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ABSTRACT. – In this article, we consider the mean field equation

�u+ ρ
(

eu∫
eu

− 1

A

)
= 0 in�,

where� is a flat torus andA is the area of�. This paper is concerned with the symmetry
induced by the phenomenon of concentration. By using the method of moving planes, we prove
that blowup solutions often possess certain symmetry. In this paper, we consider cases when
solutions blowup at one or two points. We also consider related problems for annulu domains
of R2.

RÉSUMÉ. – Nous considérons l’équation de champ moyen

�u+ ρ
(

eu∫
eu

− 1

A

)
= 0 dans�,

où� est un tore plat etA est l’aire de�. Cet article se rapporte à la symétrie induite par le
phénomène de concentration. En utilisant la méthode de déplacement de plans, nous démontrons
que les solutions avec singularités possèdent dans la plupart des cas des propriétés de symétrie.
Dans cet article, nous considérons des cas où les solutions explosent en un ou deux points. Nous
traitons également de problèmes reliés pour des domaines annulaires deR2 avec conditions de
Dirichlet an berd.
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1. Introduction

Let � be a flat torus with a rectangle{(x1, x2) | |x1| � a, |x2| � b} of R2 as its
fundamental domain. Forρ > 0, we consider the equation

�u+ ρ
(

eu∫
eu

− 1

A

)
= 0 in�, (1.1)

where� is the Laplace operator andA is the area of�. Eq. (1.1) is the Euler–Lagrange
equation of the following functional

Jρ(u)= 1

2

∫
�

|∇u|2 + ρ

A

∫
�

u− ρ log
∫
�

eu. (1.2)

Clearly Eq. (1.1) and the functionalJρ remain invariant under the adding a constant to
u. Therefore we always seek solutions of (1.1) which are normalized by

∫
�

udx = 0. (1.3)

Eq. (1.1) is generally known as a mean field equation because it is often derived
from various Onsager’s vortex theories. Meanwhile, there are many recent works to
relate (1.1) to some Chern–Simons–Higgs model. For more information concerning
these developments, we refer the interested readers to [4–7,11,12,14,16,20–22,24] and
references therein.

For ρ < 8π , the functionJρ is coercive by the Moser–Trudinger inequality, and
solutions of (1.1) can be obtained by minimization ofJρ . In fact, even the compactness
of solutions can be proved in this case. But, forρ � 8π , it is quite a different story.
Recently, there are several works to extend the existence of (1.1) forρ ∈ (8π,16π).
See [11,12,20,22]. In [14], Yan–Yan Li initiated a program to find solutions forρ � 8π
by using the topological degree theory. He proved an uniform bound for solutions to
Eq. (1.1) wheneverρ is contained in a compact set of(8mπ,8(m+ 1)π) wherem� 0
is an integer. Therefore, the Leray–Schauder degree for (1.1) remains the same whenρ

is in the interval(8mπ,8(m+ 1)π). In particular, if the degree is nonvanishing, then the
existence of solutions can be guranteed by the degree theory. However, the calculation of
the topological degree seems not so easy. One of major difficulties is to prove whether
ρi > 8mπ or ρi < 8mπ for a sequence of solutions of (1.1) with limi→+∞ ρi = 8mπ
when blowup would actually happen. In [16], the second author has settled the question
when� is the sphereS2, at least for the case of 8π and 16π. The major step in [16] is to
show the symmetry induced from the concentration phenomenon. In this paper, we want
to continue to study the symmetry of solutions due to the concentration phenomenon.
We hope that this would be helpful when we come to computing the topological degree.

In the following, we always suppose thatui is a solution of (1.1) withρ = ρi andui
blows up at some points of�. Recall that by a result of [14], ifρi → 8mπ andui blows
up somewhere, thenui has exactlym blowup points.
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THEOREM 1.1. – Letρi → 8π asi→ +∞ and the center(0,0)of� is the maximum
point of ui . Then ui is symmetric with respect to bothx and y axis for i large.
Furthermore, for anyy fixed ,ui(x, y) increases whenx increases from the negative
x up to0 and decreases whenx increases from0 to the right hand side of the boundary.
The same holds forx fixed.

THEOREM 1.2. – Letρi → 16π as i → +∞ and one of local maximum points ofui
be located at the center. Then fori large, the other maximum point ofui is located at the
corner of the fundamental cell of�. Furthermore,ui(x, y) is symmetric with respect to
bothx andy axis.

Naturally, we arise the question whetherρi is larger than 8π (or 16π ) for solutions
with one blowup point (or two blowup points). This question is important when we come
to compute the Leray–Schauder degree forρ ∈ (8π,16π). ForS2, this question has been
answered in [16]. For a compact Riemann surface� of positive genus, the problem
remains unsolved. Nevertheless, we have the answer for a similar problem considered in
an annulus ofR2. Let� be a smooth bounded domain ofR2. We consider the following
equation. {

�u+ ρeu∫
�

eu dx
= 0 in �,

u= 0 on ∂�.
(1.4)

Eq. (1.4) is derived from Onsager’s vortex model for turbulent Euler flows. See [5,6]
and [7] for details. For a non-simply-connected domain�, the existence of solutions
was proved in [12] for 8π < ρ < 16π. In fact, a minimax valueαρ was defined and was
proved to be a critical value. In [12], the authors raised the question whether solutions
uρ remains bounded or not asρ → 16π, which equivalently is to ask whether solutions
of (1.4) is uniformly bounded or not whenρ tends to 16π from below. In the following
theorem, we answer the question for an annulus domain. For the rest of the section,� is
always the annulus{x | a < |x|< b} for somea < b.

THEOREM 1.3. – Let ui be a solution of(1.4) with ρi → 8π as i → +∞. Assume
that ui has one blowup point, thenρi > 8π for large i and ui(x) is symmetric with
respect to the lineli , whereli is the line connecting the maximum point ofui and the
origin.

For solutions with two blowup points, we have

THEOREM 1.4. – Let ui be a solution of(1.4) with ρi → 16π such thatui blows up
at P andQ. Assume thatPi andQi are the two local maximum points nearP andQ
respectively. ThenPi,Qi and the origin form a straight lineli andui is symmetric with
respect toli . Moreover,ρi > 16π.

COROLLARY 1.5. –Let� be an annulus inR2. For anyε > 0, there exists a constant
C = C(ε) > 0 such that

|u(x)| � C for x ∈ �̄
holds for any solutionu of (1.4)with ρ ∈ (0,8π ] ∪ [8π + ε,16π].
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The paper is organized as follows. In Section 2, both Theorem 1.1 and Theorem 1.2 are
proved. Here we apply the well-known method of moving planes to prove our results.
For Eq. (1.4) with an annulus�, we use the method of rotating planes to prove the
axial symmetry of solutions. This is an important step for us to be able to use an
isoperimetric inequality of C. Bandle. Together with the isoperimetric inequality of C.
Bandle, Theorem 1.3 and Theorem 1.4 are established in Section 3 by this method.
For Theorem 1.4, additional results concerning the regular part of Green’s function are
required. See Lemma 3.3 and Lemma 3.4. We present their proofs here because the
authors can not find them in the literature. In the final section, we will construct solutions
with m blowup points in the annulus domain forρ greater then 8mπ .

2. The method of moving planes

In this section, we begin with a proof of Theorem 1.1. We use the method of moving
planes. For applications of this method, we refer the readers to [3,10,13,14] and [16].

Proof of Theorem 1.1. – After adding a constant, we may assumeui is a solution of

�ui + ρi
(

eui − 1

A

)
= 0 on�.

By translation, we may suppose that the position of the local maximumPi of ui is
located at(a/2,0). Forλ > 0, we let�λ = {x | λ < x1< λ+ a}, Tλ = {x | x1 = λ}, and
xλ = (2λ− x1, x2) is the reflection point ofx with respect toTλ. Set

wλ(x)= ui(x)− ui(xλ) for x ∈�λ. (2.1)

Thenwλ(x) satisfies

{
�wλ(x)+ bλ(x)wλ(x)= 0 in �λ,
wλ(x)= 0 on ∂�λ,

(2.2)

where

bλ(x)= ρi eui (x) − eui (x
λ)

ui(x)− ui(xλ) .
To start the method of moving planes, we need an estimate by Y.Y. Li [14]. Let

{P 1
0 , . . . , P

m
0 } be the blowup set ofui . For anyP l0, we setP li to be the local maximum

point ofui nearP l0, that is,

ui
(
P li
)= max

|x−P l0|�δ0
ui(x)

for some smallδ0> 0. Then the main theorem of [14] is stated as follows.

THEOREM 2.1. – There is a constantC > 0 such that

|ui(x)−Ui(x)| �C (2.3)
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holds for|x −Pi | � δ0 andi large, whereδ0> 0 is any fixed small number andUi(x) is
defined by

Ui(x)= log
eui (Pi)

(1+ ρi
8 eui(Pi)|x −Pi |2)2

for |x −Pi | � δ0. Furthermore, letūi = − ∫� ui(x)dx. Then

ui(x)− ūi → 8π
m∑
l=1

G(·,P l0)−
8πm

A

∫
�

G(·, y)dµ(y), (2.4)

in C2(�\{P 1
0 , . . . , P

m
0 }), whereG(·,P l0) is the Green function with a singularity atP l0.

From (2.3) and (2.4), we see that

∣∣ui(x)+ ui(P li )∣∣� C
holds when|x − P li | � δ0 for eachl, and

∣∣ui(P l′i )− ui(P li )∣∣� C (2.5)

for 1 � l′, l �m. Inequality (2.5) is important for the case of two blowup points in this
article.

Now we go back to the proof of Theorem 1.1. We claim

Step1.

w0(x) > 0 for x ∈�0. (2.6)

To prove (2.6), we note that by Theorem 2.1, eui(x) → 0 asi → +∞ for x ∈ �\�0.
Suppose (2.6) is false, that is, the set�= {x ∈�0 |w0(x) < 0} is a non-empty set. Then
by (2.2)

�w0(x)+ ρieui (x−)w0(x)� 0

for x ∈ � wherex− = (−x1, x2). Therefore the first eigenvalueλ1(�) of the linear
equation� + ρieui (x

−) on � is nonpositive. On the other hand, since eui (x
−) → 0

as i → +∞ and the first eigenvalue of� on �0 is π2/a2, the first eigenvalue of
�+ρieui (x−) tends toπ2/a2 asi→ +∞, which yields a contradiction. This proves (2.6).

Set

λ0 = sup
{
λ ∈ [0, a/2] |wλ̃(x)� 0 for x ∈�λ̃ and 0� λ̃� λ

}
.

Claim

Step2. λ0 = a/2 andwa/2(x)≡ 0 for x ∈�a/2.

Supposeλ0 < a/2. Then by the continuity,wλ0(x) � 0 for x ∈ �λ0. By the strong
maximum principle and the Hopf boundary Lemma, we have

wλ0(x) > 0 and
∂wλ0(x)

∂ν
< 0 for x ∈ ∂�λ0, (2.7)
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whereν is the outnormal. By the definition ofλ0, there are a sequence ofλj > λ0 such
that limj→+∞ λj = λ0 and

wλj (xj )= inf
�λj

wλj (x) < 0,

for somexj ∈ �λj . After passing to a subsequence,x0 = limj→+∞ xj . Then either
x0 ∈ �λ0 and wλ0(x0) = 0 or x0 ∈ ∂�λ0 and ∇wλ0(x0) = 0. Obviously, either case
yields a contradiction to (2.7). Henceλ0 = a/2, andwa/2(x) � 0 in �a/2. Of course,
we can apply the same procedure fromλ = a to λ = a/2 and obtainu(xλ) � u(x)

also for x ∈ �a/2. Thus, we haveu(xλ) = u(x) for λ = a/2. Clearly, the conclusion
of Theorem 1.1 follows immediately.✷

Now we come to the case of two blowup points. LetPi andQi are two local maximum
points ofui such that bothui(Pi) andui(Qi)→ +∞ asi → +∞. LetP = limi→+∞ Pi
andQ= limi→+∞Qi . If there exists an open half�′ of the fundamental domain of�
such that�′ contains bothP andQ, then we can apply the method above to yield a
contradiction. The reason is as follows. Without loss of generality, we may suppose that
P andQ are contained in�0. First, we assume thatPi andQi are not contained in the
same vertical line. By step 1 of the proof above, we still havew0(x) > 0 in�0. And as
before, we can move the vertical line until it contains one of the two local maximum
points, sayPi . SinceQi is not on the same vertical line, solutions can not be symmetric
with respect to this vertical line. Thus, we can continue our procedure by moving the
line to crossPi andui in the right-hand half is greater than the left-hand half. Clearly,
it yields a contradiction to the fact thatPi is a local maximum point. IfPi andQi are
contained on the same vertical line, then we can move horizontal lines and obtain the
same conclusion. Therefore, we conclude that ifP is at the center of the fundamental
domain, thenQ must be at the corner. In the following, we want to prove that for large
i, if Pi is at the center, thenQi must be at the corner.

Proof of Theorem 1.2. – Suppose thatPi andQi are contained in an open half of the
fundamental domain of�. Without loss of generality, one may assume thatPi andQi

are contained in(0, a)× (0, b) such that limi→+∞ Pi = (0,0) and limi→+∞Qi = (a, b).
By translation, we may assumePi = (ti,0),Qi = (ai, bi) with 0< ai < a,0< bi < b
and |Pi| = |Qi − (a, b)|. Note that under the assumption of the position ofQi , ui(x)
could not be symmetric with respect tox1 andx2. Let δ0 be a small positive number and
ui(Pi)= max|x−Pi |�δ0 ui(x) andui(Qi)= max|x−Qi |�δ0 ui(x). Then|ui(Pi)−ui(Qi)| �
c for some constantc independent ofi by (2.5). We want to prove

w0(x)= ui(x1, x2)− ui(−x1, x2) > 0 for 0< x1< a. (2.8)

Once (2.8) is established, we could follow step 2 of Theorem 1.1 to show that
wλ(x) � 0 for x ∈ �λ = {x | λ < x1 < λ + a} when 0< λ � 2ti . Thus, it yields a
contradiction to the fact thatui has a local maximum atPi . We prove (2.8) by two
cases.

Case1. eui (Pi)|ti |2 → +∞ asi→ +∞.



C.C. CHEN, C.-S. LIN / Ann. I. H. Poincaré – AN 18 (2001) 271–296 277

Note that by (2.5), we also have

eui (Qi)|Qi − (a, b)|2 → +∞ asi → +∞.

For anyx ∈�0, we have

eui (Pi)|Pi |2 � eui (Pi)|x− − Pi |2. (2.9)

Thus, by Theorem 2.1, we have forx ∈ Bδ0 ∩ {x | x1> 0},

ui(x
−)� c+ log

eui (Pi)(
1+ ρi

8 eui (Pi)|x− −Pi |2)2
� c1 + log

(
1

eui (Pi)|x− − Pi |4
)
,

and by (2.9),

eui (x
−) � ec1

(
e−ui (Pi)|x− −Pi |−4)= o(1)|x− − Pi |−2 � o(1)|x|−2. (2.10)

If |x| � δ0, then (2.10) holds obviously. Similar inequality holds nearQi also.
Suppose thatw0(x) < 0 for somex ∈�0. Without loss of generality, we may assume

that the maximum of−w0 occurs at some pointx0 ∈�0 with x0
1 � a/2. Leth(x)= (x1)

α

for 0<α < 1. Clearly,h(x) satisfies

�h(x)= α(α− 1)(x1)
−2h(x). (2.11)

Setw̄(x) = −w0(x)/h(x). Sincew0 is C1 on x1 = 0, we havew̄(x) = 0 on x1 = 0.
Then by a straightforward computation,w̄(x) satisfies{

�w̄(x)+ 2∇(logh) · ∇w̄+ (b0(x)+ α(α− 1)|x1|−2)w̄(x)� 0,
w̄(x)= 0 on∂�0,

(2.12)

where

b0(x)= ρi eui (x) − eui (x
−)

ui(x)− ui(x−)
and �0 = {x ∈�0 |w0(x) < 0}.

Let y be a maximum point ofw̄. Clearly, y1 � x0
1 � a/2, andb0(y) � ρieui (y

−) �
o(1)|y|−2 by (2.10). Leti be large enough so that o(1)+ α(α − 1) < 0. Then, applying
the maximum principle to (2.12) aty, it yields a contradiction. Hence (2.8) is proved in
case 1.

Case2. Assume eui (Pi)|Pi|2 � c for some constantc > 0.

To prove the positivity ofw0(x) in �0, we want to prove

lim
i→+∞

(
eui(Pi)|x|2)= +∞ and lim

i→+∞ eui(Qi)|x − (a, b)|2 = +∞ (2.13)

for all x wheneverw0(x) < 0. Once (2.13) is proved, we could useh(x) of (2.11) and
follow the argument of case 1 to showw0(x) > 0 for x ∈�0.
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Obviously, it suffices to prove (2.13) in a neighborhood ofPi andQi . First, suppose
limi→+∞ eui (Pi)|Pi |2 > 0. Then we also have limi→+∞ eui (Qi)|Qi − (a, b)|2 > 0. In the
following, we prove (2.13) forx nearPi . For the case whenx is nearQi , the proof is
similar. Let

vi(y)= ui(e− ui (Pi )

2 y
)− ui(Pi). (2.14)

Then by Theorem 2.1, after passing to a subsequence,vi(y) converges tov(y) ≡
−2 log(1+ ρ

8 |y − ξ0|2) uniformly in any compact set ofR2, where

0 �= ξ0 = lim
i→+∞ e

ui (Pi )

2 Pi ∈ R2
+.

It is easy to seew0(e−ui (Pi)/2y) = vi(y) − vi(y
−) wherey− = (−y1, y2). Thus, by the

explicit expression ofv,

lim
i→+∞w0

(
e− ui (Pi )

2 y
)= v(y)− v(y−) > 0

for any y ∈ R2 and y1 > 0. Now suppose there are someyi such thatyi is bounded
and w0(e−ui (Pi)/2yi) < 0. Without loss of generality, we may assume limi→+∞ yi =
y0 = (y0,1, y0,2). Sincew0(e−ui(Pi)/2y) converges to a positive function fory1 > 0,
we havey0,1 = 0. From it, yi can be chosen to be a local minimum point ofw0 for
{(y1, yi,2) | 0 � y1 � 1}. Hence ∂

∂y1
(v(y0)− v(y−

0 ))= 0 aty = y0. By a straightforward
computation, we have

∂

∂y1

(
v(y0)− v(y−

0 )
)= −ρξ0,1

1+ ρ

8 |y0 − ξ0|2 < 0,

a contradiction. Thus, we have|yi | → +∞ wheneverw0(e−ui(Pi)/2yi) � 0. Clearly,
(2.13) follows readily. By the similar method, we can prove (2.13) nearQi .

Now suppose limi→+∞ eui (Pi)|Pi|2 = 0. Let

Ni = max
�0

|w0(x)| = |w0(xi)|

for somexi ∈�0. We claim thatxi tends to either (0,0) or(a,±b) and for anyδ0> 0,

sup
�0(δ0)

|w0(x)| = o(1)Ni, (2.15)

where�0(δ0)= {x ∈�0 | |x −Pi | � δ0 and|x −Qi| � δ0}.
We prove (2.15) by contradiction. Assume that for a smallδ0 > 0, there are

subsequence ofui (still denoted byui) such that

sup
�0(δ0)

|w0(x)| � c0Ni (2.16)

holds for some constantc0. Set ŵi(x) = N−1
i w0(x). Then |ŵi(x)| � 1 for x ∈ �̄0.

Sinceb0(x)→ 0 uniformly in any compact set of̄� ∩ �̄0\{0, (a,±b)}, by the elliptic
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estimates, there are a subsequence ofŵi (still denoted byŵi) such thatŵi converges
to a harmonic functionŵ, whereŵ is smooth in�̄ ∩ �̄0 except for the points (0,0),
(a,±b). Since|ŵ(x)| � 1 in �̄0 andŵ(x)= 0 for x ∈ (∂�0\{(0,0), (a,±b)}) ∩ �̄, by
the reflection and the elliptic regularity for bounded harmonic functions, we conclude
that ŵ(x) is smooth forx ∈ �̄0 and then,ŵ(x) ≡ 0 for x ∈ �0. However, it obviously
contradicts to the assumption (2.16). Hence the claim (2.15) is proved.

Now suppose that the maximum ofw0 occures in a neighborhood ofPi . If the
maximum ofw0 occures nearQi , we can prove (2.13) by the same argument as follows.
Definevi as (2.14), and̃w0 by

w̃0(y)=w0
(
e− ui (Pi )

2 y
)

(2.17)

for |y| � eui(Pi)/2δ0 for some fixed numberδ0> 0. Thenw̃0 satisfies

�w̃0 + b̃(y)w̃0(y)= 0 for |y| � eui (Pi)/2δ0,

where

b̃(y)= evi(y) − evi (y
−)

vi(y)− vi(y−)
.

By Theorem 2.1,̃b(y) is bounded by

|b̃(y)| �A(1+ |y|2)−2
(2.18)

for |y| � eui (Pi)/2δ0 and for some constantA. Applying the Green representation formula,
we have

|w̃0(x)| � 1

2π

∫
Bi

log
|x− − y|
|x − y| |b̃0(y)||w̃0(y)| + o(1)Ni, (2.19)

whereBi = {y | y1 � 0 and |y| � eui (Pi)/2δ0},

G0(x, y)= 1

2π
log

|x− − y|
|x − y|

is the Green function for the half plane{y | y1 > 0}, and the term o(1)Ni comes from
the boundary value of̃w0 and (2.15). Letyi be the maximum point of̃w0. Then by
using (2.18), we estimate the integral of the right hand side of (2.19) by(1+ |yi |)−1Ni .
Thus, (2.19) implies

Ni � c(1+ |yi |)−1Ni,

which impliesyi is bounded. Let limi→+∞ yi = y0. Then by elliptic estimates, there are
a subsequence ofN−1

i w̃0 such thatN−1
i w̃0 converges tow �≡ 0 in C2

loc which satisfies

{
�w+ ρev(y)w= 0 for y1 � 0,
w(y)= 0 for y1 = 0.
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By (2.19), we have

|w̃0(y)| � c Ni(1+ |y|)−1 + o(1)Ni

for |y| � eui (Pi)/2δ0. Hence |w(y)| � c(1 + |y|)−1, and then by Lemma 2.2 below,
w(y) = c ∂v

∂y1
(y) for some constantc �= 0. Let ξi = eui (Pi)/2Pi . Sincew̃0(ξi) > 0 and

∂v
∂y1
< 0 fory1> 0, we havec < 0. Hence, on any compact set,w̃0(y) > 0 for i large. This

proves (2.13) nearPi .
To prove (2.13) nearQi , we note that

N−1
i

∂w̃0

∂y1
(ξi)=N−1

i

∂vi

∂y1
(ξ−
i )=N−1

i

∂2vi

∂y2
1
(ηi)(−2ξi,1), (2.20)

where ∂vi
∂y1
(ξi)= 0 is used and|ηi | � |ξi|. Since∂

2v

∂y2
1
(0) < 0, we have

lim
i→+∞N

−1
i · ξi,1 = lim

i→+∞N
−1
i e

ui (Pi )

2 |Pi|> 0. (2.21)

By (2.21), we have

lim
i→+∞N

−1
i e

ui (Qi )

2 |Qi − (a, b)|> 0

also. Thus, by using calculation similar to (2.20) nearQi , we have

lim
i→+∞N

−1
i |∇w∗

0(ξ
∗
i )| = lim

i→+∞N
−1
i e

ui (Qi )

2 |Qi − (a, b)|> 0,

where

w∗
0(y)=w0

(
(a, b)+ e− ui (Qi )

2 y
)

and ξ ∗
i = e

ui (Qi )

2
(
Qi − (a, b)).

Therefore,N−1
i w

∗
0(y) converges to a nonzero limit. SinceQi is a local maximum, the

limiting function is positive onR2+. Thus, for any compact set of̄R2+, N−1
i w

∗
0(y) is

positive on any compact set ofR2+ and fori large. This proves (2.13) nearQi .
By (2.13),w0(x) > 0 for x ∈ �0. Thus, by moving the linex1 = µ cross ti , we

provewµ(x) > 0 in �µ for 0 � µ � 2ti . Clearly, it yields a contradiction. Therefore,
the positions ofPi andQi are proved as claimed.

To prove the symmetry with respect tox, we considerPi = (0,0),Qi = (a, b) and set
w0(x) = ui(x1, x2)− ui(−x1, x2) for x ∈ �0. Supposew0(x) �≡ 0 for x ∈ �0. Then as
the proof in case 2, (2.15) holds for anyδ0> 0. Thus, the maximum of|w0(x)| can occur
only near eitherPi orQi (not like the situation in case 2,w0(x) may not simultaneously
be positive nearPi and nearQi ). Suppose the maximum of|w0(x)| occures nearPi .
Then by the Green formula (2.19),̃wi(y) = N−1

i w(e
−ui(Pi)/2y) converges tow(y) in

C2
loc(R

2+), wherew(y) satisfies

{
�w+ ρev(y)w = 0 in R2+ = {(y1, y2) | y1 � 0},
w(y1,0)= 0, y1 ∈ R,



C.C. CHEN, C.-S. LIN / Ann. I. H. Poincaré – AN 18 (2001) 271–296 281

and |w(y)| � c(1 + |y|)−1. By the reflection and Lemma 2.2,w(y) = c ∂v
∂y1

for some

constantc �= 0. But, since∇w̃i(0)= 2∇vi(0)= 0, we have 0= ∂w
∂y1
(0)= c ∂2v

∂y2
1
(0)= ρ c

2 ,

which impliesc = 0, a contradiction. Thus, the maximum|w0(x)| must occur nearQi .
But the same argument is applied to yield a contradiction when the maximum point is
nearQi . Therefore,w0(x) must vanish completely in�0. The symmetry ofui follows
readily. ✷

LEMMA 2.2. – Letϕ(x) be a solution of

�ϕ + ev(x)ϕ = 0 in R2, (2.22)

wherev(x)= −2 log(1+ |x|2/8). Suppose thatϕ(x) is bounded inR2. Then

ϕ(x)=
2∑
j=0

ajψj(x)

for some constantsaj ∈ R, whereψj(x) = (1 + |x|2/8)−1xj for j = 1,2 andψ0(x) =
(1+ |x|2/8)−1(1− |x|2/8).

Proof. –Setϕk(r)= 1
2π

∫ 2π
0 ϕ(x)coskθ dθ for k � 1. Thenϕk satisfies

{
�ϕk(r)− k2

r2ϕk(r)+ ev(r)ϕk(r)= 0,
ϕk(0)= 0.

(2.23)

Let ϕ̃1 = 1
2π

∫ 2π
0 ψ1(x)cosθ dθ . Thenϕ̃1 satisfies (2.23) fork = 1. By the uniquencess

of solutions of ODE,ϕ1(r)= cϕ̃1(r) for some constantc ∈ R.
Supposeϕk(r) �≡ 0 for somek � 2. Sinceϕ̃1(r) > 0, then, by the comparison with

ϕ̃1(r), ϕk(r) never vanishes forr > 0 and k� 2. By the assumption,ϕk(r) is bounded.
By an elementary argument and (2.22),rϕ′

k(r)→ 0 asr → +∞. Comparing withϕ̃1,
we have,

0 =
∞∫

0

(ϕ̃1�ϕk − ϕk�ϕ̃1)r dr = (
k2 − 1

) ∞∫
0

ϕk(r)ϕ̃1(r)

r
dr,

a contradiction sinceϕk(r)ϕ̃1(r) has only one sign. Then,ϕk(r) ≡ 0 for k � 2. The
conclusion of Lemma 2.2 follows.✷

3. Mean field equation on annulus domains

In this section, we consider a sequence of solutionsui of{
�ui + ρieui∫

�
eui dx

= 0 in �,

ui = 0 on ∂�,

where� = {x | a < |x| < b} for somea < b. Suppose thatui has one single blow up
point atP and max̄� ui = ui(Pi)→ +∞ as i → +∞. Without loss of generality, we
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may assumePi = (ri, π/2) in the polar coordinate. Following the proof of Theorem 1.1,
we can show that

w0(x)= ui(x)− ui(x−) > 0 (3.1)

for x2 > 0, wherex− = (x1,−x2). Instead of the method of moving planes which was
used in the second step of the proof of Theorem 1.1, we use the method of “rotating
planes”. For anyθ ∈ [0, π/2], let lθ denote the line{(t cosθ, t sinθ) | t ∈ R} and�θ be
one of the components of�\lθ such thatPi ∈�θ . Set

wθ = u(x)− u(xθ), (3.2)

wherexθ is the reflection point ofx with respect tolθ . Forθ = 0, we havew0(x) > 0 for
x ∈�0 by (3.1). Set

θ0 = sup
{
θ ∈ [0, π/2] |wθ̃(x) > 0 for x ∈�θ̃ and 0� θ̃ < θ

}
.

By the argument similar to step 2 of the proof of Theorem 1.1, we can proveθ0 = π/2
andwπ/2(x)≡ 0, that is,ui(x) is symmetric with respect tox1, and

wθ(x) > 0 for x ∈�θ and 0� θ < π
2
. (3.3)

By the Hopf lemma and (3.3), we have

∂wθ

∂νθ
(x) > 0 for x ∈ ∂�θ ∩ lθ , (3.4)

whereνθ(x) is the outnormal atx ∈ ∂�θ ∩ lθ . Obviously, by (3.4), we have

∂ui

∂θ
(x)= x1

∂ui

∂x2
(x)− x2

∂ui

∂x1
(x) > 0 for x1> 0. (3.5)

Note that∂ui/∂θ is odd inx1. Hence∂ui(x)/∂θ = 0 on x1 = 0, which implies we have

LEMMA 3.1. – Letφ = ∂ui/∂θ . Thenφ satisfies

{
�φ + ρievi φ = 0 in �+,
φ(x) > 0 in �+ andφ = 0 on∂�+,

(3.6)

where�+ = {(x1, x2) ∈� | x1 � 0} andvi = ui − log(
∫
� eui ).

To estimateρi , we need an isoperimetric inequality which was due to C. Bandle.
See [1].

LEMMA 3.2. – Supposeu is a solution of�u+ ρeu = 0 in ω, whereω is a simply
connected domain. Ifρ

∫
ω eu dx < 4π , then the first eigenvalue of� + ρeu for the

Dirichlet problem is positive.

Clearly, ρi � 8π by Lemma 3.1 and Lemma 3.2. However, we require a stronger
version of Lemma 3.2 to ensureρi > 8π . In order to see whether Lemma 3.2 holds or
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not whenρ
∫
ω eu dx = 4π , we have to go back to the proof of Lemma 3.2. Since the

proof is not very long, we present here for the completeness.

Proof of Theorem 1.3. – Let vi = ui + ci for some constantci such thatvi satisfies
�vi + evi = 0 in � and φ = ∂vi/∂θ . Then ρi = ∫

� evi dx → 8π as i → +∞. Set
�+ = {(x1, x2) | x1 > 0}. So, φ(x) >0 in �+, and φ(x) = 0 on ∂�+. Let v(x) =
v(|x|)= −2 log(1+ 1

8|x|2) be the solution of

{
�v+ ev = 0 in R2,∫
B1

ev dx = 4π.
(3.7)

Now assume
∫
�+ evi dx = 4π . Let�+

t = {x ∈�+ | φ(x) > t} for t > 0. SetB∗
t be the

open ball with center 0 such that∫
B∗
t

ev dx =
∫
�+
t

evi dx =A(t). (3.8)

Define the spherically decreasing rearrangementφ∗ of φ to be a non-negative function
in B1 such that

φ∗(x)= φ∗(|x|)= sup{t | x ∈ B∗
t }. (3.9)

Obviously,φ∗(x) > t0 if and only if x ∈ B∗
t0

(here we use the fact thatB∗
t is open). Thus,

φ∗(x) has the same distribution function (with respect to the measure ev dx) asφ (with
respect to the measure evi dx). So, the identity∫

B1

φ∗2ev dx =
∫
�+
φ2evi dx (3.10)

holds. To prove ∫
�+

|∇φ|2 dx �
∫
B1

|∇φ∗|2 dx. (3.11)

We need Bol’s inequality which states that for anyω⊂⊂�+,

1

2

(
8π −A(ω))A(ω)� l2(∂ω), (3.12)

provided thatA(�+)� 8π , where

A(ω)=
∫
ω

evi dx and l(∂ω)=
∫
∂ω

e
1
2vi dσ.

We note that the equality of (3.12) holds when the measure ev dx is used andω is a ball
with center 0.

Sinceφ satisfies an elliptic equation, it is easy to prove the Lebesgue measure of∂�t
is equal to zero for anyt > 0. Thus,A(t) is continuous and strictly decreasing itt . By
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the co-area formulas,

−A′(t)=
∫

{φ=t}

evi

|∇φ| ds a.e.t > 0, (3.13)

and

− d

dt

(∫
�+
t

|∇φ|2 dx
)

=
∫

{φ=t}
|∇φ|ds a.e.t > 0 (3.14)

hold. By the Schwarz inequality and Bol’s inequality, we have

− d

dt

( ∫
�+
t

|∇φ|2 dx
)

�
( ∫

{φ=t}
evi/2 dx

)2( ∫
{φ=t}

evi

|∇φ| dx
)−1

(3.15)

= l2(∂�+
t )
(−A′(t)

)−1

� 1

2

(
8π −A(t))A(t)(−A′(t)

)−1

= − d

dt

(∫
B∗
t

|∇φ∗|2 dx
)

for a.e. t > 0, where the equality of (3.12) is used for the metric ev|dx|2. Integrat-
ing (3.15), one has ∫

�+
|∇φ|2 dx �

∫
B1

|∇φ∗|2 dx (3.16)

as claimed by (3.11).
Together (3.10) and (3.11), we have

∫
B1

|∇φ∗|2 −
∫
B1

φ∗2ev dx �
∫
�+

|∇φ|2 −
∫
�+
φ2evi dx = 0. (3.17)

Since the first eigenvalue of� + ev for the Dirichlet problem is equal to zero, (3.17)
implies ∫

B1

|∇φ∗|2 −
∫
B1

φ∗2ev dx = 0,

that is, each inequality in (3.15) must be an equality. In particular,

evi =8i(φ)|∇φ|2 (3.18)

holds for some function8i . Clearly,8i is continuous atφ = t as long ast is not a critical
value ofφ. Sinceφ = 0 is not a critical value ofφ, one has|∇φ|(x)≡ constant whenever
|x| = b or |x| = a. Since∂φ/∂θ ≡ 0 for x ∈ ∂�, φr(b, θ) is a constant independent ofθ .
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However,
2π∫
0

φr(b, θ)dθ =
2π∫
0

(ur)θ (b, θ)dθ = 0,

which implies |∇φ(x)| ≡ 0 on ∂�. Clearly, it yields a contradiction to the Hopf
boundary lemma. ✷

LetG(x, y) denote the Green function of� with vanishing boundary volue. Set

ψ(x, y)=G(x, y)− 1

2π
log

1

|x − y| , and (3.19)

ϕ(x)=ψ(x, x) (3.20)

is the regular part of the Green function. Recall that�= {x | a < |x|< b}.
LEMMA 3.3. – Let� be the radially symmetric annulus{x | a < |x| < b} andϕ(x)

be the regular part of the Green function. Thenϕ(x) = ϕ(|x|) and ϕ(r) has a unique
critical point r0. Furthermore,r0 is the maximum point andϕ′′(r0) < 0.

Proof. –By the uniqueness of the Green function, it is easy to see thatϕ(x) is radially
symmetric. Since limx→∂� ϕ(x)= −∞, ϕ(r) has a critical pointr0 at least. We want to
proveϕ′′(r0) < 0 for any critical pointr0. Then Lemma 3.3 follows readily.

Let y0 = r0e2 = (0, r2). Sinceψ(x, y)=ψ(y, x), we have

∇xψ(y0, y0)= ∇yψ(y0, y0)= 0, (3.21)

where

∇xψ(x, y)=
(
∂ψ

∂x1
(x, y),

∂ψ

∂x2
(x, y)

)
is the first derivative ofψ with respect tox-variable. Also, we have

ψ(x, y0)=ψ(x−, y0), (3.22)

wherex− = (−x1, x2). Set

∂ψ

∂θ
(x, y0)= x1

∂ψ

∂x2
(x, y0)− x2

∂ψ

∂x1
(x, y0).

Note thatψ(x, y0)= 1
2π log|x−y0| for x ∈ ∂�. Together with (3.22),∂ψ

∂θ
(x, y0) satisfies

∂ψ

∂θ
(x, y0)� 0 for x ∈ ∂�+,

where�+ = {x ∈ � | x1 > 0}. By the maximum principle,∂ψ
∂θ
(x, y0) < 0 for x ∈ �+.

Thus,

ψ(|x|e2, y0)� ψ(x, y0)
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for x ∈�. By (3.21) and the maximum principle, we have

∂2ψ

∂x2
1
(y0, y0)� 0,

which implies

∂2ψ

∂x2
2
(y0, y0)� 0. (3.23)

On the other hand,∂ψ
∂y2
(x, y0) is a harmonic function which by a straightforward

computation, satisfies

∂ψ

∂y2
(x, y0)

{
> 0 if |x| = a or x = (bcosθ, bsinθ) with −π/2� θ < θ0,
< 0 if x = (bcosθ, bsinθ) with θ0< θ � π/2,

(3.24)

where sinθ0 = r0/b. Note that ∂ψ
∂y2
(x, y0) = ∂ψ

∂y2
(x−, y0). Hence the nodal line{x |

∂ψ

∂y2
(x, y0) = 0} must intersect with the positivex2-axis only atx = r0e2. Otherwise,

by the symmetry of∂ψ
∂y2
(x, y0) in x1, the nodal line would enclose a region in�, which

violates the maximum principle. Therefore, by (3.24) and (3.21),

∂ψ

∂y2
(r0e2, y0)= 0 and,

∂ψ

∂y2
(re2, y0) < 0 for r0< r � b.

By the Hopf lemma, one has

∂2ψ

∂x2∂y2
(y0, y0) < 0. (3.25)

Clearly, by (3.23) and (3.25), we have

ψ ′′(r0)= ∂2ψ

∂x2
2
(y0, y0)+ ∂2ψ

∂y2
2
(y0, y0)+ 2

∂2ψ

∂x2∂y2
(y0, y0) < 0. ✷

LEMMA 3.4. – LetG(x, y) be the Green function andy1 = r1e2 for somea < r1< b.
ThenG(re2, y1) increases inr for r ∈ [a, r1) and decreases inr for r ∈ (r1, b].

Proof. –Let

∂G

∂θ
(x, y1)= x1

∂G

∂x2
(x, y1)− x2

∂G

∂x1
(x, y1).

In a neighborhood ofy1, ∂G
∂θ
(x, y1) satisfies

∂G

∂θ
(x, y1)= x1r1

|x − y1|2 + smooth function. (3.26)
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Since ∂G
∂θ
(x, y0) = 0 for x ∈ �+\{y1} where�+ = {x ∈ � | x1 > 0}, by the maximum

principle and (3.26), we have

∂G

∂θ
(x, y1) > 0 for x ∈�1.

There,

G(x, y1) < G(|x|e2, y1) for x ∈�. (3.27)

Now supposeG(re2, y1) has a critical point in[a, r1). SinceG(ae2, y1) = 0 and
limr→r1G(re2, y1)= +∞, we may assumeG(re2, y1) has a local maximum atr = r0.
Together with (3.27), we haveG(x, y1) has a local maximum atx = r0e2, which violate
the strong maximum principle.✷

Now we are in the position to finish the proof of Theorem 1.4.

Proof of Theorem 1.4. – Suppose thatui blows up at the two pointsP andQ, andPi
andQi are local maximum points ofui nearP andQ respectively. As in Theorem 1.2,
we first claim thatPi ,Qi and the originO is on a straight line. Suppose the claim does
not hold. By composing with a rotation, we assume thatPi = (ti , si) andQi = (ti , s̃i) for
someti > 0, and|Pi −P | = |Qi −Q|. By following the argument of (2.8), we can show
that

w0(x)= ui(x)− ui(x−) > 0 for x ∈�+,

where�+ = {x | x1 > 0}. Then, as in the beginning of this section, we could use the
method of rotating planes to yield a contradiction. Hence we conclude thatPi , Qi and
O are on the same straight lineli . The symmetry ofui with respect toli can be proved
similarly.

For simplicity of notations, we may assume bothPi andQi are located on thex2-axis.
Without loss of generality, we may assume thatPi is on the positivex2-axis. We claim

Qi is on the negativex2-axis. (3.28)

We prove (3.28) by contradiction. SupposeQi is on the positivex2-axis. LetP =
(0, r2) andQ= (0, r1). By Theorem 2.1, ρie

ui∫
�

eui dx
converges to 8π(δ(P )+ δ(Q)), where

δ(P ) is the Dirac measure atP . Thus,ui(x) converges to 8π [G(x,P ) +G(x,Q)] in
C2

loc(�\{P,Q}). By the Pohozaev identity, we have for any unit vectore in R2,

0=
∫

|x−P |=r
〈e,∇ui〉∂ui

∂ν
− 〈e, ν〉

2
|∇ui|2 dσ.

By passing to the limit, we have

0=
∫

|x−P |=r
〈e,∇G〉∂G

∂ν
− 〈e, ν〉

2
|∇G|2 dσ, (3.29)

where
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G(x)= 8π [G(x,P )+G(x,Q)]
= 4 log

(
1

|x − P |
)

+ 8π [ψ(x,P )+G(x,Q)]
by (3.19). By a straightforward computation, (3.29) implies

〈
e,∇x(ψ(x,P )+G(x,Q))〉= 0 atx = P (3.30)

asr → 0. Sinceψ(x,P ) andG(x,Q) is an even function inx1, (3.30) is equivalent to

∂G(x,Q)

∂x2
+ ∂ψ(x,P )

∂x2
= 0 atx = P,

that is,

2
∂G(P,Q)

∂x2
+ ∂ϕ

∂x2
(P )= 0. (3.31)

Similarly, when the Pohozaev identity is applied atQ, we have

2
∂G

∂x2
(Q,P )+ ∂ϕ

∂x2
(Q)= 0. (3.32)

SetP = (0, r1) andQ= (0, r2). Suppose

a < r2< r1< b. (3.33)

Then, by Lemma 3.4, we have

∂G

∂x2
(Q,P ) > 0>

∂G

∂x2
(P,Q).

Thus, by (3.31) and (3.32), we have

d

dr
ϕ(Q) < 0<

d

dr
ϕ(P ). (3.34)

Let r0 be the maximum pointϕ(r). Then by Lemma 3.3, (3.34) implies

r1< r0< r2,

which yields a contradiction to (3.33). The other assumptiona < r1 < r2 < b yields a
similar contradiction by Lemma 3.3, Lemma 3.4 and (3.32). Hence the claim (3.28) is
proved.

Setφi(x) = ∂ui
∂θ
(x). Thenφi(x) satisfies�φi + evi φi = 0 in �+ andφi = 0 on∂�+,

wherevi = ui + ci for some suitable constantci and�+ = {(x1, x2) ∈� | x1> 0}. Note
thatφi cannot be one sign in�+ becauseui has two local maximum pointPi andQi

which are located in the opposite direction of thex2-axis. Furthermore, the nodal line
{x ∈ �+ | φi(x) = 0} must intersect with the boundary of∂�+ at two points at least.
This can be seen by the scaling in the following way.
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Set

φ̃i(y)= φi(e− ui (Pu)

2 y
)

as in (2.17). Then by multiplying a constant,φ̃i (y) converges toc ∂v
∂y1

in C2
loc(R

2), where

c �= 0 and ∂v
∂y1
(y)= −y1/(1+ 1

8|y|2). Note thatui has a local maximum atPi . Thus,φi
is positive in a neighborhood ofPi in �+. The same holds forQi also, that is,φi(x) is
negative in a neighborhood ofQi . This proves that the nodal line ofφi intersects at least
twice with ∂�+.

Since�+ is simply connected, the fact about the nodal line implies that�+ contains
two disjoint, simply-connected subdomain�+

1 and�+
2 whereφi(x) vanishes on the

boundary of�+
i , i = 1,2. By Lemma 3.2,

ρi

∫
�+
k

eui dx � 4π (3.35)

for k = 1,2. If there exists�+
k0

such that

ρi

∫
�+
k0

eui dx > 4π.

Then ρi > 16π as claim. If (3.35) turns out to be an equality for eachk, then by
using the spherical symmetrization as (3.9), we can prove that|∇φi |(x) ≡ constant for
|x| = b. Sinceφiθ ≡ 0 for |x| = b, we haveφir(b, θ) is a constant independent ofθ . By
integratingφir(b, θ) alongθ , we obtain a contradiction as the last step of the proof of
Theorem 1.3. This ends the proof of Theorem 1.4.✷

4. Existence of blowing-up solutions

In this section, we want to prove the existence of blowup solutions of the following
equation: {

�ui + λieui = 0 in �,
ui = 0 on ∂�,

(4.1)

whereλi → 0. In particular, we want to seek solutions such that

λi

∫
�

eui dx → 8mπ

asλi → 0 when� is a radially symmetric annulus. Writeλi = ρi(
∫
� eui dx)−1. Then

ui is a solution of (1.4) withρi such thatρi → 8mπ . Our main result in this section is
Theorem 4.2 below.

When � is a simply-connected domain under some nondegenerate condition,
solutions with one blowup point was constructed in [17,18] and [25]. In general, there
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seems no results about the existence of solutions with one point blowup. For Eq. (1.4)
with ρ ∈ (8π,16π), solutions were obtained by Ding et al. [12]. However, it is not clear
whether their solution would blowup or not asρ ↓ 8π . (By Theorem 1.4, their solutions
remains bounded asρ ↑ 16π.) On the other hand, since the nonlinear term eu > 0 at
u= 0, there always exists a minimal solutionsuλ → 0 asλ→ 0. It is easy by the well-
known Mountain Pass lemma to prove that for any fixed smallλ > 0, (4.1) possesses a
second solutionuλ at least, and the solutionuλ must blow up at some point asλ→ 0.
It is plausible to guess thatuλ has one single blowup point only. This result might be
known to experts. But, there seems no proofs in the literature as far as the authors know.
For the sake of the completeness, we present the proof here. When� is an annulus, we
also construct solutions withm blowup points which satisfies

λi

∫
�

eui(x) dx > 8mπ. (4.2)

In the following, we consider a more general nonlinear termf (t) which satisfies
f (0) > 0 and

lim
t→+∞f (t)e

−t = 1. (4.3)

DenoteF(t)= ∫ t
0 f (s)ds. Let vλ be the minimal solution of

{
�u+ λf (u)= 0 in �,
u= 0, on ∂�.

(4.4)

Set

Jλ(u)= 1

2

∫
�

|∇u|2 − λ
∫
�

{
F(vλ + u)−F(vλ)− f (vλ)u} (4.5)

for u ∈
o

H 1(�). ThenJλ ∈ C1(
o

H 1(�)) and satisfies the Palais–Smale condition. Suppose

that there iseλ ∈
o

H 1(�) such thatJλ(eλ)� 0. Let

cλ ≡ inf
γ

max
0�t�1

Jλ
(
γ (t)

)
(4.6)

whereγ is any path connecting 0 andeλ. The well-known Mountain Pass Lemma says
thatcλ is a critical value ofJλ. Letwλ be a critical point ofJλ with Jλ(wλ)= cλ. Then
uλ ≡ vλ+wλ is a solution of (4.1). It is easy to see that solutions obtained in this manner
must blow up asλ→ 0. We will prove that, by choosing a particulareλ, uλ blows up at
a single point asλ→ 0.

THEOREM 4.1. – Let uλ be the solution described above. Thenuλ blows up at a
single point asλ→ 0.
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Proof. –LetB be a ball contained in�, andUε
λ be the large-norm solution of



�u+ λe(1−ε)u = 0,
u(x) > 0 in B,
u(x)= 0 on ∂B,

(4.7)

whereε is a fixed small positive number. Then we have

λ

∫
B

e(1−ε)Uε
λ = 8π

1− ε
(
1+ o(1)

)
asλ ↓ 0, (4.8)

λ

∫
B

Uε
λe(1−ε)Uε

λ =
∫
B

|∇Uε
λ |2 = 16π

(1− ε)2
(
1+ o(1)

)
log

1

λ
, (4.9)

and ∫
B

Uε
λ dx � c (4.10)

wherec is a constant independent ofλ andε.

ExtendUε
λ to be zero outsideB, thenUε

λ ∈
o

H 1(�). We have

Jλ
(
(1+ ε)Uε

λ

)= (1+ ε)2
2

∫
ω

|∇Uε
λ |2 dx − λ

∫
�

[
F
(
(1+ ε)Uε

λ + vλ)

−F(vλ)− f (vλ)(1+ ε)Uε
λ

]
dx.

When the value ofUε
λ(x) is large, by (4.3),

F
(
(1+ ε)Uε

λ + vλ)� e(1−ε)[(1+ε)Uε
λ
+vλ] − c1(ε)

� c2ε
2(Uε

λ)
2e(1−ε)Uε

λ − c1(ε).

Whenε is fixed, we have∫
�

(
Uε
λ

)2
e(1−ε)Uελ

/∫
�

Uε
λe(1−ε)Uελ → +∞

asλ→ 0. By observing thatvλ is uniformly bounded inλ, it is easy to see that

Jλ
(
(1+ ε)Uε

λ

)→ −∞ asλ ↓ 0.

Let eλ = (1+ ε)Uε
λ , then for smallλ,

Jλ(eλ)� 0,

and let

cλ ≡ inf
γ

max
0�t�1

Jλ
(
γ (t)

)
,
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whereγ is any continuous path connecting 0 andeλ. By the Mountain Pass Lemma,
we know thatcλ is a critical value. Letwλ be one of the critical points ofJλ with
Jλ(wλ)= cλ. Thenuλ =wλ + vλ is a solution of (4.4).

To compute
∫
� |∇uλ|2, one have

λ

∫
�

uλf (uλ)dx =
∫
�

|∇uλ|2 = 2Jλ(wλ)+ 2λ
∫
�

F(uλ)− F(vλ)− f (vλ)wλ + O(1).

Fixedε > 0, one have

λ

∫
�

F(uλ) < ελ

∫
�

uλF(uλ) < cελ

∫
�

uλf (uλ)

for all smallλ. Hence

O(1)+
∫
�

|∇uλ|2 � 2

1− cεJλ(wλ)

� 2

1− cε max
0�t�1+ε

Jλ
(
tUε

λ

)

� (1+ ε)2
1− cε

∫
�

∣∣∇Uε
λ(x)

∣∣2dx + O(1)

� (1+ ε)2
(1− ε)2(1− cε)16π log1/λ

(
1+ o(1)

)
,

by (4.5). Letε satisfy

(1+ ε)2
(1− ε)2(1− cε) <

3

2
.

By Lemma 4.3 (below), we know that the blow-up point ofuλ consist of one single-point
only andλ

∫
� f (u)dx = 8π(1+o(1)). Hence the proof of Theorem 4.1 is complete.✷

THEOREM 4.2. – Let� be a radially symmetric annulus andf (t)= et . Letm be any
positive integer. Then for smallλ > 0, there exists a solutionsuλ of (4.1)such that

λ

∫
�

euλ dx > 8mπ, and lim
λ→0

λ

∫
�

euλ dx = 8mπ. (4.11)

Proof. –We will prove Theorem 4.2 in a similar manner. LetTm be the rotation with

an angle 2π/m. ConsiderJλ of (4.5) in the pace
◦
H 1

m(�), where
◦
H 1

m(�) = {u ∈
◦
H 1(�) | u(Tm(x))= u(x)}. As in the proof of Theorem 4.1, we construct aUε

λ ∈
◦
H 1

m(�)

such that

λ

∫
�

Uε
λe(1−ε)Uε

λ = 16mπ

(1− e)2
log

1

λ

(
1+ o(1)

)
. (4.12)
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And, we have

Jλ
(
(1+ ε)Uε

λ

)→ −∞ asλ→ 0.

Let eλ = (1+ ε)Uε
λ , and

cλ = inf
γ

max
0�t�1

Jλ
(
γ (t)

)
,

whereγ is any continuous path in
◦
H 1

m(�) connecting 0 andeλ. Hence there exists a

critical pointwλ ∈
◦
H 1

m(�) with Jλ(wλ)= cλ. Thenuλ = vλ +wλ is a solution of (4.4),
and invariant underTm. In a similar manner as shown above, we can chooseε small so
that ∫

�

|∇uλ|2 � 24mπ log 1/λ
(
1+ o(1)

)
asλ ↓ 0.

Since the number of blow-up points ofuλ is a multiple ofm, by (4.15) of Lemma 4.3
(below), the above inequality implies that the blow-up set ofuλ consists ofm points.
Hence,λ

∫
� f (uλ)dx = 8πm(1+ o(1)) asλ ↓ 0.

We give a sketch of the proof for (4.11). For simplicity, we assumem= 3. The proof
for the general case is similar. Now supposeui has the local maximum atPi,Qi, Q̃i ,
wherePi is on the positivex1-axis andQi, Q̃i are located at the rays having the angle
2π/3 and 4π/3 to the positivex1-axis respectively. we want to proveui(x) is symmetric
with respect to thex1-axis. Note thatQi is the reflection point ofQ̃i with respect to the
x1-axis.

Setw(x1, x2)= ui(x1, x2)− ui(x1,−x2) for x2 � 0. Thenw satisfies

{
�w+ b(x)w(x)= 0 in�+ = {x ∈� | x2 � 0},
w |∂�+= 0.

(4.13)

Supposew(x) �≡ 0 in�+. Then it can be proved as (2.15) such that for anyδ > 0,

sup
�+(δ)

|w(x)| = o(1)Ni (4.14)

holds, where o(1)→ 0 asi→ +∞,

Ni = max
�+ |w(x)|

and

�+(δ)= {
x ∈�+ | |x −Qi| � δ and|x −Pi | � δ}.

Now suppose the maximum ofw occures nearQi . Note thatw(x) = 0 for x ∈
{(t cos2π

3 , t sin 2π
3 ), t � 0} becauseui is invariant under the group action ofT3. By

rotation and translation, we assumeQi = (0,0), w(x) satisfies

{
�w(x)+ b(x)w(x)= 0 for |x| � δ andx2 � 0,
w(x1,0)= 0,
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and the maximum ofw(x) occures nearQi , say,

|w(xi)| =Ni.
By scaling as (2.17), we considerw̃(y)=w(e−ui (Qi)/2y) for |y| � eui(Qi)/2δ. Thenw̃(y)
satisfies

�w̃+ b̃(y)w̃(y)= 0 for |y| � e
ui (Qi )

2 δ

with

|b̃(y)| � c
(
1+ |y|2)−2

.

We apply the Green representation formula (2.19) to prove eui(Qi)/2|xi | is bounded.
Furthermore,N−1

i w̃(x) tends to some functioñw(x) in C2
loc(R

2), wherew̃ satisfies

{
�w̃+ ev(x)w̃ = 0 in R2+,
w̃(x1,0)= 0.

By the reflection, we have

w̃(x)= cx1

1+ 1
8|x|2

in R2
+

for some constantc �= 0. On the other hand,

w̃(0)= |∇w̃(0)| = 0

becauseui has local maximum atQi andQ̃i . Then

0 = ∂w̃

∂x1
(0,0)= c �= 0

yields a contradiction. Hence the maximum ofw must occur nearPi . By using the same
argument, it also yields a contradiction. Therefore the symmetry ofui is proved.

Let ϕ = ∂ui/∂θ . Then ϕ vanishes at the rays{(t cosθ, t sinθ) | t � 0} with θ =
kπ/3, k = 0,1, . . . ,5. By the isoperimetric inequality (see the proof of Theorem 1.3),
we have

λi

∫
0�θ� π

3

eui (x) dx > 4π.

Therefore

λi

∫
�

eui (x)dx > 24π

as claimed. ✷
LEMMA 4.3. – Suppose thatui is a sequence of solutions of(4.4)with λi → 0. Then

after passing to a subsequence(still denoted byui), one of the following statements hold.
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(i) λi
∫
� f (ui)dx → +∞ as i → +∞. In this case,ui(x)→ +∞ uniformly in any

compact set of�,
(ii) lim i→+∞ λi

∫
� f (ui)dx = 8mπ for some integerm ∈ {0,1,2, . . .}. Furthermore,

we have(a) if m= 0, thenui(x)→ 0 uniformly forx ∈ �̄, (b) if m> 0, thenui
has exactlym blowup points{P1, . . . , Pm} and λif (ui(x))→ 8π

∑m
j=1 δPj with

δpj being the Dirac measure atPj . Moreover, asi → ∞

λi

∫
|Pj−x|�δ

f
(
ui(x)

)
ui(x)dx = 16mπ log

1

λi

(
1+ o(1)

)
. (4.15)

Proof. –The claims of (i) and (ii) are well-known now except (4.15). (4.15) is a
consequence of the estimate of local maximum ofui near each blowup pointPj :

max|x−Pj |�δ
ui(x)= 2 log

1

λi

(
1+ o(1)

)
(4.16)

for eachj and smallδ > 0. The upper bound of max|x−Pj |�δ ui(x) can be obtained by
the so-called “sup+ inf” inequality which was proved in [3] and [8]. The lower bound
can be obtained by the Green representation formulas and the scaling method. For the
details of proof, we refer to [9]. ✷

REFERENCES

[1] Bandle C., Isoperimetric Inequalities and Applications, Pitman, Boston, 1980.
[2] Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of−�u =

V (x)eu in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223–1254.
[3] Brezis H., Li Y.Y., Shafrir I., A sup+ inf inequality for some nonlinear elliptic equations

involving exponential nonlinearities, J. Functional Anal. 115 (1993) 344–358.
[4] Caffarelli L., Yang Y., Vortex condensation in the Chern–Simons Higgs model: An existence

theorem, Comm. Math. Phys. 168 (1995) 321–336.
[5] Chanillo S., Kiessling M., Rotational symmetry of solutions of some nonlinear problems in

statistical mechanics and in geometry, Comm. Math. Phys. 160 (1994) 217–238.
[6] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows

for two-dimensional Euler equations: A statistical mechanics description, Comm. Math.
Phys. 143 (1992) 501–525.

[7] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows
for two-dimensional Euler equations: A statistical mechanics description, part II, Comm.
Math. Phys. 174 (1995) 229–260.

[8] Chen C.C., Lin C.S., A sharp sup+ inf inequality for a nonlinear equation inR2, Comm.
Anal. Geom. 6 (1998) 1–19.

[9] Chen C.C., Lin C.S., Singular limits of a nonlinear eigenvalue problem in two dimensions,
preprint.

[10] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke
Math. J. 63 (1991) 615–623.

[11] Ding W., Jost J., Li J., Wang G., The differential equation�u= 8π − 8πheu on a compact
Riemann surface, Asian J. Math. 1 (1997) 230–248.

[12] Ding W., Jost J., Li J., Wang G., Existence results for mean field equations, preprint.



296 C.C. CHEN, C.-S. LIN / Ann. I. H. Poincaré – AN 18 (2001) 271–296

[13] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic
equations inRn, in: Nachbin L. (Ed.), Math. Anal. and Applications, Part A, Advances
in Math. Suppl. Studies 7A, Academic Press, New York, 1981, pp. 369–402.

[14] Li Y.Y., Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200
(1999) 421–444.

[15] Li Y.Y., Shafrir I., Blowup analysis for solutions−�u = V eu in dimension two, Indiana
Univ. Math. J. 43 (1994) 1255–1270.

[16] Lin C.S., The topological degree for the mean field equation onS2, Duke Math. J. 104
(2000) 501–536.

[17] Moseley J.L., Asymptotic solutions for a Dirichlet problem with an exponential nonlinear-
ity, SIAM J. Math. Anal. 14 (1983) 719–735.

[18] Moseley J.L., A two-dimensional Dirichlet problem with an exponential nonlinearity, SIAM
J. Math. Anal. 14 (1983) 934–946.

[19] Nagasaki K., Suzuki T., Asymptotic analysis for two-dimensional elliptic eigenvalue
problems with exponentially dominated nonlinearity, Asymptotic Analysis 3 (1990) 173–
188.

[20] Nolasco M., Tarantello G., On a sharp type inequality on two dimensional compact
manifolds, Arch. Rational Mech. Anal. 145 (1998) 161–195.

[21] Spruck J., Yang Y., Topological solutions in the self-dual Chern–Simons theory: existence
and approximation, Ann. Inst. H. Poincáre Anal. Non Linéaire 12 (1995) 75–97.

[22] Struwe M., Tarantello G., On multivortex solutions in Chern–Simons Gauge theory, Boll.
Unione Math. Ital. Sez. B Artic. Ric. Mat. 8 (1) (1998) 109–121.

[23] Suzuki T., Global analysis for a two-dimensional elliptic eigenvalues problem with the
exponential nonlinearity, Ann. Inst. Henri Poincaŕe, Anal. Non-Linéaire 9 (1992) 367–
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