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1. Introduction

We consider the problem

where M : is a continuous mapping in the space
of symmetric real (nxn)-matrices such that, for some p &#x3E; 0

and all (t,v) E [0,T] 

A E S ( Rn, F : [0,T] ] is continuous and bounded and

D F : [0,T] ] exists, is continuous and is bounded, and

h E 

The special case where M(t) = Id and A = 0 has been considered

in [11,16] and was motivated by the study of the forced pendulum equa-

tion [10]. Our motivations for (1) are the equation describing the

periodic motions of a satellite, with respect to its center of mass,

which take place in the plane of its orbit around the direction of the
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radius vector

((1+e cos + (1+e cos tla sin u = 4e sin t(1+e cos t) (2)

 1) (see e.g. [1]), the equations of linearly coupled pendulum

(see e.g. [7]), and the system of equations arising in the theory of

Josephson multipoint junctions (see e.g. [6])

where

and feu) = (a sin u1,...,an sin un).

The existence of the periodic solutions of (2) has been studied,

using various methods ( see e.g. the references in [8]) and the most

recent contributions are those of Petryshyn-Yu [14], Nawhin [8] and

Dang Dinh Hai [3]. The best conditions of existence are those of [8]

and [3] which’ require only lei  1 and are obtained respectively by

using the symmetry of the equation and Schauder fixed point theorem

and by minimizing the associated action. Moreover, [8] proves the

existence of a second periodic solution when lei  using upper
and lower solutions and degree techniques. The results of the present

paper will provide the existence of two solutions for (2) when

1. The system (31 was studied by Marlin [7] when h satisfies
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some symmetry conditions and by Drabek-Invernizzi [4] for more general

h, The same authors have also considered (4) and use topological

degree type techniques which allow the presence of friction terms in

(3) and (4) but provide existence conditions which are rather invol-

ved and require some smallness restrictions on h.

In this paper, we shall study the existence and multiplicity of

the solutions of (1] using various methods of critical point theory.
~ Of course, if the "linearized" problem

has only the trivial solution, then (1) has at least one solution as

shown immediately by a direct application of Schauder’s fixed point

theorem (and the gradient structure of the nonlinearity is not neces-

sary ) . The next case to consider in increasing order of complexity

seems to be the situation where ( 5 ) admits only constant non-trivial

solutions which will be necessary the elements of the null-space N(Al

of A. That was the case in the special case M(t) = Id and A = 0 of

[11] where the existence of at least two solutions was proved under a

periodicity condition on F

for all (t.u) E [0. T] and some T~ &#x3E; 0 (1  j  n). » ( the e are
the elements of the canonical basis in f I and a zero-mean value

condition on h

This is also the case in equation (2), which corresponds to A = 0

and to a forcing term having mean value zero, and this was assumed in

[4] for (3) and (4) with the further restriction that dim N(A) = 1.
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If /’{0} and N(A) = some 1 ~ m  n, we

shall study (1) under the generalized condition (6)

for all (t,u) E [O,T] and some T. &#x3E; 0 (1  j  m) and the general
J

ized condition (7)

The existence of at least one solution will be proved in Theorem

1 and the existence of more solutions will be obtained in Theorems 2,

3 and 4 under further conditions. In a further paper, we shall use more

sophisticated algebraic topological tools to avoid those further conditions

2. The assumptions and the Palais-Smale condition

Let M : : [0, T] ~ Fn) be a continuous mapping in the space

S ( JRn, Fn) of symmetric ( nxn ) -real matrices such that

for some n &#x3E; 0 and all (t,v) E [0,T] j. with (vlw) the usual inn-
er product of v and w inn and Ivl the corresponding norm. Let

A E S( n, n) and let us assume that the following condition holds

(H1) dim N(A) = m &#x3E; 1 and M and A are such that

if and only if u is constant and u E N(A).

An easy consequence of (H1) is that the non homogeneous corres-

ponding problem
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has a solution if and only if h satisfies the following condition

for each v E N(A).

Let H; = {u : [0/T] I u is absolutely continuous on

equipped with the inner product

and the corresponding norm

By (10L 6 ~u~ is equivalent to the classical norm

and is a Hilbert space. Now, the quadratic form q defined on H- 1
by

is such that
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where the linear self-adjoint operator K : defined via Riesz

representation theorem by

: is compact because of the compact embedding of into C([O,T]. 

?n the other hand, the critical points of q on H~ coincide with the
elements of NCI-K) and with the solutions of (11). so that

(if we identify constant functions with their value).

By classical spectral theory, we can decompose H; into the orthogonal
direct sum of invariant subspaces for I-K,

0 
_

where H = N(/B), H’ is finite dimensional (as K has only

finitely many eigenvalues X. with X. &#x3E; 1] and there exists 6 &#x3E; 0 such

that

and

_ _ If u 
o 

E H;. 0 we shall write correspondingly u = with

u E H , u E H , u E H .

The following result characterizes the A for which dim H = 0.

PROPOSITION 1. If M : : [ 0 , T ~ -+ S ~n) l is continuous and positive.
and if A E S(~n. then d im H- = 0 i f and only if A is semi=

negative de finite .

Proof.. If dim H- = 0 , then 0 for each u E H; and in

particular for each constant c; thus

for al l c E R" 
‘ 

and A is semi-negative definite.
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Sufficiency. If A is semi-negative definite, then

When n is constant, the Morse index of q, i.e. dim H , can be

easily obtained through the properties of !1 and A. t1 and A being

symmetric and M positive definite, they can be simultanously diago-

nalized by a unitary matrice. Thus, without loss of generality, we

can assume

. M = diag(mi ’ ... j, A = diag(ai» ...~ a )
with m. &#x3E; 0 ( 1 ~ i ~ n] and m of the ai are equal to zero. Therefore,

writing, for u E H1T, u . - , [1  j  n), we find

and hence

In particular, dim H is the number of positive eigenvalues of A if

~2 &#x3E; a./m, for all 1  j  n.
J J

Now let F : [O~T] ] x I? -~ IR be a continuous bounded function
such that D F : [0,T] ] x JRn ~ Rn exists and is continuous and bounded.

We shall assume that F satisfies the following condition.

(H3) There exist a. J E Rn and Tj &#x3E; 0 [1  j  m) such that

N(A) = span (03B11, ..., am) and

for all (t,u] E [O.T] ] 

Now, let h E L1 (0. T; satisfying (13). Then, the function r.

defined over H by
T .
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is of class C~, ~ with gradient given by

The compact imbedding of H into C([ 0, T], ]Rn) implies that

Finally, a classical result of the calculus of variations

( see e . g . [ 12]) implies that the solutions of (1) are given by the

critical points of the function f defined on H 1 by

We shall show that f satisfies a weak form of a Palais-Smale

condition.

PROPOSITION 2. Assume that M and A satisfy (H1)’ that DuF is bounded

and that h E L 1 (0 , T ; ~n ) . Then each sequence ( u k ) in H ~ T such that
(uk) is bounded and

contains a convergent subsequence.

Proof. Let (uk) I be such a sequence; then (Vf(uk)) is bounded and

hence there exists C1 &#x3E; 0 with ~~f(uk) ~  C1 for all k E 3N. °

Then, using (13) and (14), we have

where C2 depends only on the bound on and of I) h 11 
1
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Thus, there exists C~ &#x3E; 0 such that

and hence tuk) is bounded. Going i-f necessary to a subsequence, we can

assume that u k -- u in HT and uk - u in C([O,T], ~Rn ) .
Now

and the left-hand member as well as the two last terms of the right-

hand member tend to zero if k -+- 00. Consequently II uk-u II -+- 0 and the

proof is complete.

PROPOSITION 3. Assume that M and A satisfy (H1), that h satisfies (H2)
and that F satisfies (H3). Then each c ~ R for which a sequence 
exists with

as k -~ ~, is a critical value of f.

Proof . Let c and (uk) satisfy ( 1 S ) ; if we write

there will exist k. E 2Z and c . E [ 0,T . [ such that
J J J

Set uk - u _ + F so that uk - uk, uk - uk and
j=1 

J J

o m

ûk - 03A3 ê.a. is bounded. Now, as ûk-uk E we have
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On the other hand, by (H2) and 

and similary,

Thus

as by Proposition 2, going if necessary to a subsequence,

we have

Therefore,

i.e. c is a critical value for f.

3. The existence of critical points for f

The following geometrical properties of f will be useful.

PROPOSITION 4. I f M and A satisfy h Satisfie8 and F ~s

bounded, then f is bounded below on H° @ H+ .

Proof. If u = u°+u~ E H° 0 H+, then
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PROPOS IT ION 5. If M and A satisfy (H1)’ F is bo~ded and dim H- ~ 1 ,

then

Proof. If u E H , I then

and the result follows.

We can now prove our first existence theorem for (1).

THEOREM 1 .. Assume that M and A satis fies h satis fies
and h satisfies t H3 ) . ° has at one u 1

with critical value = f t u 1 ) l characterized as follows.
a) if A is semi-negative definite, c1 = inf f

b) if A is not semi-negative de finite, then

where R &#x3E; 0 is such that

Proof. If A is semi-negative definite, then, by Proposition 1,

dim H = 0, and hence f is bounded below on H by Proposition 4. Conse-

quently, the result follows from Ekeland’s variational principle [5] ]
and Proposition 3 with c = inf f. If A is not semi-negative definite,

_ 

H
then dim H &#x3E; 1 and the result follows from the version of Rabinowitz

saddle point theorem t 15] ] given in [9] ] (see also [12~ ] ] and Proposi-

tion 3 with c given by (16).
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When dim H’ = 0, we can extend to the above situation the

result of Mawhin-Wil lem [ 11 ] about the existence of a second

geometrically distinct solution u2 t i . e . a solution distinct from

m

the "equivalent" solutions u1 + ~ k.T.a... k. E 2Z 1 by adapting the~ J

argument of [ 11 ] based on the mountain pass lemma. The details are

left to the reader.

THEOREM 2. Assume that M and A satisfy ( H 1 ) , A is semi-negative defi-

nite, h satisfies and F satisfies ( H3 ) . Then ( 1 ) has a solution u2
such that

The result however can be improved using Lusternik-Schnirelmann

category [13] . . Since feu + T = f C u) [u E 1  j  m) , it is
J J

natural to define f on the Riemannian manifold

where T is the m-dimensional torus, by the relation
m

- ..L - ..L

with c.a.. Of course, distinct critical points of f on T
i=1 ~ ~

will correspond to geometrically distinct solutions of [1).

THEOREM 3. Under the assumptions of Theorem 2, C 13 has at least m+1

geometrically distinct solutions.

Proof. Proposition 2 implies that f satisfies the usual Palais-Smale

condition on T and Proposition 4 implies that f is bounded below on T.

Then, by a classical result [13], f has at least cat T critical points,

where cat T denotes the Lusternik-Schnirelmann category of T (see

e.g. [13] for the definitions]. Now, the following equalities are

easily verified
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and the result follows from the classical result

A better estimate can be obtained, using Morse theory, under the

assumptions that all the critical points are non-degenerate. The result

is modelled on the one given in [12] ] (in the case where MCt) = I and

A = 0) to which we refer, together with [ 2] , j, for the terminology and

tools of norse theory.

THEOREM 4. Under the assumptions of Theorem 2, if 02F exists and is
continuous on and if the set S of solutions o f C 1 ) is finite,

{u1’ u2 , ..., then there Q(t)

with nonnegative integer coefficients such that

where denotes the kth critical group of u.. Moreover, i f all
the solutions of ( 13 are non-degenerate, (1) has at least 2m solutions.

Proof. By a classical result of algebraic topology the Poincaré poly-

nomial of T

(where H K (T) denotes the kth singular homology group of T) is given by

On the other hand, Proposition 2 shows that f satisfies the Palais-Smale

condition on T. Therefore, by Morse theory [2. 12] . , there will exist

a polynomial with integer nonnegative coefficients such that the

Morse polynomial

satisfies the relation M(t,T,~1 - which proves the

- first part of the theorem.
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The second part is trivial if f has infinitely many critical points
so that we can assume that it has only a finite number, namely

u ... , u . Now if all the u. are nondegenerate, we have

where M. is the Morse index of 02f(u.J. But then
1 i

and the proof is complete.

Remark. Theorems 3 and 4 still hold without the assumption that A is

semi-negative definite, but the corresponding proofs require more deli-

cate algebraic topological arguments and will be given in a subsequent

paper.

4. The satellite-type equation

If m : [0, T] ~ ]R is a continuous and positive function. I

h E and F : [ O.TJ ] x JR ~ ]R is continuous, D [ O.T ] x 7R - -+- ~

exists and is continuous, and if

for all (t,u) E [0,T] ] x 1R and some T &#x3E; 0, let us consider the

T-periodic problem for the satellite-type system
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Condition (18) implies that F and DuF are bounded on [ 0,T ]  R and

hence condition (H ) is satisfied for M = m and A = 0. Condition (H2) I
becomes

: for all u E H1T, and hence dim H = 0. We deduce then from Theorem 1

; and 2 the following

COROLLARY 1. I f . F satisfies i18), then the problem ( 19 ) has at least

solutions not differing from a multiple of T1 for every h E 

satisfying ( 20 ) .

This will be the case in particular for equation (2)~ with T = 2Jr,

under the only condition that lei  1. This improves the result of [8] ]
which requires in addition that

where e = 0,2982... is the positive root of the equation

Let us notice that, in the special case of equation (2), the existence

of a second solution follows easily from the existence of an odd 

periodic solution given in [8] ] and the symmetry of the equation, by

the following argument of C. Fabry (personal communication). Equation

(2) has the form

where c (tJ = 1 + e cos t is such that c (t) = c 
e e -e

Let v be the odd 2~-periodic solution of 121 -a ) (so that

whose existence is proved in [ 8 ], and let

so that u3 is 2~-periodic and does not differ by from tne
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solution u~ of (21, a) as 0 and Tr. Now, for each

t E B .

and u3 is a 2~-periodic solution 
of (21).

Of course, Corollary 1 will conclude to the existence of at leasi

two distinct T-periodic solutions for the equation

c(tJu"(tJ + 2c’(t)u’(t) + g(u(tn = 2c’(t)

for every T-periodic and positive C 1 function c and every continuous

T1-periodic g with mean value zero.

5. The linearly coupled pendulums equation

We consider now the forced linearly coupled pendulums equation,

which can be written ( see [ 7 ] ]

* ~ * ~

where ml &#x3E; 0 and e. i E Li(O,T) (i - 1, 2). Hence

M(t) = diag (m1, m2) , A - -’1 1 
, F(t, u) - -a1 cos u1 - a2 cos u2.

Thus,

and (Av v) = (v1-v2)2  0, so that we always have dim H-  1.

Condition (H1) will be satisfied if and only if, with 03C9 = 203C0/T,

for all k E {0}. i . e . if and only if
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for all k E ]BJ B Condition (H2) is here

and condition (H3) holds with a1 - (1, 1 ) and T1 = We have there-

fore the following

COROLLARY 2. If condition (23) holds, the problem (22) has at least

one solution for’each e E ~2 ) such that (24) is satisfied.

If e1 and e2 are odd T-periodic functions such that eiCO) =
= e.(T/2) = 0 and if condition (23) holds, it is easy to show, by

Schauder’s fixed point theorem, that (22) has at least one odd

T-periodic solution û(t) for each a ] E ~2, which vanishes

at kT/2, k ~ 2Z . Denote by vCt) the corresponding solution of

and set

Then

and similarly for the second equation. Thus u is a second T-periodic

solution of (22) which do not differ by a multiple of 

Corollary 2 improves substantially the result of Drabek-Invernizzi

[4] who require, besides (24) that other conditions like restrictions

on and II e II 
00 

are satisfied. Notice however that their result is

also valid in the presence of friction terms, and that [4] ] deals also

with some situations where (24) does not hold.
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6. The Josephson multipoint system

As another application, let us consider the problem

where D is the symmetric ( n x n] matrix

e E ~n),  g(u) = (a. sin u~,  ..., an sin un), which occurs in
the theory of multipoint Josephson functions or in the space discreti-

zation of some boundary value problems for the sine-Gordon equation

(see e.g. [6]). Equation (25) is a special case of (1 ) with M = I,

A = n 2 D. FCt.u) = - E a. cos u. and as

i=1 J J

see that dim = 1 and = : v1 
= 

v2 
= ... = VnI =

= span Q1 with .Q1 
= (1~ 1~ ...~ 1). is positive 

and condition ] will be satisfied if and only if

for all k E Condition CH2) is equivalent to

and condition (H3) is verified with T1 = 27r.

We have therefore the following result for (25).
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COROLLARY 3 . If condition t 26 ) holds, then ( 25 ) has at least one

for each e E L1(0,T; Rn) verifying 1271.

Corollary 3 significantly generalizes, in the variational situa-

tion, the results of Drabek-Invernizzi [4] . .
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