
BUNDLE-BASED DECOMPOSITION:
CONDITIONS FOR CONVERGENCE

S. M. ROBINSON
University OJ Wisconsin-Madison

1513 University Avenue, Madison, WI 53706

Abstract

Bundle-based decomposition is a recently proposed method for decentralized convex
optimization. Computational tests indicate that it is very fast. In this paper we exhibit
conditions for convergence of the method. In the process we study conditions for linearly-
constrained approximate minimization of a convex function.

1. Introduction.

Bundle-based decomposition (BBD) is a recently proposed method for solving the convex
optimization problem 

-

where the fi are. closed proper convex functions on a E R"B and each Ai is a

linear transformation from to R"B The problem ( 1.1 ) represents a decentralized
optimization with certain overall constraints connecting the individual problems. The

method in question was described in [11], and extensive computational tests are reported
in [9]. These tests showed the method to be very fast compared both to MINOS 5.0 [10]
and to the Ho-Loute "advanced implementation" of Dantzig-Wolfe decomposition [3,4].

After the user prescribes certain parameters the BBD method produces, in a finite
number of steps, approximate primal and dual solutions of ( 1.1 ). In this paper we identify
conditions on the problem (1.1) under which the method converges: that is, under which
the parameters can, in principle, be set so that the computed solutions lie within any
preassigned tolerance of an actual pair of primal and dual solutions of ( 1.1 ) . Thus, the
analysis here contributes a priori convergence conditions, whereas in [9, Th. 3.7] Medhi
develops a posteriori error information.

The rest of the paper consists of three sections. In §2 we analyze the BBD method to
establish properties of the approximate solutions it produces. We show that they satisfy
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certain "e-first-order" optimality conditions given by Strodiot, Nguyen, and Heukemes [14],
and we characterize points satisfying those conditions in terms of approximate optimization
of a certain perturbed dual pair of convex programming problems.

In §3 we introduce a simple characterization of local boundedness for multifunctions,
and use it to show that the inverse of the multifunction associated with the e-first-order
conditions is Hausdorff upper semicontinuous at interior points of its image. Further, we
obtain an expression for the interior of that image and we show that it is independent of
the tolerance ~.

In §4 we translate the interiority information obtained in §3 into a pair of simple
conditions on the optimization problem (1.1); these amount to a Slater condition plus a
compactness assumption on the level sets of the essential objective function. Then we show
that under these two conditions the BBD method converges in the sense described above.

2. The BBD method and the e-first-order conditions.

The BBD method solves ( 1.1 ) by dualizing with respect to the equality constraint to
produce a concave dual objective function

Under the technical assumptions that

and that there exists Pô with

we have

where is the set of points solving the decentralized subproblem

The BBD procedure uses the bundle method [7] to find an approximate minimizer of g,
using (2.3) and (2.4) to compute subgradients of g. Since the way in which the method uses
this information is important to our analysis, we describe it in enough detail to develop
the facts we shall need later.

The user of the method prescribes two small tolerances, E and b. At the termination
of the bundle algorithm one has dual elements pi , ... , pk and associated primal elements



437

t 2014 1,..., n ; j = 1, ... , k ~ having the following properties:
(1) Xji minimizes f=(-) - (Aipj,.) for each i and j : that is,

(2) With d~ = a - E: 1 we have from (2.3)

(3) There exist Ai,...~ all non-negative, with E~=i~ = 1 and such that with
~ = we have

and

where

one has 0 by (2.6).
The method takes p* = pk to be the approximate dual solution for ( 1.1 ). To construct

an approximate primal solution (31 , ... , 3n ) it sets

note that

so that (2.7) implies

Therefore if ð is small then ( i 1, ... , is nearly feasible for ( 1.1 ) .
The objective of this paper can now be precisely stated as follows: exhibit conditions

on the problem ( 1.1 ) under which for each positive Ty there exists a positive ~ so that
whenever max { ~, E}  ’Y there are points (~... xn ) solving ( 1.1 ) and p* maximizing the
dual objective 9, such that
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where (31 , ... , 3n) and p* are the points produced by the algorithm as described above.
We shall obtain these conditions in §4; they turn out to be strengthened versions of the
technical assumptions (2.1 ) and (2.2).

In the remainder of this section we rewrite the information in (2.5) through (2.10) in
a more manageable form. To do so we let 2: = (~i,... Xn) E RN, where N = 1 ni,
and we define

n

so that A : R~ 2014~ Rm and Ax = ~~ We use a similar convention for x and x, as

well as for 

Proposition 2.1. The approximate solutions ~ and p* produced by the BBD method
satisfy 

_ _ . , . _

that is,

and

Proof: We have = xi so we can rewrite (2.5) as

and so x3 E for each j. Hence for each z* and each j,

The quantity in brackets can be rewritten as

Comparing this with (2.9) and using p* = p~ and dJ = a - we see that this is just ~j,
so we have

Now multiplying this inequality by Aj and summing over j, we obtain

that is, i E which is equivalent to (2.12). The proof of (2.13) consists of
multiplying the definition dj = a - Arj by Åj and summing over j. 1
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The form in which (2.11) is written emphasizes its closeness to the standard first-order
optimality conditions. In fact, (2.11) amounts to a slight perturbation of the "e-first-order"
optimality conditions of Strodiot, Nguyen, and Heukemes [14], specialized to the present
case: the perturbation consists in the replacement of a zero by -d in the left side of the
inclusion.

The analysis in [14] emphasized establishing necessary and sufficient conditions for E-
optimality in the presence of a constraint qualification. For the simpler problem with which
we are concerned here, the conditions (2.11 ) have a very clear and direct interpretation,
which we give in the following proposition. In it, we consider the pair of optimization
problems

and

where

Note that (2.14) and (2.15) are dual to each other under the duality structure generated
by

which is a slight perturbation (by d) of that used to generate the dual ob jective g of the
BBD method. The function 9d is g - (., d~.
Proposition 2.2. The following are equivalent:

(i) x andp* satisfy (2.11).
(ii) Ax = a - d and ,f (~) - 9d(p*)  ~.

Proof: x and p* satisfy (2.11) if and only if Ax = a - d and A*p* E ~~f(x). The
second of these relations can be written as

so (ii) holds. Reversing the argument shows that (ii) implies (i). I
Now define a multifunction M with arguments (~,r*,~) by

that is, for each f M(6, ., .) is the multifunction inverse to that on the right side of (2.11).
. With this notation M(0, 0, 0) is the product of the primal and dual solution sets of ( 1.1 ),

where the duality structure is that used in the BBD method: namely, (2.16) with d = 0.
Therefore our aim of proving the BBD method convergent will be achieved if we can show
that when f, r*, and s are sufficiently close to zero, each point of M(e, r*, s) will lie within
a predetermined distance of some point of M(0, 0, 0). This amounts to proving that M is
Hausdorff upper semicontinuous at (0, 0, 0) relative to R+ x RN x Rm. In the next section
we exhibit conditions under which this will be true.
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3. Semicontinuity of solutions to the E- first-order conditions.
In §2 we observed that the critical issue in proving convergence of the BBD method was
to show that the operator M, expressing solutions of the perturbed ~-first-order conditions
in terms of the perturbations and the tolerance E, was Hausdorff upper semicontinuous at
(0, 0, 0). In this section we prove this by showing that M is locally bounded under certain
assumptions. We then conclude that M is actually Hausdorff upper semicontinuous as
desired. Then in §4 we analyze the required assumptions and relate them to properties of
the minimization problem ( 1.1 ), thereby developing conditions on ( 1.1 ) under which the
BBD method will converge.

To begin the analysis of local boundedness, we consider a multifunction G from Rk to
R~ . By definition, G is locally bounded at a point Xo E Rk if there is some neighborhood
N of xo such that G(N) (that is, the set U{ is bounded. The following
simple proposition characterizes local boundedness.

Proposition 3.1. Let G be a multifunction from Rk to Rl. Then G is locally bounded
at To E Rk if and only if for each y near To,

Proof (only if): Choose a neighborhood V of xo small enough so that G’(V) C ??B for
some 7y, where B is the unit ball. Let y E R~. Then for each x E V and each x* E G(x),
(x*, y - x)  Hence

and therefore (3.1) holds. Note that if G(V) = 0 the limit superior is -~ by definition.
(if): Assume that (3.1 ) holds for each y near Xo. If G is not locally bounded at :co

then there is a sequence { converging to xo, with x~ ~ G(a’n) such that ~~j) &#x3E; n for
n = 1, 2, .... There is no loss in assuming that converges to some point zo . Now
choose any y near xa. By (3.1) there is some 03B3 such that for each n, x*n,y - xn~  ;.

Dividing this inequality by and taking the limit,.we find that

However, = 1, so (3.2) cannot hold for every such y. Therefore G is locally bounded
at 

We consider briefly some classes of multifunctions that satisfy (3.1 ). First, consider
monotone operators: that is, multifunctions G : R~ 2014~ Rk having the property that for
each xl and 2:2 in dom G (= f ~ E Rk G’(x) 5~ 0 }) and each yi E and y2 E G(3-2),
one has
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For such an operator G, if ~o E int dom G then for any y near any fixed y* E G(y) , any
x near Xo and any x* E G(x), we have

therefore

and (3.1 ) holds. In this case the result of Proposition 3.1 is a special case of Rockafellar’s
theorem on the local boundedness of monotone operators [12], and of Kato’s earlier results
[5,6]. These results hold in much more general spaces and, as might be expected, their
proofs are much more substantial than that of Proposition 3.1.

Next, consider for some fixed E &#x3E; 0 the multifunction Ge defined by

Suppose that a-i and x2 belong to dom ~~f; let p*1 and pi be arbitrary, and let (r*i, si) E
for i = 1, 2. Then

and

so by addition we find that

where we have used the natural extension of the inner product to Since this
multifunction Ge satisfies an inequality similar to that satisfied by monotone operators,
we can use an argument similar to the one just made to show that G is locally bounded
at each point of int dom GE .

Observe that since the key inequalities used above for monotone operators and for the
operator G are symmetric in arguments and values, the local boundedness conclusions hold
also for the inverses of such operators, where the inverse of a multifunction F : R~ 2014~ R/
is the multifunction F-1 : RI --&#x3E; Rk defined by

Since the effective domain of F-1 is then the image of F (written im f, this is the set

~z~Rk F(x)), the local boundedness assertions for the inverses hold at interior points of
the images of the original multifunctions.
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Also, note that the graph of the operator GE defined by (3.3) can be written as

where we have identified with its 2:* E BE,f (~) ~. As when
e &#x3E; 7~ the same isotonicity holds for the graph of GE. In particular, for any sets U and V,
if E &#x3E; q then and G~ (V). Therefore if G7~ is locally bounded
somewhere, then the same bound applies to 

We can summarize these observations in the following corollary.

Corollary 3.2. Let E &#x3E; 0 and let Ge be defined by (3.3). belongs to the interior
of im GE, then there exist a neighborhood N of (rô , so ) and a bounded set V, such that for
each 7J E [0, f], 1 (N) c V.

We can see from the results already proved that we will need to identify points in the
interior of im GE. The following theorem characterizes such points: in fact, it characterizes
the closure and interior of im (aEg + H), where g is any closed proper convex function and
H is a single-valued, continuous monotone operator. In this sense it extends the fact that
im ~~g ~ im ~g, where we write D to indicate that the sets C and D have the same
closure and the same interior.

Theorem 3.3. Let g be a closed proper convex function on R~ and H a single-valued,
continuous monotone operator from Rk to itself such that 8g -f- H is maximal monotone.
Th en for each f &#x3E; 0,

im(~~g + im (8g + (im 8g) + H(domBg).

Proo f: Denote by Ho the restriction of H to dom 8g. Then Ho is monotone, dom 
dom Ho, and 8g + Ho = 8g + H, which is maximal monotone. By the theorem of Brézis
and Haraux [2, Th. 4] one has im (8g + im~g + im Ho . But im Ho = H(dom 8g), so
this proves the second "^-_’" claim.

For the first, note that the graph inclusion property implies im (~7+~) D im 
and therefore this inclusion holds also for the closures and the interiors of these sets. Write

S’E for im(~~g + H) and S for im (8g + H), and suppose that we could prove cl Se C cl S.
We know that int S = int cl S [1, p. 33], and therefore we would have

int int S = int cl S D int cl int 5’c,

implying that all of the sets in this chain of inclusions are the same. Therefore we will

have finished the proof if we can show that cl 5’~ C cl S.
Since im~~g C cl im 8g and dom ~~g C cl dom 8g , we have

where we have used the second "^-_’" relation, already proved. Now by taking the closure (
of the left side above, we obtain cl 6’c = cl S as required. I 

.
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It is worth remarking that we do not in general have equality, even when H = 0, as
the example g(x) = e-z shows. Here im 8g = (2014oo.O), but for E &#x3E; 0, im 8e g = (-00,0].

Now recall that at the end of §2 we pointed out that the convergence property we
wanted amounted to Hausdorff upper semicontinuity of a certain multifunction. For a

multifunction F from Rk to Rl, we say F is Hausdorff upper semicontinuous at R~
if for each ~ &#x3E; 0 there is some neighborhood N of xo such that F(N) C + 

where B is the unit ball. As might be expected, this property is closely related to local
boundedness. Specifically, we say that F is closed at zo if

where is the neighborhood system at a:o. This amounts to saying that if zo

and yn E F(xn) for each n, with yn ~ yo, then yo E F(xo ). Now it is easy to show that
if F is closed at xo and locally bounded there, then it is Hausdorff upper semicontinuous
at 2’o- This fact, together with what we have proved up to now, leads to the following
continuity result for solutions of the f-first-order conditions.

Theorem 3.4. Let M be defined by (2.I 7) and let e &#x3E; 0. Then M is Hausdorff upper
semicontinuous at (6,r*,.s)~ relative to R+ x RN x R m, whenever

and

Proof: We are going to show that the (r*, s) satisfying (3.4) and (3.5) are those
belonging to the interior of the image of the operator GE defined by (3.3). By Theorem 3.3
this is also the interior of im Gu for some a &#x3E; f. Then Corollary 3.2 shows that for some
neighborhood N of (r*, s) and all q E [0, a] , Gn 1 (N) is contained in some bounded set V.
It follows that the image under M of a neighborhood of (~,r*,s) in R+ x RN x R’n is

bounded; therefore M is locally bounded at (f, r*, s). If we consider sn) converging
to (e, r* , s) and let E with (xn, pn) converging to (xo,Põ), then for
each n we have

and

Now (3.6) can be rewritten as 
’

taking the limit and using the lower semicontinuity of f and f * we find that

that is, r* + E while we have s = Axo - a from (3.7). Hence E

M(e, r* , s) and therefore M is closed at (e, r* , s). But this shows that M is Hausdorff

upper semicontinuous at (~,r*,~), as claimed.
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Now it remains to show that (3.4) and (3.5) describe the pairs (r*, s) in int im GE.
Applying Theorem 3.3 with

we find that

where g(x,p*) = ,f (~). Now

and

Therefore

Now we always have

so these two sets have the same affine hull. Therefore

A similar argument using the relation ri A(C) = A(ri C) establishes that

Therefore,

as required. I

Theorem 3.4 gives a general criterion for Hausdorff upper semicontinuity of the solu-
tions to the e-first-order optimality conditions. In the next section we apply this criterion
to establish conditions for convergence of bundle-based decomposition.
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4. Application : Convergence of the BBD method.
In this section we apply Theorem 3.4 to prove convergence of the bundle-based decompo-
sition method discussed in §2. In the notation of that theorem, we want to prove that M
is Hausdorff upper semicontinuous at (0, 0, 0) relative to R+ x RN x Therefore we
need to verify (3.4) for r* = 0 and (3.5) for s = 0. The first of these conditions says that

where L* is the subspace im A* and I denotes the indicator function. This is equivalent
(for example, by [8, Lemma 6]) to

where rec f denotes the recession function of f. Since 7~ is positively homogeneous, it is
its own recession function; as it also equals IL, where L = ker A, we see that (3.4) with
r* = 0 is equivalent to the assertion that f has no directions of recession in ker A. From
[13, Th. 8.7] we find that this is equivalent to the following compact-level-set condition:

By [13, Th. 27.1(f)], we know that the set in (4.1) is compact for each real 03B3 as long as
for some real 03B3 it is nonempty and bounded, the boundedness sufficing for compactness
because f is assumed closed.

Condition (3.5) with s = 0 is directly interpretable as the following Slater-type con-
dition :

For any d near 0, the system Ar = a - d has a solution x E dom f. (4.2)
It is worth noting that (4.1) and (4.2) are strengthened forms of, respectively, the

conditions (2.2) and (2.1) used in the development of the BBD method; essentially, "ri"
has been replaced by "int." The following theorem shows that this strengthening enables
us to conclude a priori that the method converges.

Theorem 4.1. For i = 1, ... , n, let fi be closed proper convex functions from R"’ to

( -00, and Ai be linear transformations from to let a E Assume the

following:
(i) For each d near 0 in Rm, the system .

is solvable.

(ii) For some real ~y, the set
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is nonempty and bounded.
Then for each ~ &#x3E; 0 there exist b &#x3E; 0 and f &#x3E; 0 such that p*, and d

satisfy (2.5)-(2.10), then there exist x1,..., xn and p* such that (x1,...,xn) minimizes

1 ,f=(~i) on the set { (~1, ... , = ca ~, and p* maximizes the function

and such that

Proof: (i) and (ii) are equivalent to (4.2) and (4.1) respectively, and we have shown
these to be equivalent to (3.5) with s = 0 and (3.4) with r* = 0. Applying Theorem
3.4 with E = 0, r* = 0, and s = 0, we find that the multifunction M defined by (2.17)
is Hausdorff upper semicontinuous at (0, 0, 0) relative to R+ x RN x Rffi. This means

that if E and 6 are taken to be sufficiently small positive numbers, and if  $ as

required by (2.7), then each point of Af(~,0,2014~) will lie within any preassigned positive
distance from the set M(0, 0,0). But M(0,0,0) is the set of { (~1, ... , p-’" } having hte
optimality properties claimed in the statement of Theorem 4.1, and M(E, 0, -d) contains,
by Proposition 2.1, all { (d-i,... satisfying (2.5)-(2.10). I
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