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1. Introduction

The topic of this paper is motivated by problems of evolution, estimation and control of

uncertain dynamic processes described by differential inclusions. [1-6] One of the important

proems for these systems is to specify the tube of all solutions to a differential inclusion that

also satisfy a given state constraint (the "viability" property). [5,6]

It is known that the tube of all viable trajectories may be described by a new differential

inclusion whose right-hand side is formed with the aid of a "tangent cone" to the multivalued

map that gives the phase restriction [5,8]. Here however, we develop another approach to the

problem that allows to avoid the procedure of constructing the cone-valued mappings mentioned

above.

In the problem discussed here it occurs that the time-cross-sections of the set of viable tra-

jectories represents the "state" of the uncertain system (in the phase vector for the standard con-

trol system). Then the problem of discovering the evolution law for the "states" of the uncertain

process becomes relevant.

An evolutionary "funnel equation" for the tube of viable solutions is described in the paper

in terms of set-valued calculus. For the linear-convex case the solution to this equation is given

through set-valued Lagrangian techniques in the form of a set-valued "convolution integral". An

application to the solution of a feedback control problem with state constraints is also intro-

duced.

2. Statement of the Problem

Let R~ be the n-dimensional Euclidean space. For x, y E Rn let x’ y ( or (x , y) denote the

usual inner product of z and y with the prime as the transpose, ~x~ _ ( x’ x)1/2 ,
S = {x E R" : ~ ~  1 } . Also denote conv R n to be the set of convex compact subsets of R n

and h(A, B) to be the Hausdorff metric for A , B E conv Rn .

Consider the following differential inclusion
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where z E F is a continuous map from [to , tl] x Rn into conv We will assume the

Lipshitz condition for F to be satisfied (L &#x3E; 0):

Assuming set Xo E conv Rn to be given, denote z[t] = z(t , to , zo) (to  t  ti) to be the

Caratheodory-type solution to (2.1) that starts at = aco E Xo. We further require all the

solutions z(t , to , zo) i zo E X o} to be extendable until the instant T [10].

Let Y(t) be a continuous map from [to , tt] into conv R", Xo C Y(to).

Definition 2.1 [2-5] A trajectory z[t] = ac(t , to , 2Q) (2o E Xo , to  t  tl) of the differential

inclusion (2.1) will be said to be viable on T~ (r  ti) if

For every Xo the set of all viable on r~ trajectories z(- , z~) will be denoted as

X(. ; X(. ; r , to , Xo) = LJ{~(’ ’ ~o ’ ~o) ! ( and its cross-section at

instant T as X(r , ~ ’ xo) and X (T , to , X°) respectively.

Let X*(- , t° , Xo) be the set of all solutions to the differential inclusion (2.1) that emerge

from X ° (the "solution assembly" for XO). Under our assumptions the set

Q = jj {~*(f , ~ , Xo) I to  t  fj of cross sections X*(~ , ~ , Xo) is compact in R" [9,10].

Let us denote the graph of the map F(t , .) as grtf ( t is fixed):

and the interior of A C R" as int A

Assumption A :

( 1) For some D E convR n such that Q C int D, the set D n grt F is convex for every

t E ti].

(2) There exists a solution z*[.] of inclusion (2.1) such that x* E Xo and x* (t~ E int Y(t),

Under assumption A the bundle X (- ; T , to , Xo) of viable trajectories is a convex compact
subset of the space tl~ of all continuous n-vector functions, and its r-cross-section

X (T , to , is a convex compact subset of R’~.
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It is known that sets X(t , to , Xo) satisfy a semigroup property:

Therefore they define a generalized dynamic system. The construction of an adequate evolution

equation describing this system is the first objective of this paper.

The situation will then be reduced to the linear case where it will be shown that the solution

to the evolution equation derived here may be given in the form of a set-valued convolution

integral.

3. The Evolution Equation 

We will further demand that one of the following assumptions would be fulfilled.

Assumption B. The graph gr Y E conv Rn + 1

Assumption C. For every e E R" the support function f(e , t~ = [ Y(t)) ==

max y E Y( t) ~ is differentiable in t and its derivative a /(~ , t) / a t is continuous in

(~).

The following basic theorem will be proved.

Theorem 9.1. Suppose assumption A is fulfilled and the map Y(-) satisfies either assumption B or

assumption ’C. Then the r-cross-section = X (r , to ,Xo) of the set X (- ; r , to ,Xo) of all

viable trajectories to the differential inclusion (2.1) will satisfy the following evolution equation:

The proof of this theorem will follow from a number of lemmas given in the next section.

Concluding this paragraph we will remark that under the hypotheses of theorem 3.1 the

set-valued map X[7J = Xo) will be continuous in r. However if one replaces assumption
A (2) in theorem 3.1 by one which requires that int Y(t) only for almost all t 

then the equation (3.1) for will be fulfilled almost everywhere on [to , tl]. In this case X (r~

may also be discontinuous on a set {r} of a measure zero. (It is known that in general the func-

tion X[r] is continuous from the left and upper semicontinuous from the right at every point

’ E tl] [6]).
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4. Proof of the Basic Theorem

Let r E [to , tl] be fixed, X[4 = X (r , to , Xo). First we have the following estimate

Lemma 4.1 Under Assumption A for every £ &#x3E; 0 there exists a 03C3* &#x3E; 0 such that

for every (1 E [0 , (1.]

Since X[r + u] = X(r + (1 , r, X[r]) the definition of viable trajectories yields

Being the cross section at instant r + u of the solution assembly to the differential inclusion

(1.1) that starts at {r, the set = X*(t, r , satisfies the "funnel equation", [9,10]

Therefore

where Q-1 o (Q) ~ 0, with 03C3 ~ 0.*

If P , Q, Ware given subsets of R~ with Q = - Q, then it is possible to verify the inclu-

sion

From this inclusion and from (4.2), (4.3) it follows that

* Here and in the sequel a function denoted by without or with any type of indices (e.g. o*(~) , °i , (y), etc.)
will always be presumed to satisfy Q-1 0 ~Q~ --~ 0 if 7 -~ +0. *
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Denoting R (Q , r) = { U (z + Q F(r, 

we observe due to assumption Al that the set 7!(y , r) is convex and compact for every value of

u &#x3E; 0. We will now verify the following inclusion

for some function 0 1 (Q~ .

.From assumption A it follows that there exist vectors z* E F(r, z*) and

numbers r &#x3E; 0, 03C3* &#x3E; 0, K &#x3E; 0 such that for every 03C3 E [0 , 03C3*] we have

Then however

Indeed, suppose a number uE [0, ~j and a vector zER (~ , r) Q (Y(r+u) + S) are

given. We will show that 
’

Selecting vector

we observe that y E R (Q , r), and

From the above we arrive at two inclusions
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where Y(r + u) is convex-valued. Taking the sums of the respective elements at the left and

right hand parts of these relations we come to

or otherwise, to the inclusion y E Y(r + ~) (since in this relation o(r) is a specific function of o).

This immediately yields (4.6) and the inclusion (4.5) is therefore established. The result

given in Lemma 4.1 now follows from relations (4.5), (4.6).

Consider the system

with Z(r + o- , r, xo) being the cross section of the tube of viable solutions to this system.

Denote

Lemma 4.2 Under assumption A for every E &#x3E; 0 there exists a Q* &#x3E; 0 such that for all Q E"[O ) 03C3*]

the following inclusions are true

Lemma 4.2 is a detailed version of Lemma 4.1. It is proved through a similar scheme.

Lemmma .. 9 With assumption A fulfilled it is possible for any f: &#x3E; 0 to indicate a a* &#x3E; 0 such that

for every u E (0, Q*~ we have

Inclusion (4.11) gives us the next step, relative to (4.9), to prove the Basic Theorem.

In order to verify the assertion of Lemma 4.3 assume z* E Z(u r). Then there exists a pair
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such that the respective solution z[t] = z(t , r, zo) to equation (4.8) satisfies the conditions

Therefore

and

where

The last relations are derived due to the earlier assumptions that F(r, z) is Lipschitz in

(with constant L) and continuous in t uniformly in z E M. Here the function O(u) -~ 0 wi

+0.

If we now introduce the differential inclusion

then from the Gronwall lemma for differential inclusions [5] it follows that there exists a soluti

y(t) to (4.12) that satisfies

and therefore yields
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Hence

Due to assumption A the sets X[t] E conv R m. Following the scheme for Lemma 4.1, it is

possible to construct a function w(t) that satisfies

for a certain function 

Therefore

and in view of (4.13), (4.14) we have

where the function does not depend upon the vector z* E Z(~ , r).

The last Lemma leads to

Corollary .1 Under Assumption A tve have

Assertion (4.15) follows from (4.11), (4.9).

In order to finalize the proof of the basic theorem we will have to establish an inclusion

opposite to either (4.10) or (4.1). This however will require some additional assumptions in the

form of either B or C in § 2.

Lemma 4..( Under Assumptions A, B for any Q &#x3E; 0 we have
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Consider the set Z’(r + 03C3 , r, zo) of viable solutions to (4.8) in the class of constant func-

tions v (v(t) = const)

Denote

Clearly r) C Z(y , r). If we now assume z E R(~ , r) n Y(r + Q) then there exists a pair

of vectors z E v E F(r, z) such that

Since gr Y E conv R~ ~ ~ 1 we have

for any s E (0 , u]

Therefore z E Z’(Q , r) and (4.16) is proved.

Relations (4.16), (4.10) yield

Corollary ,~.2 Under assumptions A, B we have

Combining the latter equality with (4.15) we arrive at the proof of the basic theorem under

Assumptions A, B.

We will now prove the same theorem under Assumptions A, C. Having already found (4.1),
we will only need to establish an opposite inclusion. However prior to that we will prove an addi-

tional assertion.

Let us introduce some auxiliary constructions. Define for an arbitrary closed set P C JP" a

contingent cone T p(z) (Z E P):

and for a multivalued mapping Y(~~ a contingent derivative ~5,8~
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j) 

Determine V(t, y) = D Y( t , y ) ( 1 ) for ( t , Y. Under assumption C for all

(t, the set V(t , y) is closed and convez in ~t" (5~.

Following [12] consider a local approximation Y~(r) for the set-valued map Y(-) in the

neighbourhood of a fixed point n

Lemma 4.5 [12).

1. Under Assumption C the following equality is true for all Q &#x3E; 0

2. Under Assumptions A(2), C for every E &#x3E; 0 there exists a o* &#x3E; 0 such that for all 03C3 E (0, 03C3*]

As a function of Q the graph of the map is convex. This allows to establish

Theorem .~.1 Under Assumptions A, C the set-valued map is a solution to the equation

From (4.17) and from the scheme for proving Lemma 4.1 (since Assumption A(2) remains
true for it follows that there is an upper bound for X[r + u], namely

In order to prove the opposite relation
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for some o(f) assume

Then z = z + 03C3 v E for some z E X[] , v E F(r , z). Since gr YT E conv Rn we will

have E Yr(s) for all 8 E [0 , a~~ .

As in (4.12), (4.13) it is possible to establish the existence of a solution yet) to the inclusion

that satisfies the inequality

for a certain 8(u) and therefore yields

Due to Lemma 4.5 (2) we may substitute (4.20) for y(r + s) E Y(r + 8) + 

Then, following the schemes of Lemma 4.1, we may find due to Assumption A a solution

Y#(t) to (4.12) that satisfies relations

The latter inequality together with (4.21) leads to (4.19). Theorem 4.1 is therefore proved.

Now we may come to the proof of the inclusion opposite to (4.1). From Assumptions A, C

and from Lemma 4.5 (2) we observe that
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and that Assumption A(2) remains true for Then following the reasoning of Lemma 4.
we will have

From theorem 4.1 and from (4.22), (4.23) we come to the inclusion

for a certain function o~ (~).

This finalizes the proof of the basic theorem under Assumption A, J, since (4.1), (4.24)
yield (3.1).

5. The Linear System

Consider the following system

where A (t) is a continuous n x n-matrix function, P(t) is a continuous map from

[to , ti] into conv Rn and therefore F(t, 2) = A(t) z + P(t)

Here assumption A (1) will be fulfilled automatically Hence to retain assumption A(2) we

will introduce

Assumption A *. There exists solution Z*(~~ of (5.1) such that

T]

The following result is a direct consequence of theorem 3.1 (it also generalizes theorem 4.1
of paper [3]).

Theorem 5.1 Assume assumption A * to be fulfilled. If the map Y(-) satisfies either assumption B
or assumption C then the set-valued function = X(r , to , Xo) is the solution to the evolution

equation
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! 

L  r  ti (here E is the identity n x n-matrix).

A separate question is how to solve equation (5.1). We will further demonstrate that this

solution may be given by a certain multivalued "convolution integral".

6. The Linear System. A Direct Solution

We will now pursue a direct calculation of the support function p(e I X [r]) based on the

I techniques of convex analysis and the set-valued analogies of Lagrangian techniques.

Denote Cn(T) to be the set of all n-vector-valued continuous functions defined on

T (respectively the set of k times continuously differentiable functions with values L_ ~~, defined

on T). Let Mn(T) stand for the set of all n-vector-valued polynomials of any finite degree,

defined on T. Obviously g(.) E if

and Mn (T) C (T) .

Applying the duality concepts of infinite dimensional convex analysis [8] as given in the

form presented in [6] we come to the following relations. For any I E Rn, A(.) E Cn(T) denote

; Here, in the first variable the function is the matrix solution for the equation

. the second and third members of the sum (2.1) are Lebesgue-type integrals of multivalued maps

P(Q , Y() respectively (see, for example, [5-7]).

In [6], § 6, it was proved that
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A slight modification of the respective proof shows that the class of functions in the

last formula may be substituted by either C*~(TB) or even Hence

From relations (2.2) it is possible to derive the following assertion

Lemma 6.1 The following equality is true

where

and (0  k  oo) , stand for the respective spaces of (n n)-matrix-valued

functions defined on T.

The proof of Lemma 6.1 follows immediately from (6.2), (6.3) after a substitution

À’(.) = t’M(-) for 1 The infimum over a(.) in (6.2) is then substituted by an infimum over

M(.) . Hence for every ~ ~ 0 we have

for any M(.) E (or or From (6.1) - (6.5) it now follows that

R(r,M(.) for any M(.).

Hence
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, (or over or Mnx 

Equalities (6.4) now follow from (6.6) and (6.2), (6.3).

Lemma 6.1 acquires a specific form when X° = R ". In this case there are no initial restric-

tions on z ° = 

CoroUary 6.1 Assume X° = Then

over all M(.) E Cn x n ( Z.T~ that satisfy the equation

Relations (6.7), (6.8) are the direct analogies of the convolution integral introduced for

single-valued functions, for example, in [13]. Following the conventional term we will therefore

refer to as the set-valued convolution integral. We will also extend this term to the right-

hand part of (6.4).

7. A Generalized "Lagrangian" Formulation

I The assertions of the above yield the "standard" duality formulations for calculating

Denoting

we come to the following "standard"

Primary Problem

maximize~ , z[rj) (7.1)
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Relations (2.2), (2.3) indicate that 03B3o(l) = 03B30(l) and that A(.) in (6.5) may be selected from

~ (T~) or even from 

~ p ’standard" Lagrangian formulation is also possible here.

Lemma 7J The value = may be achieved as the solution to the problem

I
where

and

The passage from (6.2), (6.3) to (6.4) yields another form of presenting X (r~ . Namely,

denote S[t] to be the solution to the matrix differential equation

Also denote

Obviously

Lemma 6.1 may now be reformulated as
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Lemma 1.2 The set X (rj may be determined as

over all

This result may be treated as a generalization of the standard Lagrangian formulation. How-

ever here one deals with set as a whole rather than with its projections ~H) on the ele-

ments I The results of the above indicate that the description of set X[r] may be "decou-

pled" into the specification of sets R(r, M(-)), the variety of which describes the generalized

dynamic system X (t , to , 

However it should be clear that the mapping R(r , M(-)) may not always be an adequate element

for the decoupling procedure, especially for the description of the evolution of X(t , to , XÜ) in t.

The reasons for this are the following.

Assuming function M(-) to be fixed, redenote R(r , M(-)) as to , XC). Then, in general,

for any fixed M, we have

Therefore the map RM(r , to , XO) does not generate a semigroup of transformations that

may define a generalized dynamic system. The necessary properties may be however achieved for

an alternative variety of mappings, each of the elements of which will possess both the property

of type (2.4) and the "semigroup" property, [4] .

8. An Alternative Presentation of X [r]

Denote Cnx n (Tr) to be the subclass of Cnx n (T) that consists of all continuous matrix

functions M(-) that satisfy

Assumption 8.1 For any I E TT we have
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In other words, if K (t~ is the solution to the equation

then M(t) must be such that det for all t E [to , r~.

We will further denote K[t] = K(t, r ; M(.)) for a given function M(-) in (7.1).

Consider the equation

whose matrix solution Z[t] (Z(r) = E) will be also denoted as Z(t~ = Z(t, r ; L(-))

[Z’~,., {0})== .?(r~))

Under Assumption 8.1 there exists a function L(-) E cnxn (TT) such that

Indeed, if for t E TT we select L(t) according to the equation

then, obviously, equation (8.3) will be satisfied. From (8.4), (8.3), (8.4) it now follows

(M(.) E (TT))

However it is not difficult to observe that the right-hand part of (8.5) is

~(’)] ] which is the cross-section at instant r of the set

(., to = X [. L(-)~ of all solutions to the differential inclusion
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Since the class of all functions L(-) E Gnx n (TT) generates a subclass of functions

M(.) E C’~"" (TT) we now come to the following assertion in view of (6.3), (8.5), (8.6).

Lemma 8.1 The following inclusion is true

Therefore X[r] is contained in the attainability domains at instant r for the inclusion (8.6),

whatever is the function L(t).

However the main point is that (8.7) actually turns to be an equality. In order to prove this

one has to establish an inclusion opposite to (8.7) which is a rather long procedure already

presented in [4]. The result is given by

Theorem 8.1 The following equality is true

Since each of the multivalued functions = X~r , L(.)] is a solution to differential inclu-

sion (8.6) it may be also considered as a solution to the funnel equation (-Y[~J ~ X °

Combining Theorem 5.1 with (8.8), (8.9) we arrive at

Theorem 8.2 Under assumptions A *, B or A *, C the solution to the "generalized" funnel

equation (5.2) may be decoupled into the variety of solutions to the "ordinary" funnel

equation ~8.9~ so that equality ~8.8~ will be fulfilled.

The results of this paper may be applied to the solution of feedback control problems under

state constraints. One of the possible schemes is to solve the problem in the class of set-valued

control strategies this requires the solution of a problem inverse to those of the above.

9. The Inverse Problem

Consider system (5.1), (2.2) for t E with set M E comp R".

Definition 9.1. The viable domain for system (5.1), (2.2) at time s is the set that

consists of all vectors w ERn such that
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Using the duality relations of convex analysis as given in [6] it is possible to observe that

where

Similar to § 6 we come to

Lemma 9.1. The set may be determined as

Under assumptions A*, B or A*, C it also satisfies the funnel equation

An important technical element is the directional derivative in t of the support function

10. A Directional Derivative

Let us calculate the left derivative a_ I W[Tj) / at for a given direction L Since

we observe that the increments
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and

are such that

Therefore it suffices to calculate the left derivative

for the function

The calculation of ( 10.1 ) then follows the techniques of ( 16~ . The results are given by

Lemma 10.1 Under the assumptions of theorem 5.1 the directional derivative a_ ] W[t]) / at

exists for every l E R" and almost all t E T. It is given by formula

where ~l k(t , l) is the subdifferential in the variable l of the function

The formula of the above may be used for proving the existence of a feedback solution strategy in

a control problem with state constraints. We will pursue this solution following the "extemal

aiming" rule of [1] and the schemes of [6j.
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11. A Feedback Control Problem

Consider the system

with control

and constraints

The set-valued functions P(t) , Y(t) are similar to § § 8-10, M E conv Rn.

Problem 11.1 Devise a feedback strategy in the form of a set-valued function

that would ensure for a certain range Ws = ((s , w)} of positions (s, w) (s E R, w E R") that

restrictions (9.1), (9.2) would be fulfilled.

The admissible class of multivalued strategies U(t , z) will consist of those that ensure the

existence of a solution to the inclusion

Lemma 11.1 Assuming instant r is given, the set WT positions for which there ezists a solution to

problem 11.1 may be defined as

Assuming that the set W (r , t1) of § 9 is already specified, the solution to problem 11.1 is

given by

Theorem 11.1 The solution U(t , z) to problem 11.1 may be given by the set-valued function
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Here a f(t) is the subdifferential of function f at point t. A standard proof indicates that

U* ( t , z) is an admissible strategy [6].

In order to prove theorem 11.1 it suffices to show that the derivative

if calculated along the solutions of (11.1) with u = U*(t , z), for any z(t) E W (t , tl)’

Without loss of generality we may assume A (t) = 0. (Since by substituting ~ = S(t , tl)r

the equation (11.1) may be reduced to i = S(t , ti)u)

Therefore we ought to differentiate the function

in t. IT E W(t , ti) then

where l0 = t°(t , z).

Using the result of Lemma 10.1 and the formula for differentiating a function of the "max-

imum" type [16] we have

The last inequality is true if u E U*(t , z). It follows from the definition of U*(t , z)

Since p(ll W (t, tl)) is differentiable both from the left and the right, inequality (11.4)

proves (11.3). The latter in turn ensures that (9.1), (9.2) would be fulfilled. (Otherwise if z(t)
would belong to the boundary of W(t , tl) and z(t + ~) E W(t + cr , tl) for some q &#x3E; 0, then

there would exist an instant t + 0~ , Q’  Q such that z(t + 0"’) E W(t + ~ , tl) and

d d Wet + 0"’ , / dt &#x3E; 0. This contradicts with ( 11.3) ) .
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