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Abstract. We consider an impulsive control problem where state constraints
are imposed by minimizing the cost function only over admissible controls
such that the controlled diffusion exists from an open set Q only when
no impulse can get it back into ~ .

Then, the optimal cost function satisfies the Quasi-Variational
Inequality

where

The solution of (1) is not continuous on the boundary and we give a notion

of weak solution such that (1) has one and only one solution which is the

optimal cost.
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Resume. On considere un probleme de controle impulsionnel dans lequel
on impose une contrainte d’etat en minimisant la fonction cout seulement
sur les controles admissibles tels que la diffusion controlee ne sort de

1’ouvert de reference ~ , que si aucune impulsion ne peut la ramener

dans Q .

La fonction cout optimal satisfait alors 1’inequation quasi-
variationnelle

ou :

La solution de (I) n’est pas continue au bord et nous etudions une notion

de solution faible telle que (1) ait une unique solution qui coincide

avec le cout optimal.

Mots clef : Controle implusionnel, contraintes d’etat, inequation quasi-

variationnelle.
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i AN IMPULSIVE CONTROL PROBLEM WITH STATE CONSTRAINT

We consider a Quasi-Variational Inequality (Q.V.I, in short)

occuring in an impulsive control problem with state constraint. This Q.V.I.
. may be written as

i where Q is some smooth bounded domain of TR N and

! Here k &#x3E; 0 and c is a nonnegative subadditive continuous function and

~ &#x3E; 0 means. that - (~1,...,~N) with ~. &#x3E; 0 while ~ &#x3E; 0 means that

&#x3E; 0 and 03BEio &#x3E; 0 for some I O . Finally, F o is the part of the

boundary def ined by

On the complementary of F , the boundary condition is of an implicit type.

These boundary conditions make the main difference between (1) and

the classical Q.V.I. introduced by A. Bensoussan and J.L. Lions in [1 I ]

(and studied extensively in [ 3 ] ) . They introduce a discontinuity of the

solution at the intersection points of F and This will be

the main difficulty we have to deal with, since most known results on

Q.V.I. use heavily the continuity of solutions.
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This paper is organized as follows. In the first section we give
a more general version of the equation (1). We define what we will call

a solution of (1) and we give the main existence and uniqueness result.

In the second section we prove this result. The section III is devoted

to prove a regularity result (in W12,oo) for some particular unbounded

domains. We give also a counterexample which shows that the solution of

(1) is only continuous (and not lipschitz continuous) at the boundary

points of 3~2 B r o .In section IV, we give the interpretation of the
solution in terms of stochastic impulsive control and we check that,

despite the discontinuity of u, it is the optimal cost function of the

minimization problem. Finally we extend some results of this paper to a

more general class of nonlinear equations : namely the Hamilton-Jacobi-

Bellman equations. This is achieved in section V.

Finally we would like to emphasize that the problems considered here

are closely related to those studied in [15 ].
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I. Main result.

1. Setting the problem.

We will consider a more general formulation of the equation (1) :

where A is an elliptic second-order differential operator

The regularity assumed in (7) may be relaxed considerably but we will not
bother to do so.

The Q.V.I. with a Dirichlet boundary condition on 3Q has been

studied by many authors [ 1,2,3,4,8,15 ]. One of the conclusions of these

works is that in general the implicit obstacle Mu is not smooth and

that we must look after a solution of (4) which is only continuous (and

which even does not belong to H 1 since Mu ~ A convenient

way of dealing with such solutions is to adapt Crandall-Lions definition

uf viscosity solution of f irst-order Hamilton-Jacobi equation (cf. [ 5 ]).

This has already been achived in [14,16 ] but here we must change slightl
this def inition because of the discontinuity of the solution on the

boundary. Inside Q our definition is the same as the one of [5 ]. We

give this definition in the next section. In the third one we state our

main result concerning (4).
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2. Viscosity solutions of (4).

In this section we introduce a notion of weak solutions of the

obstacle problem

where we assume

( 9) lower s emicont inuous (l.s.c.), upper semi-continuous

(u.s.c.) such that ~p - ~p - ~P a.e. on 3Q (for the N-l

dimensional Lebesgue measure).

We recall and adapt the notion of solution introduced in [14 ].

Definition. (i) A function ü E which is u.s.c. on 03A9 and which

satisfies is a viscosity subsolution of (8) if for any function

y E C (!~) , y &#x3E;~ on an and any x 
o 

such that

then

(ii) A function ~ E which is l.s.c. and which satisfies

- cp is a viscosity supersolution of (8) if for any function y E C2(Q&#x3E; ,
Y ~ on an and any xo such that

then

(iii) A fonction u E C(Q) is said to be a viscosity solution of

(8) if there exist u and u with
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and such that u is a viscosity subsolution of (8) and u is a viscosity

supersolution of (8) .

Remarks. 1) As usual it is easy to check that one obtains equivalent
~ 

2 oo

formulations if we replace y ~ C by y ~ c , global maximum (or minimum)

by global strict, local strict or local maximum (resp. minimum).

2) The reason why it is enough to consider these kinds of boundary
conditions which satisfy (9) is clear, the boundary condition in (4) is

discontinuous only at points of r ~ 3Q Br" and satisfies (10) if Mu

and (~ are continuous.

3) One easily checks that this definition implies that u ~ H- 
(see [16 ]). One could also define a solution of (8) by a variational

formula : u ~ H1loc(03A9) , u  03C8 , lim sup ess Q u(y) = 03C6(x) ,

lim inf ess u(y) = and for any v 6 H1loc(03A9) , v = u on a

y -)- x , y ~ ~

neighborhood of 3~ , we have

where a(’,’) is the bilinear form associated to A .

4) In the same way,our definition of viscosity solution can be

reduced to : u E C(Q) , lim sup u(y) = ~(x) , lim inf u(y) = 

and u is a viscosity solution of (8) in Q.

With this def inition we have the

Theorem 1 . Under assumptions (5)-(7) , (9), ( 10) , there exists a unique

viscosity solution of (8).

Proposition 1. Under assumption (5)-(7), let be sequences which

satisfy (9) and converge uniformly to Let llJ E &#x3E; ~pn
on 3Q converge unif ormly to ~ , , then the solution (u ,u) of (8)
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for the obstacle wand the boundary data (03C6n,03C6n) converges uniformly
to the viscosity solution (u,u) of (8).

The proof of these results is given in section II below.

3. Main results.

In order to guarantee the existence of a solution of (4) we define

the operator Mo (f irst introduced in [15 ])

Our main result is the following

Theorem 2. Under assumption (5)-(7), let 03C6o ~= C(F ) and 6 C(03A9)
then there exists a unique solution u of (4) in the sense that

Mu ~ C(03A9) and u is a viscosity solution of (8) with 1jJ = Mu where u

is the l.s.c. version of u i.e. u = u in Q , u(x)= lim inf u(y)
V x 

Remark. In particular the function 03C6 defined by 03C6 = 03C6 on rand
o o

p = Mu on ~03A9 B r 
o 

satisfies (9) since measN-1l(ar ) = 0 and ar 
o

is smooth.

We give also the proof of this result in the next section.

II. Proof of Theorems 1 and 2.

1. Proof of Theorem 1.

In order to prove Theorem 1 we remark that we can always find, under
assumption (9), two functions such that
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and, for each n, a new obstacle 03C8n such that

In particular 1Pn converges uniformly 

Then we def ine un E C(f2) t un E C6i) the unique solution (see

[2,11,14 ]) of the obstacle problems

It is clear enough that there exist functions u (which is u.s.c.)

and u (which is l.s.c.) such that

Moreover classical estimates (cf. [ 11,13,15 ]) show that u E C(~) ,

u E C(r2) , and thus by standard arguments we see that u (resp. u ) is

a subsolution (resp. supersolution) of (8). Thus the existence part of

Theorem 1 will be proved once we have proved the

Lemma l. The functions u and u defined above satisfy

The proof of this Lemma is given in section IV since it uses the

stochastic control interpretation which is developed in that section.
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Let us turn to the uniqueness of the solution. Thus, let v E C(Q) ,
v u.s.c., be a subsolution of (8) and assume that

Setting

we may assume that x~ 
~ Then xo and u (x )  ~n(xo) since

~ . Thus un E C2(V) E -&#x3E; where 0 V is some neighborhood of xo and ’ by

the definition we have

but Au~ &#x3E; 0 and thus for e small enough

and thus we have reached a contradiction which proves that 6=0 and so, ,

that ;  un . Passing to the limit we obtain that

In the same way, we could prove that any supersolution v of (8) satisfies

and the uniqueness follows, completing the proof of Theorem 1.

2. Proof of Proposition 1.

Let us first prove the uniform convergence in Proposition 1. It is

asserted by the

Lemma 2. With the notations of Proposition 1
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Again we leave the proof of this Lemma to section IV since it uses

stochastic tools. Let us conclude the proof of Proposition 1. With this

Lemma we get that

1 is u.s.c. and u is l.s.c. and satisfy

It is clear that the boundary condition for u and u is satisfied. Then
the viscosity characterisation follows from the classical arguments of [5,12 ].

3. Proof of Theorem 2.

We prove Theorem 2 with the same argument as in B. Hanouzet and

J.L. Joly [8 ]. Thus we define a decreasing sequence of functions as follows.
First we choose a constant C large enough Sup |03C6o| + sup c (03BE))
and we may solve the equation (which has a unique solution in the sense of
the above definition)

Indeed it may be viewed as a particular case of (8) with ~ large enough.
By induction we def ine the solution un of

Here we denote by un the l.s.c. version of un which existence is asserted
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by Theorem I. To apply it, and to prove that the sequence in (15) is well

defined, we need to check that Mun is continuous at each step (indeed

(9) clearly holds if Mu ~ C(~) ). To do so we use the argument of [ 15, 16 ].
Let x and set

o

Three cases may occur :

then locally we may write

and since ~n E C(O) this shows that Mu is u.s.c. at the point xo.

(ii) xo+03BEo E r then we have

and again this shows that Mun is u.s.c. at the point x

(iii) ’ ’ ~ r . We show that this is not possible. Indeed
this could give

(since co is assumed to be subadditive) and finally

which contradicts the fact that un Of course this only holds for
n &#x3E;0 . For n = 0 the claim is obvious.
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Thus we have proved that Mun is u.s.c. and since Mu is always

l. s. c. when u is l.s.c. (see [ 15 ]) we have proved that Mu E 

and thus, that the sequence ( 15) is well defined.

The next step in our proof is the following

Lemma 3. 3 11 o , 0  11 0 ; 1 , such that

Before proving this Lemma, let us conclude the proof of Theorem 2.

.It shows that

and thus, we can use the result of Proposition 1 to get that u -n ,u n converge

uniformly to u,u solution of (8) with

and the existence part of Theorem 2 is_proved.

The uniqueness is a variant of Lemma 3 and [8 ] and is left to the

reader.

Proof of Lemma 3.

The proof of Lemma 3 uses classical arguments and thus we only sketch

it. We prove by induction that if

We rewrite (16) as

then
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By monotonicity and concavity arguments which still hold (they may be checked
for discontinuous boundary data by regularizing them) we obtain

where v satisfies (in the viscosity sense)

For some , 0  y  1 we have
o 0

and (17) is proved. Lemma 3 follows directly from (17).

III. Regularity of the solution.

In this section we focuss our attention on the regularity of the solution.
In order to simplify the problem we will consider smooth open sets Q with

the property

This property occurs only for unbounded domain (it is achieved for example
if Q is a strip with a good orientation, see the counter-example below)
but one easily checks that the existence theory of sections I and II still
holds. Moreover, since the discontinuities of the solution of the Q.V.I.
only appears on the set ro it is easy to prove the following
variant of Theorem 2 :
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Theorem 2’. Let Q be a smooth open set satisfying ( 18) , let us assume

(5)-(7) and that ’3 X &#x3E; 0, c (x) &#x3E; X . Let w o E M  E BUC(Q) ,
then there exists a unique solution u E of (4), in the generalized

sense of Theorem 2, and Mu E BUC(Q) .

(Here BUC(Q) denotes the set of bounded uniformly continuous

functions on Q ).

Here, our goal is not to prove this result (which can be obtained

with the arguments of previous section). We will rather show that it can be

improved and actually that (with some more assumptions) u belongs to

W12’OO(Q) . This is achieved in the first section. In the second one, we give
a counter-example where u is not lipschitz up to a boundary.

1. Interior regularity.

Let us denote by D2’+(Q) the cone of semi-concave functions in Q i.e.

and for any set V

Proposition 2. Under the assumptions of Theorem 2’, let w E 

let = D ’ c ~= W ’ OR) , and let V be an open subset of

Q such that d(V , aQ B r ) 0 &#x3E; 0 (this assumption disappears if F = 0 ),
then u ~ W~’°°(~) .

This Proposition is nothing but a variant of the similar regularity
result of [17 ], let us only indicate the main steps of its proof. First,

using the assumption E D 2 * + (~) we can show that Mu ~E D ’ 2 + (~) .
Indeed, mimicking the argument of L.A. Cafarelli and A. Friedman [4 ],

let x and 0 be such that
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If r , o t one has, for h small enough, ’

if x+~ ~ ~ ’ then for a neighborhood 0 of x +~ in Q , one can show
that u E W ’~(()) and thus one has

. 2 + . 2 co
This proves that Mu ~ D ’ (~) . Then one easily deduce that u E W ’ (~)

at least when t/ n r = ø . When / n 0393 ~ ø the result is due to R. Jensen
o 0

[ 9 ] (see [ 17 ] too).

The end of this section is devoted to give a counter-example to the

Lipschitz regularity on 3Q B r .

100.
2. A counter-example to W ’ regularity at the boundary.

Here, we work in R2 , we make a rotation so 03BE  0 now means

03BE2  |03BE1| and we consider the particular open set 03A9 :

This set is a strip which satisfies (18) but which has been rotated. Thus,
to apply the above theory one must change the definition of the implicit
obstacle. We set (after a rotation)

Moreover we take the particular example of (4)
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with

From Theorem 2’ we deduce that ( 19) has a unique solut ion in and

Proposition 2 asserts that u E W ’ (/) for every V with d(U,rI) ~ 0 .

Our purpose is to prove that, even in this simple situation, this

regularity is optimal since x [0,1 ]). Therefore we build

a counter-example in which Mu is only semi-concave near fl (and not

and consequently u is not Lipschitz near fl . Let us recall that
in general, the solution of an elliptic equation with a W ’ boundary

data has a solution which is only holder continuous but not Lipschitz
continuous.

To do so, we need to def ine conveniently f will

be any smooth function which has the following properties.

Then we take

Let us choose k large enough such that the function

satisfies



i

I
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We conclude our counter-example by proving that at the point x = 0 (which

belongs to r 1 ) we have

where n is the outer normal at n on rl (i. e. n=(0,-1 ) ) . This implies
with (23) that

and we are done.

In fact (24) is equivalent to

where w is the solution of

But one easily computes 
2 
=0 ’ t

Thus M’~ o o x~=0 ~ is a smooth function except at the point x.==0 1 where it

is Lipschitz and where it admits left and right derivatives which are

respectively ~’(-1) and 0 .

It is easily checked on the exact formula giving w that (24*) holds

when satisfies these properties and this concludes the proof of the

Proposition 2. With the data described above, the viscosity solution of

(19) in BUC(Q) is not Lipschitz continuous up to the boundary 1~ .
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IV. The Stochastic Control Problem.

In this section we give an interpretation of the solution of (4)
in terms of impulsive control. We also use this interpretation to prove
the lemmas 1 and 2 of section II. The new features in this interpretation
are of course the discontinuities of the solution and the boundary
condition on r . For a classical treatment of control of diffusions
and impulsive control we refer to [2,3,10,14,16,18 ].

In order to simplify the notations we only consider here the case of
the impulsive control associated to equation (1).

1. Proof of Lemma 1.

Throughout this section we consider a probability space (X,F F p)
with a right-continuous increasing f iltration of complete sub- a fields,
and a Wiener process wt , in TR N , Ft -adapted. 

’

In order to prove Lemma 1 we introduce the stopping time problems
associated with the equations

t~here n ~p , ~Pn ~ ~ , ~a -~ +oo , ~n on 3Q ,

E C (~03A9) , 03C8n E C (03A9) , and 03C6,03C8 satisfy ( 10) , (9) .

Thus we introduce the trajectory

and
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For a stopping time 8 we set

It is well-known (see [ 2,11 1 ] ) that

Now for any x t the random variable y (T ) has a density on an.

Thus there exists a function ~ such that
z

By dominated convergence we obtain, as n goes to +~ , (with the notations

of Lemma 1)

and this proves Lemma 1.

2. Stopping time problem with discontinuous boundary data.

On the other hand we may pass to the limit in (27),(28). Since ~
and converge monotonically and remains bounded we have

where
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Moreover u is defined as

Finally we also obtain

thus

and, passing to the limit

indeed we may use Lemma 1 for x and this is clear enough for x E 3~ .

We may now prove Lemma 2.

3. Proof of Lemma 2.

We consider now two obstacles satisfying (9) and two boundary
conditions 5p,~ satisfying (10). With the above notations we have

therefore

i.e.
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and, in the same way, we obtain

This proves Lemma 2.

4. Interpretation of the Q.V.I.

Our purpose is now to give the stochastic interpretation of the
solution of ( 1 ) in terms of control of diffusion processes. Thus, we

consider the impulsive control given by two sequences

where 8n are stopping times and 03BEn are random variables F 
8 n 

-measurable.

We may solve, with the notations of the preceding sections, the S.D.E.

and by induction

Then, we set

We denote by

and we will say that (9 ,~ ) ~ ~ is an admissible system if

~ ~ , V t &#x3E; 0 .

For such a system we def ine the cost function
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and the optimal cost function

Theorem 3. Under assumptions of Theorem 1, the solution u of (1) is such

that its l.s.c. representant u is equal to v .

Proof, (i) uY . ..

Let us def ine a sequence 03C6n of functions which belongs to 

and such that 03C6n = 03C6o on ]T , Epn is increasing with n and converges

pointwise to a function larger that Mu on r . We consider the
equation

We may always assume that

and thus we know from [13 ] that (39) has a unique viscosity solution and
that un admits a stochastic representation which implies that

Since Jn and J take the same values for admissible systems satisfying
(36) we have
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On the other hand it is easy to prove analytically that un 1 ~ as n ~ +00

Indeed u is obtained, using the decreasing iterative process

and u k converges uniformly to u with
n n

i 

for some 0  ~to ~1 1 independent of Since it is clear that un converges

to u solution of ( 15) we obtain that un -~ u and thus (i) is proved.

(ii) v  u .

As in the proof of (i) we introduce functions ~ E C(3~) , but now
we impose that ~ is large enough on aS~ ~ F’o , cpn is decreasing to

afunction which is equal to p on Again we may assume that

and thus we may solve

and one eas i ly checks that un N u as n -+- 00. un admi t s the stochastic
n

representation

where
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V . Extension to Hamilton-Jacobi-Bellman equation.

When considering a more general control problem we are led to the

Hamilton-Jacobi-Bellman equation. In this section we extend some results

of the previous sections to the H.J.B. equation. This equation reads, for

example, in our case,

; Here A1 are elliptic second-order differential operators

satisfying (5)-(7) with the same constants 

The H.J.B. equation (the non-linear second-order part of (40)) with

a smooth boundary condition has been studied in [6,7,10,13,14 ], while the

Q.V.I. associated to H.J.B. equations has been studied in [ 15-18 ]. But

it seems difficult to extend this results to (40) as it has been done in

section I,II for m = 1 . Nevertheless, in the case of open sets satisfying

(18), the methods of the section III may be applied without any difficulty
and we have the

Theorem 4. Let S2 be a smooth open set satisfying ( 18) , let the operators

A1 satisfy (5)-(7) and let E BUC(F ), Mo03C6o E then there

exists a unique solution u E of (40) and Mu E Moreover,

if E C2,03B1(0393o) , Mo03C6o E D2’+(Q) , co E and V is an open

subset of 03A9 such that d (V , r ) &#x3E; 0 , then u E 

The interested reader is refered to the paper quoted above for this

extension. Let us only notice that, since we only use continuous solutions
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of (40), the def inition of solutions used in Theorem 4 may be the definition
of section I but is exactly the one of [5,14 ].

Let us conclude this section with the interpretation of (40) in terms

of optimal stochastic control. Here we have to consider a mixed control of

continuous and impulsive type. Thus, with the notations of section IV, we

consider two sequences

where 61 is an increasing sequence of stopping time and tn a random

variable Fe -adapted, and we consider a progressively measurable process
v(t) E {1,...,m} . Then, let o be the positive square root of We

may solve the S.D.E.

Then y (t) is the process def ined as

Following the section IV, we call admissible system the data of sequences

(03B8n)n  1 ; (03BEn)n  1 
and of a continuous control v(t) such that

yn+1x(03B8n+1) ~ 03A9 whenever yn(8 ) E n . Denoting T the first exit time
of yx from ~ , we set for an admissible system A such that

E Po :
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Again, we easily deduce from the above references and from the argument of

section IV that the optimal cost function is characterized by the

proposition 3. Under the assumptions of Theorem 4, the solution u of (40)

satisfies
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