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1 Introduction

Inverse function theorem is a natural tool to apply to many problems arising in control
theory and optimization. The classical theorems, such as Ljusternik’s theorem, are
not always sufficient, and this because the data of the problems often happen to be
"nonclassical" ones.

Such "unusual" situation does arise when one deals with

i) A map whose domain of definition is a metric space

ii) A map which is not single-valued
iii) A map for which the first order conditions are not sufficient to solve the problem.
This is why one has to look for different inverse function theorems adapted to new

problems. During the last twenty years this task was undertaken in many papers (see
for example [6], [5], [8], [9], [14], [21], [22] and bibliographies contained therein).

Let us recall first the classical result of functional analysis:

Theorem 1.1 Let f : U ~ X be a continuously differentiable function from a Banach
space U to a Banach space X and U. If the derivative f’(u) is surjective, then for
all h &#x3E; 0, f(u) E Int and there exists L &#x3E; 0 such that for all x E X near

f (~), dist (u,  L i~ f (u) - z~~.

As it was observed in [9] the assumptions of theorem imply much stronger conclusions.
In fact the very same proof allows to go beyond the above result and to prove the uniform
open mapping principle and regularity of the inverse map a neighborhood of the
point (/(u),~).

The surjectivity assumption of the above theorem may be replaced by an equivalent
assumption

Several extensions of Theorem 1.1 were derived in [9] via the same idea. Assuming
that the space U is just a complete metric space and some "covering assumptions" on
f one can obtain a result similar to Theorem 1.1. However verification of covering
assumptions is not always simple.

In this paper we prove a High Order Uniform Open Mapping Principle for
maps defined on a complete metric space. That is, we provide a sufficient condition for
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the existence of £ &#x3E; 0, k &#x3E; 1 such that

(2) V u near u and V small h &#x3E; 0, f(u) + E Int 

To get regularity of the inverse map we use a high order analogue of Theorem 1.1
proved in [19]:
Theorem 1.2 (a general inverse function theorem). Let G be a set-valued map

from a complete metric space (U, d~ to a metric space (X, dx) having a closed graph and
let (u, x) E Graph G. Assume that for some k &#x3E; 0, p &#x3E; 0, E &#x3E; 0, 0  a  1 ~ue have

(3~ b u E E G (u~ n [0, e}, sup dist (b,  aph~

Then for every h &#x3E; 0 satisfying ai) + 203C1hk  f/2 and all u E x E

G(u) n E we have

In particular, for all (u, z) E Graph G near (u, a~ and all y near 

When X is a Banach space, assumption (3) can be formulated as

It holds true for a map satisfying the Uniform Open Mapping Principle (2) and there-
fore the two theorems together bring a sufficient condition for the regularity of 
The Uniform Open Mapping Theorem is proved via the Ekeland variational principle.
The curious aspect of this approach lies in the use of an apparently first order result
(Ekeland’s principle) to derive high order sufficient conditions.

Let us explain briefly the main ideas. When the space U is just a metric space
then one can neither differentiate the function f nor speak about the continuity of the
derivative. In [18], [19] we proposed to replace the derivative by the variation of the
map (which can be single-valued or set-valued). The first order variation of a

single-valued map is defined in such way that for a C1 map f between two Banach spaces
the set is equal to it. Condition (1) together with continuity of the derivative
inherit then their natural extension

High order variations were introduced in [13] (see also [19], [14], [16]), where several
sufficient conditions for regularity of the inverse map f -1 were proved. When one

restricts the attention to single-valued maps only, then results of [19] can be improved
and proofs can be made simpler. In this paper on one hand we prove more precise
results for single-valued maps on the other we overview the applications of the inverse
function theorems given in [15], [17]-[19] and provide their several new consequences.

The plan of the paper is as follows: Variations are defined in Section 2, where also
several examples are given. Sections 3 and 4 are devoted to first and high order inverse
function theorems for a single valued map. In Section 5 we state several theorems
for set-valued maps. Their proofs can be found in [19]. Examples of applications are
provided in Section 6.
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2 variations of single-valued and set-valued maps

Consider a metric space (U, d) and a Banach space X. For all u E U, h &#x3E; 0 let 

denote the closed ball in U of center u and radius h.

We recall first the notions of Kuratowski’s limsup and liminf:
Let T be a metric space and Ar C X, T E T be a family of subsets of X. The Kuratowski
limsup and limin f of A= at To are closed sets given by

A, = {t~eX : dist (v, ~ ) = 0 ~

Definition 2.1 Consider a function G : U --~ X and let u E U, k &#x3E; 0.

i) The contingent variation of G at u is the closed subset of X given by

ii~ The k-th order variation of G at u is the closed subset of X given bt~

In other words v E if and only if there exist sequences hi - 0-t-, v; -+ V

such that G(u) + h;v; E The word contingent is used because the definition
reminds that of the contingent cone of Bouligand.

Similarly v E if and only if for all sequences hi ~ 0+,ui - u there exists a

sequence Vi - v such that G(uij + E 

Clearly, and are closed sets starshaped at zero. When U is a Banach
space and G : U 2014~ X is a Gateaux differentiable at some u E U function, then

F C If moreover G is continuously Frechet differentiable at u then
= = G{ 1) ( u) .

The notions of variation extend to set-valued maps in a natural way:
Let G : 7 2014~ ~ be a set-valued map, that is for all u E U, G(u) is a (possibly empty)

subset of X. The domain and the graph of G are given by

Dom G = {u 0}, Graph G = {(~~) ) u E Dom G, x E 

Definition 2.2 Let G : U --~ X be a set-valued map and (u, xj E Graph G, k &#x3E; 0.

i) The contingent variation of G at (u, xj is the closed subset of X

ii) The k-th order variation of G at (u, ~~ is the closed subset of X

where denotes the convergence in Graph G.
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When G is a single-valued map the point (u, z) E Graph G if and only if G(u) = z and
therefore in this case the variations in the sense of the first and the second definitions
do coincide.

Variations of all orders can be used to prove sufficient conditions for the existence
of a Holder inverse for a single-valued and a set-valued map. They describe a local
expansion of a map at a given point.

Let co (co) denote the convex (closed convex) hull and B the closed unit ball in X.
The following result was proved in [19]:

Theorem 2.3 For every (u, z) E Graph (G), k &#x3E; 0 we have

i) ForallK&#x3E;k, 0 e ~) C Gx (u, 2;)
ii) For all ~&#x3E;0,R+~(M,~) C ~) j

iii) For all A. &#x3E; e G~(~~),t= 0, ..., m with = 1, 
ivy For all v E co there ezists f &#x3E; 0 such that fV E 

v) 
vi) UA&#x3E;o = X ==&#x3E;-0 E Int co Moreover if X = Rn these conditions
are equivalent to: ~ vl, ..., vp E ~) such that 0 E Int co ..., vp~.

Example 1. First order variation of a set-valued map
Consider Banach spaces P, X, Y, continuously differentiable functions g : P x X -

Y, h : P x X -~ Rn and the set-valued map defined by

Then a direct calculation yields that for all (p, z, q) E P x X x R~

Example 2. Contingent variation of end points of trajectories of a control
system

Let U be a separable metric space, X be a Banach space and 
continuous, differentiable in the first variable function.

We assume that f is locally Lipschitz in the first variable uniformly on U, i.e. for

all z E X there exist L &#x3E; 0 and E &#x3E; 0 such that for all u E U, f (~, u) is L-Lipschitz on

 L - for all ~l~ zn E 

Fix T &#x3E; 0 and let U denote the set of all (Lebesgue) measurable functions u : [0, T] - t~ .
Define a metric d on U by setting d(u, v) _ ~,c(~t E ~0, T~ ~ v(t)~), where ~c denotes
the Lebesgue measure. The space (u, d) is complete (see Ekeland [10]).

Let be a strongly continuous semigroup of continuous linear operators from
X to X and A be its infinitesimal generator, x0 ~ X. Consider the control system
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Recall that a continuous function x : [0, T] - X is called a mild trajectory of (5) if for

some u E U and all 0  t  T

We denote by zu the trajectory (when it is defined on the whole time interval [0, T] and
is unique) corresponding to the control u. Define the map G : U - X by

Let z be a mild trajectory of (5) on [0, T] and u be the corresponding control. Consider
the linear system

and let denote its solution operator, where S’u(’s;’s) = Id, t &#x3E; s. Then for all

u near u, G is a well defined single-valued map. Moreover for almost all t E [0,T] we
have

We refer to [1 1] for the proof of this result.

Example 3. First order variation of end points of trajectories of a dif-
ferential inclusion

Let X be a finite dimensional space, F be a set-valued map from X to X. We

associate with it the differential inclusion

An absolutely continuous function x E T), T &#x3E; 0 (the Sobolev space) is called
a trajectory of the differential inclusion (8) if for almost all s E (0, T ~, x’ (s~ E 
The set of all trajectories of (8) defined on the time interval [0,T] and starting at
I, (:c(0) = ç) is denoted by (ç). The reachable map of (8) from ~ is the set-valued
map R : R+ 2014~ X defined by

Assume that

HI) V x E X near ç, F(z) is a nonempty compact set and 0 E F(ç)
3 a neighborhood N of ç, L &#x3E; 0 such that V x,y E ~/, F(x) C F ( y ) + y B

Hypothesis H2) means that F is Lipschitz in the Hausdorff metric on a neighborhood
of ~. Hypothesis Hi) implies that 

’ The derivative of F at ($,0) is the set-valued map X - X defined by

Fix T &#x3E; 0 and consider the single-valued map G : ~~(0,r) D (E) - X defined
by G(z) = ~(T). Let K C co be a closed convex set having only finite number of
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extremal points. Then there exists M &#x3E; 0 such that for every trajectory w E T
of the differential inclusion

we have M E G1 (~~ . The proof follows from the results of [15] .

Example 4. High order variations of the reachable map
Let F be a set-valued map satisfying all the assumptions from the Example 3.

Consider again the differential inclusion (8) and the reachable map t - R(t). It was

shown in [17] that for all integer k &#x3E; 1

A very same proof implies that the above holds true for all k &#x3E; 0.

3 First order inverse of a single valued map
Consider a complete metric space (U, d), a Banach space X and a continuous map
G : ~7 2014~ X. Let u E U be a given point. We study here a sufficient condition for the

regularity of the inverse map G’1 : X - U defined by

on a neighborhood of (G(u~, u).

Theorem 3.1 (Inverse Mapping Theorem I) Let u E U and assume that for some
e &#x3E; 0, P &#x3E; 0

Then for every M ~ and h e [0, ~ 2], G(u)|h03C1 B C (where B denotes the
open unit ball !n X). Furthermore for every M G B~ 4(u), x G -Y satisfying 

min{~ 8, ~03C1 4}

Remark Inequality (12) means that G is pseudo-Lipschitz at (G(u), u) with the
Lipschitz constant p-i (see Aubin [1]). 0

Theorem 3.2 (Inverse Mapping Theorem II) Assume the norm of X is Gâteaux
differentiable away from zero. If for some £ &#x3E; 0, p &#x3E; 0

Then for every u E Bz(u) and h E [0, i], G(u) -E-hp B 0 C G(Bh(U)). Moreover for every
u E z E X satisfying (~z -  
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Corollary 3.3 Assume that X is a finite dimensional space and that

Then there exist f &#x3E; 0, p &#x3E; 0 such that all conclusions of Theorem 9.2 are valid.

Proof (of Theorem 3.1) Fix u E ~~(U), 0  h  2 and assume for a moment
that there exists x E X satisfying 

Set e2 = ~ 2014 G(u) BI /hp. Then 0  e  1. Applying the Ekeland variational principle
)0] to the complete metric space Bh(U) and the continuous function 
we prove the existence of y E B®h (u) such that for all y E B h ( 11, )

Observe that y E Int Bh(u) and, by (14), ~ ~ G(y). Set w = -p(G(y) - 
By our assumption there exist h; 2014~ 0+, Wi ~ W such that G(y) + hi wi E 
Hence, from (15) we deduce that for all large i

and therefore hip  + Dividing by phi and taking the limit yields
1  0. The obtained contradiction ends the proof of the first statement. The second
one results from Theorem 1.2. D.

’ Proof of Theorem 3.2 Fix u E B2 (u), 0  h  i and assume for a moment
that there exists x E X satisfying (14). Let e, y be as in the proof of Theorem
3.1. By differentiability of the norm, there exists p E X* of = 1 such that for all

hj - 0+, v; 2014~ ~ we have

where lim infj~~ov(hj)/hj = o. Fix v E G(1)(y). Then from (15), (16) and Definition
2.1 we obtain 0  &#x3E; + Dividing by h~ and taking the limit
yields  p, v &#x3E; &#x3E; Hence

Since d(y, u)  d(y, u) + d(u, u)  eh + ~  f, by the assumption of theorem, pB C
co From (17) we deduce that -p &#x3E;  p, v &#x3E; &#x3E; -ep. But

’ 

0  e  1 and p &#x3E; 0 and we obtained a contradiction. The second statement follows
from the first one and Theorem 1.2. 0

The following theorem provides a stronger sufficient condition for local invertibility
but does not allow to estimate the Lipschitz constant.

Theorem 3.4 Assume that X is either separable or reflezive and that its norm is
Gâteaux differentiable away from zero. Let u E U. Further assume that there exist
f &#x3E; 0 and a compact Q C X such that
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Then the following statements are equivalent

ii) for some 03B4 &#x3E; 0, L &#x3E; 0 and for all (u, x) E x B6(G(U))

In particular if for some 6 &#x3E; 0, G(u) is a boundary point of G(Bb(u)), then there exists
a non zero p E X* such that

Proof Clearly ii) implies that for all u near u and all small h &#x3E; 0, G(u) +
)h jC G(Bh(u)). Thus LB C G1(u) and i) follows. To show that i) ===~ ii), by
Theorem 1.2, it is enough to prove that for some p &#x3E; 0 and all u E U near u and all
small h &#x3E; 0

Assume for a moment that for some ti - u, hi - 0+ there exist

We shall derive a contradiction. Set K; = We apply the Ekeland variational
principle ([10]) to the continuous functions ~ 3 ~ 2014~ i = 1, 2,... to prove
the existence of u; E B~ (t;) such that for all u E K=

i

By differentiability of the norm and by (20), there exist Pi E ~*, = 1 such that
for all hj ~ 0+,vj ~ v, we have

where = 0. Fix v E G~~(M,)) and let h; - -+ V be such that

G(Ui) + E G(BhJ (ui)). Setting G(u) = G(us) + hjvj in (21) we obtain

f

Dividing by hj and taking the limit when j -+ 00 yields that for all i; E 
 p,,u » -t and therefore

Let p E X* be a weak-* cluster point of {p,}. Then
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Fix next v E G1 (u) and choose h; ---~ 0+ in such way that

L~t u, - v be such that + E Then from (22) there exist Ei ~ 0+
such that

Since p is a weak-* cluster point of {?}) we infer from the last inequality that for all
r E  p, v &#x3E; &#x3E; 0. This, (24) and i) together yield that p = 0. To end the

proof it remains to show that p # 0. Indeed by (18) there exist z E X, p &#x3E; 0 and

ii, E co q; E Q, wi E B such that  p=, tu, » 1 - ~, ~ 2014 pw; = a= + 9t. From
(23),  pi, z - pw, 2014 qi &#x3E; &#x3E; 2014~. Hence

Let be such subsequences that p, - p weakly-* and Then

taking the limit in the last inequality yields  p, z - q &#x3E; &#x3E; p &#x3E; 0 and therefore p # 0.
The obtained contradiction proves 0

Corollary 3.5 Let X be a Hilbert space, H be a closed subspace of X of finite co-

dimension. Assume that there ezist p &#x3E; 0, z E X such that

where BH denote the closed unit ball in H. If 0 E Int lim infu~u co G(1)(u), then for
all h &#x3E; 0, G(u) E Int 

Proof Observe that pB C pBH + Thus for all u near u, z + pB C
z+03C1BH + C co + pBH.L. Since is a compact set, Theorem 3.4 ends
the proof. D

4 High order inverse of a single valued map
Let U be a complete metric space, X be a uniformly smooth Banach space (see [7] ) and
G : U - X be a continuous function. In this section we prove higher order sufficient
conditions for regularity of the inverse map G-1.

Theorem 4.1 (High Order Inverse Mapping Theorem I) Let M E U and assume
that for some k &#x3E; 1, M &#x3E; 0, p &#x3E; 0 and for all u E U near u and all small h &#x3E; 0

Then there exists L &#x3E; 0 such for all M E !7 near M, for all 2: E X near G’(M) and all
h &#x3E; 0 small enough
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Corollary 4.2 Assume that X is a finite dimensional space and for some k &#x3E; 1, the
conuex cone spanned by Gk(u,x) is equal to X. Then the conclusions of Theorem 4.1
hold true.

Proof From Theorem 2.3 we deduce that for some vf E = 1, ..., p we
have 0 E Int Then for some f &#x3E; 0 and for all vi E BE(v;) we have
o E Int ..., On the other hand, by the definition of variation for every
1  i  p there exists b; &#x3E; 0 such that

Hence the assumption of Theorem 4.1 is satisfied. 0

Proof (of Theorem 4.1) Assume for a moment that there exist Ui --~ u, ~ -~

0+, a~i E + satisfying 
-

Applying the Ekeland variational principle to the complete metric space and

the continuous function u - !!G(~) - we prove the existence of u~ ~ B k (3;) such
2

that !!G(M,) - 2=~~ k  !!G(M.) - ~~i and for all M e 

By (26) and the smooth differentiability of the norm, there exist Pi E X* of = 1

and a function o : R+ - R+ satisfying = 0 such that for all u E Bh=(u=)
we have 

’

Hence

where o : R+ --&#x3E; R+ satisfies limh~0+ o(h)/h = 0. This and (27) yield that for all

u E Bh; ~u=)

Fix v E and let ~~ - 0-~, v~ --~ v be such that G(u=) + E G(BhJ (u;)). Then
from (28) we obtain 
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Dividing by hj and taking the limit yields

On the other hand, b~ (28), for hs =’~G(u;) ~ and for all v E G~~~~~~‘11-~~u‘)h.

Adding (29) and (30) yields

Observe that for all large i,  d (us, us) + d (u=, ~~  hi ~2 + d (ui, u)  E. Hence

assumption (25) of theorem contradicts (31). This proves that (26) can not hold. The
second statement of theorem follows from the first one and Theorem 1.2. 0

Theorem 4.3 (High Order Inverse Function Theorem II) Let u E U and assume
that (18) holds true for some ~ &#x3E; 0 and a compact set Q C X. If for some k &#x3E; 1,
0 E Int co then there ezists L &#x3E; 0 such that for all u E U near u and for all
16 X near G(u) 

...

Proof - By Theorem 1.2 it is enough to show that for some p &#x3E; 0 and all u E U
near u and all small h &#x3E; 0

If we assume the contrary, then, by the proof of Theorem 4.1 there exist ui - U,
u, - u, z; - G(u), hi - 0-~-, hi - 0+, pt E X* of = 1 and a function

o:R+ 2014~ R+ such that Bh;(u;) C G(ui), = 0 and

Fix v c Gk(u) and let ui -~ v be such that G(u;) + E Thus we deduce

from the last inequality

! Let p be a weak-* cluster point of {p,} (it exists because X is reflexive) . Then taking
! the limit in the above inequality we obtain  p, v » 0 and since v is arbitrary
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We show next that p can not be equal to zero. Fix v E and let h . - 0+, u - I -
be such that E Setting G(u) = in (32), dividing by
hi and taking the limit yield 0  ~  &#x3E; Hence for a sequence
fi - 0+ we have ’

V v E co  P;, v &#x3E; &#x3E; -Ei I

The end of the proof is similiar to that of Theorem 3.4. Let z, p, w=, ai, qi be as in

the proof of Theorem 3.4. Then  q= &#x3E; &#x3E;  p=, pwi &#x3E; +  &#x3E; &#x3E;

p (1 - t) - ~i. Consider subsequences such that converges weakly-
to p and qij - q E Q. Then the last inequality implies that P,~20149»/9 which yelds
that p can not be equal to zero and completes the proof. 0

5 Inverse of a set-valued map

Consider again a complete metric space (U, d) and a Banach space X. Let G be a

set-valued map from U to X, whose graph is closed in U x X. Consider a point (u, ~~ E
Graph G. We proved in [19] sufficient conditions for regularity of the inverse map

on a neighborhood of (z, u) . In this case the results are more restrictive, we only state
them (the corresponding proofs can be found in [19]).
Theorem 5.1 Let z E and assume that for some E &#x3E; 0, p &#x3E; 0

Then for every E Graph G n x B4 (x), z2 E X satisfying 
min~ E, ~ ~ 

~ 

Theorem 5.2 (A characterization of the image) Assume that X is either separa-
ble or reflexive and let z E G(u). Assume further that there exist closed convex subsets
K(u, x) C x~, E &#x3E; 0 and a compact set Q C X such that

Then at least one of the following two statements holds true:

I) There exist L &#x3E; 0, 03B4 &#x3E; 0 such that for all (u1, x1, x2) E (Graph G n B03B4(u) x
Bs Cz)) X $s (~) _

it) There ezists a non zero p E X* such that

Consequently if for some 6 &#x3E; 0, 2 is a boundary point of G (Bb(u~~, then there ezists a
non zero p E X* such that (~6~ is satisfied.
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When the norm of X is differentiable, then a stronger result may be proved:

Theorem 5.3 Assume that the norm of X is Gâteaux differentiable away from zero
and let x ~ G(u). If for some ~ &#x3E; 0, /?&#x3E; 0, M &#x3E; 0

then for every E Graph X B~ 4(x), xz E X satisfying ~x2 - x1~ 

min~E,~~

Theorem 5.4 Assume that X is either separable or reflexive and that its norm is
Gâteaux differentiable away from zero. Let x E G(u). Further assume that there exist
E &#x3E; 0, M &#x3E; 0 and a compact Q C X such that

Then the following statements are equivalent

ii) for some 8 &#x3E; 0, L &#x3E; 0 and for all xl, x2) E (Graph G n Bb(u) x X B&#x26; (x)

In particular, if for some 6 &#x3E; 0, x is a boundary point of then there exists a
non zero p E X* such that

Observe that when X is a finite dimensional space, then the condition (38) is always
satisfied with Q equal to the unit ball and M = 1. Hence

Corollary 5.5 Assume that X is a finite dimensional space and for some M &#x3E; 0

Then for all h &#x3E; 0, ~~ Int 

The high order results also have their analogs in the set-valued case.
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Theorem 5.6 Let x E G(u) and assume that for some k &#x3E; 1, p &#x3E; 0, M &#x3E; 0 and all

Graph G near (u, ~) and all small h &#x3E; 0

or equivalently

If the. space X is uniformly smooth, then there ezists L &#x3E; 0 such that for all (Ul, ~1) E
Graph G near (u, z) and all ~2 E X near i

Theorem 5.7 (High Order Inverse Function Theorem) Let x E G(u) and as-
sume that (38) holds true for some E &#x3E; 0, M &#x3E;_ 0 and a compact set Q C X. If
the space X is uniformly smooth and for some k &#x3E; 1, 0 E Int co x), then there
ezists L &#x3E; 0 such that for all (Ul, ~1) E Graph G near (u, ~) and for all ~2 E X near ~

6 Applications

6.1 Taylor coefficients and inverse of a vector-valued function

Consider a function f from a Banach space X to a Hilbert space Y and a point x c X.
We assume that f E Ck at x for some k &#x3E; 1. Then for a neighborhood of x and for

all x E k there exist i-linear forms A,(:c), i = 1, ..., k such that Ai(.) is continuous at x
and 

__

uniformly in x E ~/.

Theorem 6.1 (Second order invertibility condition) Assume that f E C2 at ~,
that Imf’ (x) is a closed subspace of Y and for some a &#x3E; 0, E &#x3E; 0 and all x E the

following holds true

Then there exists L &#x3E; 0 such that for all x near i and for all y near 

Proof It is not restrictive to assume that a  1. Since f E C~ at x, there exists
a function o : R+ 2014~ R+ such that = 0 and for all x near ~ and all
w E  1 we have
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Hence, by the separation theorem and Theorem 4.1 it is enough to show that for some

M &#x3E; 0, p&#x3E; 0, ~ &#x3E; 0 and all y ~ Y of ~y~ = 1, x ~ B~(x), h &#x3E; 0

Set H = Im f’(x), M = 1 + and let ~7 &#x3E; 0 be such that C Then

for some 0  E  E and all x E 

Set p = 8 ~. Fix x E h &#x3E; 0, y E Y of = I and let y~ E H, y2 E ~l
be such that y = yi + y2. If &#x3E; ~ then from (41) we obtain

1 M   then &#x3E; 1 - ~ and, by (40), for some w E X of  1

The proof is complete. 0

Theorem 6.2 (A high order condition) Assume that for some .x &#x3E; 0 and for all x
near x and y E Y of  1 there exists a’ &#x3E; .x such that

Then f -1 is pseudohölderian on a neighborhood of (f(x), x) with the Holder exponent 1 k.

Proof Observe that for all x E N, w E X of  1

where limh-o+ = o. Hence, by Theorem 4.1, it is enough to show that for some

M &#x3E; 0, p &#x3E; 0, E &#x3E; 0 and all x E all small h &#x3E; 0 and every y E Y = 1
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Let f &#x3E; 0 be such that  oo and such that the
assumption of theorem is satisfied on BE(i). Fix y E Y of ((y(( = 1 and x E BE(i), 0 
h  1 and let Wz E B, 1  s  k be such that  y, » À and for all
1  j  s, = o. Setting w = we obtain ( ( wx ((  1 and

Then

Since the right-hand side of the above inequality converges to  when h - 0+ uniformly
in x E we end the proof. D

6.2 Stability
Consider a Banach space X, finite dimensional spaces P, Y and continuously differ-
entiable functions g : P x X - Y, h : P x X - R". For all p E P define the

Let (p, z) be such that

We study here the map p - Dp on a neighborhood of (p, x).

Theorem 6.3 (first order condition) Assume that for some w E X

Then there ezist E &#x3E; 0, L &#x3E; 0 such that for all p, p’ E BE (p), z E Dp n BE (2)

Remark The above result is the well known Mangasarian and Fromowitz condition
for stability (see [24]). It was also proved in [25] via an inverse mapping theorem involv-
ing the inverse of a closed convex process. The proof given below uses the variational
inverse function theorem (Corollary 4.2).

Proof Define the set-valued map Rn by

and set ç == (fi, z, fi, g(fi, z) , h(fi, Z)) . Then, by Example 1,
, - - - -
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Let w be as in the assumptions of theorem. Without any loss of generality we may

assume that  1. Then (0,0,~h ~x(p,x)w) E G’($). Hence for all  &#x3E; 0 and all

Fix (v, y, z) E P x Y x R". is surjective, there exists w E X such that

On the other hand, since ~h ~x(p,x)w  0 there exists  &#x3E; 0 such that

Therefore aco G1 (~) _ ~ x Y x Rn and we may apply Corollary 4.2. Thus there
exists L &#x3E; 0 such that for all (p, x) near and all z near (p, g(p, 2;), h(p, 2))

Fix (p, z) sufficiently close to with x E Dp, p’ sufficiently close to p and z =
and let (prr, x‘) E G-1 (z) be such that ]  

Then z E G(p", xr) = (p", g(p", x’), h(p", z’) ) + Rj . This yields that p" = p’, g( p’, x’) - ~
and h(p,x) E h(p’, zr) + R~. Therefore h(p’, xr)  h(p, x)  0. Consequently x’ E Dp~
and

Second order sufficient conditions require a more fine analysis. Theorem 6.1 can be
applied to the case when equality constraints only are present. We state next a result
for inequality constraints.

Theorem 6.4 (Second order condition) Assume that g = 0, h G CZ at and

let H be the largest subspace contained in Im a2 ~) + If there exists a &#x3E; 0 such

that for all (p, x) near (p, x)

then there exist 6 &#x3E; 0, L &#x3E; 0 such that for all p, p’ G Dp n 

Proof Consider the set-valued map defined by

Then for all e &#x3E; h(p, x) and for all (p, 2~ near (p, i), ~ &#x3E; 0
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where - 0 when t - 0+ and

Let 03B4 &#x3E; 0 be such that

Fix (a, q) E P x Y of = 1. If  z(~i+1) then M &#x3E; 1 - :(~ and

By Theorem 5.7 it remains to show the existence of 03B3 &#x3E; 0, M &#x3E; 0 such that for all

y E Y = 1 and all (p, x) near and all small t &#x3E; 0

But this follows from the assumptions by the arguments similar to the proof of Theorem
6.1. a

6.3 Interior points of reachable sets of a control system
We consider the control system described in Example 2 and we impose the same as-
sumptions on f, X, S. For all T &#x3E; 0 denote by R (T ) the reachable set of (5) at time
T, i.e.,

R(T) = {x(T) x is a mild trajectory of (5)}
Let z be a mild trajectory of (5) on [0, T] and u be the corresponding control. We

provide here a sufficient condition for z(T) E Int R(T) and study how much we have to
change controls in order to get in neighboring points of z (T ) .

Consider the linear control system

and let R)(T) denote its reachable set by the mild trajectories at time T.

Theorem 6.5 Under the above assumptions assume that for all x E X the set fjg
is bounded and for all u E li t E [0, T], ~(., u) is continuous at z(t) . If 0 E Int 
then z(T) E Int R(T) and there exist E &#x3E; 0, L &#x3E; 0 such that for every control u E U
satisfying d(u, J)  E and all b E Be(z(T)) there exists a trajectory-control pair (zv, u)
which verifies

In particular for every b E there exists a control u E U such that
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The above result was proved in [18] therefore we only sketch the idea of the proof.
From (7) we deduce that for almost all t E [0, T]

and for the same reasons for all u near u and for almost all t E [0, T’~

On the other hand

and therefore integrating (44) we obtain C T co (u). Hence

Since 0 E Int R(T) and R(T) is a. closed convex set, the separation theorem and
regularity of the data imply that for some 6 &#x3E; 0

This allow to apply Theorem 3.2 (see [18] for details of the proof). 0

6.4 Local controllability of a differential inclusion

We consider the dynamical system described by a differential inclusion from the Example
3 and we assume Hi) and H2). Let T &#x3E; 0 be a given time. We study here sufficient
conditions for ~ E Int R (T ) and the regularity of the "inverse". Consider the following
linearized inclusion

and let RL (T ) denote its reachable set at time T.

Theorem 6.6 If 0 E Int RL(T) then ~ E Int R(T) and there exists a constant L &#x3E;

0 such that for every x E sufficiently close to the constant trajectory 03BE (in
T)~ and for all b E X near ~ there exists y E (ç), satisfying

In particular this implies that for all b near ~ there ezists x E (ç) with

Proof The map G defined in Example 3 is continuous on its domain of definition.
It was proved in [15] that if 0 E Int RL (T) then there exists a compact convex set
K C having only finite number of extremal points such that the reachable set
R(T) at time T of the differential inclusion (9) satisfies 0 E Int From the

Example 3 we also know that for some M &#x3E; 0

Applying Corollary 4.2 we end the proof.
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6.5 Small time local controllability of differential inclusions

Consider again dynamical system described in Example 3 and satisfying Hi), H2). We
study here sufficient conditions for

Set

Theorem 6.7 Under the above assumptions assume that for every z E X, F(z) is

a convez set. If the convex cone spanned by V is equal to X, then for all T &#x3E; 0,
ç ~ Int R(T).

The above result was proved in [17]. It follows from Theorem 5.7, (10) and from the
existence of c &#x3E; 0 such that GraphR n ~(0, ç) is a closed set.
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