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ABSTRACT. — In this article, we consider the mean field equation

Au + ¢ ! =0 inX

where X is a flat torus andA is the area ofz. This paper is concerned with the symmetry
induced by the phenomenon of concentration. By using the method of moving planes, we prov
that blowup solutions often possess certain symmetry. In this paper, we consider cases whe
solutions blowup at one or two points. We also consider related problems for annulu domain:
of R?.
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RESUME. — Nous considérons I'équation de champ moyen

e 1
A — — — | =0 dansz,
”+p<fe“ A)

ou X est un tore plat et est I'aire deX. Cet article se rapporte a la symétrie induite par le
phénoméne de concentration. En utilisant la méthode de déplacement de plans, nous démontre
que les solutions avec singularités possédent dans la plupart des cas des propriétés de symét
Dans cet article, nous considérons des cas ou les solutions explosent en un ou deux points. Nc
traitons également de problémes reliés pour des domaines annulaRésadec conditions de

Dirichlet an berd.
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1. Introduction

Let © be a flat torus with a rectanglfxy, x») | |x1] < a, |xo| < b} of R? as its
fundamental domain. Fgr > 0, we consider the equation

Au-l—p(%—%)zo inx, (1.1)

whereA is the Laplace operator amtlis the area of. Eq. (1.1) is the Euler-Lagrange
equation of the following functional

1
Jp(u)zé/|Vu|2+§/u—,olog/e“. (1.2)
D) ) D)

Clearly Eq. (1.1) and the functiondl, remain invariant under the adding a constant to
u. Therefore we always seek solutions of (1.1) which are normalized by

/ wdx =0, (1.3)

=

Eq. (1.1) is generally known as a mean field equation because it is often derivec
from various Onsager’s vortex theories. Meanwhile, there are many recent works tc
relate (1.1) to some Chern—-Simons—Higgs model. For more information concerning
these developments, we refer the interested readers to [4-7,11,12,14,16,20-22,24] a
references therein.

For p < 8w, the functionJ, is coercive by the Moser—Trudinger inequality, and
solutions of (1.1) can be obtained by minimizationJgf In fact, even the compactness
of solutions can be proved in this case. But, o 8, it is quite a different story.
Recently, there are several works to extend the existence of (1.} €o(8r, 167).
See [11,12,20,22]. In [14], Yan-Yan Li initiated a program to find solutiongfor 8z
by using the topological degree theory. He proved an uniform bound for solutions to
Eq. (1.1) whenevep is contained in a compact set @n, 8(n + 1)) wherem > 0
is an integer. Therefore, the Leray—Schauder degree for (1.1) remains the same when
is in the interval(8m, 8(m + 1)7). In particular, if the degree is nonvanishing, then the
existence of solutions can be guranteed by the degree theory. However, the calculation
the topological degree seems not so easy. One of major difficulties is to prove whethe
oi > 8mm or p; < 8nm for a sequence of solutions of (1.1) with lim, ., p; = 8mx
when blowup would actually happen. In [16], the second author has settled the questio
when is the spheres?, at least for the case ofi8and 16z The major step in [16] is to
show the symmetry induced from the concentration phenomenon. In this paper, we war
to continue to study the symmetry of solutions due to the concentration phenomenor
We hope that this would be helpful when we come to computing the topological degree

In the following, we always suppose thatis a solution of (1.1) witho = p; andu;
blows up at some points &f. Recall that by a result of [14], i; — 8mm andu; blows
up somewhere, them has exactlyn blowup points.
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THEOREM 1.1. — Letp; — 8w asi — +oo and the cente(0,0)of ¥ is the maximum
point of u;. Thenu; is symmetric with respect to both and y axis for i large.
Furthermore, for anyy fixed ,u; (x, y) increases when increases from the negative
x up to0 and decreases whenincreases frond to the right hand side of the boundary.
The same holds for fixed.

THEOREM 1.2. — Letp; — 167 asi — +oo and one of local maximum points of
be located at the center. Then fiolarge, the other maximum point of is located at the
corner of the fundamental cell &. Furthermoreu; (x, y) is symmetric with respect to
bothx andy axis.

Naturally, we arise the question whethegris larger than 8 (or 16r) for solutions
with one blowup point (or two blowup points). This question is important when we come
to compute the Leray—Schauder degreeder (87, 167). For 2, this question has been
answered in [16]. For a compact Riemann surfacef positive genus, the problem
remains unsolved. Nevertheless, we have the answer for a similar problem considered
an annulus oR?. Let 2 be a smooth bounded domainRf. We consider the following
equation.

Joed (1.4)

u=~0 on 0%2.
Eqg. (1.4) is derived from Onsager’s vortex model for turbulent Euler flows. See [5,6]
and [7] for details. For a non-simply-connected dom@inthe existence of solutions
was proved in [12] for 8 < p < 167. In fact, a minimax valuer, was defined and was
proved to be a critical value. In [12], the authors raised the question whether solution:s
u, remains bounded or not as— 16, which equivalently is to ask whether solutions
of (1.4) is uniformly bounded or not whemtends to 16 from below. In the following
theorem, we answer the question for an annulus domain. For the rest of the sedsgon,
always the annuluér | a < |x| < b} for somea < b.

{Au+ L _0 in Q,

THEOREM 1.3. — Letu; be a solution of1.4) with p; — 87 asi — +oco. Assume
that u; has one blowup point, thep; > 8z for large i and u;(x) is symmetric with
respect to the liné;, wherel; is the line connecting the maximum pointugfand the
origin.

For solutions with two blowup points, we have

THEOREM 1.4. — Letu; be a solution of1.4) with p; — 167 such thatu; blows up
at P and Q. Assume thaP; and Q; are the two local maximum points ne& and Q
respectively. Thew;, Q; and the origin form a straight liné and«; is symmetric with
respect td;. Moreover,p; > 16m7.

COROLLARY 1.5.—LetQ2 be an annulus ifR?. For anye > 0, there exists a constant
C = C(¢) > 0such that

lu(x)|<C forxeQ

holds for any solutiom of (1.4)with p € (0, 87]U [871 + ¢, 167].
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The paper is organized as follows. In Section 2, both Theorem 1.1 and Theorem 1.2 ar
proved. Here we apply the well-known method of moving planes to prove our results.
For Eg. (1.4) with an annulu®, we use the method of rotating planes to prove the
axial symmetry of solutions. This is an important step for us to be able to use an
isoperimetric inequality of C. Bandle. Together with the isoperimetric inequality of C.
Bandle, Theorem 1.3 and Theorem 1.4 are established in Section 3 by this methoc
For Theorem 1.4, additional results concerning the regular part of Green’s function are
required. See Lemma 3.3 and Lemma 3.4. We present their proofs here because tl
authors can not find them in the literature. In the final section, we will construct solutions
with m blowup points in the annulus domain fprgreater then @ .

2. Themethod of moving planes

In this section, we begin with a proof of Theorem 1.1. We use the method of moving
planes. For applications of this method, we refer the readers to [3,10,13,14] and [16].

Proof of Theorem 1.1- After adding a constant, we may assumés a solution of
1
Abli-i-pi(eu’—Z)ZO onXx.

By translation, we may suppose that the position of the local maxinfurof u; is
located atla/2,0). Fori > 0, we letX; ={x | A <x1 <A +a}, T, ={x | x1 =21}, and
x* = (21 — x4, x) is the reflection point of with respect tdr}. Set

Wy, (x) = u; (x) —u; (x*)  forx € ;. (2.1)
Thenw; (x) satisfies

{ Aw, (x) + b (x)w, (x) =0 in %,

wy(x)=0 on 9%, (22)

where
gti(n) _ gii(x*)
P = Gy
To start the method of moving planes, we need an estimate by Y.Y. Li [14]. Let

{Pg§, ..., P{'"} be the blowup set of;. For any P}, we setP! to be the local maximum
point of u; near P}, that is,

I
u;(P') = max u; (x)
|x—Pgl<do

for some smalby > 0. Then the main theorem of [14] is stated as follows.

THEOREM 2.1. — There is a constant > 0 such that

lui(x) —Ui(x)| <C (2.3)
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holds for|x — P;| < §p andi large, wheresy > 0 is any fixed small number arid (x) is
defined by

| gii (Pi)
U; =10 -
(x) g (1+ p_éeu,.(p,.)lx — P;|?)2
for |x — P;| < 8o. Furthermore, let; = — [y u; (x) dx. Then
- “ . 8mm
ui(x) —i; > 81y G(-, Py) — T/G(" y) du(y), (2.4)
=1 5

in C2(Z\{P}, ..., Py}, whereG(-, P}) is the Green function with a singularity &).
From (2.3) and (2.4), we see that

lu;(x) +u; (P)| < C
holds whenx — P/| > &, for eachl, and
jui (P') —u;(P)| < C (2.5)

for 1 </1',1 <m. Inequality (2.5) is important for the case of two blowup points in this
article.
Now we go back to the proof of Theorem 1.1. We claim

Stepl.
wo(x) >0 forx e X. (2.6)

To prove (2.6), we note that by Theorem 2.1{"¢ — 0 asi — +oo for x € X\ Zo.
Suppose (2.6) is false, that is, the §et {x € T | wo(x) < 0} is a non-empty set. Then
by (2.2)

Awo(x) + pi€ " wp(x) <0

for x € Q@ wherex™ = (—x3, x2). Therefore the first eigenvalue, (2) of the linear

equation A + p;€“) on Q is nonpositive. On the other hand, sincé®e’ — 0

asi — +oo and the first eigenvalue oh on %, is 72/a?, the first eigenvalue of

A+ p;€4%7) tends tar?/a? asi — 400, which yields a contradiction. This proves (2.6).
Set

Ao =sup{r €[0,a/2] | w;(x) >0forx e T; and 0< A < A}.
Claim
Step2. Ao =a/2 andw,2(x) =0 forx € X, 5.

Supposerg < a/2. Then by the continuityw, (x) > 0 for x € X,,. By the strong
maximum principle and the Hopf boundary Lemma, we have

8wk0(x)

w;,(x) >0 and <0 forxedx,,, 2.7
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wherev is the outnormal. By the definition af, there are a sequence of > A such
that lim;_, o A; = Ao and

w)\.j('xj) = IErlf w)\.j('x) < Oa
J

for somex; € ¥,,. After passing to a subsequence, = lim;_, . x;. Then either
Xo € X5, and w;,(xo) = 0 or xo € 3%;, and Vw, ,(xg) = 0. Obviously, either case
yields a contradiction to (2.7). Henég = a/2, andw,»(x) > 0 in %,,,. Of course,
we can apply the same procedure fram=a to A = a/2 and obtainu(x*) > u(x)
also forx € ;2. Thus, we have:(x*) = u(x) for » = a/2. Clearly, the conclusion
of Theorem 1.1 follows immediately. O

Now we come to the case of two blowup points. IBeand Q; are two local maximum
points ofu; such that both; (P;) andu;(Q;) — 400 asi — +oo. Let P =1lim;_, , o, P;
andQ =lim,_, . Q;. If there exists an open half’ of the fundamental domain &
such thatX’ contains bothP and Q, then we can apply the method above to yield a
contradiction. The reason is as follows. Without loss of generality, we may suppose tha
P and Q are contained irxq. First, we assume tha, and Q; are not contained in the
same vertical line. By step 1 of the proof above, we still haygéx) > 0 in Zg. And as
before, we can move the vertical line until it contains one of the two local maximum
points, sayP;. Since(Q; is noton the same vertical line, solutions can not be symmetric
with respect to this vertical line. Thus, we can continue our procedure by moving the
line to crossP; andu; in the right-hand half is greater than the left-hand half. Clearly,
it yields a contradiction to the fact th&; is a local maximum point. IfP; and Q; are
contained on the same vertical line, then we can move horizontal lines and obtain th
same conclusion. Therefore, we conclude that iils at the center of the fundamental
domain, thenQ must be at the corner. In the following, we want to prove that for large
i, if P; is at the center, the@®; must be at the corner.

Proof of Theorem 1.2- Suppose thaP; and Q; are contained in an open half of the
fundamental domain oE. Without loss of generality, one may assume tRaand Q;
are contained in0, @) x (0, b) such that lim_, ., P, = (0,0) and lim_, ., Q; = (a, b).
By translation, we may assun® = (;,0), Q; = (a;,b;) With 0 <a; <a,0<b; <b
and|P;| = |Q; — (a, b)|. Note that under the assumption of the positiondf u; (x)
could not be symmetric with respectito andx,. Let §o be a small positive number and
u;(P;) = maX, _p,<s, ui (x) andu; (Q;) = max,_g; <s, ui (x). Then|u; (P;) —u; (Q;)| <
¢ for some constant independent of by (2.5). We want to prove

wo(x) = u; (xq1, x2) —u;(—x1,x2) >0 forO<xq <a. (2.8)

Once (2.8) is established, we could follow step 2 of Theorem 1.1 to show that
wiy(x) 20forx e Z; ={x| A <x1<XA+a} when O< A < 2. Thus, it yields a
contradiction to the fact thai; has a local maximum aP;. We prove (2.8) by two
cases.

Casel. &iP)|£;|? - 400 asi — +o0.
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Note that by (2.5), we also have
€19 Q; — (a,b)|?— +oo asi — +oo.
For anyx € X, we have
e P2 < et — PR (2.9)

Thus, by Theorem 2.1, we have fore Bs, N {x | x1 > 0},

| gti(Pi)
u;(x")<c+log . 5
(1+ ZeiP|x= — P|2)
< I 1
and by (2.9),
@it et (e Py — pl.|_4) =o(1)|x~ = P| 2 < o(D)|x| 2 (2.10)

If |x| > 8o, then (2.10) holds obviously. Similar inequality holds néaralso.

Suppose thabg(x) < 0 for somex € Xy. Without loss of generality, we may assume
that the maximum of-wg occurs at some poinf® € %o with x9 < a/2. Leth(x) = (x1)®
for 0 < o < 1. Clearly,h(x) satisfies

Ah(x) = a(a — 1)(x1) "2h(x). (2.11)

Setw(x) = —wo(x)/h(x). Sincewg is C* on x; = 0, we havew(x) =0 on x = 0.
Then by a straightforward computation(x) satisfies

{ Aw(x) 4+ 2V(logh) - Vo + (bo(x) + a(a — 1)|x1|"2)w(x) >0, (2.12)
D(x)=0 ondLy, '
where
eti(x) _ gti(x7)
bo(x) =p ——  and Qo= {x € Xg| wo(x) <O0}.
ui(x) —u;(x7)

Let y be a maximum point ofu. Clearly, y; < x¥ < a/2, andbo(y) < p;€0) <
o(1)|y|=? by (2.10). Leti be large enough so thatD(# a (e — 1) < 0. Then, applying
the maximum principle to (2.12) at, it yields a contradiction. Hence (2.8) is proved in
case 1.

Case2. Assume &%) | P12 < ¢ for some constant > 0.
To prove the positivity otwg(x) in Xg, we want to prove

lim (69|x|?) =+o00 and lim €9)|x — (a,b)|* = +o0 (2.13)

i——+o00 i—>+00

for all x wheneverwg(x) < 0. Once (2.13) is proved, we could ukéx) of (2.11) and
follow the argument of case 1 to shawy(x) > 0O for x € .
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Obviously, it suffices to prove (2.13) in a neighborhoodPpfand Q;. First, suppose
lim;_ 400 € P P;|2 > 0. Then we also have lim ., €i@)|Q; — (a,b)|?> > 0. In the
following, we prove (2.13) fox nearP;. For the case when is near(Q;, the proof is
similar. Let

ui (P)
v =ui (€72 y) —u;(P). (2.14)
Then by Theorem 2.1, after passing to a subsequencg) converges tov(y) =
—2log(1+ §|y — &ol*) uniformly in any compact set d¢?, where

. ui (Pp)
O#&= lim ez P eRA.
1—>—400

It is easy to seevg(e™*F)/2y) = v;(y) — v;(y~) wherey™ = (—y1, y»). Thus, by the
explicit expression ob,

. ui (Pj)
Jim wo(€ "2 y)=v(y)—v(y )>0

for any y € R? and y; > 0. Now suppose there are somesuch thaty; is bounded
and wo(e™P)/2y.y < 0. Without loss of generality, we may assume ;lim., y; =

yo = (Yo.1, Yo.2). Since wo(e™F)/2y) converges to a positive function for > 0,

we haveyp; = 0. From it, y; can be chosen to be a local minimum pointwaf for

{(y1,yi2) 1 0< y1 < 1} Henceﬁ(v(yo) —v(yg)) =0 aty = yo. By a straightforward
computation, we have

—péo.1

=——" =0,
1+ §lyo —&ol?

3
a—yl(v(yo) —v(yg))

a contradiction. Thus, we havg;| — 400 wheneverwg(e **)/2y.) < 0. Clearly,
(2.13) follows readily. By the similar method, we can prove (2.13) r@ar
Now suppose lim, ., &) |P;|>=0. Let

Ni = f@?xlwo(X)l = [wo(x;)|

for somex; € Zg. We claim thaty; tends to either (0,0) ai, +b) and for anysg > O,

sup |wo(x)| = O(1)N;, (2.15)

20(30)

whereXo(8o) = {x € Zo | |x — P;| = do and|x — Q;| = o}
We prove (2.15) by contradiction. Assume that for a snigll> 0, there are
subsequence af; (still denoted byk;) such that

Sup [wo(x)| = coN; (2.16)
20(30)

holds for some constanty. Setw,;(x) = N-‘lwo(gc). Then |@;(x)] < 1 for x € o.

1

Sincebg(x) — 0 uniformly in any compact set af N Xp\{0, (a, £b)}, by the elliptic
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estimates, there are a subsequence;ofstill denoted byw;) such thatw; converges
to a harmonic functiond, wherew is smooth inx N £, except for the points (0,0),
(a, £b). Since|w(x)| < 1in g andw(x) =0 for x € (X0\{(0, 0), (a, £b)}) N =, by
the reflection and the elliptic regularity for bounded harmonic functions, we conclude
thatw(x) is smooth forx € £, and then(x) = 0 for x € =y. However, it obviously
contradicts to the assumption (2.16). Hence the claim (2.15) is proved.

Now suppose that the maximum afy occures in a neighborhood d;. If the
maximum ofwg occures nea@;, we can prove (2.13) by the same argument as follows.
Definev; as (2.14), andog by

u; (P;)

Wo(y) =wo(e” "2 y) (2.17)

for |y| < €(F)/25, for some fixed numbety > 0. Theni, satisfies

Aty + b(y)io(y) =0 for |y| < &P)/25,

where
~ eUi(_V) — eUi(y_)
b(y) = ————.
YR - w0
By Theorem 2.15(y) is bounded by
b < A+ yP) (2.18)

for |y| < €iP)/25, and for some constart. Applying the Green representation formula,
we have

lTx_—_y)il |bo(y) 1o (y)| + O(DN;, (2.19)

5 1
mm&;/m
)

whereB; = {y | y1 >0 and |y < & (F)/25,},

|x™ — yl
lx — yl

1
GO(-x9 )’) = Zlog

is the Green function for the half plade | y; > 0}, and the term @) N; comes from
the boundary value oftg and (2.15). Lety; be the maximum point ofog. Then by
using (2.18), we estimate the integral of the right hand side of (2.19)ky|y;|)~1N;.

Thus, (2.19) implies

N; <c(1+ |y DN,

which impliesy; is bounded. Let lim, ., y; = yo. Then by elliptic estimates, there are
a subsequence of; i, such thatV; ', converges tav # 0 in C2, which satisfies
{ Aw + pe’PDw=0 for y; >0,
w(y)=0 for y; =0.
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By (2.19), we have
[wo(y)| <e Ni(L+ |y~ + o) N;
for |y| < e“i<Pf)/2<So Hence |lw(y)| < c¢(1 + |y])~%, and then by Lemma 2.2 below,

w(y) =c 3), v (y) for some constant # 0. Let & = €i")/2 P, Sincewg(&) > 0 and

3 71 < Ofory; > 0, we haver < 0. Hence, on any compact séf(y) > 0 for i large. This
proves (2.13) neap;.
To prove (2.13) nea@;, we note that

_10Wo 10V

N; —4m—N— @)—Ml

wherea"' (&) =0is used andly; | < |&]. Since%(O) < 0, we have
1

im N71.g.= lm N2 P> 0. (2.21)

i—-+00 i——+00

By (2.21), we have

lim N 7|0, — (a,b)| > 0

i—+00

also. Thus, by using calculation similar to (2.20) n€ar we have

I|m N7HVwg(E” )= I|m N~ g |Q —(a,b)| >0,

where

ui(Q;

ui(ZQ,')y) and gi* —e 2 )(Qi — (Cl, b))

wg(y) = wo((a,b) + €

Therefore,N,.‘lwg(y) converges to a nonzero limit. Singg is a local maximum, the
limiting function is positive onRi. Thus, for any compact set &2, Ni‘lwg(y) is
positive on any compact set Rfi and fori large. This proves (2.13) ned;.

By (2.13), wo(x) > 0 for x € Xo. Thus, by moving the line;; = u crosst;, we
prove w,(x) > 0 in X, for 0 < u < 2. Clearly, it yields a contradiction. Therefore,
the positions ofP; and Q; are proved as claimed.

To prove the symmetry with respecttowe considerP; = (0, 0), Q; = (a, b) and set
wo(x) = u;(x1, x2) — u;(—x1, x2) for x € Xg. Supposewy(x) # 0 for x € Zg. Then as
the proof in case 2, (2.15) holds for afyy> 0. Thus, the maximum dfvg(x)| can occur
only near either?; or Q; (not like the situation in case Zjp(x) may not simultaneously
be positive nealP; and nearQ;). Suppose the maximum o¢fvg(x)| occures near;.
Then by the Green formula (2.19%;(y) = N,.‘lw(e—w(Pi)/?y) converges taw(y) in
ClOC(R ), wherew(y) satisfies

{ Aw+p€Pw=0 inRE ={(y1.y2) | y1 >0},
w(y1,0) =0, neR,
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and |w(y)| < c(1+ |y))~t. By the reflection and Lemma 2.2y(y) = c Y for some

constanic # 0. But, sinceVi; (0) = 2V;(0) = 0, we have G= 22 v (0) = gjz 0) =

which impliesc = 0, a contradiction. Thus, the maX|mumno(x)| must occur neaQ,.

But the same argument is applied to yield a contradiction when the maximum point is
nearQ;. Therefore,wq(x) must vanish completely ixy. The symmetry ofs; follows

readily. O
LEMMA 2.2. - Letp(x) be a solution of

Agp+e¥p=0 inR? (2.22)
wherev(x) = —2log(1 + |x|?/8). Suppose thap(x) is bounded irR?. Then
2
p(x) = a;¥;(x)
j=0
for some constants; € R, wherey; (x) = (1 + |x]|?/8) x; for j = 1,2 and yo(x) =

(1+x>/8) (1 - IXI2/8)
2

Proof. —Setg, (r) = o ¢(x)coské do for k > 1. Theng, satisfies
{ A@i(r) — S0 (r) + € Vg(r) =0, (2.23)
w(0)=0

Letp, = 2 0 "1 (x) cosh df. Theng, satisfies (2.23) fok = 1. By the uniquencess
of solutions of ODE g, (r) = c@1(r) for some constant € R.

Supposey, (r) # 0 for somek > 2. Sinceg;(r) > 0, then, by the comparison with
@1(r), ¢ (r) never vanishes far > 0 and k> 2. By the assumptiony, (r) is bounded.
By an elementary argument and (2.22), (r) — 0 asr — +oo. Comparing withg,
we have,

T ) T ou()@1(r)
0= [@ap—pdgordr = (2 -1) [ 24D g,
0 0
a contradiction sincey, (r)@1(r) has only one sign. Therg,(r) =0 for k > 2. The
conclusion of Lemma 2.2 follows. O
3. Mean field equation on annulus domains
In this section, we consider a sequence of solutignaf

f gidx

{Au, L — 0 in Q,
U; on 02,

whereQ = {x | a < |x| < b} for somea < b. Suppose thai; has one single blow up
point at P and max u; = u;(P;) — 400 asi — +oo. Without loss of generality, we
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may assume®; = (r;, w/2) in the polar coordinate. Following the proof of Theorem 1.1,
we can show that
wo(x) = u;(x) —u;(x7) >0 (3.1)

for x, > 0, wherex™ = (x1, —x»). Instead of the method of moving planes which was
used in the second step of the proof of Theorem 1.1, we use the method of “rotating
planes”. For any < [0, /2], letl, denote the lind (¢ coss, ¢ sind) | t € R} and X, be

one of the components 61\/, such thatP; € 3,. Set

wp = u(x) —u(x’), (3.2)

wherex? is the reflection point of with respect tdy. Foré = 0, we havewg(x) > 0 for
x € Xp by (3.1). Set

6o = supl6 € [0, 7/2] | wi(x) > 0 forx € T; and 0< 6 < 6}.

By the argument similar to step 2 of the proof of Theorem 1.1, we can pkpver /2
andw,>(x) =0, that is,u; (x) is symmetric with respect te;, and

we(x) >0 forx e Xypand 0K O < % (3.3)

By the Hopf lemma and (3.3), we have

9
% x)>0 forxeasyni,. (3.4)
E)v@

wherevy (x) is the outnormal at € 3%, NIy. Obviously, by (3.4), we have

ou; ou; ou;
879 (x) :xla—zz(x) — X azl (x)>0 forx,>0. (3.5)

Note thatdu; /36 is odd inx;. Hencedu; (x)/36 = 0 on x = 0, which implies we have
LEMMA 3.1.— Let¢ = du;/36. Theng satisfies

{A¢+p,~evi¢=0 in Q, 3.6)

¢(x) >0 in 2, and¢ =00naQ+,

whereQt = {(x1, x2) € Q| x1 > 0} andv; = u; — log( [, €1).

To estimatep;, we need an isoperimetric inequality which was due to C. Bandle.
See [1].

LEMMA 3.2.— Suppose: is a solution ofAu + p€ =0 in w, wherew is a simply
connected domain. Ip [ € dx < 4, then the first eigenvalue ok + pe' for the
Dirichlet problem is positive.

Clearly, p; > 87 by Lemma 3.1 and Lemma 3.2. However, we require a stronger
version of Lemma 3.2 to ensuge > 8x. In order to see whether Lemma 3.2 holds or
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not whenp [ € dx = 47, we have to go back to the proof of Lemma 3.2. Since the
proof is not very long, we present here for the completeness.

Proof of Theorem 1.3- Letv; = u; + ¢; for some constant; such thaty; satisfies
Av; + € =0in Q and ¢ = dv;/90. Thenp; = |,€" dx — 87 asi — +oo. Set
Q1Y = {(x1,x2) | x1 > 0}. So, ¢(x) >0 in QF, and¢(x) =0 on IQ". Let v(x) =
v(]x]) = —2log(1 + £|x|?) be the solution of

U H 2
{Av+e_0 in R4, (3.7)

5, € dx = 4.

Now assumef,. € dx =4r. Let Q" = {x € Q" | ¢ (x) > 1} for r > 0. SetB;" be the
open ball with center 0 such that

/e“dxz/e”"dsz(t). (3.8)
B o

Define the spherically decreasing rearrangengendf ¢ to be a non-negative function
in By such that

¢*(x) =" (Ix|) =supr | x € B}. (3.9)

Obviously,¢™(x) > to if and only if x € B (here we use the fact th&f" is open). Thus,
¢*(x) has the same distribution function (with respect to the measude)@s¢ (with
respect to the measuré dx). So, the identity

/ $*%e dr = / $2e dx (3.10)
B1 Qt
holds. To prove
[1vopds > [ 1972 (3.11)
Qt By
We need Bol's inequality which states that for any-c Q,
1
> (87 — A(w)) A(w) < I2(dw), (3.12)

provided thatA (%) < 87, where

A(a)):/e”"dx and l(aw):/e%“f do.

%) dw

We note that the equality of (3.12) holds when the meastde & used andv is a ball
with center 0.

Sinceg satisfies an elliptic equation, it is easy to prove the Lebesgue measifg of
is equal to zero for any > 0. Thus,A(¢) is continuous and strictly decreasing itBy
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the co-area formulas,

evi
—A’(t):/ ds a.e.r >0, 3.13
Vol (3.13)
{p=t}
and
—%(/IVq&lzdx): / |Vp|ds a.er>0 (3.14)
QF {p=1}

hold. By the Schwarz inequality and Bol’s inequality, we have
2 1

~g([rvoa)> ([ era) ( ) (319
o { 6=

¢=t}

=2 (—A' (1))

1 _
> 5(871 —A@)A@)(—A'(1)) !

_ E %12
——dt(B[|V¢|m)

for a.e.t > 0, where the equality of (3.12) is used for the metri¢de|?. Integrat-
ing (3.15), one has

/ Vol dr > / Vo |2 d (3.16)
o+ B

as claimed by (3.11).
Together (3.10) and (3.11), we have

/IV¢*|2—/¢*2e”dx</IVd)Iz—/d)ze”idx:O. (3.17)
B B1 Q+ Q+

Since the first eigenvalue &f + €’ for the Dirichlet problem is equal to zero, (3.17)
implies

/|v¢*|2—/¢*2e”dx =0,
B1 B1
that is, each inequality in (3.15) must be an equality. In particular,
e = &;(9)|Vo|* (3.18)

holds for some functio®;. Clearly, @, is continuous ap = r as long as is not a critical
value of¢. Sincep = 0 is not a critical value op, one hagV¢|(x) = constant whenever
|x| =bor|x| =a. Sincedp /30 =0 for x € 92, ¢, (b, 0) is a constant independent @&f
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However,

2 2
/ ¢, (b, 0)do = / () (b, 0) d6 =0,
0 0

which implies |V¢(x)| = 0 on 3Q2. Clearly, it yields a contradiction to the Hopf
boundary lemma. O

Let G(x, y) denote the Green function &f with vanishing boundary volue. Set

1 1
Vv(x,y)=G(x,y) — 5—log——, and (3.19)
27 |x — y|
p(x) =Y (x,x) (3.20)
is the regular part of the Green function. Recall tat {x | a < |x| < b}.

LEMMA 3.3. - Let Q2 be the radially symmetric annulys | a < |x| < b} and ¢(x)
be the regular part of the Green function. Thetx) = ¢(]x|) and ¢(r) has a unique
critical point ro. Furthermore r is the maximum point ang’ (o) < 0.

Proof. —By the uniqueness of the Green function, it is easy to seeihatis radially
symmetric. Since lim., 3o ¢ (x) = —o0, ¢(r) has a critical point, at least. We want to
proveg”(rg) < 0 for any critical pointrg. Then Lemma 3.3 follows readily.

Let yo = rgex = (0, rp). Sincey (x, y) = ¥ (v, x), we have

Vi (50, 30) = V¥ (v, Yo) = O, (3.21)
where
0 0
Vo (x,y) = (a—fl(x, 9, a—)‘i(x, y))

is the first derivative ofr with respect toc-variable. Also, we have

V(x, y0) =¥ (x7, yo), (3.22)
wherex™ = (—x1, x»). Set
Iy 81& Iy
39 (x, yo) = (x o) Xor 1(x Y0)-
Note thaty (x, yo) = Iog |x — yo| for x € 9K2. Together with (3. 22) (x, yo) satisfies

0
—w(x yo) <0 forxedQ™,

whereQt = {x € Q| x1 > 0}. By the maximum principleZZ (x, yo) < 0 for x € Q*.

Thus,

90

‘ﬂ(|x|62» )’0) < W(x» )’0)
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for x € Q. By (3.21) and the maximum principle, we have

82
T l/;(yo Yo) =

which implies
82
g 0w <0. (329)

On the other handa‘” (x, yo) is a harmonic function which by a straightforward
computation, satlsfles

%(X’ 0){>O if |x|=a or x=(bcosh, bsing) with —m/2< 0 < b, (3.24)

<0 if x=(bcosy, bsing) with 6y <6 <7 /2,

where Sirfo = ro/b. Note that ] 3‘” ~(x, Y0) = 3), Y (x~, yo). Hence the nodal lindx |
3), Y (x, yo) = 0} must intersect Wlth the positive,-axis only atx = rge,. Otherwise,
by the symmetry 013— (x, yo) in xq1, the nodal line would enclose a region<iyy which
violates the maX|mum principle. Therefore, by (3.24) and (3.21),

d
—w(roez, yo)=0 and
dy2

d
a—w(rez yo) <0 forrg<r <b.
y2

By the Hopf lemma, one has
%Y
0x20y2
Clearly, by (3.23) and (3.25), we have

(o, o) <O. (3.25)

92y 92y 92
"
= (o, ¥0) + —= (Yo, Yo) + 2
Y (ro) 8x% (Yo, yo) 8y% (yo, Yo) ax

;ﬂ (y0, yo) <O. O
Y2

LEMMA 3.4.—LetG(x, y) be the Green function ang = r1e, for somea < ry < b.
ThenG (re,, y1) increases in for r € [a, r1) and decreases infor r € (ry, b].

Proof. —Let

G G G
—(x yl)—xl—(x yl)—xz—(x y1).
In a neighborhood of, 2 5 G (x, y;) satisfies

0G .
—x, )= le + smooth function (3.26)
a6 lx — yal
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Since S (x, yo) = 0 for x € QT\{y;} whereQ™ = {x € Q| x1 > 0}, by the maximum
principle and (3.26), we have

0G
%(x, y1) >0 forxe Q.

There,
G(x,y1) < G(|x|ep, y1) forx e Q. (3.27)

Now supposeG(re,, y1) has a critical point inf[a, r1). Since G(aes, y;) = 0 and
lim,_,,, G(rez, y1) = +00, we may assumeé (rez, y1) has a local maximum at= ro.
Together with (3.27), we haw@ (x, y;) has a local maximum at = roe, Which violate
the strong maximum principle. O

Now we are in the position to finish the proof of Theorem 1.4.

Proof of Theorem 1.4- Suppose that; blows up at the two point® and Q, and P;
and Q; are local maximum points of; near P and Q respectively. As in Theorem 1.2,
we first claim thatP;, Q; and the originO is on a straight line. Suppose the claim does
not hold. By composing with a rotation, we assume that (;, s;) andQ; = (¢;, 5;) for
somer; > 0, and| P, — P| = |Q; — Q|. By following the argument of (2.8), we can show
that

wo(x) =u;(x) —u;(x”)>0 forxeQ™,

whereQ™ = {x | x; > 0}. Then, as in the beginning of this section, we could use the
method of rotating planes to yield a contradiction. Hence we concludePth&; and
O are on the same straight liie The symmetry ofi; with respect td; can be proved
similarly.

For simplicity of notations, we may assume b@thand Q; are located on the,-axis.
Without loss of generality, we may assume tifats on the positiver,-axis. We claim

Q; is on the negative,-axis. (3.28)

We prove (3.28) by contradiction. Suppogk is on the positivex,-axis. Let P =

(0, ) andQ = (0, r1). By Theorem 2'1’fp§:iax converges toB(§(P) + §(Q)), where

3(P) is the Dirac measure a?. Thus,u,-?x) converges to B[G(x, P) + G(x, Q)] in
C2.(Q\{P, 0}). By the Pohozaev identity, we have for any unit veetan R?,

_ ou; (e, v) 2
0= / (e, Vu;) ™ > |Vu;|“do.
|x—P|=r
By passing to the limit, we have
G ,
0= / 0. v6) 2% _ e g6, (3.29)
av 2

[x—Pl=r

where
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G(x) =8r[G(x, P) + G(x, Q)]

—alog( - ) + 87V (x, P) + G(x. Q)]
by (3.19). By a straightforward computation, (3.29) implies

(e, Vi(¥(x,P)+G(x,0)))=0 atx=P (3.30)
asr — 0. Sinceyr(x, P) andG(x, Q) is an even function in1, (3.30) is equivalent to

aG(x, Q) 4 oY (x, P)

=0 atx=P,
8)62 aX2

that is,
IG(P )
6. 0) | 99 by (3.31)
8)62 8)62

Similarly, when the Pohozaev identity is applied&twe have
G ad
2°2(0. P) + -2-(0) = 0. (3.32)
8)62 8)62

SetP = (0,r1) andQ = (0, r»). Suppose
a<rp<ry<b. (3.33)

Then, by Lemma 3.4, we have
G G
X2 0x2
Thus, by (3.31) and (3.32), we have

d d
—(0) <0< —(P). (3.34)
ar ar
Let g be the maximum poinp(r). Then by Lemma 3.3, (3.34) implies
r<ro<ry,

which yields a contradiction to (3.33). The other assumptionr, < r, < b yields a
similar contradiction by Lemma 3.3, Lemma 3.4 and (3.32). Hence the claim (3.28) is
proved.

Setg; (x) = 2%(x). Theng; (x) satisfiesA¢; + €”i¢; =01in QT and¢; =0 onIQ™,
wherev; = u; + ¢; for some suitable constant andQ™ = {(x1, x») € | x; > 0}. Note
that ¢; cannot be one sign i@ because:; has two local maximum poin?; and Q;
which are located in the opposite direction of theaxis. Furthermore, the nodal line
{x € QT | ¢;(x) = 0} must intersect with the boundary 6f2* at two points at least.
This can be seen by the scaling in the following way.
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Set

~ ui (Pu)
bi(y)=¢i(e 2 y)
as in (2.17). Then by multiplying a constagt(y) converges t@% in C2.(R?), where
c#0 andg’T”l(y) =—y/(1+ %|y|2). Note thatu; has a local maximum ak;. Thus,¢;
is positive ina neighborhood df; in Q*. The same holds fo@; also, that isg; (x) is
negative in a neighborhood @;. This proves that the nodal line ¢f intersects at least
twice with 9 Q™.

SinceQ* is simply connected, the fact about the nodal line implies €hatcontains
two disjoint, simply-connected subdomaiey” and 5 where ¢; (x) vanishes on the
boundary ofQ;", i =1, 2. By Lemma 3.2,

m/wm>w (3.35)

of
for k =1, 2. If there exists2;; such that

pi/e“"dx>47'r.

Q+
ko

Then p; > 167 as claim. If (3.35) turns out to be an equality for edghthen by
using the spherical symmetrization as (3.9), we can prove|that (x) = constant for

|x| = b. Sinceg;y = 0 for |x| = b, we haveg;, (b, 6) is a constant independent &f By
integratingg¢;, (b, 6) alongd, we obtain a contradiction as the last step of the proof of
Theorem 1.3. This ends the proof of Theorem 1.41

4. Existence of blowing-up solutions

In this section, we want to prove the existence of blowup solutions of the following
equation:

{Aui+kie"f =0 in Q, (4.1)

u; =0 on 0%,
wherex; — 0. In particular, we want to seek solutions such that

A,-/e“"dx—>8mn
Q

asi; — 0 whenQ is a radially symmetric annulus. Write = p; ([, € dx)~1. Then
u; is a solution of (1.4) withp; such thato; — 8ms. Our main result in this section is
Theorem 4.2 below.

When @ is a simply-connected domain under some nondegenerate condition,
solutions with one blowup point was constructed in [17,18] and [25]. In general, there
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seems no results about the existence of solutions with one point blowup. For Eq. (1.4
with p € (87, 16:), solutions were obtained by Ding et al. [12]. However, it is not clear
whether their solution would blowup or not as|, 8. (By Theorem 1.4, their solutions
remains bounded gs 1 16.) On the other hand, since the nonlinear terfm-€0 at

u =0, there always exists a minimal solutioms— 0 asx — 0. It is easy by the well-
known Mountain Pass lemma to prove that for any fixed stallO, (4.1) possesses a
second solution; at least, and the solutiam, must blow up at some point as— 0.

It is plausible to guess that, has one single blowup point only. This result might be
known to experts. But, there seems no proofs in the literature as far as the authors kno
For the sake of the completeness, we present the proof here. Wisan annulus, we
also construct solutions wittr blowup points which satisfies

y / &™) dy > 8. 4.2)
Q

In the following, we consider a more general nonlinear teftm) which satisfies
f(©) >0and
. L,
zﬂToo fe =1 (4.3)

DenoteF (1) = fé f(s)ds. Letv, be the minimal solution of

Au+rf(u)=0 in Q,
{u:O, on <. (4.4)
Set
1
Jw =5 / Vul? — 1 /{F(vk )= Fu) — fou) (4.5)
Q Q

foru e HY(). ThenJ, e C1(HY()) and satisfies the Palais—Smale condition. Suppose
that there is;, € HX2) such that/, (e;) < 0. Let

c) = Ir;f Orgl%xlfk(y(t)) (4.6)

wherey is any path connecting 0 arg. The well-known Mountain Pass Lemma says
thatc, is a critical value ofJ;. Let w;, be a critical point of/, with J, (w;) = c;. Then

u; = vy, + w; is a solution of (4.1). It is easy to see that solutions obtained in this manner
must blow up as. — 0. We will prove that, by choosing a particulgy, u; blows up at

a single point ag. — 0.

THEOREM 4.1. — Let u, be the solution described above. Thenblows up at a
single point as. — 0.
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Proof. —Let B be a ball contained i, andU; be the large-norm solution of

u(x)>0 in B, 4.7)

{ Au + ret= =0,
ux)=0 on 0B,

wheree is a fixed small positive number. Then we have

A / et = = (14 0) ash |0, 4.8)
/Us e1-oUf /|v |2 )2(1+ o(1) Iog—, (4.9)

and
/ Ufd < ¢ (4.10)

wherec is a constant independent bfands.
o
ExtendU? to be zero outsidd, thenU? e HY(2). We have

2
h(A+eur) =210

/|VU;|2dx —x/[F((1+8)U; +v3)
0] Q

— F(v) — f(v)(1+)U;] dx
When the value ol; (x) is large, by (4.3),

F((A+ &)U +v,) > el 9Aalidul _ ¢ (g)
> 62 (U290 — ¢y (e).

Whenze is fixed, we have

2 — & _ £
/(Uf) et {")UA//U;“E‘(l O 5 o0
Q Q

asi — 0. By observing that; is uniformly bounded i, it is easy to see that
L ((L+¢e)U;) > —c0 asr | 0.
Lete, = (1+ ¢)U;¢, then for small,
Ji(en) <0,

and let

C) = |nf max J; (y (1)),

SIS
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wherey is any continuous path connecting 0 afnd By the Mountain Pass Lemma,
we know thatc; is a critical value. Letw, be one of the critical points of;, with
J(w;) =c;. Thel’luk =w, + v, is a solution of (44)

To computef,, |Vuy |2, one have

A/mfwudwj/WwFZZAWM+2§/qu—Fwn—fwMM+Oﬂ)
Q Q

Q

Fixede > 0, one have

A F(uy) <eh | up F(uy) <cer | u; f(uy)
[ror<n] /

for all smallx. Hence

mn+/WmF<
Q

2
Jr(w;)
—ce

<2 max J; (tUy)
S 1—ceoi<iae

(1+8)2
S 1—ce

/wmunm+om
Q

(1+ ¢)?
S (1-6)2(1—ce)

167log 1/ (14 0o(1)),

by (4.5). Lete satisfy
(1+¢)? 3

1—e2(—ce) 2
By Lemma 4.3 (below), we know that the blow-up pointgfconsist of one single-point
only anda [, f(u) dx =87 (1+ 0(1)). Hence the proof of Theorem 4.1 is completel

THEOREM 4.2. — Let2 be aradially symmetric annulus anr) = €. Letm be any
positive integer. Then for small> 0, there exists a solutions, of (4.1) such that

k/e‘”dx > 8mr, and iimo)\/e’”dx:an. (4.11)
Q

Proof. —We will prove Theorem 4.2 in a similar manner. L&} be the rotation with
an angle 2 /m. ConsiderJ, of (4.5) in the paceH!, (), where HL,,(Q) = {u €

HYQ) | u(T,,(x)) = u(x)}. As in the proof of Theorem 4.1, we construd/ae H?,,(2)
such that

. 16mm
e (1—8)U)\
A/Uxe A_e? log — (1+o(l)). (4.12)
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And, we have
Ji((A+e)U) > —oo asi— 0.
Lete, = (1+¢)U?, and

¢, =inf max J, (y (1)),
Y

'

wherey is any continuous path i#*,,(Q) connecting 0 and,. Hence there exists a

critical pointw,, e H%,,() with J; (w;) = c,. Thenu, = v, + w, is a solution of (4.4),
and invariant undef,,. In a similar manner as shown above, we can cheasmall so
that

/ |Vu,|? < 24mmlog1/x(1+0(1)) asa | 0.
Q

Since the number of blow-up points of is a multiple ofm, by (4.15) of Lemma 4.3
(below), the above inequality implies that the blow-up setpfconsists ofin points.
Hence [, f(u;) dx =8wm(1+ o(1)) asi | O.

We give a sketch of the proof for (4.11). For simplicity, we assume 3. The proof
for the general case is similar. Now supposehas the local maximum a&;, Q;, O;,
where P; is on the positivex;-axis andQ;, Q; are located at the rays having the angle
2 /3 and 4r /3 to the positivex;-axis respectively. we want to proue(x) is symmetric
with respect to the;-axis. Note that; is the reflection point of); with respect to the
x1-axis.

Setw(xy, x2) = u; (x1, x2) — u; (x1, —x») for x, > 0. Thenw satisfies
{Aw—l—b(x)w(x):O iNQT={xeQ|x, >0}, (4.13)

w |3Q+: 0. '

Supposew(x) # 0 in Q*. Then it can be proved as (2.15) such that for &ny0,

sup [w(x)| = o(D)N; (4.14)
Qt(8)

holds, where @1) — 0 asi — +oo,

N; = max|w(x)|
Qt

and
Q*((S):{erJr ||x — Q;| = é§ and|x — P;] 25}.

Now suppose the maximum ab occures nearQ;. Note thatw(x) = 0 for x €
{(t cos%”,tsin%”),t > 0} becausey; is invariant under the group action @g. By
rotation and translation, we assu@e = (0, 0), w(x) satisfies

Aw(x) +b(x)w(x)=0 for|x| <§andx, >0,
w(x1, 0) =0,
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and the maximum o (x) occures neag;, say,
|lw(x;)| = N;.
By scaling as (2.17), we considény) = w(e i (2)/2y) for |y| < €i(@)/25, Thenw (y)

satisfies

A®+ BB =0 for |y <e™ s

with

= -2

b <e(1+1y17) "
We apply the Green representation formula (2.19) to pré¥&i&€?|x;| is bounded.
FurthermoreN,.‘lzI)(x) tends to some functiotw(x) in C%C(Rz), wherew satisfies

{ AW +eWiH=0 inR2,
W(x1,0) =0.

By the reflection, we have

CX1

— 5 — inR}
14 3lx|?

w(x) = 4

for some constant # 0. On the other hand,
w(0) =[Vw(0)|=0
becauser; has local maximum ap; and Q;. Then

.
0=220,00=c£0
8)61

yields a contradiction. Hence the maximumuoinust occur neaP;. By using the same
argument, it also yields a contradiction. Therefore the symmetny isf proved.

Let ¢ = du;/00. Then ¢ vanishes at the ray§r cosp, ¢tsing) | + > 0} with 6 =
kr/3, k=0,1,...,5. By the isoperimetric inequality (see the proof of Theorem 1.3),
we have

y / &) dy > 47,
0<0<%

Therefore

ki/e“f(x)dx > 24rx
Q

as claimed. O

LEMMA 4.3. — Suppose that; is a sequence of solutions @.4) with A; — 0. Then
after passing to a subsequen@till denoted by:;), one of the following statements hold.
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(i) A Jg f(u;)dx — 400 asi — +oo. In this casey; (x) — +oo uniformly in any
compact set of?2,

(i) im0 Ai [ f (u;) dx = 8mm for some integem € {0, 1, 2, ...}. Furthermore,
we have(a) if m = 0, thenu; (x) — 0 uniformly forx € @, (b) if m > 0, theny;
has exactlyn blowup points{Py, ..., P,} and A; f (u;(x)) — 8 Z;f’zl Sp; with
8,; being the Dirac measure &;. Moreover, as — oo

Ai / f (u;(x))u;(x)dx = 16mxn log % (14 0(1)). (4.15)
|Pj—x|<8 '

Proof. —The claims of (i) and (ii) are well-known now except (4.15). (4.15) is a
consequence of the estimate of local maximum;afiear each blowup poing;:

max u;(x) = 2Iog%(1+ o(1)) (4.16)

r—PjI<8 i

for each;j and smalls > 0. The upper bound of max p, <s u;(x) can be obtained by

the so-called “supg-inf” inequality which was proved in [3] and [8]. The lower bound
can be obtained by the Green representation formulas and the scaling method. For tt
details of proof, we refer to [9]. O
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