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ABSTRACT

A folding q : Rd --~ Rd is a nonexpansive mapping that is piecewise
isometric. Every such function determines a polyhedral complex
whose d-dimensional elements are the maximal sets on which q is an

isometry. We characterize the complexes which arise from a folding
in this manner.
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1. Introduction. The authors have recently introduced a class of

mappings, called "foldings", on Euclidean space [5], [6]. A folding is a

nonexpansive piecewise isometric mapping, with the pieces forming

a polyhedral decomposition of the space.

To fix ideas in the simplest case, imagine that a piece of paper

is folded several times, translated, flipped, or rotated any finite

number of times. These actions define a mapping q : R2 - R2.

The creases thereby formed in the page divide the plane into

polygonal regions (some of which may be unbounded) called the

"folds" of q, such that the restriction of q to each region is an

isometry. These folds can be "two-colored", that is, divided into two

classes, A and B, such that every pair of polygons sharing an edge

belong to opposite classes. (In the paper folding example, these

would be the upside-down and the rightside-up polygons).

Furthermore, one can easily convince oneself that at each vertex the

sum of the angles from incident class A polygons is equal to the angle

sum of the incident class B polygons.

There are piecewise isometric nonexpansive mappings on R2,

i.e. "foldings", that are not "paper foldings", so this paradigm should

be recognized as only an illustratration.

It is natural to ask whether this angle-sum property

characterizes the class of foldings, and if so, whether it generalizes to

R d . Our objective in this paper is to show that this is indeed the

case. Theorem 1 states that every folding of Rd determines a

polyhedral complex whose d-dimensional faces can be two-colored
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and for which every face of dimension less than d has the following

property: the sum of the class-A inner angles at that face equals the

sum of the class-B inner angles at that face. Theorem 2 then shows

that this property comprises an intrinsic characterization of the

complexes corresponding to foldings; that is, a complex is realized by

some folding if, and only if, it has this angle-sum property.
The sufficient condition presented in Theorem 2 for a complex

to be realizable by some folding q seems to be weaker than the

necessary angle-sum condition of Theorem 1: if merely around

every (d-2 )-dimensional face of the complex, the sum of the class-

A inner angles equals the sum of the class-B inner angles, then there

exists a folding q for which that is the corresponding complex. But

the sufficient condition cannot be weaker, and must therefore be

equivalent to the necessary condition. Thus, the fact that the angle-

sum condition holds for every (d-2)-dimensional face implies that it

holds at every face of dimension less than d. Except in the case

where d=2, this fact seems to us by no means obvious. For instance,

in the case d=3, it says that if one divides the 2-sphere into a finite

number of spherically convex polygons (whose sides are arcs of great

circles of the sphere), and if these polygons can be two-colored so

that around each vertex the sum of the angles of color A equals the

sum of the angles of color B, then the sum of the areas of the A-

polygons equals the sum of the areas of the B-polygons.

Our original interest in foldings was motivated by our

observation, explained in [5] and [6], that for a folding

q : Rd -+ Rd, sequences of iterates of q, xn+i = q(xn), and
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sequences of averaged iterates of q, xn+ - exhibit a

regular behavior not displayed by the iterates, or averaged iterates,

of a general nonexpansive mapping. The behavior exhibited by such

sequences is especially striking in the case of averaged iterates.

Except for perhaps a finite number of initial terms, such sequences

were shown in [5] to behave as if q were globally an isometry.

From this observation, the finite termination of certain iterative

procedures was deduced. Averaged iterates of a nonexpansive

mapping can be regarded also as sequences generated by the

"proximal point algorithm" [7], a method for finding a zero of a

maximal monotone multifunction. Foldings thus present a case

where this algorithm is especially well-behaved. It is hoped that the

additional insight provided by our geometric characterization will

lead to a better understanding of nonexpansive mappings in general,

and of iterative methods for determining their fixed points.

2. Piecewise isometries and their complexes. In this section, the

class of "piecewise isometries" on Rm is introduced. The Proposition

below gives three equivalent characterizations of this class. It will

then be shown that every piecewise isometry on Rm determines a

polyhedral complex whose m-cells are the maximal sets on which the

mapping is isometric.

The following will be used repeatedly:

LEMMA. If q : Rn is nonexpansive, A and B are convex

sets in Rm for which qlA and qlB (the restrictions of q to A and
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. 

B) are isometries, and if A n relint(B) ~ 0, then the restriction of

q to conv(A u B) is an isometrv.

Proof: If we can show that q is isometric on A~B then, since q is

nonexpansive, it will follow that q is also isometric on 

For this, it suffices to show that Iq(a)-q(b)I = la-bl whenever a E

ABB and b E BBA.

Without loss of generality, we may suppose that

0 e A n relint(B). Let t&#x3E;0 be chosen small enough so that

-tb ~ B. Since q is nonexpansive and qlB is linear, we have

Iq(a)-q(b)1 S; la-bl and Iq(a)+tq(b)1 = la+tbl. Hence,

and the inequality must actually be an equality. Since t&#x3E;0, this

forces = la-bI2. + + +

For a function q : Rn we let M q denote the

collection of maximal sets F in Rm such that qlF is an isometry.
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Clearly, if q is continuous then the elements of M q are closed. Also

and if F and F’ have overlapping interiors,

int(F) n int(F’) # 69 -- then (since ql(FuF’) must be an isometry)

F=F.

PROPOSITION. The following conditions on a function

q : Rn are equivalent:

(a) the function q is continuous and the family Mq is

locally finite:

(b) there exists a locally finite cover M of closed

sets F such that qlF is an isomry: and

(c) for each point x E Rm there is an e(x) &#x3E; 0 such that if

y E (the open ball of radius e centered at x)

then = !y-xL

If q is a function satisfying these conditions then q is

nonexpansive and the elements of Mq are full-dimensional, closed,
and convex.

Proof: If (a) is satisfied then we may take M = M q in (b), so that (b)

holds as well.

If (b) holds, then for each x E Rm there is E &#x3E; 0 such that if

e and y E F E M then x E F. For such an E, (c) holds.

Suppose henceforth that the function q : Rn satisfies

(c). Clearly q is continuous. For any x, y e Rm, a compactness
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argument shows that the interval [x,y] can be divided into a finite

number of subintervals on which q is an isometry. The triangle

. inequality thus shows that Iy-xl and q is nonexpansive.

A simple argument that the authors have presented in [6]

shows that for any nonexpansive function q, the elements of M q
are not only closed, but convex with nonempty interior.

Observe for any x e Rm that if F e Mq meets B(x,e(x)), then

F contains x. To see this, note that there exists z e int(F) m 

B Since q is isometric both on F and on [x,z], it follows by the

i Lemma that q is isometric on conv(Fu[x,z]). The maximality of F

then implies x e F.

Observe also that if F e M q contains x e Rm, then F

meets S(x,e(x)) (the sphere centered at x with radius e(x)). For 

this were false, then there would be x e F e M q with

0. Since F is convex, this implies B(x,~(x)) ~ F. But

then for any y e int(F)B{ x}, the line segment [x,y] could be /

extended to meet at a point z. The restriction of q to this

line segment would be an isometry, so the Lemma implies that q is

also isometric on By the maximality of F, we would

thus have F::&#x3E; [x,z] and F would meet S(x,E(x)) at z.

To complete the proof of the Proposition, it remains to

show only that Mq is locally finite. We will suppose this to be false

and show that this leads to a contradiction. So fix xo e Rm such
, .

that meets infinitely many members F of M q . We
have already observed that all such F contain xo as well.

By an inductive argument, we will next establish the existence

of a set {xo, ...,x~} of points in Rm such that for k=0,...,m/ ‘ the set
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Ak := ...,xk } ) is a k-dimensional simplex that is contained

in infinitely many members of Mq. The existence of such a zero-

dimensional simplex } has already been noted. For each k,

we will denote as M k the collection of all sets in M q that contain

Ak. Clearly M() D...I3 

Suppose we have already established the existence of Ak =

...,x~}) for some k with 0 s k  m such that M k is infinite.

Fix y e relint Ak. By the Lemma, the members of Mq that contain

y are precisely the members of M k . Let Nk be the (m-k)-

dimensional affine space orthogonal to Ak and containing y.

Consider the sphere Sk := {w ~ Nk : We have already

observed that the collection of sets in Mq that meet y (i.e., is

the same as the collection of sets in Mq that meet S(y,E(Y». We

claim that more is true, namely : the collection M k is exactly the

same as the family, let’s call it S, of all sets in Mq that meet the

lower dimensional sphere Sk. Clearly, Mk::&#x3E; S (because 

Sk). Since S covers Sk, and since every member of S is a convex

set containing Ak, it follows that uS contains conv(Sk~0394k), a set

that contains y in its interior. Every member of M q that contains

y (every member of Mk) must therefore intersect the interior of

some member of S, and must therefore be a member of S. Thus

M k = S and, in particular, S is infinite.

By compactness, there is a finite collection ...,w~} } of

points on Sk such that Sk is covered by the union of the open balls

(I=I,...,N). Every member of S that meets one of these

balls must contain its center as well. Hence at least one of these

centers, say w 1, lies in infinitely many members of Mk = S. The set
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:= conv({w1} ~ ðk) is thus a (k+ 1 )-simplex such that the

corresponding family M k+ 1 is infinite. This completes the induction

step.

The m-simplex A~ is contained in an infinite number of

members of M q. But the elements of M q have disjoint interiors.

This contradiction completes the proof.

Any function q satisfying the equivalent conditions of the

Proposition will be called a piecewise isometry. For such q, let Kq
denote the collection of convex polyhedra consisting of all faces of
elements of Mq. We wish to verify that Kq is a polyhedral complex

subdividing Rm ; that is, we wish to show that

(i) the relative interiors of elements of Kq cover Rm , and

(ii) these relative interiors are pairwise disjoint.

Clearly (i) holds, since the polyhedra in M q cover Rm and any

polyhedral convex set is the union of the relative interiors of its

faces. It follows from the Lemma that every x E Rm lies in a

unique maximal relatively open convex set on which q is an

isometry. But the relative interiors of elements of Kq also have this

property of being maximal relatively open convex sets on which q

is an isometry. Thus (ii) holds.

3. Characterization of the complexes. We call a piecewise isometry

q : Rd -~ Rd of a Euclidean space into itself a folding, and the
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elements of Mq we call the folds of q. In this section, we

characterize the complexes Kq corresponding to foldings q.

Suppose F and G are elements of Mq such that Fn G is of

dimension d-1. We call such a pair of folds adjacent. Let a and p

be the linear isometries of Rd such that alF = qlF and 03B2|G = qlG.

Let H be the hyperplane which is the affine span of Fn G and let

’Y : i R d  Rd be reflection across H. Clearly f3 = a y. It follows that

if we know the complex Mq and we know qlF then we can

determine q on any fold adjacent to F; and, since the graph

consisting of folds with the above adjacency relation is connected, we

can reconstruct q from Mq and qlF.

Note that if F, G, a, P, and y are as above, then y reverses

orientation; if F and G are adjacent folds, then one of qlF and qlG

is orientation preserving and the other is orientation reversing. This

determines a partition of the folds into two classes A and B, so that if

F and G are adjacent folds then they are in different classes; i.e.,

the graph of folds is two-colored.

For polyhedra F and G, where F is a nonempty face of G

and G is full-dimensional, we denote by ~(F,G) the inner angle of G

at F as in [2, Section 14.1]. Intuitively, this is the fraction of Rd

filled by the cone generated by G at F. If u is an element of the

relative interior of F, Sd-1 is a sphere of sufficiently small radius

centered at u, and if = 1, then ~(F,G) == 
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THEOREM 1. Let q : Rd --~ Rd be a folding ( A,B ) } the two-coloring

i 
of Mq (as described above). Suppose F is a face of the complex

Kq which is of dimension less than d. Then

Proof: Let t : Rd be an isometry such that qlF = tlF. Then

t-lq is again a folding, has the same complex as q, and is the

identity on F. For this reason, we can replace q with i-lq if

necessary and assume for simplicity that qlF is the identity

mapping.

Fix u E relint(F) and let S be the (d-l)-sphere centered at u

and having radius e(u). Let qQ denote the restriction of q to S.

Clearly q.. maps S into itself. We will determine the topological

degree of the mapping qQ : S ~ S.

Consider the set

T = { y E S : if qo(x)=y then for some F E Mq, x E int(F) }

of regular values of q~. Recall ( cf. [4], pp.263-7) that we can

a compute the topological degree of q~ as follows, using any y ~ T.
s

Let ~1 ~ ’-’ ~ xk+r be the (necessarily finitely many) elements of

and let G~, ... , Gk+r be the folds that contain them, where

the indices are chosen so that q is orientation-preserving on ... ,

1 Gk and orientation-reversing on Gk+ 1 ~ "’ ~ Gk+r; ~~ ’ G 1= ’ 

fi
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and ~k+1’ ’ Then q~ is orientation-preserving on

G 1 r.S, ... , GknS and orientation-reversing on ..., 

The degree of q~ is the difference k-r.

This works, in particular, if y is not in the image of Io: if the

image q~(S) is a proper subset of S, then the degree is zero. By a

result of Freudenthal and Hurewicz [ 1 ], a nonexpansive mapping of a

compact metric space onto itself is an isometry. The mapping q~ :
S --~ S is nonexpansive but is not an isometry, so it follows that

q~(S) is a proper subset of S. Therefore the degree of q~ is zero.

For each fold G containing F, let C~ : S -~ R denote the

characteristic function of that is,

The function

is equal to the degree of q~ (zero) almost everywhere (that is, at

every y e T) with respect to a standard rotationally invariant

measure on S, nonnalized so that the measure of S is 1.

Integrating over S, and noting that the integral of CG is we

get
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as desired. + ..

The next theorem shows that the condition described in

Theorem 1 more than suffices to characterize the complexes of the

form K~. First, we present as a lemma a special case which will be

useful in the proof of Theorem 2.

LEMMA. Let the polyhedral complex K in R2 consist of the two-

dimensional closed convex cones Ci, C2,..., C2n together with their

faces. Suppose that this complex subdivides R2 (that js, C1 ~ C2 ~ ...

u C2n = R2), that the cones have their common vertex at the origin,

and that the condition of Theorem 1 is satisfied with F = {0}. Then

there is a folding q : t R2 -~ R2 such that Kq = K.

Proof: Let Co = C2n. We may suppose that the indexing yields a

counterclockwise ordering of the cones around the origin. For

let a i = 2~({0),C~). Then oc i is the radian measure of the

angle of the cone Ci. The condition of Theorem 1 can be written as
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Of course, the common value must be ~, since the sum of all of the

angles is 2x.

For i = 1, ... , 2n, let 11 i : R2 --~ R2 be reflection across the line

containing the ray Ci-i n Ci. The composition of the two

reflections 11 1 and is rotation through an angle of 2a i radians,

so ~1 n2 is rotation through an angle of 2a 1 + 2a 3 +

2a2n-1 = 2x radians -- that is e, the identity transformation.

We now define q : R2 --~ R2 as follows. For x E C 1 ’ let q(x)

= 111 (x). Note that q is the identity mapping on the ray If

q has already been defined on C 1 u ... v with 1  i  2n, then

for x e we define q(x) = "1112 ... 11 i(x). S ince

~1~2 ... ~i = ~1~2 ... ~i-1 on follows that q(x) =

Ci , so that qlCi is an isometry. We
continue in this way to define q on C 1 L~... u C2n-l- With 

we may do the same, defining q = 111112 ... 112n = e, noting that

there is no conflict with the definition of q , on C 1 since q = e on

the ray cOne 1 .
The function q we have defined has the property that qlCi i is

an isometry for all i. Criterion (b) of the Proposition thus implies
that q is a folding, and clearly Kq = ~. ~ ~ ~
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THEOREM 2. Suppose that K is a polyhedral cell complex

subdividing Rd whose d-cells admit a two-coloring {A,B), and

suppose that for each F of K the equality

holds. Then there is a folding q : Rd ~ Rd such that Kq = K.

Proof: We define a folding q as follows. First, choose an arbitrary
d-cell G~, and let qlGo be the identity transformation: q(x)=x for

all Then, for any other d-cell G of K, we find a path Go, G 1,
..., Gk = G such that consecutive cells are adjacent. We define q on

G to be 11 12 ... where for each i (1 - i~k), 1i is reflection

across the hyperplane spanned by Gi -1 (’) G i. To verify condition (b)

of the Proposition we need only show that q is well-defined in this

way.

For this, it suffices to show that if K0, K.., ..., Kj = K~ is any

cycle of d-cells of K, each consecutive pair adjacent, we have

= e (the identity transformation), where ~i is reflection

across the hyperplane spanned by If ..., Kj = Ko is a

cycle of d-cells containing a particular (d-2)-face F of K then j=2n

is even (since cells of A alternate with cells of B around the cycle)

and the condition of the theorem gives
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By considering the actions of the l1i’s on a two-dimensional plane

normal to F, we see from the lemma that in this case 111". l1j = e.

Completing the proof amounts to a familiar exercise in

homotopy theory. Indeed, what we must show is essentially that the

fundmental homotopy group of the complement of the (d-2)-skeleton

of K in Rd is generated by loops around the (d-2)-faces of K. This

involves an argument closely resembling the exposition in [3,

pp.235-241] applied to the dual complex of K. For clarity and

completeness, we present a complete argument.

By a path we mean a piecewise linear mapping ~ : [0,1]2014&#x3E;R~.
We wish to deal with such paths for which +(0) lie

interior to d-cells of x, as do the images of all but finitely many

points ti  t2  ...  tk of (0,1). For these, we require that lie in

the relative interior of some (d-l)-face Fi of K, and that. be

linear in a neighborhood of ti (so that the path cross Fi at ~(ti}}.

Let Rd --~ R d denote reflection about the hyperplane containing
Fi. With such a path, we associate the affine linear isometry ~ =

111 ...11 k. Note that slightly perturbing the path ~ does not change the

associated isometry.

To complete our proof, we show that if ,(0) _~ ( 1 ) then 11 = e.

Let S denote the unit square, S = ((x,y): 0 x  1, 0 y ~1) in R2 . For

each integer n, denote by Tn the triangulation of S having

triangles
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and

for integers i, j such that 0 ~ i, j ~ n-1 (so that there are 2n2

triangles in Tn altogether). Let T : [0,1] -~ S be a piecewise linear

parametrization of the boundary of S such that T(0) == = (0,0) E

R2, and ~c(x) ~ i (y) if x  y  1. For n large enough there is a

piecewise linear function ’0 mapping the boundary 3S of S into

Rd which is linear on each edge of Tn in as and such that ~(t) ==

for The function ’0 can be extended to a function

~: S ~ Rd which is linear on each triangle in Tn. By slightly

perturbing f and considering a sufficiently large multiple n’ of n,

so that Tn’ is a subdivision of Tn, we can arrange that:

(i) No vertex of Tn’ is mapped into a (d-l)-cell of K, the image

of no edge has non-empty intersection with a (d-2)-cell of K, and the

image of no triangle of T has nonempty intersection with a (d-3)-

cell of K ; and

(ii) For each triangle T of Tn’ , one of three possibilities holds:

(a) ~ (’I’) is contained in the interior of a d-cell of K ; (b) ~ (T) has

nonempty intersection with a (d-l)-cell F of K, and is contained in

the interior of the union of the two d-cells which contain F; and (c)

~(T) has non empty intersection with a (d-2)-cell of K and is

contained in the interior of the union of the d-cells which contain it.
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For any edge E of the triangulation and choice of direction of

the edge, the function ~ determines a path in Rd and to this path is

associated an isometry, as above. In this way, we can define a

function 11 which maps directed edges of Tn to isometries of Rd.

Clearly it remains to show that the of the

isometries corresponding to the edges around the boundary of S

(taken in their natural order) is e. It is not hard to see that this will

hold if merely the product of the isometries corresponding to

directed edges around each triangle of Tn is e. So, let T be a

triangle of Tn’. One of the three possibilities (a)-(c) above holds. Let

E 1, E2, and E3 be the edges of T, with counterclockwise direction.

If (a) holds, then e, and the product

is e. If (b) holds then if F is the (d-l)-face that ~ (T) intersects and

y is reflection about the hyperplane containing F, two 

equal y and the third is e, so the product is e. If

(c) holds, and F is the (d-2)-face intersecting 03C6(T), then in

traversing E 1, E2, and E3 , one intersects each of the (d-l)-faces

containing F in their natural cyclic order around F. Then

is the product of the corresponding reflections, and

we have already observed that this product is e. + + +

We leave open the problem of similarly characterizing the

complexes Kq, where q : Rn is a piecewise isometry, and

mn.
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