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0 INTRODUCTION

In their paper [7] Capozzi, Fortunate and Salvatore have shown that the double pendulum
equation with forcing term has at least two solutions (not differing by a multiple of 2?c).

In this paper, we apply the notion of Lustemik-Schnirelman category to the double
pendulum equation with forcing term to show that it has at least three solutions (not differing by a
multiple of 2?c). But if we look at the same equation with a small constant forcing term, it is easy
to see that the equation has at least four constant solutions. In order to do that we need a more
powerful notion than the one of the Lustemik-Schnirelman category. In fact it is not a notion but
rather a family of notions which are called (Lustemik-Schnirelman) relative categories. In this
family, we choose only two for the special properties (which are given in paragraphs 3 and 5) they
possess and for their usefulness in critical point theory (a generalisation of the result due to Palais
[6], which itself generalises well known results saying that the number of critical points is at least
the category of the space).

1 LUSTERNIK-SCHNIRELMAN CATEGORY.
Let A be a subset of a topological space X.
The Lustemik-Schnirelman category of A in X, catx(A), is the least integer n such that A

can be covered by n closed subsets of X each of which is contractible in X. If no such integer
exists, we put oo. We define cat (X) = cat X(X).

The following properties are easy consequences of the definition.

(11) if X ~ B ~ A then catx(A)  

(1.2) catx(A u B)  catx(A) + catX(B).
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( 1.3) if A is closed and if he C ([0, 1 ] x A, X) is such that h(0, x) = x for every x e A, then

catX(A) S catx (h 1 (A)).

(Palais-Smale condition; see [6])

A map cp: M ~ 9l, where M is a C 1 Fmsler manifold and 03C6 is C1, satisfies P-S if for

every closed subset S of M such that is bounded but that { 1 se S ) is not bounded

away from 0 then there exists So e S such that = 0.

Remark 1.5: P-S is equivalent to the following fact: for every sequence of elements of M

such that is bounded and -~ 0 as n -+00 then there exists a subsequence

s ~ 2014&#x3E; s with cp’ (s) = 0.

The following result is due to Palais [6].

Theorem 1.6: Let M be a complete C2 Finsler manifold and cp e 9!) a map satisfying the

Palais-Smale condition. Then if p is bounded from below cp has at least cat(M) critical points.

2. THREE SOLUTIONS FOR THE DOUBLE PENDULUM EQUATION.

If a mass m is attached to a very light rod of length 1 and another mass m 1 is attached to it

by another such rod of length 1l, then with forcing on both masses we get the following system of

equations (with periodic boundary conditions) where 0 and (p denote the angles made by the rods
and the vertical lines, and e and f are the forcing terms of period T:
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The solutions of that system of equations are the critical points of the following 
functional

011 the Hilbert space H1T  H1Twhere

with scalar product

T

ep(a, q.) = J [ ~ «m+m1) 12 0.2 + 2m1111 + m11..2 )
o

+ (m+m1) g1cos03B8+m1g11cos03C6 + ae ] dt (2.2)

We assume that 
.

in order that the functional p be bounded from below.

For the sake of simplicity, in our calculations, we shall assume 
that m = m 1 = I = li = 1

and f = 0. we get the system
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whose solutions are the critical points of the function

where H’
We may consider (0,~)~HLpXH~/~ = M~ where (0,~)~(0~~p if and only if

(3 k, I e Z) ( ( 0 = 81 + 2kx) and ( ~ = ~~ + 21?c) ). We have that (6, ~) 2014 (81, ~ 1 ) implies

that p(8, cp) = p(81’ .1).

and p : M 2014&#x3E; 9! is well defined, where T is a torus and is the Hilben space of the elements

T

y e H1, satisfying J y(t) dt == 0.

o

Proposition 2.4 : (p saffies the Palais-Smale condition on H.

Proof: Assume that (9n, ) is a sequence in M such that Vcp (8n, f) ) --~ 0 and

cp is bounded as n ---~ 00, we have to show that a subsequence
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Note first that from (2.3)’, we get that

for any, M and s, t E where  , &#x3E; denotes the scalar product in L2.

a) Let us first show that if { p (8n, 03C6n)} is bounded then so is { (8n, ’o)} in M. Since a and e

are T-periodic we get, by integrating by parts, that

and so

Now clearly the second integral is bounded and the first dominates a term of the form

in fact, for any ~ the expression E 28’2 + cos(t-9) + £2.2 is positive, so choose 2-1~1

and the choose k small enough. Now if either ~03B8’~2 or goes to 00, so does that term, that

is so does 03C6 (9, We get that if {p (8n, is bounded, then so is {(9’n’ .’n)} in L2-
By the Wirtinger inequality

11e !12 n 119’il2 ,
where co = we get that

{ (8 n , ~ n) ~ are also bounded in L2. Finally, since T bounded space, we get that

{ (8n, .n)} is bounded in M.
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b) Let us prove that a subsequence

Without loss of generality, by passing to a subsequence if necessary, we may assume that

’n) ~ (03B80, 03C60) weakly in H1T H1T. Thus On. )m) ~ (Oo, 03C60) strongly in cO. It

remains to show that II 0’~ - 9’0112 -~ 0 and II ~ - ~’oII2 -+ o.

If in (2.4.1) we replace (s, t) by (0~ - 80’ ~ - ~(? we get

Now, since ~P(0~n~ ~ ~ and (eo - 90’ CPn - cP~ -+ 0 weakly and so are bounded,
the first term of the left member of that equation goes to 0 as n goes to infinity; evidently, the
second one also goes to 0. Using again the fact that, in any Hilbert space, the product of

something bounded and something that goes to zero, itself goes to zero, we get that any term of the

right side of the equation that has either en - On or ~n ~0 as an entry of the scalar product must

go to zero. We are left with only four terms:

But
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and

which goes to zero as n goes to infinity since it is the product of something that goes tozero and a
bounded term. We are left with:

each of which is positive, since the integrand of the last term is a square product, hence they must

all be zero and we get the conclusion.

The following proposition is the main result of this paragraph.

Theorem 2.5: (2.1 )’ has at least three solutions (not differing by a multiple of 2n( 1,1 )).

Evident from (2.4), (1.6) and the well known fact that the torus has category 3.

Remark 2.; a) Since the only thing we need to prove to get at least three solutions is (2.4) and

since to prove that it is sufficient that the term in be strictly dominated by the ones in 0’~ and

~,2, we need only that (m+m 1) 12 x m 1 112 &#x3E; Thus if m &#x3E; 0, we get the existence of

three solutions (not differing by a multiple of 2?c).
b) A .Capozzi ,D. Fortunato and A. Salvatore [7] have previously proved the

existence of two solutions.

3. RELATIVE CATEGORY

We present two different notions of relative category each of which satisfies a special
property stated at the end of this paragraph. Until then let us give a more unified presentation.



266

Definition 3. I: Let X be a topological space et Y a closed subset of X. A closed subset A of X

is of the k-th (strong) category relative to Y (we write Catx,y(A) = k ) if and only if k is the least

positive integer such that 
;

where for each i, Ai is closed and there exists hi: Ai x I ~ X, where 1=[0,1], such that

(1) hi(x, 0) = x ‘di I Vxe Ai

(2) t~ &#x3E; 1 (a) B xi E X such that hi(x, 1 ) = xi

(b) hi(Ai I) ~ Y = 0

(3) i = 0 (a) ho(x, 1 ) E Y Vx= AQ

(b) Y) =~(hQ(x,s) = y) Vx e AQ t.

We say that A is of k-th weak category relative to Y, written 
= k, if k is minimal

satisfying conditions ( 1 ), (2 a), (3 a) and (3 b’) where (3 b’) is given by

Remark 3.2 : (1) We have that and 

(2) If Y = 0 then Ao = 0 and catX, ~ (A) = CatX, ~ (A) = Catx(A).

(3) If one such k does not exist, then or 

(4) From (2 b), we get A ~ Y = A0 ~ Y Vi i xi ~ Y.

(5) Examples:

(6) There exists an homeomorphism p: X --~ X’ such that Y’ = p(Y) and
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The following is useful for comparing relative categories of different subspaces.

Definition 3.3: Let Z, Z’ be subsets of X; Z y Z’ if and only if there exists h: Z x I ~ X

such that

( 1 ) X is the inclusion

(2) 

(3) if s &#x3E;_ t then ( h{x, t) = y E Y =&#x3E; h(x, s) = y ).

We have the following properties most of which are generalisations of properties of the

category itself.

Proposition 3.4 : Let A, B, Y be closed subsets of X.

i) if B =) A then Catx,y (A)  Catx,y {B)

u) A y B implies Catx ., y (A)  Catx,y (B)

iii) A y Band B y A imply CatX,Y (B)

iv) if X B Y ~ B then Catx,y (A u B) _ Catx,y (A) + CatXBY (B)

v) Catx,y (X) &#x3E; Catx (X) - Caty (Y)

vi) Catx,Y (A) = 0 if and only if A y Y.

Furthermore, in each of the above properties except (vi), we may replace Cat by cat.

Proof: ii) Let h satisfying the conditions of definition 3.3 for A y B. Let Bi and Hi

satisfying the conditions of definition 3.1 for CatX,Y (B) = k. Then Hi * h satisfies the

conditions of definition 3.1 and we find Catx,y (A) where Ai = {h) 1 1 (Bi), where

Hi*h:A x I -~X is defined by,



268

In the case of weak category, iv) has better conditions and vi) turns into the following.

Proposition 3.5: Let A, B, Y be closed subsets of X.

Proof: Evident.

Let us try to see what happens when X and Y are changed for other subspaces.

Proposition 3.6: a) IfX’ &#x3E; X &#x3E; A and X ~ Y then (A)  Catx,y (A).

b) If X ~ A and X &#x3E; Y’ &#x3E; Y and Y’ y Y then

CatX,y’ (A) &#x3E; Catx,y (A).

c) IfX’ &#x3E; X &#x3E; A, X &#x3E; Y’ &#x3E; Y, X’ 13 A’ 
I and r: X’ - X is a retraction

such that = Y’ and r 1 (A) ~ A’ =3 A, then (A’) &#x3E; Catx,y (A).
Furthermore it remains true if we replace Cat by cat.

Proof: a) The Ai and hi for Catx,y (A) satisfy the conditions for Catx’,y (A); hence the
conclusion.

b) If the Ai and hi satisfy the conditions for Catx,y’ (A) and h satisfies the conditions of
definition 3.3 for Y’ y Y then Ai, hi (i*Û) and h * hQ satisfy the conditions of definition 3.1 for

Catx,y (A), where h * h~ is defined as in the proof of 3.4.



269

c) Let Ai and hi satisfy the conditions for then r o hi y satisfies the

conditions of definition 3.1 for Catx,y ~)* ~

The following proposition is not satisfactory as a reciprocal of proposition 3.6.

Proposition 3.7: Suppose that X* =) X ~ A, X 13 Y and there exists r: X’ ~ X a retraction

such that = Y then (A) = CatX,Y (A). Furthermore it remains true if we replace

Cat by cat.

pr- Taking Y’ = Y and A’ = A in proposition 3.6 a) and c) we get the conclusion.

The following proposition is the only one we give which is only valid for Cat (the strong
relative category).

Proposition 3.8 : (Excision)

Proof: ?) If the Ai and hi satisfy the conditions for CatX,Y (A) then Ai B V and

hi I 
satisfy the conditions for CatX B’ ,Y, 1 Y B V (A B V).

S) If the Ai and hi satisfy the conditions for CatXBV,YB V (A B V) then A0 u V, Ai, hi
and

satisfy the conditions of the definition for Catx,y (A).

The following proposition is only valid for cat (the weak relative category).
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Proposition 3.9’ Let X’ ~X ~ A, X ~ YandX’ ~Y’ ~ Y. If

a) there exists r: X’ ~ X a retraction (r(x) = x vx e X)

b) Y and r(Y’) y Y in X

then catx,y (A) for all A’ -::;) A.

Proof: Let H satisfying the conditions of definition 3.3 for r(Y’) y Y and let A’i and h’i

satisfying the conditions of definition 3.1 for (A’). If Ai = r(A’i) and, for all i &#x3E; 0,

h. = r o |Ai x I and ho = H * (r o |A0 x I we have that the conditions of the

definition 3.I for catx,y (A) are satisfied.

4. APPLICATION TO CRITICAL POINT THEORY.

Let M be a complete C2 Finsler manifold i.e. a C2 Banach manifold with a Finsler
structure on its tangent bundle. (Important examples are complete Riemannian manifolds and

Banach spaces.) Let cp E Set

We shall use the following variation of the deformation lemma due to Clark [1] ] for Banach
spaces and to Ni [5] for Finsler manifolds. 

’

Lemma 4.1: If (p E Cl(M, ~) satisfies the Palais-Smale condition and if U is an open

neighbourhood of Kc, then, for every E’ &#x3E; 0 there exists E E ] 0, E’[ and a map f: M - M

isotopic to id~ such that for all d E [0, E], f( B U).

The following theorem generalises theorem 1.6.
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Theorem 42: If 03C6 E C 1 (M, 9!) satisfies the Palais-Smale condition and 

and then

Proof: 1) Let

We can assume that 1 _ k  + Define, for j E N f1 [1, k],

Clearly one has

By lemma 4.1, with c = a there exists E &#x3E; 0 such that cpa y where Y = cpa. Thus

by proposition 3.4 ii), if A then CatM, y (A) = 0. It follows that c 1 &#x3E; a+£ &#x3E; a.

Similarly, for °

2) In order to prove the theorem, it suffices to show that, if c = ci = cj, for 1  i  j 
 k,

j  + oo, then #K~ ~ j - i + 1. We can assume that K~ contains only a finite number m of critical

points, so that Kc is contained in the union of the interiors of m closed contractible in M B sets

B 1, ..., Bm .
m 0

Let us write B = u B 
n 

or, if m = 0, B=0 By lemma 4.1 applied to U = B
n=I n

and 0  ~’  c - a, there exists e e ] 0, e’[ and a map f: M -~ M given by lemma 4.1 such that
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The definition implies the existence of a closed subset A of Aj such that

We obtain by properties i), ii), iv) of the category

Since 03C6c+~ ~ A, we have p =) The definition of c.=c implies that

Remark 4.3 : i) The proof depends only on properties 3.4 i), ii) and vi) of the category.
ii) If M is compact, we obtain the classical Lustemik-Schnirelman theorem by

setting

5. ALGEBRAIC TOPOLOGICAL LEMMA.

In order to calculate the relative category that concerns us in paragraph 6, we need the

following proposition of algebraic topology and in particular, its corollary. Let us denote

Br = { x I in Rn nd Sr = aBr

A standard orientation of a simplex { xo ... xn } of 9~ is an ordered sequence

 xo ... xn &#x3E; such that



273

where vi denotes the i-th component of v E 9tn.

By a standard triangulation of Rn we will understand a partition of Rn into open

simplecies, these open simplecies being the convex hull of a finite set a of affmely independent

verticies minus its affine boundary (the latter being the union of the convex hulls of the proper

subsets of a). The simplecies are ordered by the inclusion of their closures. A finite

subpolyhedron P is thus a closed finite union of simplecies; a maximal simplex of P is a simplex
of P which is not contained in the closure of any other simplex of P.

Lemma 5.1: Let T be a standard triangulation of 9n. Let P be a finite subpolyhedron whose
maximal simplices are all of dimension n and let

ap = L o where 0 = ~ o! o is an n-simplex of P with the standard orientation 
oeOp

then the support of ~ap is aP, the boundary of P. .

Proof: (For the methods used here, see [2, lemmas 1.5 and 1.6]).

First notice that the support of 3a~ is contained in the union of the convex hulls of the
(n-1 ) simplices of P.

Case 1: If we have an interior simplex then it beiongs to two simplices of dimension n of

P, one on each side of the hyperplane generated by its vertices; its coefficient in the boundary of
these two n-simplices will be alternately 1 and -1 hence its coefficient in the boundary of the sum

will be 0.

Case 2: If we have an exterior simplex then it is in the boundary of only one n-simplex of

P and so its coefficient is ± 1 in Furthermore it is included in ape (Notice that the coefficient

will be +1 if it has the orientation inherited from the n-simplex of P containing iL ) *

Proposition 5.2: Let A be the (closed) ring defined by

Let Ar and AR be two disjoint closed subsets of A such that Sr and SR. Then if
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Ao = Ar u AR and i: A BAo -+ A is the inclusion, we get that i* n-1 is not

trivial where H denotes the singular homology.

Proof: Let T be a standard triangulation of 9tn for which each of the vertices has coordinates of
the form z/m where z is an integer (for some integer m big enough) and the simplices have diameter
smaller or equal to the square routh of n/m2. Without loss of generality, by a

homeomorphism of 9{n, we may assimilate A to a subpolyhedra of 3Zn and B to another

subpolyhedra B of (Notice that A u B is an acyclic polyhedron since it is homeomorphic to

Bp . Now let 3d = By subdividing, we may also suppose that the triangulation T

has a mesh smaller than d. Let P be the smallest subpolyhedron of containing B u Ar within

its interior. (Notice that the maximal simplices of P are all of dimension n.)

Let ap = L {6 ~ o is an n-simplex of P with the standard orientation of 9~ ), we have that

the support of ~ap is 3P (by lemma 5.1); hence ~ap is included in N2d (B u Ar)B (B u Ar) which

is a subset of A B ( AR u Ar ) = A B A,~.

Thus we can assimilate ~ap with a singular cycle of A B Ao; it suffices to show that its

inclusion in the set of singular cycles of A is not a boundary. Since the singular homology of A is

naturally isomorphic to the simplicial homology of the polyhedron A, it suffices to show that the

cycle 3a? is not a boundary in the simplicial chain complex of A.

But if there were a b E CnA such that db = ~ap then we would have that b ~ ap and

b) = 0 and so that ap - b is a cycle of Cn (A u B) which cannot be a boundary because

(A) = 0; ’ hence Hn{ A u B ) ~ 0 which contradicts the fact that A u B is acyclic. " Hence 8a P
has a non-trivial class of homology in A.

The following corollary will be used in paragraph 6 to prove the existence of a fourth
solution of the double pendulum equation under certain conditions.
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Let A be the (closed) ring defined by

Let Ao be a closed subset of A such that Ao :::&#x3E; Sr u SR and there exists h: Ao x I --~ A such that

Sj u SR ~ h0(A0), ho(x) = x for all x e Ao and for all s e Sr ~ SR, we have ht(s) = s Vt ~ I.

Then i. 0-1 (A B is non trivial, where i: A B A is the inclusion and H denotes the

singular homology.

By lemma 5.1, it suffices to show that Ao = Ar U AR where Ar and AR are two disjoint

closed subsets such that Sr and AR ~ SR. Set Ar = Sr and

AR = h 1-i (SR) ~ SR; then we get the conclusion.

6. FOUR SOLUTIONS FOR THE DOUBLE PENDULUM EQUATION.

In paragraph 2 we proved the existence of at least 3 solutions for the forced pendulum
equation, but in the special case of the non forced problem we get the existence of 4 different
constant solutions (none of which is another plus a multiple of 2x). In this paragraph we shall _

show under some conditions the existence of a fourth solution. We may assume that there is a finite
number of critical points, otherwise there are more than four solutions.First let us localise 2 of the 3
known solutions.

Proposition 6J- We have that (p has at least 2 critical points in 03C6-gT.

Proof: If e = x and 03C6 = c a constant, then

But {(1t,c) modulo 2n ~ forms a non contractible circle in T x {(0,0)} and so in M,
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moreover it is included in Now if -gT is not a critical value, put s=1; if -gT is a critical
value, it is an isolated one so -sgT is not a critical value for 0sl and s close enough to I,further

more 03C6-sgT~03C6-gT. By Theorem 1.6 and the classical caracterisation of critical values, we have

that Cat 2 and so cp has at least 2 critical points in for some 0s~1 as close to 1 as

we want. Since p has no critical value greater than -gT and smaller or equal to -sgT, we get the

conclusion.

Remark 6.2: In the general case, we get that &#x3E; gT = L and so

Cat and p has 2 critical points in cpL.
It remains for us to show that p has at least 2 other critical points in M- cp-gT. For that we

will show that

Now we need to find a condition under which there remains a non contractible circle in

M- in order to prove the above inequality. That is the purpose of the following four items.

Lemma ~.3: If 9 is of mean value zero and if (p(9,~) ~ -sgT for some 0sl, then

Proof: We have that

and since 8’2+28’~’ cos(~-8~+~’2 &#x3E;_ 0 , we obtain that
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where 0~ |03B1()(t)| ~ |(t)| for all t. But 1, so by the Schwarz and Wirtinger

inequalities, we get that

and

Now the right member of (6.3.3) is a second degree polynomial in the variable 119’112 and it

is negative or zero, so

hence we get the conclusion.

Remark 6.4 : In the general case, (6.3.3) would become

which implies, since

that

which must imply that
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If B denotes the second term of the left member of the precedeing inequality, then we get

for any 0  ~  1.

The following proposition gives the desired condition.

Proposition 6.5: If

then there exists s  1 such that (p(8, ))) &#x3E; -sgT for all (9, ~) such that 8 = 0.

Proof: Otherwise, we would have that for every s such that 0  s  1, there is a (8, #) such that

8 = 0 and p(8, 03C6) ~ -sgT. Thus, by lemma 6.3, JT ~e~2 + 2gT &#x3E;_ 2?c j2g( 1+ s) aed at the limit,

as s goes to 1, we get

Remark 6.6: In the general case, (6.5.1 ) is replaced by : there exist 0E 1 such that

where

Let us now use our condition to get the lower bound for the relative category.

Proposition 6.7 : If (6.5.1 ) is satisfied, then
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Hence 03C6 has two critical points in 

Proof; Let r: M -~ T be the map defined by

IfC={(6~) I 0 = n } and if we identify T with T x ( (0, 0)), then we have that a) r is a

retraction; b) C by the proof of proposition 6. I and, since C is compact, for any 0s1

c) by proposition 6.5, if s is as in proposition 6.5 and if

then we have that and TBD~.C’. Hence,

by proposition 3.9 and remark 3.2 ( 1 ), we get

But we know, by lemma 6.8, that cat-p C’ 2, hence

And so, by theorem 4.2, we get the conclusion, since all of the above can be done replacing M by

~3gT..

In order to complete the proof of proposition 6.7, we need the following lemma.

Lemma 6.8: catT, C, &#x3E; 2.

Proof: It suffices to show that if

where the Ai and hi satisfy the conditions of definition 3.1, then i* H j I (T B is non trivial in
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HI (1). However to show this, it suffices to show that i. A(p is non trivial in
0

But since TBC* is homeomorphic to BRBBr in 9t2, by corollary 5.3, it suffices to show

that

Fortunately, by lemma 6.9, we may assume that ho satisfies (6.8.1). ~

The following result is used in lemma 6.8.

Lemma 6.9: We may assume that ho satisfies (6.8.1 ).

Proof: Let

the continuous projection defined by

Let pi: T 2014~ S 1 the projection on the i-th component, for i = 1, 2. Let ho(x, t) be

considered a map of t whose image is in S 1 , the unit circle in the complex plane and let g(x, t) be a

continuous representation of the argument of PI o hQ(x, t). Set

(where h’(x, t) represents the same point as ho(x, t) on the torus).

(In the usual way, one shows that g and h’ are continuous in x, hence in (x, t) by showing

Set h(x, t) = ( pg(x, t), p20 ho(x, t) ) where p: 9l - [1t - Ö, 3 x - ö] is the obvious

retraction. We have that h satisfies (6.8.1), that h(_,0) = h’(_ ,0) = h fl(_,0 ) = 1 Ao and that
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since 1 ) ) [that is p 1 31t-ð or PI S x+ð ], and

finaly that h(x,t) = = x ~t~ [0111] ~x~~C’.~

: If (6.5.1 ) is satisfied, then (2.1 )’ has at least 4 solutions (not differing by a

multiple of 2x( 1,1 )).

Proof: By (6.1 ) p has at least 2 critical points in by (6.7) p has at least 2 critical points in

so (p has at least 4 critical points and since the critical points of 03C6 are the solutions of (2.1 )

we get the conclusion. ~

Remark 6.11: In the general case we get the same conclusion, for m&#x3E;O, provided that the

condition (6.6.1) is satisfied.
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