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ABSTRACT

given two convex functions g and h on a Hilbert space, verifying

1 .
g+ h = - I.1l>,we show there necessarily exists a lower-semiconti-
2 1
nuous convex function F such that g=Fouo-1.4% and
1 .
h=F*a - H.HZ. An explicit formulation of F is given as a decon-
2

volution of a convex function by another one. The approach taken
here as well as the way of factorizing g and h shed a new light on
what 1is known as Moreau's theorem in the literature on Convex
Analysis.
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— INTRODUCTION

The starting point of our study was the following question,
which takes root 1in the regularization processes studied in
[9]: Let (¥, <.,.>) be a Hitbert space, tet 7 be a Function on
H and @ > 0 such that

' @ @ .
(1.1) both — |12 = 7 and — .12 + 7 are conmvex functions on
# (Here l|.ll denotes the norm on H associated with the inner

product <.,*>).
How to show that 7 is Giteaux-dirferentiabte on H with

(1.2) B 727(x) = 27 ()l € « llx—#ll for att x, ¥ in # ?

The question of differentiability of f offers no difficulty
2 - f

since it readily comes from (1.1) that both g

2
H, so that

[« 3
and h := - n.uz + f are finite convex functions on
2

the directional derivative f’(x,.) of f exists and satisfies:

(1.3) fl(x,.) = o < X, .>» - g’ (x,.) = h’(x,.) — a < x, .>
for all x € H, whence f’(x,.) is linear and continucus (since
convex and concave) for all x € H. The problem now is to prove
that f’ is Lipschitz on H, with Lipschitz constant «. It is
clear, in view of (1.1), that « is the best Lipschitz constant
one can expect on f’. Even if the problem can be reduced (by
an argument of projection) to the same problem in a 2-dimen-
sional context (cf.[6]), it is not simpler for all that. So,
the question should be broached in a different way.

when reading (1.1), our first reaction is to observe that f is
necessarily a d.c. function (i.e., a difference of convex

functions)
[« 3 [«
(1.4) f=—-4.% —gorf=nh-— .15
2 2

D.C. functions enjoy differentiability properties similar to
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those of convex functions, but to keep control of their
derivatives 1is hopeless in general ([3, §1I.2]}). Things are
however made easier since one of the functions involved in the

o 3
decomposition of f is merely -2- i.1%. Referring back to (1.4),

we see we are in the presence of two convex functions g and h
such that

(1.5) g+ h =« II.112.

we thus reformulate the question posed at the beginning in the
following way : Let g and A be convex functions om H and a > 0
such that

(1.6) g+ 4 =a .17
Show that both g and h are Gateaux-difrerentiabte on H with
1.7) < @' (x) - g’ (), R'(x) — A (y¥) > 2 0 for atl x, ¥ in H.

Let us prove that the two formulations are equivalent.
Suppose we have answered the question in its second formula-
tion and wish to answer it in its first one. Then, posing

o 2 o 2 . .

g = ; .l = f and h = = ||.]|* + f, we get that f is differen-=
2

tiable and

(1.8) <« g’(x) - g’(y), h’(x) - h'(y) >

= af fix=ylI? - W7 (x) - £7(NIZ = 0 for all x, y € H,
which is (1.2) precisely.
Conversely, suppose we have answered the question in its origi-
nal formulation and wish to answer it in its second one.

o o
Posing f = = }|.12 ~ g = h - — |I.MZ, we indeed have a function
2 2

o 3 o 3
f such that both — [i.llz + f and E 1.1 + f are convex func—
2

tions on H. Then, the differentiability of f induces that of g
and h, and, in view of (1.8), the ineguality (1.2) induces
(1.7).
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Starting from convex functions g and h such that g + h = & HMF,
we actually can prove more about g and h, namely that g and h

can be ractorized in the following form : g = 2«(F o ; 1.12)

1
and h = 2« (F* o — H.Hz) for some lower-semicontinuous convex
2

function F. As a result, g and h will appear as Moreau-Yosida
regularized versions of F and F* respectively, so that all the
announced properties on g and h follow.

2 — MOREAU’S DECOMPOSITION THEOREM REVISITED

2.1

- Let FO(H) denote the set of convex functions F from H into
(-», +»] which are lower-semicontinuous and not identically
equal to +». What 1is known as Moreau’s theorem in the
context of Convex Analysis asserts the following : for any
Fer )

1 1 1
(2.1)y Fo—=|.0% + Fao—}.1%2 = — .42, (red)
2 2 2

By choosing F as the indicator function of a closed convex
cone K of H, F* is the indicator function of the polar cone
K° to K, F o H.HZ is the sgquare of the distance function to
K, so that (2.1) reads as a kind of Pythagore’s theorem

(2.2) d + d%_ = {.0%. ([7,91)

Such a decomposition has proved useful in all areas invol-
ving a Hilbertian structure (Euclidean spaces of matrices in

Statistics, Sobolev spaces 1in Nonlinear Analysis [7,11],

etc).

Our goal now is to prove a sort of converse to Moreau’s the-

orem : starting with convex functions g and h such that

g+ h=-— H.Hz, we want to factorize g and h in the form
1 2 1

Fo-—1.l% and F* a ; .12 respectively, by providing also

an expficit formulation for F.
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THEQREM (or ractorization)

I i

Let g and h be comvex functions on K such that g + A = = 1 | I
There then exists F € l'a(ﬂ) such that

7 7
(2.3) g=Fo=Q.% and £ = F* o = .47

2 2
Moreover
(2.4) g2’ (x) €3 F (A'(x)) and 2’ (x) € 3 F¥ (g’ (x)) ror atf
x € H.

Before going into the details of the proof, we need to
recall some facts about an operation on convex functions
which has been recently introduced ([4]), and which bears
the name of deconvolution of @ furnction by another one.

Given ¢ and ¢ in T_(H), the deconvolution of ¢ by ¢ is the

function denoted ¥ o ¢ and defined as:

¥ x €H, (¢ 8 ) (x) = sup {¥(x+u) = 4 (Wi.
$(u) < +o

The two main properties to be noticed are : 4 & ¢ £ [_(H)
(or possibly identically equal to +») and

(¢ 8 $)*= (¢* - *)*™™ (see [5] and the references therein).

Proos of Theorem [
1 2 i
We set F = g & ; .1, that is :

1
¥ x € H, F(x) = sup {9(x+u) -— uunz}.
uecH 2

Since g + h = .12, we also have :

1
¥ x € H, F(x) = sup {g(v) — nx—vuz}
w € H 2
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1 2 1 2
sup ¢— IIvll® = h(v) = = jix-vli
v e H {2 2

1
sup {< x, v> ~h(v) - — nxuz}
v € H ) 2

1
h*(x) - = Ixii®.
2
Whence
1 2 »* 1 2
(2.5) F=ga-={f.f"=h -=i.| (e ©_(H)).
2 2
By inverting the role of g and h, we get in a same way :

1 1
(2.6) he= oz o= g% - > 112 (e r (H)).

1
But the formula giving the conjugate function of g s ; HJF

(as aforesaid) yields that

1 » 1 23 1
[g 8 - n.nz] = [g‘ - - n.uz] = g% - = .07,
2 ' 2 2

Thus, the function defined in (2.6) is nothing else than F*.
Consequently, the usual calculus rules on conjugate func-

tions, applied to
1 1
h* = F + — .42 and g* = F* + " n.u®, induce that

1 1
g=Fo=—1l.}|ad h=F*ao—|.|%.
2 2

Now, calculus rules on subdifferentials, applied to

1
h* = F + 3 .12 for example, yield that

ah® (h’(x)) = 3F(h’(x)) + {h'(x)} for all x € H.

But x € ah®(h’(x)) for all x € H, whence
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g’(x) € 8F (h’(x)) for all x € H.

1 n
Remarf I The factorization of g and h in the form F o E i1

1
* o - ||.11% respectively, with F € L, (H), is unique :
2

and F

, . e 1 2

indeed, if ¢ € ' (H) verifies ¢ o — }.||* = g and
2

* 1 z

$" o ; .l = h, we get that

(2.7) $

1"
by
*
|
1
“r
"
/-———\
@
*
1
| =
s
e all
*

i 1
that is ¢ = g = — ||.}i%.
2

Remarkt 2. The dual formulation of the theorem of factori-
zation is as follows : 7/ &£, £ € I (#) satisry
o

2
£Ea £ = E 1. °, there them exists an unique K € I (#) such
that
7 7 z
k=K +=1.1% and & = &* + — ||.)1%.
2 z

Exampée. Let S be a nonempty closed convex set of H. We have
that

1 1 1
=dz + = 00® - df) = -t
LA [l 2 Bl
S S

g h

1
It is known that h = — [}|.}% - dg] is convex ([1]) (*). Then
2

the only soilution F yielded by the factorization theorem is
F = bg (the indicator function of S). Note incidentally the
pairing result :

1 1
2 - 2 2
(2.8) (u.u - ag] =43 8 = 107,

which also can be obtained from direct calculations or as an
example of Moreau’s theorem (cf. (2.1)).
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2.2. Appéications

2.2.1. As a first application of the factorization theorem, we

lTook

at the question posed in the Introduction and

which motivated our study.

Consider two convex functions g and h on H, « > 0, such that

g+ h

@ H.Hz. According to the factorization thecrem

there exists a unique F € rD(H) such that :

9/ 2x

1 1 2
= Fo — [|.|® and h/2e = F¥ o = |17,
2 2

g’(x) € 3 F(h’(x)) for all x € H.

Due to the monotonicity property of &8 F, the second relation

above

induces that

< g’'(x) - g’(y), h’(x) - h’(y) > > 0 for all x € H,

which

is the relation (1.7) required.

2.2.2. A second application of the factorization theorem is the
following result.

COROLLARY 2. Let ¢ : ¥ — R be a Giéteaux—dirrerentiabic

Junction and @ » 0. Then the next statements are equivalent:

(2.9)

(2.10)

Although
is rather surprising

l< £7(x) - f'(y), x-y >1 € a {Ix-yii? for all
X, ¥ € H;

B f'(x) = f2(y) Il € a« lix-yll for a1l x, y € H.

it was known for C* - functions, this equivalence
; clearily, (2.9) which involves f on

line segments is easier to check.

*) Actually, h is convex whatever S be. But to ensure the
convexity of g also, we need the convexity of S.
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To prove that (2.9) implies (2.10), it suffices to observe
o o .

that both — [|.1iZ - f and — 1.1 + f are convex functions on
2 2

H ; (2.10) then follows from the equivalence properties
stated in the Introduction.

Corollary 2 answers a question the first author alluded to
in . [3, p. 48 bottom] concerning the comparison between
(globally) c''! functions f and those satisfying an inequa-
lity 1ike (2.9).

A third application of the factorization theorem is a
characterization of the so-called a-strongly convex
functions. We recall that, given a > 0, f € r,(H) is said
to be a-strongfy convex (or strongly convex with modulus «)
if

fltx + (1-t) x’) € t f(x) + (1-t) f(x’) - % t(1-t) fIx-x’|*

for all x, x’ in H and t £ J0,1[. In other words, that means
QL

that f - — ||.}|%® is still a convex function (€ FD(H)). The
2

next characterization of «-strongly convex: functions has
alsc been observed by Volle ([10]) who, furthermore, intro-

duced a new conjugacy mapping for such functions by substi-
tuting the “coupling functional®

[« 3
(x, y) — E lix-yll? for the usual bilinear functional
(X, ¥Y) = < X, ¥y >.

COROLLARY 3. Let 7 € fo(ﬂ). The following are equivafent

(2.77) 7 is a—-strongly convex ;
7 2 *

(2.72) — #.01° - 27 €7 _(#)

2 e

(2.78) There exists ¢ € Fo(ﬂ) such that 7 9 ¢ = .oz,

MR

Condition (2.12) actually says more than what is stated
since f* is itself in T _(H), condition (2.12) implies that



334

* is finite on H ; in fact we will see in the course of the
proof that f* is a c!''! function (*).

1 .
Likewise, a consequence of (2.13) is that ¢* = = h.n2-f",
('3
whence the exhibited function ¢ is a«a-strongly convex ;
indeed,
1 2 ** 3 2
(2.14) ¢ = |— 1.lI* = f == .l* s f,
2a 2

b4 * -]
(2.15) 7 = [—— hoy? - ¢*] = ; 1% s e.

Proos. (2.12) = (2.77). Let g denote the convex function
1 1

~— .12 - f*. sSince a g + « ¥ = " .42, the theorem of
20 .

factorization yields that there exists F € FO(H) such that

1 .
« f¥ = F o - ||.||%. Consequently, f assigns
2

1 [ 2 o
- F*(ax) + — |IxliZ to x € H, so that f - > ih.
o 2

convex function. We thus have proved f is a-strongly convex.

1% is still a

(2.17) = (2.13). Let x denote the convex function
f 1 : &
— - — 1% : we set ¢ = &« x* + — |I.I%. starting from the
<3 2 2
! 2
relation — = x + — [[.{I°,
o 2

we get successively

(*) The equivalence of (2.11) and (2.12) appears also as a
by-product of more general results on the duality rela-
tions between uniformly convex functions and uniformly
smooth convex functions ([2]).



(2.16)

- 1
I T [x a - ”_”z] by Moreau’s

theorem.

f £4 - fy = PY %
Let us calculate g = -} o }—-|. Since g° = |— + |- , we

= 3 = 3 [« 2
\

infer from the definition of ¢ and (2.16)

1 1 1 1 .
gt = = Ih.a® - [x a = % +x o~ .02 = = §.E.
2 2 2 2
1 -
Whence g = ; .= and (2.13) 1is secured.

X
(2.23) = (2.72) From f o ¢ = E I.1? we derive

1 1
* o+ e* = - .17, so that - o2 - f* =9 er_(H). =
(a2 s .

3 - COMPARISON WITH MOREAU’S APPROACH

In his seminal 1965 paper ([8]), Moreau extensively studied
1 -

the functions of the form F o — {|.}i*, F € FD(H), and defined
2

the so-called proximal napping prox. which assigns to x £ H

the unique point where the infimum of u — F(u) + % fix - ujt®
is achieved. Among other properties, he proved that prox, is a
Lipschitz mapping (with Lipschitz constant 1) and that prox.
is actually a gradient mapping (i.e., there 1is a differen-
tiable function ¢, called primitive function of prox., such
that ¢’ (x) = proxF(x) for all x € H).

In a much 1less read section ([8, §9]), Moreau introduced a
binary relation between convex functions by defining what he
meant by “"a convex function g less convex than a convex func-
tion f". More 1interesting is the characterization of such a
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1 "
relationship when f s Z . precisely, which now allows us

to make connections with our approach.
According to Moreau ([8, définition 9.b]), a convex function g
is 1less convex than a convex function f (or f is more convex
than g) if there exists a convex function h such that f = g + h,
He then proved the eguivalence of the following properties
([8, Proposition 9.b and Proposition 10.b] :
e

’

z
(3.7) g €7 _(#) is tess convex than — .

(8.2) The conjugate Junction of 4§ € fa(ﬂ) is more convex

7
than — II.11% ;
=
(2.3) g is the pPrimitive Sunction of a Proximal mappring ;
(z.4) g € fo(ﬁ) is difrerentiablfe and g’is Lipschitz on #
with a Lipschitz constant 1.

(3.1) expresses the existence of a convex function h such that

1

g+ h=~— H.Hz, which is precisely the situation we have con-
2

sidered here. According to (3.4), such a g is differentiable

and l{g’(x) - g'(y) < jIx-yll for all x, y € H ; the property we
were looking for from the beginning is stronger, namely :
X-y 1 .

fg’(x) - g’(y) - —;—H <’E lix=yfl (cf. Introduction),
Moreover,the factorization of g (and h) does not appear expli-
citly and a characterization like (3.3) uses heavily the pro-
perties of the proximal mapping.

Our approach, based on the deconvolution operation, allowed us
‘to get at an explicit formulation of F in the factorization
theorem (Theorem 1), thereby shedding a new light on Moreau’s

theorem.
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