etc. regarding

a PDE approach to various questions concerning large deviations.

The starting point for these studies was the observation that the

action functions controling large deviations for various problems

involving diffusions are, formally at least, solutions of certain

Hamilton-Jacobi PDE; see., for example, Freidlin-Wentzell [10, p.

107, 159, 233, 237, 275, etc.]. Our new contribution has been to

seize upon this fact and, utilizing the rigorous tools now avail-

able with the new theory of viscosity solutions of Hamilton-Jaccbi

equations introduced by Crandall-Lions [3], to recover many of the

basic results heretofore derived only by purely probabilistic

means. We argue that these new PDE tools are often simpler and

more flexible than the probabilistic ones; the papers [2] and [3],

in particular, demonstrate the ease with which we can now handle

nonconvex Hamiltonians. (We realize of course that many important

applications of large deviations have no connections with PDE’s.)

This current paper continues the program above by undertaking

to investigate the asymptotics of a system of coupled linear para-

bolic PDE. The underlying probabilistic mechanism here comprises

a collection of diffusion processes among which the system switch-

es at random times determined by a continuous time Markov chain.

We rescale so that a small parameter ~ occurs multiplying the

diffusion terms in the corresponding PDE, whereas a term 1 ~ occurs

multiplying the coupling terms. Then following Bensoussan- Lions-

Papanicolaou [1] we seek a WKB-type estimate for the solution u
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of the PDE, this of the form

where I, the action function, must be computed. We carry out a

proof of (1.1) by performing a logarithmic change of variables (an

idea introduced by Fleming), and showing that I solves in the

viscosity sense a Hamilton-Jacobi PDE of the form

Using then routine PDE theory we can write down a representation

formula for I. -

The novelty in these purely PDE techniques is that we can

calculate the Hamiltonian H occurring in (1.2) directly from the

original system of coupled parabolic equations, with no recourse

to probability or ergodic theory. This seems to us fairly inter-

esting, as the structure of H, involving the principal eigenvalue

of a certain matrix, is not at all obvious, even formally, from

the system of PDE we start with. It is also worth noting that,

although the Hamiltonian H is convex in its second argument, our

analysis depends crucially upon max-min and min-max representation

formulas. In any case, we hope that the techniques developed here

and in [6], [8], etc., will make some of the probabilistic results

more understandable to PDE experts.

We have organized this paper by presenting first in §2 a re-

view of useful facts from the Perron-Frobenius theory of positive

matrices. Then in §3 we state carefully our PDE results and pro-

vide some preliminary estimates. Finally, §§4-5 complete the

proof of our main theorem.
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2. The principal eigenvalue of a positive matrix.

We briefly review in this section some consequences of the

Perron-Frobenius theory o f pos i t ive matrices, and derive also cer-

tain max-min and min-max characterizations for the principal eigen-

values of such matrices.

Notation. (xl’...,X ) E let us write

provided

and

whenever

Similarly, if Y = ... ,y~) E we write

to mean

Notation. If A = ( (a..)) is an mx m matrix and x = 
.

(x1,...,xm) ~ Rm, set

Definition. Let A = «aij» be a real m"m matrix. We say

that A is strongly positive, written
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provided

Theorem 2.1 (Perron-Frobenius). Assume A &#x3E; O define

( 2 . 1 ) 03BB0 = 03BB0(A) ~ sup { Jl E R| there exists x &#x3E;_ 0

such that Ax &#x3E;_ a x } .

(i) There then exists a vector x~ &#x3E; 0 satisfying

Ax~ - ?t_ ~x~ .

(ii) If 03BB E O is any other eigenvalue of A, then Re a. 

~0.

( iii) Furthermore

and

(iv) Finally,

for

Proof. See Gantmacher [11, Chapter XIII] or Karlin-Taylor [12,

Appendix 2] for proofs of (i), (ii). Assertion (iii) is also

found in Gantmacher [11, p. 65], but as it is important for the

calculations in §4, we provide the following simple proof.

Since A has the same spectrum as A and since assertion
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(i) appl ies as well to A &#x3E; 0. there exists a sector y~ &#x3E; 0

satisfying

Then for each x &#x3E; 0

and consequently

~

for some index 1  j  in. Hence

and so

On the other hand

whence

This proves (2.2), and the proof of (2.3) is similar.

Lastly, assertion (iv) is from Ellis [5, Problem IX.6.8] ] and

is a special case of Donsker-Varadhan [4]. A direct proof is

this:
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where we applied the minimax theorem to the linear-convex function

Remark. It is interesting to note that whereas (2.3) and (2.4)

are "dual" under the interchange of inf and sup, the statement

"dual" to (2.2) is false:

Next we drop the requirement that the diagonal entries of A

be positive.

Theorem 2.2. Suppose A is an mxm matrix with

( i ) There exists a real number ~1 ~ - ?~. ~ ( A) and a vector

x~ &#x3E; 0 satisfying

0

(ii) If ~ ~ ~ is any other eigenvalue of A, Re ~  ~ . -

(iii) Furthermore,
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3. Statement of the PDE problem: estimates.

We assume now that C = is an m~m stochastic

matrix; that is,

Suppose also that the funct ions (1 ~ n,

1 ~ k s m) are smooth, bounded, Lipschitz continuous and satisfy

for k = 1 , ... , m and some constant v &#x3E; o. Assume. further that

(3.4) spt gk is bounded and gk &#x3E;. 0 (k = 1, ...,m)

We consider now the linear parabolic system

for k = 1,...,m. Here we employ a partial summation convention:

the indices i and j are summed from 1 to n, the index (

is summed from 1 to m ; the index k is not summed.

According to the Perron-Frobenius theory, recalled in ~2,

there exists a unique vector p &#x3E; 0 satisfying
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and

It is not particularly hard to prove (cf. [1, Section 4.2~.11])

that as ~--~ 0 each of the function uk converges on compact

subsets to the same Lipschitz function u, which

satisf ies the transport equation

where

and

Observe that whereas u£ = is everywhere posi-

tive on for each T &#x3E; 0, the limit function u has

compact support. Following then Bensoussan-Lions-Papanicolaou

[l,p.601] ] let us ask at what rate the funct ions ul:. decay to zero

off the support of u, and for this attempt a WKB-type represen-

tation of uf of the form

where I = I(x,t) is to be determined. As in [6], [8], [9], we

exploit W. Fleming’s idea of writing

so that
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and try to ascertain the limit of the functions vk as ~2014~o.

Observe first that routine parabolic estimates using (3.1),

(3.2) imply

whence

We nex t employ ( 3 . 5 ) t o c ompu t e t ha t v I:: = (v~1,...,v~m)
solves this nonlinear system for k = 1,...,m:

Lemma_ 3._1. For each open set Q cc fp ~ (0,oo) there exists a con-

stant C(Q), independent such that

Proof . 1 . The proof is similar to the proof of Lemma 3 . 1 in [8],

and we consequently emphasize only the important differences.

First of all we may assume that the ball B(O,R) lies in

int Go for some fixed R &#x3E; 0 . Def ine then the scalar functions
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for (J. ,8 &#x3E; 0 to be selected. Then

provided a = a ( R ) is large enough and R &#x3E; 0 is selected so

that

Then

Now the maximum principle applies to the nonlinear system (3.8)

since ( 3 . 1 ) impl ies that the nonl inear term

is increasing with respect to v~ and decreasing with respect

v~ (~ ~ k). Hence

whence

for each T &#x3E; O.



242

Now define

for &#x3E; 0 to be selected. Then

provided &#x3E; 0 are large enough. Choosing now T greater

than the constant in (3.9) we apply the maximum principle to find

These .inequalities and (3.9) yield the stated bounds on on

compact subsets (k = 1 , ... ,m) .

2. To estimate we introduce the auxiliary functions

where Q =C (RnX ( 0 ~ . ) . ~ is a smooth cutoff f unction with compact

support Q’ ~ Q, ( = 1 on Q, and I &#x3E; 0 is to be selected

below. Now choose an index k c {1,...,m} and a point 

Q’ such that

If (x~. t~) ~ Q’, then

and

at ~0~0~ ’ ~ utilize (3.8) and (3.10) to compute and then
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estimate the right hand side of ( 3 . 13 ) :
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and select the constant # so large that (3.16) forces the ine-

quality

at (X~,t~). But then (3.11) and (3.17) imply

and so

If (x~t~) ~ dQ’, ~ (x~, tQ ) - 0; and easy estimates lead also to

(3.18). Since ~ = 1 on Q, this gives the desired estimate, o

Remark. This proof is related to one in Koike [13], and follows

unpubl ished work of Evans-Ishii.

Lemma 3 . 2 . For each open set Q cc int there exists a

constant C ( Q ) , independent of ~ , such that

Proof. The proof is similar, except that we must consider also

the case that the point (x~,t~) from (3.11) 1 ies in

int But since gk &#x3E; 0 in int Go for k = 1 , ... , m,

the requisite estimates are easy. °
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4. Convergence.

We next demonstrate that the functions 
£. &#x3E;0 converge

uniformly on compact subsets to limit functions vk (k = 1,..., m) r

and furthermore that vl - v2 - ... = vm = v. ° A major difficulty

is that we do not have any obvious uniform control over the t-

dependence of the functions v~k. Indeed, Lemma 3.1 provides us

with uniform estimates on only one of the four terms in the PDE

(3.8). Nevertheless we are able as follows to argue directly that

the di f ferences { vk - v.} - (k,~ = 1 , ... , m ) converge locally

uniformly to zero, and to control the rate of convergence, we

adapt here some ideas from [14].

Lemma 4.1. There exists a function v E and a

sequence ~ .2014~0 such that

uni formly on compact subsets 

proof. We first claim that for each open set Q cc 

To prove this choose a cutoff function ( with compact support in

and set

We may as well assume

Fix T &#x3E; 0 so large that
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and define

for 1 ~ i , j  m, x , y E !R , 0 ~ t  T. Choose now a subsequence

of the f ’s (which for simplicity of notation we continue to

write as "c") and integers k,~ E (1, ...,m} such that

for all small ~ &#x3E; 0. Next, passing to a further subsequence of

the c’s if necessary, select indices r,s ~ { 1 , ... , m} and

points spt ( such that

for all small ~ &#x3E; 0 . Then ( 4 . 5 ) implies

Since s 0 if either (x,t) ~ spt (~ ) or 

spt (~) , there exist points (Xf’ .1~ ) , ( yt_ , = spt « ) such that

Then since



248

we deduce from (4.4) and Lemma 3.1 that

for some appropriate constant C.

Now inasmuch as (x £ ,y £ ,t) £ is a maximum point for ~~~ we

have

These facts imply:

and

Recalling Lemma 3.1 we deduce from these complicated expressions

the useful facts that
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We evaluate the k equation in the PDE ( 3 . 8 ) at ( x~ , t~ )
and the equation at t~ ) . Subtracting and employing the

estimates from (4.13) and Lemma 3 . 1 we discover

where the indi ces p and q are summed f rom 1 to m. Since

i f p ~ k , we deduce

summed f o r q = 1 to m.

We must estimate the right hand side of this expression. But

(4.5) and (4.8) imply for each q E {1,... ,m} that

Thus
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whence, since ~ (x ,t )~ (y,t ) &#x3E; 0, we have

This inequality inserted into (4.15) implies

But then (4.9) and Lemma 3.1 in turn yield

Finally we observe from (4.7) and (4.8) that

This proves (4.2).

Returning now to the system of PDE (3.8) we observe that

Lemma 3.1 and estimate (4.2) yield

on compact sets for k = 1....,m. Consequently standard parabolic

estimates (see, for example, Evans-Ishii [6]) provide a uniform

Holder modulus of continuity on compact sets for the functions v/
in the t-variable. Consequently there exists a sequence 

and func t ions vk ~ C(~~~(0,oo) ) such that

uniformly on compact sets. But then finally observe from esti-

mate (4.2) that in fact
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We next demonstrate that v is a viscosity solution of a

certain Hamilton-Jacobi PDE. For f ixed x, p ~ P , , set

and then def ine the Hamiltonian

H(x,p) = + C)

(4.17) ~ = the eigenvalue of the matrix A(x,p) =

B(x,p) + C with the largest real part.

According to Theorem 2.2, H(x,p) is real, the mapping p H H(x,p)

is convex and increasing, and

Lemma_..4.2. The function v is a viscosity solution of the

Hamilton-Jacobi equation

Proof . Let 03C6 ~ C~(Rn (0,~)) and suppose that v - q, has a

strict local maximum at some point :P~(0~) . We must

prove

To simplify notation slightly, let us suppose uniformly on

compact sets. Then there exist points such

that

and
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~ f ~

(4.21) Vk -. has a local maximum at (k = 1,...,8).

Since v. is smooth, the maximum principle and (3.8) imply that

at the point (x~t~) , k = 1, ... ,m. Fix 1  k  m. Then ( 4.21)

implies for ~ = 1,...,m that

Hence

We insert this inequality into (4.22) to find

e 
where z. s exp(201420142014201420142014201420142014201420142014201420142014) ) &#x3E; 0 (k = 1,...,m). Recall

now (4.17). Then, since 03C6 is smooth, (4.23) implies

K

where A = But then

whence the "min-max" characterization of H afforded by (4.18)

implies
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5. Indentification of the action function.

In view of the definition of the -F log u~, we obtain

Theorem 5.1. The functions uk converge to zero uniformly on

compact subsets of (v &#x3E; 0~.

We next identify v, using ideas set forth in [8]. For this

let us first note that H satisfies

and

for appropriate constants C and all x,x,p,p =: !R . In addition,

for al l x, p ~ !~. and certain constants a,b,A,B.

We recall next that the Lagrangian associated with H is

L satisfies continuity and growth estimates similar to (5.1) -

(5.3).

Theorem 5.2. We have

where

X = {x : [0,D)2014~’P~!x(’ ) is absolutely

continuous, x ~ for each T &#x3E; 0}.

Proof . Choose a smooth function r~ . !~ ~ ~ satisfying
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0  7? s 1 , 7? = O on 77 &#x3E; 0 GG .

Fix r c {1,2,...} and write

Let u = (u.,,...,u ) solve (3.5), but with g, replacing g..
Since g, &#x3E; g~, u.. &#x3E; u. and so vk  v,, where

Now

The estimates and convergence arguments developed above apply

also to the v . Thus, passing i f necessary to another subse-

quence, we have

uniformly on compact subsets of !R ~(0,oo) , where v is a viscos-

ity solution of

Furthermore, since v~ is well behaved at t = 0, the technique

for estimating the gradient works even on compact subsets of nx

[0,m), and thus v is Lipschitz on compact subsets 

Finally, a simple barrier argument shows that

Then we have, according to [8], that
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